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Abstraci—This paper develops a message-based approach to dis-
crete-event simulation. Although message-based simulators have the
same expressive power as traditional discrete-event simulation lan-
guages, they provide a more natural environment for simulating dis-
tributed systems. In message-based simulations, a physical system is
modeled by a set of message-communicating processes. The evenfs in
the system are modeled by message-communications. The paper pro-
poses the entity construct {0 represent a message-communicating pre-
cess operating in simulated time. A general wait until construct is used
for process scheduling and message-communication. Based on these two
notions, the paper propeses a language fragment comprising a smali
set of primitives. The language fragment can be implemented in any
general-purpose, sequential programming language to construct a
message-based simulator. We give an example of a message-based sim-
ulation language, called MAY, developed by implementing the lan-
guage fragment in Fortran. MAY is in the public domain and is avail-
able on request.

Index Terms—Discrete-event simulation, distributed system, entity,
message, message-based simulation.

1. INTRODUCTION

THIS paper has the following goals:

1) Develop a message-based approach to discrete-
event simulation.

2) Show that a class of simulation languages may be
obtained by adding a small programming language frag-
ment to general-purpose, sequential programming lan-
guages like Fortran, Pascal, C, etc.

3) Give an example of a message-based simulation lan-
guage, called MAY, derived from Fortran. MAY runs on
a variety of machines including VAX® 11/780 (under
UNIX™ ), DEC 20 (under TOPS-20), IBM 3033 (under
VM) and the IBM PC (under MS DOS).

A large number of discrete-event simulation languages
including GASP [16], SIMSCRIPT [9], SIMULA {4}, and
GPSS [17] are currently available. Although message-
passing can be simulated in these languages, none of them
provide it as a basic language construct. Some recent re-
search efforts have been directed towards designing sim-
ulation systems around message-based programming lan-
guages. Two efforts in this direction are the design of
SAMOA [12], a discrete-event simulation package built
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upon Ada® [1], and a simulation system designed by
Kaubisch and Hoare [8] built upon CSP [6]. This paper
develops a class of message-based simulation languages
by enhancing sequential programming languages with a
small number of message-passing and process-represen-
tation primitives. We describe a small programming lan-
guage fragment which can be implemented within the
framework of any existing sequential language to con-
struct a message-based simulator. The few primitives re-
quired for message-based simulations are constructs to:

1) create and terminate processes;

2) send messages {0 processes;

3) wait for messages and/or simulation time to elapse.

What is the advantage of simulations in which events
are message-communications? Message-based simula-
tions do not provide additional expressive power. Indeed
there are systems for which the constructs of standard
simulation languages such as GPSS are more natural than
those of message-based simulation. However, for simu-
lating distributed systems, message-based simulations ap-
pear to be more natural. A simulation program written in
a traditional simulation language like GPSS is inherently
a sequential program and is developed using the con-
structs of sequential programming. A message-based sim-
ulation, on the other hand, ““looks”’ like a distributed pro-
gram. It is natural to develop a message-based simulation
of a message-based distributed system.

The rest of the paper is organized as follows. Section
11 presents an informal description of message-based sim-
ulation. Section III explains the philosophy and design
details of the constructs proposed in this paper. Section
IV describes the language fragment that needs to be added
to general-purpose programming languages to obtain
message-based simulation languages. Section V gives a
description of MAY, a message-based simulation lan-
guage derived from Fortran. Section VI presents a few
example programs coded in MAY. Section VII discusses
implementation issues. Section VIII is the conclusion.

11. MEBSSAGE-BASED SIMULATION

This section presents an informal discussion of mes-
sage-based simulation. In this paper we adopt the process
view of simulation: a system being simulated is assumed
to consist of a number of physical processes which inter-
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Joint Program Office).
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act at discrete instants of time. The process interactions
are called events and the time instants at which they oc-
cur, event times. Bach physical process of the system is
simulated by a logical process. As an example, consider
the simulation of a doctor’s office to determine the waiting
time distribution of patients visiting the office. In the ac-
tual system, patients enter the office and wait in a queue
to meet the receptionist. The receptionist fills out a med-
ical form for the patient, who then waits to consult with
the doctor. In the simulation, the doctor, receptionist, and
patients are simulated by logical processes. Examples of
events in this system are a patient entering a queue to talk
to the receptionist and a patient completing his consulta-
tion with the doctor. Hereafter, we shall use terms like
the patient process to refer to the logical process that sim-
ulates a physical patient process.

In message-based simulations, an event is the commu-
nication of a message. In the above example, the event of
a patient entering the receptionist’s queue may be simu-
lated by a message being sent by the parient process to
the receptionist process (and the associated queue); this
message requests service from the receptionist process and
is referred to as a message of type request, or simply as
a request message. After sending the request message, the
patient process waits to receive a reply message from the
receptionist process. The reply message simulates the
event of a patient having received his form from the re-
ceptionist. Internal actions of a physical process, i.e., ac-
tions that do not involve interactions with other processes
in the system, are modeled either by the passage of sim-
ulation time or by the execution of sequential statements
within the corresponding logical process.

