Distributed Computing (1986) 1:40-52

How processes learn

K.M. Chandy and Jayadev Misra

DISTIRIBUITED,
COMBRUMING

© Springer-Verlag 1986

Department of Computer Sciences, University of Texas at Austin, Austin, TX 78712, USA

Jayadev Misra is a professor
in the Department of Com-
puter Sciences at the Univer-
sity of Texas at Austin. His
primary research interests are
in the area of distributed com-
puting: specification and de-
sign of networks of asyn-
chronous components. He be-
lieves that sound practical
techniques must be based on
elegant theories. ’

Mani Chandy is a professor
of Computer Science and
Electrical Engineering at the
University of Texas at Austin.
He is chairman of the Com-
puter Sciences Department.
His research interests are in
distributed systems and per-
Jormance analysis.

1 Introduction

Processes in distributed systems communicate
with one another exclusively by sending and
receiving messages. A process has access to its

Offprint requests to: K.M.Chandy

This work was supported in part by a grant from the
Office of Naval Research under N00014-85-K-0057

state but not to the states of other processes.
Many distributed algorithms require that a pro-
cess determine facts about the overall system
computation. In anthropomorphic terms, pro-
cesses “learn” about states of other processes in
the evolution of system computation. This pa-
per is concerned with how processes learn. We
give a precise characterization of the minimum
information flow necessary for a process to de-
termine specific facts about the system.

The central concept in our study is that of
isomorphism between system computations with
respect to a process: two system computations
are isomorphic with respect to a process if the
process behavior is identical in both. In anthro-
pomorphic terms, “system computations are
isomorphic with respect to a process” means
the process cannot distinguish between them.

Many correctness arguments about distrib-
uted systems have the following operational fla-
vor: “I will send a message to you and then
you will think that [am busy and so you will
broadcast...”. Such operational arguments are
difficult to understand and error prone. The
basis for such operational arguments is usually
a “process chain”: a sequence of message trans-
fers along a chain of processes. We advocate
nonoperational reasoning. The basis for non-
operational arguments is isomorphism; we re-
late isomorphism to process chains. Algebraic
properties of system computations under iso-
morphism provide a precise framework for cor-
rectness arguments.

It has been proposed [3, 6] that a notion of
“knowledge” is useful in studying distributed
computations. In earlier works, knowledge is
introduced via a set of axioms [4]. Our defini-
tion of knowledge is based on isomorphism.
Our model allows us to study how knowledge

K.M. Chandy and J. Misra: How processes learn

is “gained” or “lost”. One of our key theorems
states that knowledge gain and knowledge loss
both require sequential transfer of information:
if process ¢ does not know fact b and later, p
knows that ¢ knows b, then g must have com-
municated with p, perhaps indirectly through
other processes, between these two points in the
computation; conversely, if p knows that ¢
knows b and later, ¢ does not know b then p
must have communicated with ¢ between these
two points in the computation. In the first case,
the effect of communication is to inform p of ¢’s
knowledge of b. Analogously, in the second
case, the effect of communication is to inform ¢
of p’s intention of relinquishing its knowledge
(that g knows b). Generalizations of these re-
sults for arbitrary sequences of processes are
stated and proved as corollaries of a general
theorem on isomorphism.

We use the results alluded to in the last
paragraph for proving lower bounds on the
number of messages required to solve certain
problems. We show, for instance, that there is
no algorithm to detect termination of an under-
lying computation using only a bounded num-
ber of overhead messages.

2 Model of a distributed system

A distributed system consists of a finite set of
processes. A process is characterized by a set of
process computations each of which is a finite
sequence of events on that process. Process
computations are prefix closed, ie. all prefixes
of a process computation are also process com-
putations (of that process). An event on a pro-
cess is either a send, a receive or an internal
event. A send event on a process corresponds to
sending a message to another process. A
receive event on a process corresponds to re-
ception of a message by the process. There is
no external communication associated with an
internal event. For a set of processes P, a send
event by P is a send event by some component
process of P to a process outside P; similarly a
receive event by P denotes receipt by some
process in P of a message sent from outside P.
Communication among processes in P are in-
ternal events of P. We use “e is on P”, for event
e and process set P, to denote that e is an event
on some process in P. We rule out processes
which have no event in any computation. We
assume that all events and all messages are

41

distinguished; for instance, multiple occurrences
of the same message are distinguished by affix-
ing sequence numbers to them.

Let z be any sequence of events on com-
ponent processes of a distributed system. The
projection of z on a component process p, de-
noted by z,, is the subsequence of z consisting
of all events on p. A finite sequence of events z
is a system computation of a distributed system
means (1) for all processes p, z, 1S a process
computation of p and, (2) for every receive
event in z, say receipt of message m by process
p, there is a send event, of sending m to p,
which occurs earlier than the receive in z: this
send event will be called the send event corre-
sponding to the receive. We leave it to the re-
ader to show that system computations are pre-
fix closed.

In this paper we consider a single (generic)
distributed system. For instance, when we say
“z is a computation” we mean that z is a com-
putation of the distributed system considered
here. We use computation to mean system com-
putation when no confusion can arise.

Notation. We use x, y, z to denote compu-
tations, p, g for processes and P, Q for process
sets; these symbols may be used with subscripts
or superscripts. The concatenation of two se-
quences y and z will be denoted by (y; z). For
sequences y and z, y<z denotes that y is a
prefix of z; in this case (y, z) denotes the suffix
of z obtained by removing y from z. The empty
sequence will be denoted by null. The symbol
— is used to denote equalities among sets and
among predicates. The symbol = is used for
definitions. The set of all processes in the sys-
tem will be denoted by D and for any process

set P, P=D—P.

