
The Drinking Philosophers Problem
K. M. CHANDY and J. MISRA
University of Texas at Austin

The problem of resolving conflicts between processes in distributed systems is of practical importance.
A conflict between a set of processes must be resolved in favor of some (usually one) process and
against the others: a favored process must have some property that distinguishes it from others. To
guarantee fairness, the distinguishing property must be such that the process selected for favorable
treatment is not always the same. A distributed implementation of an acyclic precedence graph, in
which the depth of a process (the longest chain of predecessors) is a distinguishing property, is
presented. A simple conflict resolution rule coupled with the acyclic graph ensures fair resolution of
all conflicts. To make the problem concrete, two paradigms are presented: the well-known distributed
dining philosophers problem and a generalization of it, the distributed drinking philosophers problem.

Categories and Subject Descriptors: D.1.3 [P r o g r a m m i n g Techniques] : Concurrent Programming;
D.4.1 [Opera t ing Systems]: Process Management--concurrency; mutual exclusion; synchronization;
D.4.7 [Opera t ing Systems]: Organization and Design--distributed systems

General Terms: Algorithms

Additional Key Words and Phrases: Asymmetry, dining philosophers problem

1. INTRODUCTION

We study the problem of fair conflict resolution in distributed systems. Conflicts
can be resolved only if there is some property by which one process in every set
of conflicting processes can be distinguished and selected for favorable treatment;
that is, a conflict is resolved in favor of the distinguished process. In order to
guarantee fairness, the distinguishing property must be such that the process
selected for favorable treatment is not always the same: Traditional schemes for
fair conflict resolution use priorities assigned to processes [2, 3, 7, 9, 10] or
probabilistic selection [5, 8]. We propose a new approach by using the locations
of shared resources as a distinguishing property. By introducing auxiliary re-
sources, where needed, and by judiciously transferring resources among processes,
we show that all conflicts can be resolved fairly. We propose a paradigm, the
drinking philosophers problem, which captures the essence of conflict resolution
problems in distributed systems. This problem is a generalization of the classical

This work was supported by the Air Force Office of Scientific Research under grant AFOSR 8!-0205.
Authors' present addresses: K.M. Chandy, Department of Computer Science, University of Texas at
Austin, Austin, TX 78712; J. Miara, Computer Systems Laboratory, Stanford Electronics Laborato-
ries, Department of Electrical Engineering, Stanford University, Stanford, CA 94305.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
© 1984 ACM 0164-0925/84/1000-0632 $00.75

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 4, October 1984, Pages 632-646.

The Drinking Philosophers Problem • 633

dining philosophers problem [2, 3]. We present both problems formally in the
following sections. This section presents an informal introduction to the problem
of conflict resolution in distributed systems.

Two or more processes cannot execute certain actions simultaneously: for
instance, two processes cannot hold "write locks" on the same data item at the
same time. Conflicts arise when two or more processes attempt to carry out such
actions simultaneously. The resolution of such a conflict requires that some
processes be treated differently from others in the sense that the conflict be
resolved in favor of some processes and against other conflicting processes. If all
processes in a set of conflicting processes are indistinguishable (i.e., if every
property that holds for one process also holds for the others), then it is impossible
to resolve conflicts between them without resorting to random selection. This is
because any deterministic algorithm that selects one of the processes for favorable
treatment must carry out the selection on the basis of some property that holds
for that process and not for the others. Therefore, if we do not wish to use
probabilistic algorithms to resolve conflicts, we must ensure the following invar-
iant:

Distinguishability. In every state of the system at least one process in every
set of conflicting processes must be distinguishable from the other processes of
the set.

An example of a distinguishing property is a process's identity number (pro-
vided that it is different from the identity numbers of all processes that it may
conflict with).

Fairness. Usually we require not only that conflicts be resolved but also that
they be resolved fairly, that is, conflicts should not always be resolved to the
detriment of a particular process. If conflicts always occur in the same system
state, a deterministic conflict resolution scheme will always resolve conflicts in
the same way because the outcome of a deterministic scheme is a function of the
system state. In this case conflict resolution will be unfair. Fairness requires that
the states that obtain when conflicts occur not always be identical. An example
of state information used to ensure that conflicts arise in different system states
is time, where time may be determined by a centralized, global clock or by
distributed logical clocks [7]: every request (which may result in a conflict) is
timestamped, and a conflict between two requests is resolved in favor of the one
with the smaller timestamp. However, conflicts between processes with equal
timestamps must be resolved by using some other distinguishing property (such
as process IDs). The state information used to ensure fairness may reside in a
single process (the centralized solution) or it may be distributed. This paper is
about distributed schemes to ensure (1) distinguishability and (2) fairness.