We use a simulator clock to represent the passage of
time in a simulation. The simulator clock advances in dis-
crete steps, where each step simulates the passage of time
between two events in the system. In message-based sim-
ulations, a process may wait until some time ¢ specified
by the process to receive a specific type(s) of message.
While it is waiting for a specific message, other messages
received by the process are enqueued in a message buffer
associated with the process. The process may accept mes-
sages from its input buffer at a later point in the simula-
tion, as explained subsequently. In our example, a patient
entering the doctor’s office may be willing to wait for up
to 5 minutes to receive his form from the receptionist; if
it takes any longer, the patient goes elsewhere. This can
be simulated by the patient process waiting for up to 5
minutes of simulated time to receive the reply message
from the receptionist process; if it takes any longer, the
patient process simulates the departure of the patient from
the system. A process waits for the passage of simulation
time and/or to receive a specific type(s) of message by
executing a wait statement, which has the form

wait ¢ for b

where ¢ represents an integer-valued expression and b a
Boolean condition. The condition b is used to specify the
messages that the process is ready to accept and ¢ specifies

the maximum time up to which the process is willing to
wait for the message(s). The process ceases to wait either
when the simulator clock reaches the value represented by
torif it is receives a message that satisfies the condition
b, whichever occurs first. In our example, the receptionist
may be at lunch, during which time he is willing to talk
only to patients with an emergency; patients not having
an emergency have to wait until the receptionist finishes
his lunch. The event of a patient requesting emergency
service from the receptionist is simulated by an emer-
gency message being sent by the patient process to the
receptionist process. The lunch-break of the receptionist
may be simulated by executing the following wait state-
ment:

wait 7, for (message-type = emergency)

where #, represents the time at which the receptionist fin-
ishes his lunch-break; the keyword message-type is used
by a process to refer to the type of message received by
it. Request messages received by the receprionist process
while it is willing to accept only emergency messages are
enqueued in the message buffer associated with the recep-
tionist process. If an emergency message is received by
the receptionist process, it ceases to wait and executes the
next statement in its code. If the simulator clock moves
forward to 7, and the receptionist process has not received
a message of type emergency, then the process is said to
have fimed-out. The timing-out of a process is simulated
by the process receiving a special message, called a fime-
out message, from the simulation monitor. Reception of
a time-out message by a waiting process forces it to cease
waiting.

On ceasing to wait, a process proceeds to the next state-
ment in its code. For instance, on ceasing to wait, a pro-
cess may execute a statement of the form

if message-type = emergency then do x
else if message-type = time-out then do y
else do z.

The purpose of this informal discussion was to give the
reader who is unfamiliar with message-based simulation
a flavor of the technique.

III. DEeSIGN PHILOSOPHY

This section contrasts the message-based approach to
simulation with the approach adopted by some of the tra-
ditional discrete-event simulation languages.

Resources and processes are the two basic building-
blocks of a simulation program. A resource is a passive
object and may be represented by a simple variable or a
complex data structure. A process on the other hand, is
an independent, dynamic entity. Processes interact with
each other and “‘use’’ the resources to achieve some ob-
jective. For instance, in the doctor’s office example, the
doctor and receptionist are resources that are used by the
patient processes. A simulation program models the dy-
namic behavior of processes, resources, and their inter-
actions as they evolve in time.
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Most simulation languages treat resources and pro-
cesses as two distinct concepts and provide separate prim-
itives to model their behavior. Thus GPSS provides the
built-in storage and transaction primitives, and SI-
MONE [7] the monitor and process primitives for this
purpose. SIMULA uses the class concept to model re-
sources, and a special subclass called the process class
to model processes. However, as observed by Kaubisch
and Hoare [8], the process and resource concepts are rel-
ative rather than absolute:

¢« . .the processes and resources of a simulation al-
gorithm display a multilevel tree organization (with
the resources at the bottom and intermediate levels,
and the pure processes at the top level). Looking
from the top down, every structure looks like a re-
source; looking from the bottom upward, they look
like processes. Even the processes at the top level
would look like resources if we were to add another
level to the tree. . .7’

The language fragment proposed in this paper uses a
single program module, called an entity, to simulate both
processes and resources. An entity is a sequential pro-
gram module implemented in the host language with the
following additional features: an entity may

1) create other entities;

2) terminate itself;

3) send messages to other entities; and

4) wait for the passage of time and/or receipt of mes-
sages.

The entity construct is a versatile modeling tool. It can
be used to model a variety of different objects including
abstract data types, recursive procedures, monitors, co-
routines, processes, and resources. An entity-type models
a class of objects. An instance of an entity-type represents
a specific object of its class. Hereafter, we shall use the
term entity to mean an instance of an entity-type. Each
entity in the simulation has an independent data-space and
its attributes cannot be accessed directly by other entities
in the simulation.

Two primary operations are defined on an entity: cre-
ation and termination. The create primitive provided by
our language fragment is semantically very similar to the
new primitive provided in SIMULA. It allows multiple,
independent instances of an entity-type to be created dy-
namically. An entity may also recursively create its own
instances. Initially, every simulation consists of a single
entity called main. Entity main does not model any real
physical process; rather its purpose is to initiate and ter-
minate the simulation.

Once created, an entity participates in the simulation
until it ceases to exist. In SIMULA, if no references to
an object exist, the object ceases to exist. Thus, a SIM-
ULA object can be destroyed unconditionally by other ob-
jects in the simulation. The terminate mechanism pro-
posed by our language fragment is different. The only
mechanism by which an entity may terminate itself, is by
executing the end-entity statement in its definition (see

Section IV-C). An entity cannot be terminated by another
entity in the system. On the basis of this design principle,
even if no external references to an entity exist, the entity
does not cease to exist. Attempts to refer to terminated
entities result in error.