3 Isomorphism

We define relation [p] on the set of system
computations as follows.

Definition. For
x[ply=(x,=y,)

system computations X, y:

In other words, x[p]y means p’s computation
is the same in system computations x and y. In
this case, we say x, y are isomorphic with respect
to p. For a process set P, define relation [P], on
the system computations, as follows.

42

Definition. x[P]y=for all p in P, x[p] y.

Thus x[P]y means that, given only the com-
putations of processes in P we cannot dis-
tinguish x from y. From definition, x[{ }]y, for
all computations x,y where { } denotes the
empty set. Observe that [P] is an equivalence
relation.

It is convenient to represent all such iso-
morphism relations by an isomorphism diagram :
an undirected labelled graph whose vertices are
computations and there is an edge labelled [P]
between vertices x, y if P is the largest set of
processes for which x[P]y. Observe that every
vertex has a self loop labelled [D] where D is
the set of all processes in the system. Note that
x[D]y, x=y, implies y is a permutation of x.

Example 1. Consider a system with two pro-
cesses, p and g, for which part of the isomor-
phism diagram, showing the relationships
among four system computation, is given be-
low.

From the diagram x[p]y, but not x[q]y. This
means p has the same computations in both x
and y, whereas ¢’s computations in x and y
differ. Computations x and z have the same
computations for both p and g; hence one is a
permutation of the other. There is no direct
relationship between y and w; neither y[p]w
nor y[q]w holds. However, there is an indirect
relationship between y and w because y[p]:z
and z[gq]w. We explore such indirect relation-
ships next. []

Definition. Let n>0 and P be process sets,
0<ign.

x[Fy...B]z=x[Py...B,_ 1y and y[P]z for
some computation y.

3p.q¢] @ lq] @I}p‘qgl

Fig. 1. An isomorphism diagram

K.M. Chandy and J. Misra: How processes learn

Hence, [PQ]=[P]-[Q] where “o” is the re-
lational composition operator. This operator is
associative (from properties of relations). In
terms of the isomorphism diagram, x[P,... P]z
means there is a path from x to z whose edges
are labelled with Q,,...,Q,, respectively, where
Q,2P, for all i.

Example 1 (contd.). We have y[pq]w and
wlgply. Also, trivially, y[qplz, y[gpq]z
etc. []

We note some properties of isomorphism
relations. In the following, P, P,...,P, Q, de-
note arbitrary process sets and x, y, z denote
arbitrary computations.

1. [P] is an equivalence relation.
2. (Substitution) ([]1=[6]) implies ([afy]
=[ady]) for arbitrary sequences of process
sets a, f, 7, 0.
. (Idempotence) [PP]=[P]
- (Reflexivity) x[P, ... P] x
- (Inversion) x[P,... B]y=y[P, ... P x
. (Concatenation) For O <m<n,
dy:x[P...B 1y, y[P,,,...P]z
=x[P..R B, ,...P]z
-[PUQ]=(P]In[Q])
(Q2P)=([Q]=[P])
- (P=0)=([P]=[Q])
- Q2P implies ([QP]1=[P]=[PQ])
These properties follow from properties of
relations and our model. We only sketch a
proof of one part of property 8:

([Q1<=[P]) implies (Q= P).

If QP then there is a process p in P—-0.
From our model, p has an event e in some
computation (x;e). Then x[Q](x;e) and

~x[P](x;e). Hence [Q] £ [P].

SN B

OO 00]

1

3.1 Process chains

As noted in the introduction, the basis for
many operational arguments are process
chains: process p informing g which in turn,
informs r etc. One of our goals is to replace
such concepts by algebraic properties of system
computations. In this section we show how
process chains are related to isomorphism. We
first define proces chains; this definition is
along the lines suggested by Lamport [5].

Definition. For events e, ¢’ in a computation z,
e—*>¢ means:

K.M. Chandy and J. Misra: How processes learn

1. ¢ is a receive and e is the corresponding send,
or
2. events e, ¢ are in the same process com-
putation and (e=e¢ or e occurs earlier than
e'), or
3. there exists an event ¢ such that e-*»¢” and
e'-Exe
For brevity we write e—e¢’ when the com-
putation z is understood from context. We will
write e,—e;—...e, —e,, as shorthand for
e,—e, and...and e, ;—e,. Observe that e—e
for every event e in z. A computation z has a
process chain {(PyP,...P> means there exist
events ¢,, e,,... €,, not necessarily distinct, in z
such that event e; is on P, for all 0<i<n, and
€o—re ... e,

Observation 1. Any occurrence of “P” in a pro-
cess chain may be replaced by “PP”, or vice
versa, since for any event ¢ on P, e—e.

Observation 2. Let x be a sequence consisting of
a subset of events from a computation y. Sup-
pose that for every event e in x: every €', where
¢-Ise, is also in x, and e-*»e. Then x is a
computation.