We describe our problem informally by using a graph model of conflict. A
distributed system is represented by an undirected graph G with a one-to-one
correspondence between vertices in G and processes in the system. Edge (u, v)
exists in G if and only if there may be a conflict between (the processes
corresponding to) vertices u and v. We assume that there is some mechanism
that, in every state of the system, ascribes a precedence ordering to every pair of

ACM Transactions on Programming Languages and Systems, V~ol. 6, No. 4, October 1984.

634 • K.M. Chandy and J. Misra

q r

Fig. 1. Graph G. Fig. 2. Graph H.

potentially conflicting processes so that one of the processes in the pair has
precedence over the other. If there is a conflict between a pair of processes, the
process with the lower precedence must yield to the process with greater prece-
dence in finite time. We represent precedences between pairs of potentially
conflicting processes by a precedence graph H, which is a graph identical to G
except that each edge in G is given a direction in H as follows: An edge in H is
directed away from the process with greater precedence toward the process with
lesser precedence. For example, Figure 1 shows graph G for a system with 3
processes p, q, and r with the possibility of conflict between any pair of processes.
Figure 2 shows graph H for a state of the system in which p has precedence over
q and r, and q has precedence over r.

If H is acyclic, then the depth of a process in H is a distinguishing property by
which a process can be distinguished from all processes that it may conflict with;
depth of a process p in H is the maximum number of edges on any (directed)
path to p from a process without any predecessors. Note that a process with no
predecessor has depth 0. It follows that neighbors cannot have the same depth.
For example, in Figure 2, the depth of p, q, and r are 0, 1, and 2, respectively.

If H is a cycle, the topology of H does not allow us to distinguish one process
from another. We propose an algorithm that ensures that H is acyclic in every
state of the system.

The acyclicity of H in every state of the system guarantees distinguishability
but does not guarantee fairness. We wish to ensure that every process with
conflicts has all its conflicts resolved in its favor in finite time; this requirement
can be ensured by a guarantee that every process with conflicts rises to the top
(i.e., to zero depth), in H in finite time. By the phrase, a "process p will rise to
the top in H," we mean that the state of the system will change, and hence H
will change too, so that p will have no predecessor in the precedence graph H at
some later state. If p is at depth 0, then any conflict that p has will be resolved
in p 's favor in finite time because p takes precedence over all of its neighbors.

How should H change? The only way to chdnge H is by changing the directions
of the edges. We propose to implement H, and changes to H, by a distributed
scheme, where each change in H is made locally at one process. Therefore our
requirements are (1) H remains acyclic at all times, (2) H changes in such a
manner that every conflicting process eventually rises to the top in H, and (3)
each change to H be done locally at a process.
ACM Transactions on Programming Languages and Systems, Vol. 6, No. 4, October 1984.

The Drinking Philosophers Problem • 635

(a) (b) (c)

Fig. 3. Example illustrating rule for changing H.

To ensure acyclicity, we employ the following rule for changing H:

Acyclicity Rule. All edges incident on a process p may be simultaneously (i.e.,
in one atomic action) redirected toward p.

This transformation preserves acyclicity of H because no cycle containing p
can be created by the transformation since there is no edge directed away from
p after the transformation.

To ensure that every process in a conflict will rise to the top in H eventually
we employ the following rule:

Fairness Rule. Within finite time after a conflict is resolved in favor of a
process p at depth 0, p must yield precedence to all its neighbors.

This ensures that in the event that process at depth 0 is in conflict it will
redirect all incident edges toward itself in finite time. This redirection of edges
follows the acyclicity rule.

Example. Consider the precedence graph H shown in Figure 3a, where p, q,
and r have depth 0, 1, and 2, respectively. If there are conflicts, then in finite
time the directions of all edges incident on p will be reversed to give the precedence
graph shown in Figure 3b, in which p, q, and r have depth 2, 0, and 1, respectively.
If conflicts persist, in finite time the directions of all edges incident on q wil! be
reversed to give the precedence graph in Figure 3c, in which p, q, and r have
depth 1, 2, and 0, respectively.

The key issue is to devise a distributed implementation of H, as well as the
acyclicity and fairness rules. The distributed aspect of the problem makes it
nontrivial. The difficulty is that a process has to decide whether to yield or not
to yield in a conflict, and the decision has to be made solely on the basis of the
process's local state. It may not be possible to determine the direction of edges
incident on a process only on the basis of the process's local state. Therefore we
devise a distributed implementation of H and a scheme by which processes
resolve conflicts by making local decisions based on partial information of H.