In a physical system, each process makes independent
progress in time and many processes execute in parallel.
In its simulation, the multiple processes of a physical sys-
tem must be executed ‘‘simultaneously’’ on one proces-
sor. This simultaneity is achieved by interleaving the ex-
ecution of different processes and executing them in a
quasi-parallel fashion [5]. Quasi-parallel processing uses
a time-measure that is distinct from real time. We refer to
this as simulated time and the clock used to measure sim-
ulated time as the simulation clock. In a physical system,
processes perform different tasks, each of which takes a
certain amount of real time. In the simulation, this is rep-
resented by the process initiating the task and then being
idle for the duration (as measured by the simulation clock)
of the task completion. Scheduling primitives, provided
by a simulation language, are used by a process to sched-
ule its operations in simulated time. For instance, SIM-
ULA provides a built-in procedure, hold, to allow a pro-
cess to suspend its execution for a predetermined time
duration. In our doctor’s office example, we assume that
the doctor takes 10 minutes to consult with a patient. In
SIMULA, the class modeling a patient would contain the
procedure call, hold(10) to represent this activity. The
effect of executing the above statement would be to cause
the process to wait for 10 units of simulation time to
elapse. From the perspective of the patient process, if the
value of the simulation clock was T before executing the
procedure call, it would be T+ 10 after the call. However,
the hold primitive is not sufficient to represent an activity
that takes an unspecifiable amount of time. Thus, in the
above example, when a patient enters the receptionist’s
queue, he cannot predict the amount of time he would
have to wait before seeing the receptionist. To represent
such activities, SIMULA provides the passivate state-
ment, which when executed by a process causes it to enter
an idle state; the process remains in the idle state until it
is explicitly activated by another process.

The wait-until primitive is a general-purpose schedul-
ing primitive which allows a process to wait until an ar-
bitrary condition is satisfied. This primitive was first in-
troduced in the language SOL [10], in the following form:

wait-until (condition)

where condition is a Boolean expression of arbitrary com-
plexity. The hold primitive discussed earlier, can be ex-
pressed as a special form of the wait-until construct. For
instance, hold(10) may be expressed as follows:

wait-until (time = current-time +10)

where fime refers to simulated time. In addition, this
primitive can be used to simulate a variety of other situ-
ations. For instance, in the doctor’s office example, the
activity of a patient waiting in the receptionist’s queue
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could be simulated by the patient process by executing the
following statement

wait-until (removed-from-queue)

where removed-from-queue is a Boolean variable that is
set to true by the receptionist process when the patient
process has received the desired service.

The language fragment proposed in this paper uses a
modified version of the wait-until construct, called the
wait statement, which was introduced in Section II. In
message-based simulation, an entity is in one of two
states: active, if it is currently executing, or waiting, if it
is not active. An active entity moves to the wait state by
executing a wait statement. Every wairing entity has a
wait-time and a Boolean predicate, called the wait-con-
dition, associated with its wait state. The wait-time rep-
resents the maximum time that the entity can remain in the
wait state. An entity in the wait state moves to the active
state either when it receives a message that satisfies its
wait-condition or if its wait-time has expired. We define
a special message, called a fime-out message, which is
sent by the simulation monitor to a waiting entity, when
its wait-time has expired.

The wait statement is used both as a scheduling prim-
itive as well as a receive primitive for message-commu-
nications. Our communication protocol is based on buff-
ered message-passing: execution of the send primitive
causes a message to be deposited in a FIFO manner in the
message buffer associated with the recipient entity. We
now describe the wait statement in more detail: if an ent-
ity executes a wait statement at simulation time T (i.e.,
when the simulator clock time is T') and the wait state-
ment is of the form

wait T’ for (message-type = M)

where T' represents a time value such that 7' > = T, the
meaning of the statement is as follows:

® The entity will cease waiting attimer, 7/ > =1t > =
T, if a message of type M is received by the entity at time
t. In particular, if messages of type M are present in the
message buffer of the entity at time T, the entity receives
the first message of type M from the buffer and ceases to
wait at 7.

® The entity will cease waiting at time 7", if no mes-
sage of type M is received by it in the interval [T, T').
In this case, a time-out message is received by the entity
at T'.

We note that if a message of type M is sent to the entity
at time 7", then the entity may first receive either the fime-
out message or the message of type M.

In message-based simulations, the communication of a
message takes zero units of simulation time. For instance,
in our doctor’s office example, we assume that the time
taken by a patient to walk from the receptionist’s desk to
the doctor’s cabin is insignificant; thus, in the simulation,
the transmission time for the message that models this
event is zero. Nonzero transmission delays in physical

systems can be modeled by causing the process sending
(receiving) a message to wait for a certain time corre-
sponding to the message-transmission time before (after)
sending (receiving) the message. Alternatively, the com-
munication medium may be modeled as a separate process
which incorporates the transmission delay.

Many simulation languages, for instance GPSS, pro-
vide built-in language primitives for statistics collection,
queue representation, and random number generation. Our
language fragment treats these facilities as ‘‘options”’
rather than ‘‘standard equipment.”’ As such, these facili-
ties are provided to the programmer through a set of li-
brary entities and routines. An entity-type defined in the
library, can be included in a user program by means of
primitives provided by our language fragment. The li-
brary facility serves another useful purpose. A number of
separate entities may be defined to model some primitive
subsystems that comprise most distributed systems. Some
examples of such subsystems are shared memory, ether-
net, token-ring, processor, FIFO server, and priority
server. Each of these subsystems may be programmed as
an entity-type and stored in the library. The library can
then serve as a tool-box to study the performance of var-
lous alternative configurations of a proposed distributed
system.

IV. ConNsTRUCTS FOR MESSAGE-BASED SIMULATION

In this section we present the message and process con-
structs provided by our language fragment. The program-
ming language in which these constructs are to be embed-
ded (e.g., Fortran, Pasacal, Algol, C, etc.) is called the
host language. This discussion ignores anomalies that may
arise in the implementation of these constructs in a spe-
cific host language. For instance, we have assumed that
processes communicate exclusively through messages.
However, in a Pascal implementation, processes may also
share information by means of global variables; or in a
Fortran implementation, through commen blocks. We as-
sume that specific implementations will handle such
anomalies on an individual basis. Further, the discussion
in this section ignores all syntactic issues. The next sec-
tion, however, gives a description of the Fortran imple-
mentation of these constructs.