3.2 Relationship between isomorphism
and process chain

Theorem 1. (Fundamental theorem of process
chains). Let z be a computation and x a prefix of
z. Let P, Py...P, n=1, be sets of processes.
Then x[P,P,... Pz or there is a process chain
(PP,...PYin(x,z). [

Proof. Assuming that there is no process chain
(P,...P> in (x,z), we show that x[P...F]z
Proof is by induction on n. For n=1, absence
of a process chain (P> in (x,z) means that
there is no event on P, in (x,z) and hence
x[P,]z. For n>1, we show that there is some y,
x<y, such that there is no process chain
(P,...P_.>in (x,y) and y[F]z; the result then
follows by inductive argument.

Let E be the subsequence of events in (X, z)
consisting of the set of events {ele—e where e
is in (x,z) and ¢ is some event on F}. Let y
=(x; E). First, we show that if e;~*>¢, and e,
is in y then e, is also in y and e;~>e,; this
guarantees (from observation 2) that y is a com-
putation. This result follows trivially when e, is
in x. If e, is in (x,z) then e,~*»¢’, for some

43

event ¢ on P, and hence e,~%>¢ and therefore
e, is in y; the relative order between e, e, 18
maintained by our construction.

Next, we show that y[P]z; that is, every
event on P, that is in z is also in y. This follows
trivially for events on P, that are in x. Let ¢’ be
an event on P, that is in (x,z). Since e'—¢’, €' is
also in E and hence in y.

Finally, we show that there is no process
chain (P,...P,_,> in (x,y). If there is such a
process chain, consider its last event e. Accord-
ing to our construction, event chain e—e’ exists
in (x,z), where ¢ is some event on F,. Hence
there is a process chain {(P,... B in (x,z), con-
tradicting our assumption. []

We note that the two conditions in the last
sentence of the theorem are not exclusive. Con-
sider two computations z, z’ where

z1s {P sends m to R; R receives m
from P; R sends m’ to Q;
Q receives m’ from R),

7 is (R sends m’' to Q:; Q receives m’ from R}

In z, though there is a process chain (PRQ>,
there is not a “true” dependence from P to R
to Q: R sends m’ to Q independent of receiving
m from P (as shown in z'). Note that null [P] Z'
and z' [Q] z, and hence null [PQ] z, though
(null, z) has a process chain (PQ).

3.3 An application of isomorphism:
how to construct a computation
by fusing separate ones

In this section, we show an application of iso-
morphism: we give a construction to “fuse”
two computations to obtain a new compu-
tation, provided certain types of paths exist in
the isomorphism diagram. We motivate the dis-
cussion by the following observations. Suppose
(x;E) and (x;E) are computations where all
events in E are on a process set P and all
events in E are on P. Then, from definition,
(x; E;E) and (x; E; E) are also computations, be-
cause events in E,E are independent and hence
may be fused in arbitrary order. A similar re-
sult appears in Fischer et al. [2]. The following
lemma is a generalization of this obervation.

Lemma 1. Let x,y,z be computations where
x<y and x=<z. Let P,Q be such that PuQ=D,
x[Ply and x[Q]z. Then there exists a com-
putation w where x<w, y[Q]w and z[P]w. [

44

Fig. 2. Isomorphism diagram depicting fusion

The relationships among x,y,z and w are
represented by the following commutative iso-
morphism diagram.

Proof. Let w=x; (x, y); (x, 2).

From the condition of the lemma, (x, y) has
events only on P and (x,z) has events only on
Q. Since PuQ=D, PnQ={ } and hence no
process has events in both (x,y) and (x,z). It
follows, from definition of computations, that w
is a computation. Also y[Q]w, z[P]w and
x=<w, as required for proof of the lemma. []

Note that, in the construction of Lemma 1,
all events from E and E were present in the
fused computation. We prove a far more gener-
al result below. We show that for any two
arbitrary computations y and z, the projected
computations, y, and zp, may be fused to form
a new computation provided there is a com-
putation x which is a prefix of both y and =z,
and no message sent by P in (x,y) is received
by P in (x, y) and no message sent by P in (x, z)
is received by P in (x,z). This makes intuitive
sense: processes in P can execute all events in y
given only that processes in P execute all events
up to x and similarly for executions of events
on P up to z. However, the statement and proof
of this result are difficult without the notion of
isomorphism. We note that the result may be
easily generalized to fusions of arbitrary num-
bers of computations under similar constraints.

Theorem 2. (Fusion of computations). Consider
system computations x, y, z where x<y and x<z.
Let P be a set of processes such that there is no
process chain, (1) {PP> in (x,y) and (2) (PP in

K.M. Chandy and J. Misra: How processes learn

>

VAR

P P
Fig. 3. Diagramatic representation of fusion theorem

7N
N/

Fig. 4. Intermediate step in fusion theorem

ue

(x,z). Then there is a computation w where,
xsw, y[P]lw and z[P]w. That is, w consists of
all events on P from y and all events on P from

z.

Proof. According to Theorem 1, absence of pro-
cess chains as given in this theorem means that,
x[PP]yand x[PP]z.

The theorem asserts the existence of the iso-
morphism diagram in Fig. 3. To prove that
such a w exists, label the intermediate point
between x,y as u and between x,z as v in this
figure. Now we apply Lemmal to x,u,v to
obtain a w, as given in Fig. 4. _

Now u{P]y and u[P]w; hence y[P]w. Sim-
ilarly z[P]w. This proves the theorem. Rela-
tionships among x,y,z u,v,w are shown In
Fig. 5. []

The fusion theorem is used later to obtain
lower bounds on the number of messages re-
quired to solve certain problems.