Our goa! in this section was to discuss the concepts underlying distributed
conflict resolution and the treatment has been informal. The following sections
offer a more formal treatment of conflict resolution by defining and solving a
specific problem: The drinking philosopher problem, which serves as a paradigm
of conflict resolution problems.

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 4, October 1984.

636 • K. M Chandy and J. Misra

2. THE DRINKING PHILOSOPHERS PROBLEM (DRINKERS PROBLEM)

The following problem is a generalization of the dining philosophers problem
[2, 3], which has achieved the status of legend, since it captures the essence of
many synchronization problems. Processes, called philosophers, are placed at the
vertices of a finite undirected graph G with one philosopher at each vertex. A
philosopher is in one of 3 states: (1) tranquil, (2) thirsty, or (3) drinking.
Associated with each edge in G is a bottle. 1 A philosopher can drink only from
bottles associated with his incident edges. A tranquil philosopher may become
thirsty. A thirsty philosopher needs a nonempty set of bottles that he wishes to
drink from. He may need different sets of bottles for different drinking sessions.
On holding all needed bottles, a thirsty philosopher starts drinking; a thirsty
philosopher remains thirsty until he gets all bottles he needs to drink. On entering
the drinking state a philosopher remains in that state for a finite period, after
which he becomes tranquil. A philosopher may be in the tranquil state for an
arbitrary period of time.

Two philosophers are neighbors if and only if there is an edge between them
in G. Neighbors may send messages to one another. Messages are delivered in
arbitrary but finite time. Resources, such as bottles, are also encoded and
transmitted as messages.

The problem is to devise a nonprobabilistic solution that satisfies the following
constraints.

Fairness. No philosopher remains thirsty forever.
Symmetry. All philosophers obey precisely the same rules for acquiring and

releasing bottles. There is no priority or any other form of externally specified
static partial ordering among philosophers or bottles.

Economy. A philosopher sends and receives a finite number of messages
between state transitions. In particular, permanently tranquil philosophers do
not send or receive an infinite number of messages.

Concurrency. The solution does not deny the possibility of simultaneous drink-
ing from different bottles by different philosophers.

Boundedness. The number of messages in transit, at any time, between any
pair of philosophers is bounded. Furthermore, the size of each message is bounded.

The drinkers problem is a general paradigm for modeling conflicts between
processes. Neighboring philosophers will be prevented from drinking simultane-
ously if they wish to drink from the same bottle--this situation models conflicts
for exclusive access to a common file. Neighboring philosophers may drink
simultaneously from different bottles--this situation models processes writing
into different files.

We must prevent the system from entering states in which neighboring
philosophers are indistinguishable. For example, consider philosophers arranged
in a ring and a state in which each philosopher is drinking from his "left" bottle--
philosophers cannot be distinguished in this state. If all philosophers are drinking
from their left bottles and then require both bottles for their next drinking

1 The solution given in this paper also applies to multiple bottles on every edge. The assumption of
one bottle per edge is made for brevity in exposition.

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 4, October 1984.

The Drinking philosophers Problem ° 637

session, then the philosophers must remain thirsty forever because a determin-
istic algorithm cannot choose between indistinguishable philosophers. However,
a system state is certainly possible in which all philosophers hold their left
bottles. If we were to disallow this state, we would be disallowing a feasible state
in which progress is being made, merely to solve our problem; disallowing feasible
states violates our constraint of Concurrency. We appear to be in a quandary
because the constraints of symmetric processes, nonprobabilistic solutions, and
concurrency are incompatible for this problem. The solution is to implement
precedence graph H by using special "auxiliary" resources. The solution to the
dining philosophers problem shows us how to implement H. Therefore we study
the dining philosophers problem next. We then study the drinkers problem using
the diners problem solution to implementing H.

3. THE DINING PHILOSOPHERS PROBLEM (DINERS PROBLEM)

The diners problem [2] is a special case of the drinkers problem in which every
thirsty philosopher needs bottles associated with all its incident edges for all
drinking sessions. We present a solution for this problem with the properties of
fairness, symmetry, economy, concurrency, and boundedness. To distinguish
between these two problems, we use the following terms for the diners problem,
with the corresponding term for the drinkers problem in parentheses: thinking
(tranquil), hungry (thirsty), eating (drinking), fork (bottle). The diners problem
disallows neighbors from eating simultaneously. The drinkers problem allows
neighbors to drink simultaneously provided that they are drinking from different
bottles.