A. Entities

An entity-type models objects of a given type. The dec-
laration of an entity-type is similar to that of a procedure
or subroutine in the host language. An entity-type consists
of an entity heading, a local variable declaration section,
a message declaration section, and an entity body. The
entity heading declares the name and formal parameters
of the entity-type in a manner similar to the declaration
of a procedure heading in the host language. An entity-
type, however, is only allowed to have input parameters.
The local variable section is identical to that of a proce-
dure. The message declaration section is used to declare
the various types of messages that may be received by all
instances of this entity-type. A message declaration con-
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sists of the string message followed by a name and a pa-
rameter list. The structure of the parameter list is similar
to that of a formal parameter list in the host language. The
entity body consists of sequential statements of the host
language (e.g., assignment statement, procedure call,
etc.) with the following additional statements:

e et statement: used to create new entities.

e end-entity statement: used by an entity to terminate
itself.

o invoke statement: used to send messages to other
entities.

o wait statement: used to wait for the passage of sim-
ulation time or to wait to receive messages.

We now describe the semantics of each of the above
statement types.

B. Let Statement

We define a scalar variable type called entity-identi-
fier. Every entity in the simulation is assigned a unique
identification number which is stored in a variable of type
entity-identifier. Variables of this type are used exclu-
sively to store the identifier of entities and no arithmetic
operations can be performed on them. An entity is created
by the execution of a let statement which has the follow-
ing form:

let el be entity-type-name(actual parameter list)

where el is a scalar variable of type entity-identifier.

Execution of the above statement causes a new instance
of the specified entity-type to be created; the identifier of
the newly created entity is stored in el. The formal pa-
rameters of the entity-type declaration are bound to the
actual parameters in the let statement, as in the manner
of a procedure call, at the point that the entity is created.
The identifier ¢1 may be used to send messages to the
entity. Every entity-type declaration contains a predefined
local variable, called myid, which is of type entity-iden-
tifier. When a new entity is created, its identifier is au-
tomatically stored in its myid.

C. End-entity Statement

The end-entity statement is an executable statement,
which when executed causes the entity to terminate. The
statement has the form:

end-entity

An entity can only terminate by executing the end-entity
statement in its entity definition. The entity is said to exist
between the point that it is created to the point that it ter-
minates itself. Attempts to refer to nonexistent entities re-
sult in error.

D. Invoke Statement

Messages are sent by one entity to another using an in-
voke statement which has the following form:

invoke el with m1(actual~parameter—list)

el must be of type entity-identifier. Execution of the
above statement results in a message of type ml being
sent to the entity el provided:

e entity el exists.

* a message with name ml has been declared in the
message receive section of the entity-type declaration of
entity el.

e the types of the formal and actual parameters of mes-
sage m1 match.

An attempt is made to deliver the message at the current
value of the simulation clock. However, if the recipient
entity small-list to represent a small list of integers. This
message is stored in a buffer associated with the recipient
entity and may be accepted by it subsequently (see dis-
cussion under wait statement).

E. Wait Statement

The wait statement is used by an entity to wait for the
passage of simulation time and/or to receive messages.
The statement has the following form:

wait ¢ for b

where 7 is an integer-valued expression denoting time; and
b is a Boolean condition of arbitrary complexity. This
statement has been discussed extensively in the previous
sections. In this section, we present a few examples of the
more frequently used instances of this statement.

If the condition b is the Boolean constant false, the en-
tity ceases to wait only when the simulation time reaches
the time value specified in the wait statement. For in-
stance, execution of the statement

wait 1 for false

will cause the entity to wait until the simulation time is 7,
all messages sent to it in the interim will be stored in its
message buffer. In contrast, the condition b may be the
Boolean constant true, as in the following statement:

wait  for true

If the message buffer of the entity is nonempty when the
above statement is executed, the first message is removed
from the buffer and delivered to the entity causing it to
resume execution at the current value of the simulation
clock. However, if the message buffer is empty, the entity
will wait to receive a message. If no messages are re-
ceived by the entity, and the simulation time reaches ¢
units, a time-out message is sent to it at simulation time
t, to force it to cease waiting.

The time part of the wait statement may be omitted. In
this case, the wait-time associated with the entity is as-
sumed to be infinity (represented by an arbitrarily large
positive integer). In our doctor’s office example, while
the doctor is not busy, he sits in his office waiting for the
next patient to arrive (we assume that the doctor never
quits working!). The doctor entity would then contain a
wait statement of the form

wait for (message-type = request)
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F. Examples

This section illustrates how an entity may be used to
model a variety of objects including abstract data types,
monitors, coroutines, and recursive procedures. The sec-
tion culminates in a complete example of a message-based
simulation.

Abstract Data Types:  An entity may be used to rep-
resent an abstract data type. Operations on the data type
are performed by means of messages sent to the entity
modeling the data type. As an example, we describe an
entity small-list to represent a small list of integers. This
example has been adapted from [6]. Two operations may
be performed on this list: insert to insert an integer in the
list; and belongs to check if a given integer belongs to the
list. The insert operation may be performed by sending an
insert message to the entity; to perform the belongs op-
eration the user process sends a belongs message to the
entity; the entity responds with a position message giving
the position of the element in the list (it returns 0, if the
element does not belong to the list).

entity small-list (list-size : integer);

{ Local Variable Declaration Section }
list-array:array[ 1. . list-size] of integer;
pos,size : integer;

{ Message Receive Declaration Section }
message insert(element : integer);
message belongs(element : integer; sender-id : en-
tity-identifier);

{ Entity Body }
size 1= 0;

while rrue do
begin
{ wait indefinitely to receive the next message }
wait for true;

{ the procedure search is used to locate the position,

pos of the element in the array; pos is set to O if

the element is not present. }
search(list-array,size,element,pos);

if (message-type = insertr) and (pos = 0) then
begin
if (size = list-size) then overflow-error
else begin
size 1= size + 1;
list-arrayl[size] : = element;
end;
end
else if (message-type = belongs) then
invoke sender-id with position(pos);
end;
end-entity;

Recursive Procedures:  To illustrate how an entity
may be used to model recursive procedures, we define an
entity sieve which recursively sieves out all prime num-

bers from a sequence of consecutive natural numbers be-
ginning with the smallest prime, 2. The entity sieve is
defined with one parameter. Multiple instances of the sieve
object are created recursively as needed. For instance, the
ith sieve, say s;, is created with the ith prime number, say
p; as its parameter, by the (i-1)th sieve. Subsequently, s,
sieves out all multiples of p; from the sequence of num-
bers passed to it by sieve 5;_;. The next prime number in
the sequence, say p; ., is the smallest integer greater than
Pi, which was not seived out by sieves s;..s,_,. When s;
receives this number, it creates the next sieve object, s
with p;, | as its parameter.