K.M. Chandy and J. Misra: How processes learn

X
L
P P
u e ['
\\ /
P [ZAN //P P
h /
\ /
A
N/
°) °
Y _ w z
B P

Fig. 5. Isomorphism diagram depicting proof of fusion
theorem

3.4 Semantics of event types in terms
of isomorphism

We now use isomorphism to state and derive
some important facts about various types of
events. First, note that a process carries out an
internal event or sends a message depending on
its own computation alone. Therefore, if a
process takes such a step in a computation X, it
will also do so in y, if x, y are isomorphic with
respect to this process. An analogous result
holds for internal and receive events. The fol-
lowing principle, which states these facts for-
mally, may be proven from the definition of
system computation.

Principle of computation extension:

Let e be an event on P.

1 e is an internal or send event: (x[P]y and
(x;e) is a computation) implies (y;e) is a com-
putation.

5 ¢ is an internal or receive event: (x;e)[P]y
implies (y—e) is a computation, where (y—e) 18
the sequence obtained by deleting e from y. [

Note. In (1), (x;e)[P] (y;¢) and in (2), x[P1(y
—e).

Corollary. Let e be a receive event on P and let
the corresponding send event be on Q.
(x[PuQ]ly and (x;e) is a computation) implies
(v;e) is a computation. []

Proof. e is an internal event of PUQ. T[]

The following theorem follows from the prin-
ciple of computation extension.

45

Theorem 3. Let (x;e) be a computation where e
is an event on P.

Case 1. e is a receive:

for every z: (x;e) [PP]z implies x[PP]z
Case 2. e is a send:

for every z: x[PP] z implies (x;e)[PP] z
Case 3. e is an internal event:

for every z: (x;e)[PP]z=x[PP]z [

Proof. We will prove only Case 2; other cases
are similarly proven.

x[PP1z implies there exists y, x[Ply and
y[P]z.

From principle of computation extension, (y;e)
is a computation and (x;e) [P] (y;e). Also,
(v;e)[P]y. Hence, (x;e)[PIS] z, and therefore,
(x;e) [PP]z. [

This theorem captures the intuitive notion
that the set of possible computations, isomor-
phic with respect to P, can only shrink in size
as a result of a reception as computations
which do not include the corresponding send
are ruled out. Similarly, the set of possible com-
putations, isomorphic with respect to P cannot
shrink as a result of a send: after the send,
additional computations which accept the mes-
sage sent are isomorphic while all prior isom-
orphic computations remain isomorphic. An n-
ternal event can neither expand nor shrink the
set of isomorphic computations.

4 Knowledge

As we have remarked earlier, predicates of the
type P knows b at x may be defined using
isomorphism. We explore properties of such
predicates in our model. We show that they
satisfy the “knowledge axioms” as given in
[3,6]. We prove a general result which shows
that certain forms of knowledge can only be
gained or lost in a sequential fashion along a
chain of processes. That is, if b is false for a
computation and later, B, knows P, knows ... E,
knows b (this represents knowledge gain), then
there is a process chain (PFP,_, ... F) between
these two points of the computation. Con-
versely, if Bknows P, knows ... F, knows b and
later, b is false (this represents knowledge loss),
then there is a process chain (PP, ...E) be-
tween these two points of the computation.

46

Crucial to our work is the notion of local
predicates: a predicate local to p can change in
value only as a result of events on p. We show
that local predicates play a key role in under-
standing knowledge predicates.

4.1 Knowledge predicates

Let b denote a predicate on system compu-
tations and “b at x” its value for computation
x. Our predicates are total, i.e. for each x, b at x
is either true or false. We furthermore assume
that x[D]y implies (b at x=>b at y) for every
predicate b. Thus predicate values depend only
upon computations of component processes and
not on the way independent events are ordered
in a linear representation of the computation. A
predicate ¢ is a constant means ¢ at x=c at y,
for all computations x,y. We now define (P
knows b) at x.

Definition. (P knows b) at x =
forall y: x[Ply:baty

Note that b may itself be a predicate of the
form Q knows b’ in the above definition. We
next note some facts about knowledge pre-
dicates. In the following, x, y are arbitrary com-
putations, b,b" are arbitrary predicates and P,Q
are arbitrary sets of processes. All facts are
universally quantified over all computations.
We use the convention that P knows Q knows b
at x is to be interpreted as (P knows (Q knows
b)) ar x.

L. P knows b at x = for all y: x[P]y: P knows
baty
2. x[P]y implies [P knows b at x = P knows b
at y]
3. (P knows b) implies (P uQ knows b)
4. (P knows b) implies (b)
5. (P knows b) or (~P knows b)
6. (P knows b) and (P knows b’y = P knows (b
and b")
7. (P knows b) or (P knows b")) implies
(P knows (b or b"))
8. (P knows ~ b) implies (~ P knows b)
9. (P knows b) and (b implies b')) implies
(P knows b’)
10. P knows P knows b = P knows b
11. P knows ~ P knows b= ~ P knows b
12. P knows ¢ or P knows ~c, for any constant c.

These facts are easily derivable from the defini-
tion of knows. We give a proof of (11), whose
validity in other domains have been questioned
on philosophical grounds [3].