We first present an informal outline of the solution; the next section has a
detailed formal description. A fork is either clean or dirty. A fork being used to
eat with is dirty and remains dirty until it is cleaned. A clean fork remains clean
until it is used for eating. A philosopher cleans a fork when mailing it (he is
hygienic). A fork is cleaned only when it is mailed. An eating philosopher does
not satisfy requests for forks until he has finished eating. The key issue is: which
requests should a noneating philosopher defer? In our algorithm, a noneating
philosopher defers requests for forks that are clean and satisfies requests for
forks that are dirty.

This solution to the diners problem suggests an implementation of precedence
graph H. The direction of an edge between two neighbors u and v is from u to v
(i.e., u has precedence over v) if and only if (1) u holds the fork shared by u and
v, and the fork is clean, or (2) v holds the fork, and the fork is dirty, or (3) the
fork is in transit from v to u. Observe that the direction (from u to v) of the edge
can change only when u starts eating. Furthermore, all edges incident on an
eating philosopher are directed toward it. Hence we have an implementation of
the acyclicity rule: The direction of edges incident on a process may be changed
only in the following way--all edges incident on a process may be simultaneously
directed toward it.

Initially all forks are dirty and are located at philosophers in such a way that
H is acyclic. Hence the following is an invariant: H is acyclic.

Immediately upon completion of an eating session, a philosopher yields prec-
edence to his neighbors. A hungry philosopher at depth 0 in H will commence

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 4, October 1984.

638 • K M Chandy and J Misra

eating in finite time (because he has precedence over all his neighbors). By
induction on depth, a hungry philosopher at depth k, k >_ 0, wilt eat in finite time
because he has precedence over all philosophers at greater depth, and all philos-
ophers at smaller depth will yield precedence to it in finite time.

A formal treatment of these arguments is found in the next section.

4 A HYGIENIC SOLUTION TO THE DINERS PROBLEM

41 Algorithm

We now give a precise description of the solution outlined in the last section. To
simplify our description, we introduce a request token for each fork. Only the
holder of the request token for fork f can request fork f. A request for a fork is
made by sending the corresponding request token to the holder of the fork. It
follows then that only one process--the holder of the request token for f - -may
request fork f and the requested process, after receiving the token, has the next
chance to request the fork. Also, if a process holds a fork and the request token
for the fork then his neighbor (with whom he shares the fork) has an outstanding
request for the fork. We introduce the following Boolean variables:

fork=(f):
reqf=(f):
dirty= (f) :
thinking=/hungry~/eating~:

philosopher u holds fork f,
philosopher u holds the request token for fork f,
fork f is at u and is dirty,
philosopher u is thinking/hungry/eating.

We drop the subscripts from the Boolean variables when the context is clear.
Each philosopher follows the rules given below for requesting and sending

forks. In each case a rule is written as g - , A, where g is a condition and A is a
sequence of actions. These rules constitute our solution to the diners problem.
The set of rules forms a single guarded command [4].

(R1) Requesting a fork f:
hungry, reqf (f), ~ fork(f)
send request token for fork f (to the philosopher with whom f is shared);
reqf (f) := false

(R2) Releasing a fork f:
~ eating, reqf (f), dirty (f) --*
send fork f (to the philosopher with whom fork f is shared);
dirty(f) := false;
fork(f) := false

(R3) Receiving a request token for f:
upon receiving a request for fork f
reqf(f) := true

(R4) Receiving a fork [:
upon receiving fork f--.
fork(f) :-- true
I~dirty(f)}

We note that the statement of the diners problem defines transitions among
states (thinking, hungry, eating) for a philosopher, and we furthermore have for
any philosopher,

eating, fork(f) ~ d ir ty(f) .

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 4, October 1984.

The Drinking Philosophers Problem • 639

Initial Conditions

1. All forks are dirty. IV/, dirty=(f) or dirtyv(f) where u, v are the philosophers
who can use fork [}.

2. Every fork f and request token for f are held by different philosophers. {If fork
f is shared between philosophers (u, v), then u holds the fork and v the token
(i.e., fork,(f), reqfv([), ~fork,(f), ~reqf=(f)), or v holds the fork and u the
token.}

3. H is acyclic. {The forks are initially placed in such a manner that H is acyclic.}

4.2 Proof of the Hygienic Solution for the Diners Problem

We show in this section that every hungry philosopher will eat. In addition to
this fairness condition, we show that our solution has the properties of symmetry,
economy, concurrency, and boundedness.

Fairness

LEMMA 1. H is always acyclic.

PROOF. Initially H is acyclic. The directions of edges in H may be affected
only when a fork changes its status (dirty or clean) or its location. We will show
that every change to H preserves acyclicity. Every transmission of a fork is
accompanied by a change in its status from dirty to clean; this does not change
the direction of any edge. A fork is dirtied when the philosopher u holding it,
eats. In this case u must be holding all other forks associated with edges incident
upon it, and they must all be dirty, u cannot then create a cycle in H because all
edges upon u are directed toward it. []

THEOREM 2. Every hungry philosopher eats.