A driver entity is used to initiate the program. This en-
tity creates the first sieve entity s, with the smallest prime,
2 as the actual parameter. It then passes consecutive nat-
ural numbers to s; via a stream of send messages. The
code for the driver routine has been omitted for brevity.

i+1

entity sieve(prime: integer);

{ Local Variable Declaration Section }
next-sieve : entity-identifier;

{ Message Receive Declaration Section }
message send(number:integer);

{ Entity Body }

{ Wait to receive the next integer in the sequence }
wait for ( message-type = send);

{ The first message received contains the next prime
in the sequence Create the next sieve process,
using number as the parameter }

let next-sieve be sieve(number);

while true do
begin
wait for (message-type = send);

{ From the subsequent messages received,
sieve out all multiples of prime and pass the
rest to sieve next-sieve. }

if (mod(number,prime) < > 0) then
invoke next-sieve with send(number);

end;
end-entity;

Coroutines:  Coroutines can be naturally modeled by
entities. As an example, consider an unbuffered pro-
ducer-consumer system. The producer process produces
a value and sends it to the consumer process. In the ab-
sence of a buffer, the producer process must wait until the
value has been accepted by the consumer process, before
it can produce the next value. The two coroutine-like pro-
cesses may be modeled by the producer and consumer
entity-types, respectively.

entity producer;

{ Local Variable Declaration Section }
value : integer;

{ Message Receiver Declaration Section }
message more(consumer-id: entity-identifier);
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{ Entity Body }
while true do
begin
produce a value;
wait for (message-type = more);
invoke consumer-id with data(value);
end;
end-entity;

entity consumer(producer-id: entity-identifier);

{ Message Receiver Declaration Section }
message data(value:integer);

{ entity body }
while true do
begin
invoke producer-id with more(myid);
wait for (message-type = data);
consume the value;
end;
end-entity;

Monitors: This example illustrates how a monitor may
be modeled by an entity. We use the example of a bounded
buffer. The buffer is used to smooth out the variations in
speed of output by a producer process and input by a con-
sumer process. The buffer is modeled by a buffer entity.
The entity receives send messages from the producer en-
tity and more messages from the consumer entity. If the
buffer receives more(send) messages when it is empty
(full), the messages are stored in a queue associated with
the buffer and accepted by it only when it is nonempty
(nonfull). We assume that the consumer entity contains
the definition of a message receive, to receive data from
the buffer. Further, it is assumed that when requesting
data, the consumer entity sends its identifier as a message
parameter to the buffer entity. This is required by the
buffer to send messages to the consumer entity.

entity buffer(buffer-length:integer);

{ Local Variable Declaration Section }
in, out : integer;
store:arrayll . . buffer-length] of integer;

{ Message Receive Declaration Section }
message send(value:integer);
message more(consumer: entity-identifier);
{ Entity Body }
{ initialize the buffer}
in:=0
out: =0
while rrue do
begin
if (in = out + buffer-length) then
wait for (message-type = more)
else if (in = out) then
wait for (message-type = send)
else wait for rrue;

if (message-type = send) then
begin
store((mod(in,buffer-length)) + 1) : = value;
in:=1in+ 1;
end
else if (message-type = more) then
begin
value: =store((mod(out, buffer-length)) + 1);
out:=out+1;
invoke consumer with receive(value);
end;
end;
end-entity;

Simulation Model of a Doctor’s Office: We develop a
message-based simulation model of the doctor’s office de-
scribed earlier. This is a complete simulation example
which illustrates how processes may be modeled by en-
tities. To summarize, in the physical system, patients en-
ter the office through a door, meet the receptionist to ob-
tain their forms, consult with the doctor and then exit from
the office. The door may be modeled by a source entity
which creates patient entities at a rate equal to the arrival
rate of patients at the door. We represent the interarrival
time between two patients by the variable next-arrival.
The identifiers of the docror and receptionist entities are
passed to the patient entities as entity parameters. On
being created, a patient entity requests service from the
receptionist entity by sending it a request message, and
waits to receive the reply message. On receiving the reply
message from the receptionist, it requests service from
the doctor entity by sending it a request message. It then
waits indefinitely for the reply message which indicates
the completion of the examination. On receiving this mes-
sage, the patient entity terminates itself.

We model both the doctor and receptionist entities as
instances of one entity-type, called server. The server
entities are assumed to exist forever. When idle, they ac-
cept a request message sent to them, wait for a certain
time corresponding to the service time of the request to
elapse, and then wait for the next request. Request mes-
sages received by a server entity, while it is busy serving
another request, are buffered; after the server entity fin-
ishes serving the current request, it accepts the first re-
quest message from the buffer.

The entity-type main initiates the simulation by creat-
ing the doctor, receptionist and source entities. The sim-
ulation is terminated when all entities have been termi-
nated or when the value of the simulator clock exceeds
the value of a keyword max-simulation-time. The key-
word clock represents the current value of the simulator
clock. The program representing the above simulation
model is presented in Pascal-like pseudo-code in Fig. 1.