K.M. Chandy and J. Misra: How processes learn

Lemma 2. P knows~P knows b= ~P knows

b. [

Proof. P knows ~P knows b at x

=for all y: x[P]y: ~P knows b at y,
from definition

=for all y: x[P] y: there exists z: y[P] z: ~bat z,
from definition

=there exists z: x[P]z: ~b at z,
since [P] is an equivalence relation

=~P knows b at x. []

There are situations where multiple levels of
knowledge such as, P knows Q knows b, are
useful. For instance, consider a token bus which
is a linear sequence of processes among which a
token is passed back and forth; processes at the
left or right boundary have only a right or left
neighbor to whom they may pass the token;
other processes may send it to either neighbor.
There is only one token in the system and
initially it is at the leftmost process. Consider a
token bus with five processes labelled p, g, 7, s, ¢
from left to right. When r holds the token,

r knows ((q knows (p does not hold the token))
and

(s knows (t does not hold the token)))

Relations of the form [PQ], with multiple
process sets, arise from predicates with multiple
occurrence of knows;

For instance:

p knows q knows b at z

=for all y: x[p]y: q knows b at y

=for all y: x[p]y: (for all z: y[q]z: b at z)
=forall z: x[pglz:bat z

4.2 Local predicates

Let b be a predicate on system computations,
and P a set of processes. We define a predicate
P sure b as follows.

Definition. (P sure b) at x=((P knows b) at x or
(P knows ~b) at x).

In other words (P sure b) at x means that P
knows the value of b at x.

We define unsure as negation of sure.
Definition. P unsure b= ~ P sure b.

Hence, (P unsure b) at x=[(~P knows b) at x
and (~ P knows ~b) at x].

Definition. b is local to P=for all x: (P sure b)
at x.

K.M. Chandy and J. Misra: How processes learn

That is, the value of b is always known to P.
Local predicates capture our intuitive notion of
a predicate whose value is controlled by the
actions of processes to which it is local.

We note the following facts about local pre-
dicates; in the following, b is an arbitrary pre-
dicate and P, Q are arbitrary sets of processes.

1. (b is local to P and x[P]y) implies (b at x=b
at y)

2. b is local to P implies (b=P knows b)

3. b is local to P=(~b) is local to P.

4. b is local to P implies [Q knows b=Q knows
P knows b]

5. (P knows b) is local to P.

6. b is local to P and b is local to Q and P,Q are
disjoint implies b is a constant.

7. b is a constant implies b is local to P.

8. (P sure b) is local to P.

Proof of (1) follows from definition of knowl-
edge and local predicates. (2) and (3) follow
trivially. (4) follows from Q knows b at x = for
all y: x[Q]y: b at y=for all y: x[Q]y: P
knows b at y (since b is local to P)=Q knows P
knows b at x. (5) follows from, (P knows P
knows b or P knows ~ P knows by = (P knows b
or ~P knows b) = true. Proof of (6) is impor-
tant and hence is given below as a lemma. (7)
and (8) are trivially proven from definition.

Lemma 3. b is local to disjoint sets P,Q implies
b is a constant. []

Proof. We show that b at x=>b at null, for all x.
Proof is by induction on length of x.

b at null=">b at null.

b at (x;e)=b at x, because event e is not on P
or e is not on Q, and hence (x;e)[P]x or
(x;e)[Q] x; then the result follows from proper-

ty (1). O

For a system of processes, b is common
knowledge is defined as the greatest fix point of
the following equation.

b is common knowledge = b and (p knows b)
is common knowledge, for all processes p. In-
tuitively, b is common knowledge means b is
true, every process knows b, every process knows
that every process knows b, etc.

Halpern and Moses [3] have shown that
common knowledge cannot be gained, if it was
not present initially, in a system which does not
admit of simultaneous events. The following
corollary to lemma 3 shows that common

47

knowledge can neither be gained nor lost in
distributed systems.

Corollary. In a system with more than one pro-
cess, for any predicate b, b is common knowledge
is a constant. []

Proof. For any process p,b is common knowl-
edge=p knows (b is common knowledge). Hence, b
is common knowledge is local to every p. Apply-
ing lemma 3, b is common knowledge is a con-
stant. [l

It is possible to show that even weaker
forms of knowledge cannot be gained or lost in
our model of distributed systems. Process sets
P, Q have identical knowledge of b means,

P knows b=Q knows b

Corollary. If P,Q are disjoint and have identical
knowledge of b then P knows b (and also Q
knows b) is a constant. [

Proof. P knows b is local to P and Q knows b is
local to Q. From P knows b=Q knows b, they
are also local to Q and P respectively. The
result follows directly from lemma 3. []

Corollary. If P,Q are disjoint and P sure b=0Q
sure b, then P sure b (and also Q sure b) is a
constant. []

4.3 How knowledge is transferred

We show in this section that chains of knowl-
edge are gained or lost in a sequential manner.

Theorem 4. For arbitrary process sets B ..., E,
n=1, predicate b and computations X, y,

(P knows ... P, knows b at x and x[F ...B]y)
implies (P, knows b at y). []

Proof. Proof is by induction on n. For n=1, B
knows b at x, x[Bly implies K _knows b at y,
trivially.

Assume the induction hypothesis for some
n—1, n>1, and assume

B, knows ... P, knows b at x and x[F ... K1y.

We shall prove P, knows b at y.
From x[P ... P}y, we conclude that there is
a z such that,

x[B...P_,]zand z[B]y.

48

From x[F...E_]z and R, knows...P_, knows
(B knows b) at x, we conclude, using induction,
B _ | knows P, knows b at z. Hence, P, knows b

at z.
Since z [P]y, P, knows b at y. [

Corollary. For arbitrary process sets P ...P,
nz1, predicate b and computations x, y,

(B knows...P_, knows ~P knows b at x and
x[E ... P]ly) implies ~P, knows b at y. [

Note. For n=1 antecedant is, ~P. knows b at x.