The following proof is based on the fact that a hungry philosopher requesting
a fork that is currently dirty will receive it (from rule R2), and since the fork is
clean upon receipt the philosopher will hold it until he eats. A philosopher
requesting a fork that is clean must make the request to a philosopher at a
smaller depth and, by induction on depth, this philosopher will eat and then
dirty the fork, in which case the first argument applies.

PROOF. Recall that the depth of a philosopher in H is the maximum number
of edges along a path to that philosopher from one without predecessors. We
prove the theorem by induction on depth of a hungry philosopher; the induction
amounts to showing that hungry philosophers at depth k in every H eat, provided
all hungry philosophers at depths smaller than k in every H eat, for all k _ 0.

We will not do a special analysis for hungry philosophers at depth 0, because
that case is subsumed by Case 1, below.

Let u, v be neighbors and u be hungry. We show that u holds or will hold the
fork [corresponding to the edge (u, v) and will thereafter continue to hold it
until u eats. If u holds the fork currently and holds it continuously until he eats,
the result is trivial. Therefore assume that v holds the fork [sometime before u
eats next. We do a case analysis on the status of f at the time that v holds the
fork. At this time we have: hungry=, -fork=(f), forkv([).

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 4, October 1984.

640 • K.M. Chandy and J. Misra

Case 1: [is dirty (dirtyv(f) = true). If reqfu([) holds then u will request [
(because precondition of rule R1 will hold) and subsequently reqfv(f) will hold;
otherwise reqf~(f) already holds. If eatingv holds then at some later point (since
eating is finite), ~ eating~ holds, and all other predicates for rule R2 still hold.
Therefore rule R2 will be applied by v, and u will eventually hold a clean fork. u
will not release a clean fork until u eats.

Case 2: f is clean (dirty~ (f) -- false). Every fork held by a nonhungry philos-
opher is dirty because

(a) all forks are dirty initially,
(b) only hungry philosophers receive clean forks, and
(c) all forks held by eating philosophers are dirty.

Since f is clean, the philosopher v holding it must be hungry. Furthermore,
because f i s clean, (v, u) is an edge in H and hence depth(v) < depth(u). According
to the induction hypothesis, v eats and hence dirties f. Case 1 then applies. []

Symmetry. It follows from the description of the algorithm that all philoso-
phers follow the same rules.

Economy. The number of message sends and receives before a state transition
is bounded as follows: if d is the number of neighbors of a philosopher, then no
more than d requests or forks will be sent or received. More precisely, suppose a
philosopher has e dirty forks when he transits to hungry state. Then he must
send d - e requests and receive a fork corresponding to each request. In addition,
in the worst case, he may lose all e forks he had held initially and therefore have
to request and receive them. Assume that a philosopher implements the latter
situation by sending a fork arid the request for it in one message. Then no more
than 2d messages are needed before transiting to the eating state. The only
messages received in the eating or thinking state are the requests for forks held
by the philosopher and hence these do not exceed d. In the best case, a philosopher
with permanently thinking philosophers as neighbors will receive no requests for
forks and therefore may live a life (think and eat) free of interaction with others.

Concurrency. Our solution does not deny any feasible system state; that is,
any state of the system in which neighboring philosophers are not eating is
allowable in our solution. This is because the solution does not prevent a
philosopher from entering the thinking or hungry state; the only restriction is in
entering the eating state, and that is allowable when a hungry philosopher holds
all forks, as required by the problem.

Boundedness. There are at most two messages--a fork and a request for a
fork--in transit, between any two philosophers.

5. A SOLUTION TO THE DRINKERS PROBLEM

5.1 The Precedence Graph

Our solution to the drinkers problem uses precedence graphs discussed in Section
1. The solution to the diners problem demonstrates a distributed implementation
of the precedence graph H. Fairness and the acyclicity of H are ensured by
implementation of the fairness and acyclicity rules. It may appear that Hprovides
ACM Transactions on Programming Languages and Systems, Vol. 6, No. 4, October 1984.

The Drinking Philosophers Problem • 641

a simple resolution mechanism for any type of conflict, including conflict for
bottles in the drinkers problem, since any conflict can be resolved in favor of the
process with greatest precedence. However, there is a difficulty due to the
distributed implementation of H. Given only the state of process u we can
determine which of neighbors u or v has precedence if u holds the fork: If the
fork is clean u has precedence, if it is dirty v has precedence. However, if u does
not hold the fork we cannot determine which of u or v has precedence from the
state of u alone. In this case u must make local decisions about holding on to or
releasing bottles without using precedence graph H. This issue is discussed next
in the context of the drinkers problem.