The next section presents a detailed description of a
message-based language called MAY in which Fortran is
the host language. This section may be skipped by those
who want to have an understanding of how message-based
languages may be developed from host languages but have
less interest in details of a Fortran implementation.
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entity main;

{ Local Variable Declaration Section }
door, doctor, receptionist:entity-identifier;
form-fill-time, consult-time, next-arrival, sim-period:integer;

{ Message Receive Declaration Section }

{ Message type {ime-oul is implicitly defined for every entity and
must not be defined by the user. Since no other message types are
used by this entity, this section 1s empty }
message |

{ Entity Body }
read (form-fill-time, consult-time, next-arrival,sim-period) .
let receptionist be server(form-fill-time);
let doctor be server(consult-time) .

let door be source(next-arrival, receptionist, doctor);
max-simulation-time := stm-period;
wait (clock+ sim-period) for false;

end-entity ;

entity source(inter-arrival : integer; serverl, server? : entity-identifier);

( Local Variadle Declaration Section }
nezxt-patient :entity-identifier;

{ Message Recelve Declaration Section }
message;

{ Entity Body }
while true do
begin
let next-patient be patient(serverl, server®;
wait (clock + inter-arrival) for false:
end;
end-entity

entity  patient(reception, doc:entity-identifier);

{ Message Receive Declaration Section }
message reply;

{ Entity Body }
invoke reception with request(myid);
wait for (message-type = reply);
invoke doc with request(myid);
wait for (message-type = reply).
end-entity ;

entity server(mean-service-time : integer);

{ Message Receive Declaratlon Section }
message request (patient-id : entity-identifier);
{ Entity Body }
while true do
begin
wait for (message-type = request);
wait (clock+mean-service-time) for false;
invoke patient-id with reply;
end;
end-entity ;

Fig. 1. Message-based simulation model of a doctor’s office.

V. DEescrIPTION OF MAY

This section gives a concise definition of MAY, a mes-
sage-based simulation language implemented in Fortran.
A complete description of MAY is given in [13]. The syn-
tax of MAY statements is given in BNF using the follow-
ing meta-symbols:

| Represents alternatives; for instance a|b
implies the presence of symbol a or sym-
bol b in the corresponding statement.

{} Symbol(s) occurring within braces are op-
tional in the corresponding statement.

identifier Any Fortran identifier of type integer.

A. Entity Definition
A MAY entity has the following structure:

Entity Heading: The entity heading contains the name
of the entity-type and specifies the parameters that may
be needed for its definition. The parameters may be scalar
integer variables or one-dimensional array of integer
variables. A scalar variable may optionally be followed
by a size specification, which specifies the maximum per-
missible value for the corresponding actual parameter. An
array parameter may be dimensioned by a scalar param-
eter whose maximum size has been specified. The entity
heading has the following syntax:

{entity-heading) ::= entity {entity-name)
{({parameter-list))}

{entity-name) ::= identifier

{parameter-list) ::= (parameter) {,{parameter-list)}

{parameter) ::= (simple-par) | {array-par)

{simple-par) ::= identifier | identifier : positive
integer

{array-par) .= identifier[identifier | positive
integer]

As an example, consider the heading for an entity-type
histo, representing a histogram used to measure the fre-
quency with which the value of a variable occurs within
different specified intervals. The parameters required to
represent a general histogram object may be:

ntrval: Number of intervals for the frequency dis-
tribution; we choose a maximum of 50
intervals.

minval: The minimum expected value for the vari-
able.

ntrarrfi]: the upper bound for the ith interval; i =
1 - - ntrval.

The heading would then be coded as:
entity histo(ntrval : 50, minval, ntrarr{ntrval 1)

Since the array ntrarr is dimensioned by ntrval, the size
of the actual array parameter cannot exceed 50. Parame-
ters are treated as constants in the body.

Variable Declaration Section: The variable declara-
tions of an entity-type consist of Fortran declaration state-
ments and MAY local integer statements. The values of
variables declared as local integers are defined even when
the entity is waiting (i.e., not executing). MAY local
variables may be integer scalar variables or one-dimen-
sional arrays of integer variables. The local integer state-
ment has the following syntax:

I

{var-declaration) ::= local integer {var-list)

{var-list) = (variable) {, (var-list)}
{variable) = {simple-var) | {array-var)
{simple-var) 1= identifier

{array-var) ::=identifier (identifier |positive

integer)

{entity-definition): : = (entity-heading) {(variable-declaration) }
{message-declaration) {entity-body)
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The histo entity-type discussed above, may use the fol-
lowing local integers;

values: An array which stores the frequency of oc-
currence of the values of a variable in the
different intervals.

totval:  Stores the total of all values.

novals: Stores the total number of values in all inter-

vals.

These are declared by the following MAY statement:
focal integer values (ntrval), totval, novals

Message Declaration Section: This section declares the
types of messages that may be received by entities of a
given type. Each message declaration has the following
syntax:

{message-statement) ::= message [message-name)
{({ parameter-list))}
identifier
{parameter) {, { parameter-list) }
{simple-par) | (array-par)
identifier | subscripted
identifier
(array-par) ::= identifier [positive integer]

]

{message-name )
{parameter-list)
{parameter)
{simple-par)

]

]

i

Messages contain only input parameters which may be
scalars or variable length one-dimensional array vari-
ables. All message parameters must be of type integer.
Two parameterless message types init and tmout are de-
fined by the translator for every entity and must not be
defined by the user.

init: As soon as it is created, an entity is invoked
with the init message. The purpose of this
message is to cause execution of the initial-
izing statements in the entity description.

tmout: An entity is invoked with a tmout message

when the simulation time reaches the value
specified by the last wait statement that was
executed by the entity.

Consider the declaration of a message to be used to pass
a set of values to an entity of type histo.

message insert(novals, values[20])

The above declaration defines a message called insert
which has two parameters, the second parameter being an
array of size 20. The corresponding actual parameter (in
the invoke statement) is expected to be an array. The ar-
ray may be of any size, up to a maximum of 20.