Corollary. Theorem 4 holds with knows replaced
by sure in “P, knows”.

Theorem 4 can be applied to (1) x<y (knowl-
edge is lost) and (2) y<x (knowledge is gained).
Using theorem 1, we can deduce that there is a
process chain {(F ... P> in the former case and
(P...F) in the latter case. We first prove a
simple lemma about the effect of receive or
send on knowledge: we show that certain forms
of knowledge cannot be lost by receiving nor
gained by sending.

Lemma 4. (How events at a process change its
knowledge)

Let b be a predicate which is local to P and
(x; e) a computation where e is an event on P.

1. e is a receive: {knowledge is not lost}

(P knows b at x) implies (P knows b at (x; e))
2. e is a send: {knowledge is not gained}

(P knows b at (x;e)) implies (P knows b at x)
3. e is an internal event:

{knowledge is neither lost nor gained}

(P knows b at x)=(P knows b at (x;e)). [

Proof. We prove only (1). Consider any z such
that (x; e)[P]z. We will show b at z and hence
it follows that P knows b at (x; e).

Since z[P] z, we have (x;e)[PP]

From theorem 3, since e is a receive, x[PP]
z. Since b is local to P,

P knows b= P knows P knows b.
From theorem 4,

(P knows P knows b at x, x[P P] z) implies
(P knows b at z)

(P knows b at z) implies (b at z).
This completes the proof. []

K.M. Chandy and J. Misra: How processes learn

Corollary. (b is local to P, ~P knows b at x, P
knows b at y, x <y) implies (P receives a message

in(x,y). [

Corollary. (b is local to P,P knows b at x, ~P
knows b at y, x <y) implies (P sends a message in

(x,y). [

Theorem 5. (How knowledge is gained) Let
X,y be computations where x<y, ~(P, knows b)
at x and (B, knows ... P knows b) at y, for arbi-
trary process sets B ... P, n=1. Then there is a
process chain {P,...B) in (x,y). Furthermore, if

b is local to P, then P, has a receive event in
(x, y) such that b at z holds for every prefix z of
Yy which includes the corresponding send

event. []

Theorem 6. (How knowledge is lost) Let x, y
be computations where x<y, F knows...P,
knows b at x and ~PF, knows b at y, for arbitrary
process sets B ... B, n=1. Then there is a process
chain (B ...B) in (x,y). Furthermore, if b is
local to P, then P, has a send event in (x,y). [

Observe that the statements of the two theo-
rems are not entirely symmetric for receive and
send events. The reason is that every compu-
tation including a receive must also include the
corresponding send, but not conversely.

5 Applications of the results

We discuss a few applications of the theory
developed so far in the paper.

5.1 When is a process unsure about a predicate?

We show that it is impossible for processes P to
track the change in value of a local predicate of
P, at all times; P must be unsure about the
value of this predicate while it is undergoing
change.

Lemma 6. (Interval of uncertainty:) Let b be a
predicate local to P. Let, b at x+b at (x;e) for
some computation (x;e). Then P unsure b at x
and P unsure b at (x;e). [

Proof. Since b is local to P and its value chang-
es as a result of event ¢, e is not on P. There-
fore, x[P](x;e) and hence P knows b at x=P
knows b at (x;e). Since b at x+b at (x;e), both
P knows b at x and P knows b at (x;e) are fulse.
Analogously, P knows ~b at x and P knows

K.M. Chandy and J. Misra: How processes learn

~b at (x;e) are both false. This completes the
proof. [J

What does this lemma imply about the
event e on P which changes the value of local
predicate b of P? It follows that P must be
unsure about b for event e to occur. Further-
more, we show that if e is internal or send then
a necessary condition for occurrence of e is that
P knows P unsure b before application of e.

Theorem 7. Let b be local to P. For a com-
putation (x; e), where

b at x+b at (x;e)

(P knows P unsure b) at x, if e is an internal or
send event on P,
(P knows P_unsure b) at (x;e), if e is internal or
receive on P[]

Proof. Consider any y for which x[P]y. From
the principle of computation extension, (y;e) is
also a computation; hence (x;e)[P1(y;e)-

b is local to P, hence: b at x=b at y
and, b at (x;e)=>b at (y;e).

From, b at x%b at (x;e) it follows that : b
at y=£b at (y;e).

Hence, from lemma (6), P unsure b at_y.

From the definition of knowledge, P knows
P unsure b at x. The other part is similarly
proven. [J

Corollary. Let b be local to P. For a compu-
tation (x:e), where e is an internal event on P,
if:

b at x+b at (x;e)

then for any y,x<y, where P has no send event
in (x, y):
P knows P unsure b at y. []

Proof. From Theorem 7, P knows P unsure b at
x. Since P_sends no message mn (x,y), from
Lemma 4, P can lose no knowledge and hence,
P knows P unsure b at y. [

5.2 Detection of process failure is impossible

Traditional techniques for process failure de-
tection based on time-outs assume certain exe-
cution speeds for processes and maximum de-
lays for message transfer. It is generally accept-
ed that detection of failure is impossible with-
out using time-outs, a fact that we prove for-
mally.