We use forks to implement H. Forks are auxiliary resources in the sense that
their sole purpose is to implement precedence graph H. Forks are not part of the
drinkers problem specification; they are part of the solution. The real resources
in the drinkers problem are bottles. Our philosophers can eat and drink simul-
taneously, and we emphasize that eating is an artifact of our solution, used only
to guarantee fair drinking. In our solution, the state of a philosopher is a pair
(diner's state, drinker's state), where a diner's state is one of thinking, hungry,
or eating and a drinker's state is one of tranquil, thirsty, or drinking. Our next
step is to define the dining characteristics of our philosophers; the drinking
characteristics are specified by the problem. We give rules that ensure that all
thirsty philosophers drink in finite time.

Consider the state transitions of a dining philosopher. The only transitions
that are decided by the philosopher are thinking-to-hungry and eating-to-think-
ing; the only transition completely specified by the diners problem is hungry-to-
eating (which occurs when a philosopher holds all forks he needs). We now give
rules for the dining philosopher to decide the point of the first two transitions.

(D1) Thinking-to-Hungry Transition:
A thinking, thirsty philosopher becomes hungry.

(D2) Eating-to-Thinking Transition:
An eating, nonthirsty philosopher starts thinking.

In the diners problem, a philosopher can think for arbitrary time though he
must eat for finite time. Therefore our obligation, arising out of rules (D1) and
(D2), is to ensure that each eating period is finite. This is accomplished by the
rule (D3) given below.

(D3) The Conflict Resolution Rule:
Philosopher u sends a bottle to philosopher v, in response to a request
from v, if and only if u does not need the bottle o r [u is not drinking
and does not hold the fork for the edge (u, v)].

Note that u's decision to send or hold onto a bottle requested by v depends on
whether u holds the fork associated with edge (u, v), and does not depend on
whether u or v has precedence in H. In particular, u must send the bottle to v if
u has precedence over v, but u does not hold the fork associated with edge (u, v).
We must show that despite this fact, the algorithm is fair.

The basic idea is this: Suppose u has precedence over v (i.e., (u, v) is an edge
in H), but v holds the fork (i.e., the fork is dirty), and suppose u requests a bottle

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 4, October 1984.

642 • K.M. Chandy and J. Misra

held by v. We require that u not only request the bottle held by v, but that u also
request the fork. We show (from the solution to the diners problem) that in finite
time v will yield the fork to u after which it must also yield the bottle to u. Thus,
the algorithm ensures that if u has precedence over v in H then eventually the
conflict resolution rule causes conflicts for bottles between u and v to be resolved
in u's favor.

5.2 Algorithm for the Drinkers Problem

Now, we state the algorithm formally. As before, we introduce a request token,
reqb, for every bottle b. The following Boolean variables are used:

both(b):
reqb=(b):
need=(b):
t r a n q u i l J thirs ty d drinking= :

philosopher u holds bottle b
philosopher u holds request token for bottle b
philosopher u needs bottle b
philosopher u is t ranqu i l / th i r s t y /dr ink ing

As before, we drop the subscript when the context is understood. From the
problem statement we have,

t ranqui l ~ Vb[- need(b)]

State transitions for dining philosopher determined by drinking states are

(D1) thinking, thirsty --* hungry := true
(D2) eating, ~ thirsty --* thinking := true

Other actions of the dining philosopher remain unchanged.

Rules for bottle and request transmissions {Let f be the fork corresponding to
bottle b, i.e., fork f and bottle b are shared by the same two processes}:

(R1) Request a Bottle:
thirsty, need(b), reqb(b), ~bot(b) --,
send request token for bottle b;
reqb(b) := false

(R2) Send a Bottle:
reqb (b), bot (b), ~[need(b) a n d (drinking o r fork(f))] --*
send bottle b;
bot(b) := false

(R3) Receive Request for a Bottle:
upon receiving request for bottle b --*
reqb(b) := true

(R4) Receive a Bottle:
upon receiving bottle b --~
bot(b) := true

Ini t ial Condi t ions

For Dining Philosophers: As before.
For Drinking Philosophers: A bottle and the request token for it are held by

different philosophers; that is, if u, v share bottle b, then u holds the bottle and
v the token (bot=(b), reqbv(b), ~botv(b) , ~reqb=(b)) , or v holds the bottle and u
the token.
ACM Transactions on Programming Languages and Systems, Vol. 6, No. 4, October 1984.