Entity Body: The entity body consists of a set of exe-
cutable Fortran and MAY statements which may include
the let, invoke, and wait statements. The last statement
in the body of the entity definition must be the end-entity
statement, which when executed causes the termination
of the entity-instance (see discussion on entity termina-
tion below).

B. Entity Creation

An entity can create an instance of an entity-type by
executing a let statement which has the following syntax:

It

(let-statement ) let {entity-instance-name) be
{entity-name) { ( (actual-

par-list) ) }

(entity-instance-name) ::= identifier | subscripted
identifier

{entity-name) = identifier

{actual-par-list) = (parameter) {, {actual-
par-list) }

{parameter)

I

identifier | subscripted
identifier | array name
linteger

The identifier of the created entity is stored in the vari-
able represented by (entity-instance-name). The type
entity-identifier is implemented in MAY as an integer
type.

Consider the creation of an instance of entity Aisto with
the following attributes:

Number of intervals = num.

Minimum value = min.

Upper bound for the ith interval(i: 1 . . 20) = bounds(i)
where bounds is an array variable whose dimension is
20.

An instance of the histo entity with the above attribute
values is created by the following let statement:

let histl be histo(num,min,bounds)

where hist1 has been declared as a local variable of type
integer in the creator module. The identifier of this entity
is stored in variable hist1.

C. Entity Termination

An entity terminates itself by executing an end-entity
statement which has the following syntax:

{end-entity-statement) ::= ende

D. Invoke Statement

A message may be sent to an entity by means of an
invoke statement which has the following syntax:

i

{invoke-statement) invoke (entity-instance-name )
with (message-name)
{({ parameter-list) )}
(entity-instance-name) ::= identifier | subscripted
indentifier

identifier

!

i

{message-name )
{ parameter-list) {parameter){ ( parameter-list)}
{ parameter) (simple-par) | (array-par)
(simple-par) 1= identifier | integer
| subscripted identifier
identifier[identifier | positive
integer]

i

i

(array-par)

I



BAGRODIA e¢r al.: MESSAGE-BASED APPROACH TO DISCRETE-EVENT SIMULATION 663

A message of type insert may be passed to the entity
hist1 (if it exists), by executing the following statement:

invoke histl with insert(5,values|5])

The message has two parameters, the second being an
array of 5 elements.

E. Wait Statement
The wait statement has the following syntax:

(wait-statement) ::= wait { <t} } { for (b) }

{t) ;.= FORTRAN integer arithmetic
expression

(b) ::= FORTRAN boolean condition

If the for part of the wait statement is omitted, the con-
dition ¢b) is assumed to be the Boolean constant true. If
the time-part of the wait statement is omitted, the variable
(t) is assumed to the maxint, an arbitrarily large number.

F. Append Statement

The entity-types defined in the MAY library can be in-
cluded in MAY programs by means of an append state-
ment. A library entity may be used as any of the other
entities defined in the program. An append statement has
the following syntax:

(append-statemnent) ::= append {entity-name-list)
(entity-name-list) ::= (entity-name)

{, (entity-name-list) }
identifier

I

{entity-name)

V. MAY EXAMPLES

We now present a few modeling and simulation exam-
ples coded in MAY.

A. Representation of Processor Configurations

A variety of processor configurations can be repre-
sented in MAY. We present a few examples illustrating
how processors interconnected in a pipeline, organized as
a hierarchy, or connected in a two-dimensional mesh can
be modeled in MAY .

A pipeline of n processors may be created by executing
the following code segment:

do10i = 1,n
let pipe(i) be processor
10 continue

However, processor pipe(i) cannot communicate with
pipe(i + 1) unless it knows its identity. There are several
ways in which a processor may obtain the identity of its
neighbor: after all processors have been created, a mes-
sage may be sent to each processor giving it the identity
of its neighbor; alternatively, every processor (except the
last one in the pipeline) may be given the identity of the
next processor in the pipeline as an entity parameter. This
is achieved by executing the code segment shown below:

let pipe(n) be processor(0)
dol10i=n~-1,1, —1
let pipe(i) be processor(pipe(i + 1))
10 continue

A binary tree of 2n + 1 processors, where n is a posi-
tive integer, may be created by executing the following
statements. The processors form a complete binary tree in
that all leaf nodes occur at the same level in the tree.

let node(1) be processor(0)
do10i=1,n
let node(2i) be processor( node(i))
let node(2i+1) be processor( node(i))
10 continue

In the above example, each node knows the identity
of its parent. To permit a node to communicate with its
child nodes, each node (except the root node) may send
its identity to its parent node in a message.

As another example, consider a mesh of n* + 2n
processors, in which each of the processors represented
by processor(i, j); i:1 -+ n, j:1 -+ n, communicates
with processor(i + 1, j) and processor(i, j + 1). Pro-
cessors(i, n + 1);i:1 - - n, and processors(n + 1, j);
j:1 - n, are sink processors. This configuration may
be used to implement a fast parallel algorithm to com-
pute the product of two matrices [6]. The above con-
figuration may be created by the following code seg-
ment:

C  create the sink processors.
dol1l0i=1,n
let mesh(i, n+1) be processor(0, 0)
let mesh(n+1, i) be processor(0, 0)
10  continue
do20i = n,1,~-1
do20j =n,1,—-1
let mesh(i, j) be processor(mesh(i,j+1),
mesh(i+1,j))
20 continue

B. Simulation of a Doctor’s Office

This program illustrates the simulation of the doctor’s
office example introduced earlier in the paper. The pro-
gram is a refinement of the pseudo-code developed in Sec-
tion IV-F. The doctor’s office is modeled as a simple
queuing network with a source entity simulating the door
and two server entities which simulate the receptionist and
doctor, respectively. In addition to the entities discussed
earlier, the program uses a MAY library entity-type called
histo. An instance of the histo entity-type is used in the
program to generate a frequency distribution of the total
time spent by patients in the system.