49

We model failure of P as follows. Let f be a
local predicate of P denoting that P has failed.
We assume that (1) f is initially false, and (2) P
may fail at any time, ie. for every x for which
~ f(x), there is an internal event e on P such
that f(x;e) and (3) P sends no message as long
as f holds. Under these constraints, we show
that P is always unsure of failure of P. In fact,
we show that P knows P unsure f at all com-
putations y. Note that we do not require failure
to persist, ie. it is entirely possible to have

x=y, f(x) and ~f(y).

Theorem 8. P knows P unsure [at y, for all
y, O

Proof. If ~ f(y), there is an internal event e on
P such that f(y;e). From Theorem 7, P knows
P unsure f at y. If f(y), then from the fact that f
is false initially, there is some (x;e), (x;€)=<y,
such that, ~ f(x) and f(x;e). Without loss in
generality, we may assume that P stays failed
after (x;e) until y. Since e is an internal event
and P stays failed after (x;e), there is no send
event on P in (x,y). Hence, from corollary to
Theorem 7, P knows P unsure fat y. []

5.3 Mutual exclusion

Consider a system of processes in which every
process p has a local predicate cs, and for
every pair of processes p,q and every compu-
tation x, ~(cs, and cs,) at Xx. Intuitively, c¢s,
denotes that p is in its critical section and the
restriction that no two processes can simulta-
neously be in their critical sections, is captured
by the last requirement. We show that in every
computation of a solution to the mutual ex-
clusion problem (in our model), there is a pro-
cess chain {p,...p,», where p, is the ith process
to enter its critical section.

Theorem 9. For any x,y,x<y, ¢s, at x and cs,
at y implies that there is a process chain {pq) in

Proof. Observe that cs, implies ~cs,, and ~cs,
implies (q knows ~cs,). Also, cs, implies {(~q
knows ~cs,). Hence, (cs, at x) implies (p knows
q knows ~cs, at X) and (cs, at y) implies (~¢q
knows ~cs, at y). The result follows from theo-

rem (6). [

We can show, based on the observation
given below, that a solution to the distributed

50

dining philosophers problem appearing in [1]
requires no more than twice the number of
messages in an optimal scheme. In the distrib-
uted dining philosophers problem, philosophers
are placed at vertices of an undirected graph
and one fork is placed on each edge. A philo-
sopher requires forks on all incident edges to
eat and hence neighboring philosophers cannot
eat simultaneously.

Observation. For neighboring philosophers p,q,
there is a process chain {pg) in (x,y) where p
eats at x, g eats at y and x<y. Hence at least
one message must be sent by p to ¢ between an
eating session by p and a subsequent eating
session by g. The solution in [1] employs two
messages between an eating session by p and a
subsequent eating session by q.

5.4 Complexity of termination detection

We show that any algorithm which detects ter-
mination of an underlying computation re-
quires at least as many overhead messages, in
general, for detection as there are messages in
the underlying computation. We prove our re-
sult by considering a specific underlying com-
putation.

Consider a system of two processes 4, B in
which messages may be sent from A4 to B and
from B to A. Each process is initially in a
tossing state. Each process in tossing state de-
cides nondeterministically (by a coin toss, for
instance) to enter either a receiving or a send-
ing state. A process in the receiving state waits
until it receives a message and then returns to
the tossing state. A process in the sending state
sends a message and then returns to the tossing
state. If both processes are in the receiving state
and every message sent has been received, then
both processes will remain waiting forever. The
goal of the termination detection algorithm is
to detect such a situation.

In the sequel, we use underlying computation
to mean the computation associated with coin
tossing, sending and receiving of messages as
described above. The termination detection al-
gorithm superimposes an overhead computation
on the underlying computation at each process;
we use computation to mean the underlying
computation and overhead computation togeth-
er. Overhead messages and underlying messages
belong to the corresponding computations.

The overhead computation at a process can
observe the state of the underlying compu-

K.M. Chandy and J. Misra: How processes learn

tation, but cannot affect it. The overhead com-
putation may have its own associated states
and it may send messages (to the overhead com-
putation at the other process) even when the
underlying computation is waiting to receive.
However, a message is received only when the
underlying computation is waiting to receive.
We require that whenever the termination de-
tection algorithm reports termination, the
underlying computation has terminated (both
processes are in receiving state and there is no
underlying message in channels); furthermore,
for every computation x in which the underly-
ing computation has terminated, there is a com-
putation y, x <y, in which termination is report-
ed by the overhead computation at one of the
processes.

We show that for any k, k=0, there is a
computation in which k underlying messages
are sent and received and at least k overhead
messages are sent. The plan of the proof is as
follows. We first show that in order for termi-
nation to be detected, an overhead message is
sent by some process, without its first receiving
a message, after the underlying computation
terminates; this fact is proven directly from the
theorem of knowledge gain, because detecting
termination amounts to gaining knowledge.

Next, we show that a process is sometimes
required to send an overhead message even
when the underlying computation has not ter-
minated, because the computation may be
isomorphic (with respect to this process) to a
computation in which the underlying compu-
tation has terminated. Using these two results,
we construct a computation, of the required
type, for any k, k=0.

Theorem 10. For any k, k=0, there is a com-
putation in which k underlying messages are sent
and received and at least k overhead messages
are sent.]

Proofs. We will prove a slightly stronger result,
I(k), for any k,k=0, where I(k) is: there is a
computation in which k underlying messages
are sent and received, at least k overhead mes-
sages are sent and both processes are in toss-
ing state at the end of the computation. Proof
is by induction on k.

For k=0: I(0) holds for the null compu-
tation, from the initial condition.