The Drinking Philosophers Problem • 643

5.3 Proof of Correctness of the Solution to Drinkers Problem

We show that the solution has the desired properties of fairness, symmetry,
economy, concurrency and boundedness.

Fairness

LEMMA 3. Every eating period is finite.

PROOF. If an eating philosopher is nonthirsty, he completes eating (D2). If
philosopher u is eating, he is holding all forks. If he holds a bottle that he needs,
he will not release it until he completes drinking, from the precondition of (R2).
If he needs and does not hold a bottle that he shares with v, then he holds or will
hold the request token for the bottle (same proof as in Case I of Theorem 2). He
will request the bottle, from (R1), and v will have to send the bottle in finite time
(R2) since v does not hold the fork and v can be in drinking state only for finite
duration. Therefore.u will hold all bottles he needs in finite time. Since u drinks
for finite time, u will become tranquil in finite time and, from (D2), u will stop
eating in finite time. []

Since every eating period is finite, Theorem 2 applies and we have

COROLLARY 4. Every hungry philosopher starts eating in finite time.

THEOREM 5. Every thirsty philosopher drinks in finite time.

PROOF. When a philosopher.becomes thirsty he is either thinking, hungry, or
eating. A (thirsty, thinking) philosopher becomes hungry in finite time (from
D1); a hungry philosopher starts eating in finite time (from Corollary 4). There-
fore every philosopher who remains thirsty will eat in finite time. The theorem
follows from Lemma 3 and the fact (D2) that eating can be terminated only by
drinking. []

Symmetry. Follows from the description of the algorithm.

Economy. We first show that a bottle b can travel at most twice between
neighbors, u, v, before one of them drinks from b. A bottle is sent in response to
a request from a thirsty philosopher. Let (u, v) be a directed edge in H; the bottle
will travel at most once from u to v and will then be held by v until v drinks.
This is because (1) either v holds a clean fork, which will not be released until
after eating (and hence drinking), and therefore the bottle b, which is needed by
v will not be released, or (2) u holds a dirty fork, which must have been requested
by v (when v became thirsty and hence hungry) and will be mailed, after being
cleaned, along with the bottle to v, and then case (1) applies. Hence a bottle can
travel at most twice between neighbors before one of them drinks.

LEMMA 6. There are at most 4qd message transmissions for q drinking sessions
among aU philosophers, where d is the maximum degree (i.e., the maximum number
of neighbors) of any philosopher.

PROOF. There is at most one request (for fork and/or bottle), one transmission
of a fork, and two transmissions of a bottle between neighbors before one of them

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 4, October 1984.

644 • K.M. Chandy and J. Misra

drinks. Therefore, when a philosopher drinks, there must have been no more
than 4 messages per each of its neighbors and hence the result. []

Concurrency. The argument for concurrency is similar to that for the diners
problem. We note that no feasible state of the drinkers problem is being
eliminated in our solution.

Bour~edness. There are at most three messages--request for a bottle and/or
fork, a bottle, or a fork--in transit from one philosopher to another at any point.

6. SUMMARY

We have described a distributed implementation of a precedence graph. The
changes to the graph are such that the graph is always acyclic. The depth of a
process in the graph is the process's distinguishing characteristic. The graph is
implemented by the "forks" of the diners problem. Two processes share a fork if
they may conflict with one another. The conflict-resolution rule is: A process u
yields in a conflict with a process v if and only if u does not hold the fork shared
with v. The algorithm ensures that if processes u and v are in conflict, and u has
precedence over v in the precedence graph, then the conflict resolution rule will,
eventually, cause conflicts to be resolved in u's favor.

Many types of conflict can be resolved by using the conflict-resolution rule
coupled with our distributed implementation of the precedence graph. For in-
stance, consider the multiple concurrent mutual exclusion problem described
next. A critical section in a process has an arbitrary number of colors associated
with it (where a color is some attribute of the critical section). The problem is to
devise a scheme by which, for each color c, there is at most one process executing
a critical section with associated color c. For example, a color may correspond to
the privilege of exclusive access to a specific file, and associated with each critical
section is the set of files accessed within that section. If all critical sections have
the same set of colors, the problem reduces to the classical mutual exclusion
problem.