A MAY program consists of a collection of user-de-
fined entities, library entities and Fortran subroutines,
with no ‘‘main program’’ segment. However, every MAY
program must define a parameterless entity called main.
This entity is used to initiate the MAY simulation. The
simulation is normally terminated when all entities have
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entity main

local integer doctor, recept,door, histl, output
integer minval, ntrarr(10),ntrval

message
C Create entities recepl and doctor with mean service times of 2500 and 5000.

let recept be server(2500)
let doctor be server(5000)

C Create an instance of the histo entity, which has three parameters
¢ minval : Represents the minimum expected value of the measure.
c nirval : Represents the no. of intervals desired in the frequency dist.
[of ntrarr{1) : Upper bound of the ith interval; 1i: i..ntrval
output=6
minval=0
ntrval=10
do 104 = 1,ntrval
10 ntrarr(d) = 1000 * 1

let histl be histo(nirval,minval, ntrarr)

C Create an instance of the source entity with inter-arrival time = 10000
let door be source(10000,recept,doctor, hist1)

C The simulation is to be carried out for 500000 time units.
izatim=500000
wait clock-izstim

c Terminate the various entities created by main.
invoke door with dump(output)
invoke recept with trmnt
invoke doctor with trmnt
invoke hist! with dump(output)
ende

Cowxk

entity source(arrvl,servrl, servrg, histl)
local integer nopats

real expon

integer ({ime,output

message dump(output)

nopats =0

10 continue
C Create an instance of the patient entity.

nopats = nopats+1

let pl1 be patient(servrl,servr2, histl)
The function erpon returns a random value exponentlally distributed
about the mean value.

time = int{ezponlarrvl))

wait clock + time

if (msg .ne. dump)go to 10

a0

c ASSERT: Message is a dump message
write (output,*) "No. of patient processes created’,mopats
ende

a0

Hokok
-

L i i

entity server(mtime)
C 7nt'ime ~ mean service time for the server.

local integer sruid
integer time, hisid
real expon

message requst(hisid)
message trmnt

C wait to recelve the next message.
10 continue
wait maxint

if (msg .ne. requst)go to &0
c Serve incoming requests.
sruid=hisid
time=int(ezpon(mtime))
wait clock+time for (msg .eq. trmnt)
C  No request messages are accepted while the server is busy.

¢ A tmout or a irmnl message was received.
if (msg .eq. tmout) then
invoke srvid with reply
C  previously buffered messages(lf any), can now be accepted by the server.
go to 10
endif
60 ende

aQ
*
%
*

AR ROR KK

C ok * *

entity patient(recept,doctor, histl)

local integer start
real expon,ran
integer time

message reply

start = clock

invoke recept with requst (myid)
wait for (msg.eq.reply)

invoke doctor with requst(myid)
wait for (msg.eq.reply)
invoke histl with insert(clock - start)

ende
<
[ Fokkdokkok
C The definition of entity-type histo is stored in the MAY library.
c Two message-types are defined for this entity:
[ ingert(value) : Used to receive an integer value.
c dump(outpul)  Used to print a frequency distribution of the
<

values on the file specified by output.

append histo

Fig. 2. MAY program to simulate a doctor’s office.

been terminated. It is terminated before this point if the
value of the simulator clock, represented by clock is
greater than the value of a MAY keyword izstim. The
variable izstim may be assigned an integer value within
any entity in the MAY program. The keyword maxint
represents an arbitrarily large integer. The keyword msg
is used by an entity to refer to the type of the last message
received by it. The complete code for the program is given
in Fig. 2.

VII. IMPLEMENTATION ISSUES

Message-based simulation languages may be developed
by implementing the language fragment described in this
paper in any sequential programming language. Two sim-
ulation languages, MAY [3] based on Fortran, and SOF
[15] based on Pascal, have been implemented at the Uni-
versity of Texas at Austin. A preprocessor is used to
translate programs written in the simulation language
(e.g., MAY) into the corresponding host language (e.g.,

Fortran). The output from the preprocessor is compiled
using a standard host language compiler (e.g., f77 under
UNIX). A specific preprocessor can be implemented very
rapidly. The MAY preprocessor, which was written in
Fortran, took less than two man-months to implement.
Since the MAY statements constitute a small percentage
of the simulation program, the overhead associated with
the translation is low. The preprocessor contains exten-
sive error detection facilities. In particular, syntactic
checks are provided to ensure that all message-types and
entity-types referred to in the program have been defined.
In addition, code is generated to check for run-time errors
like references to terminated entities, exceeding the spec-
ified maximum size of a formal entity parameter, etc.
The implementation provides a trace facility which can
be used to trace the various messages received by an en-
tity and/or print the state of an entity at various points in
the simulation. Using this facility, it is possible to dynam-
ically trace the execution of specific entities or all entities
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of a given entity. The tracing may be performed at differ-
ent levels depending to the detail to which the state infor-
mation of an entity is desired. Further, an entity may be
traced over specific time period, or tracing initiated on a
certain condition corresponding to a possible error in the
program.

VII. CoNCLUSION

This paper developed a message-based approach to dis-
crete-event simulation. Message-based simulators are a
natural way to model distributed systems. The paper de-
scribed how a class of message-based simulation lan-
guages could be developed by enhancing general-purpose
sequential languages with a few message-passing and pro-
cess representation constructs. The features needed for
message-based simulation were illustrated by means of a
Fortran derived message-based simulation language,
called MAY. The language developed is simple, easy to
learn and portable. It is currently being used to study the
performance of distributed simulation techniques [11],
performance of various distributed algorithms {2}, and for
the modeling and simulation of certain distributed sys-
tems [14].
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