Let x be a computation for which I(k) holds
for some k,k=0. We show a computation z in
which I(k+1) holds.

K.M. Chandy and J. Misra: How processes learn

Let tr(try) denote an internal event at A(B)
whereby the process transits from tossing state
to receiving state; similarly, let ts,(tsp) denote
the transition from the tossing to sending state.

Consider the computation x'=(x;tr;1rp).
Since no underlying message is in transit in x
and both processes are waiting to receive in
x',x' has a terminated underlying computation.

For each process, “process is in receiving
state” is a local predicate of the process. This
predicate value, for each process, is false at x. If
a process (say B) detects termination at some
y,x'<y, then B knows A is in receiving state at
y. Therefore, B gains knowledge about 4 and,
applying the knowledge gain theorem (theo-
rem 5), there is a process chain {4, B) in (x', y).
Therefore, in general, either there is a process
chain <A B) or a process chain (B A4) in (x, y).
Let ¥ be such that x<y' <y, (x,)) contains no
process chain (4 B) or (B4} and (x, y') con-
tains a message send (which must be an
overhead message) by some process, say A.

Let w={(x;tr,; tsy; B sends underlying mes-
sage). Since there is no process chain (A4 B> or
(BAY in (x,y) or (x,w), we can apply the fu-
sion theorem (theorem 2) to y" and w to obtain
a computation w', where x<w, w[B]w and
w[A4]y. In computation (x,w'), B has sent an
underlying message and A4 has sent an overhead
message before receiving the underlying mes-
sage. To complete the proof, we note that
there is an extension z of w' in which A4 receives
the underlying message sent to it by B. Com-
putation z satisfies I(k+1). [J

6 Discussion

We have shown that isomorphism between
system computations with respect to a process
is a useful concept in reasoning about distribu-
ted systems. Isomorphism forms the basis for
defining and deriving properties about knowl-
edge. “Scenarios” have been used [7] to show
impossibility of solving certain problems; in our
context, a scenario is a computation, and iso-
morphism is the formal treatment of equiva-
lence between scenarios. Theorems on knowl-
edge transfer provide lower bounds on numbers
of messages required to solve certain problems.
We have used isomorphism as the basis of fu-
sion theorem and related isomorphism to se-
mantics of send, receive and internal events.

In this paper, we have not defined processes

51

in terms of their states. The notion of isomor-
phism between computations could be defined
in terms of process states as follows: two com-
putations x and y are state-isomorphic with re-
spect to a process p means the state of p after x
is the same as its state after y. Observe that x
and y are isomorphic with respect to a process
implies they are state-isomorphic with respect to
that process. With knowledge defined in terms
of state-isomorphism, a process may lose
knowledge by an internal event, that is, by
merely by changing its state. However, knowl-
edge can be gained only be receiving messages.
In other words, processes may “forget” on their
own but cannot learn without receiving infor-
mation. The theorem of knowledge transfer ap-
plies even with knowledge defined in terms of
state-isomorphism. This is an area worth pursu-
ing, as it may provide insight into designs of
processes.

Our model does not have the notion of
time. If there is a global clock common to all
processes then processes may learn or forget
merely by the passage of time. For instance, in
time-division multiplexing, the mutual exclusion
problem is solved by letting the i-th process be
in its critical section during the i-th slot in the
time cycle. In this case, a computation is a
tuple consisting of the “current” time and a
sequence of timed-events where each timed-
event is a pair (time, event). The concept of
isomorphism remains valid, though the knowl-
edge transfer theorems no longer hold, because
knowledge can be gained and lost merely by
the passage of time.

It is tempting to define belief in terms of
isomorphism as follows: process p believes b at
x means b holds for most (in measure-theoretic
terms) computations isomorphic to x with re-
spect to p. Unfortunately, there do not appear
to be clean results on the gain/loss of belief or
belief transfer.

In this paper, when we say a process knows
b, we allow b to be an arbitrary predicate; b
may be temporal, for instance of the form:
eventually b’. For example, in a commit pro-
tocol a process committing itself to a value v
knows that all correct processes will eventually
commit to v. Results about knowledge transfer-
gain or loss-still hold.

Acknowledgement. We are indebted to Shmuel Katz, Joe
Halpern, E.W. Dijkstra and Bengt Jonsson for their com-
ments. Particular thanks go to Ernie Cohen for a careful
reading of the manuscript and insightful comments.

52

References

1. Chandy KM, Misra J (1984) Drinking philosophers
problem. TOPLAS, October 1984

2. Fischer MJ, Lynch N, Paterson M (1985) Impossibility
of distributed consensus with one faulty process. J
ACM, April 1985

3. Halpern JY, Moses Y (1984) Knowledge and common
knowledge in a distributed environment. ACM SIGAC-
T-SIGOPS Symposium on Principles of Distributed
Computing, Vancouver, Canada, August 1984

K.M. Chandy and J. Misra: How processes learn

. Hintikka J (1962) Knowledge and belief. Cornell Uni-

versity Press

. Lamport L (1978) Time, Clocks and the orderings of

events in a distributed system. Communications of the
ACM 21: 558-564

. Lehmann D (1984) Knowledge, common knowledge,

and related puzzles. ACM SIGACT-SIGOPS Sym-
posium of Principles of Distributed Computing, Van-
couver, Canada, August 1984

. Lynch N&Fischer M (1982) A lower bound for the

time to assure interactive consistency. Information Proc
Letters 14, 4, June 1982