We use our solution to the drinkers problem to solve the concurrent mutual
exclusion problem. We use a variant of the drinkers problem in which a pair of
philosophers may share an arbitrary number of bottles. The bottles are colored,
each bottle having precisely one color. A pair of philosophers share at most one
bottle of a given color. A bottle is specified by the edge it is on (i.e., by the pair
of philosophers who share it) and by its color. The set of bottles a thirsty
philosopher needs to drink is arbitrary--i t may include any bottle he shares. For
instance, when philosopher i becomes thirsty, he may need to hold the red bottle
shared with j and the red bottle shared with k and the blue bottle shared with k.
If there is precisely one bottle on each edge the problem reduces to the one
discussed earlier. We leave it to the reader to show that the algorithm given
earlier also applies to the extension to colored bottles.

Given a concurrent mutual exclusion problem, we construct a drinkers problem
as follows: Philosophers (processes) i and j share a bottle with color c if and only
if both philosophers have critical sections with color c. A process i may enter a
critical section with a set of colors c if and only if, for all colors c in c, and for all
edges e incident on process i, the bottle of color c on edge e is held by philosopher
ACM Transactions on Programming Languages and Systems, Vol. 6, No. 4, October 1984.

The Drinking Philosophers Problem • 645

i. In this case it is obvious that no neighboring philosopher can enter a critical
section with a color c in c.

7. PREVIOUS WORK

The distributed dining philosophers problem (philosophers at the vertices of a
graph) and the dining philosophers problem (five philosophers arranged in a
ring) appear in [2, 3]. Dijkstra's solutions to the former problem are based on
instantaneous atomic transmissions of messages to all neighbors or static fork
orderings. Lynch [9] has carried out an extensive analysis of static resource
ordering algorithms.

The problem of mutual exclusion among a group of processes in executing
their critical sections is a special case of the diners problem: Every process is a
neighbor of every other process and execution of a critical section corresponds to
eating. Distributed solutions to mutual exclusion using timestamps and process
IDs to break ties, appear in Lamport [7] and in Ricart and Agrawala [10]. Shared
counter variables have been used in [1], for solving the dining philosophers
problem.

A symmetric distributed solution to the diners problem appears in Francez and
Rodeh [5]. They use an extended form of CSP [6], in which both input and
output commands are used in guards.

Lehmann and Rabin [8] give a perfectly symmetric probabilistic algorithm and
show that there is no perfectly symmetric nonprobabilistic solution to the diners
problem.

ACKNOWLEDGMENT

We thank W.H.J. Feijen and A.J.M. Van Gasteren of Eind_hoven University of
Technology and Greg Andrews of the University of Arizona for their detailed
comments. We are grateful to three unknown referees and to Susan Graham for
detailed comments. Conversations with E.W. Dijkstra on this problem were most
helpful.

REFERENCES
1. DEVILLERS, R.E., AND LAUER, P.E. A general mechanism for avoiding st~xvation with distrib-

uted control. Inf. Process. Lett. 7, 3 (Apr. 1978), 156-158.
2. DIJKSTRA, E.W. Two starvation free solutions to a general exclusion problem. EWD 625,

Plataanstraat 5, 5671 AL Nuenen, The Netherlands.
3. DIJKSTRA, E.W. Hierarchical Ordering of Sequential Processes. In Operating Systems Tech-

niques, C.A.R. Hoare and R.H. Perrott, Eds., Academic Press, New York, 1972.
4. DIJKSTRA, E.W. Guarded commands, nondeterminancy and formal derivation of programs.

Commun. ACM 18, 8 (Aug. 1975), 453-457.
5. FRANCEZ, N., AND RODEH, M. A distributed abstract data type implemented by a probabilistic

communication scheme. Tech. Rep. TR-080, IBM Israel Scientific Center, Haifa, Israel, Apr.
1980.

6. HOARE, C.A.R. Communicating sequential processes. Commun. ACM 21, 8 (Aug. 1978),
666-677.

7. LAMPORT, L. Time, clocks, and the ordering of events in a distributed system. Comrnun. ACM
21, 7 (July 1978), 558-565.

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 4, October 1984.

646 • K.M. Chandy and J. Misra

8. LEHMAN, D., AND RABIN, M. On the advantages of free choice: A symmetric and fully distributed
solution of the dining philosophers problem. In Proceedings of the 8th Annual ACM Symposium
on Principles of Programming Languages (Williamsburg, Va., Jan. 26-28). ACM, New York, 1981,
pp. 133-138.

9. LYNCH, N.A. Fast allocation of nearby resources in a distributed system. In Proceedings of the
12th Annual ACM Symposium on Theory of Computing (Los Angeles, Calif., Apr. 28-30). ACM,
New York, 1980, pp. 70-81.

10. RICART, G., AND AGRAWALA, A. An optimal algorithm for mutual exclusion in computer
networks. Commun. ACM 24, 1 (Jan. 1981), 9-17.

Received May 1983; revised February 1984; accepted May 1984

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 4, October 1984.

