
SOME CLASSES OF NATURALLY PROVABLE PROGRAMS

S. K. Basu and J. Misra
Department of Computer Sciences
University of Texas at Austin

Austin, Texas 78712

Keywords

Program Verification, proving programs correct,
inductive assertions, proof rule, uniform loop programs,
stack schema, for programs.

Abstract

Three different classes of programs are identi-
fied for which the proof of correctness is shown to
be "natural", in that the functional input-output
specifications of the programs lead, in a straight-
forward manner, to the verification conditions that
should be proven. Furthermore, these verification
conditions are shown to be necessary and sufficient
so that a proof/refutation follows by proving/dis-
proving the corresponding verification conditions. It
is not necessary to follow the exact control flow of
the programs to generate these conditions; certain
simple checks are enough to show whether a particular
program belongs to one of the classes. These apparent-
ly different programs have the common feature that
they operate "uniformly" on the data domain; changing
the input to the program changes the dynamic behavior
of the program in a predictable, easily definable
fashion. Implications of this feature in program
construction are discussed.

i. Introduction

One of the major problems encountered in using
the inductive assertion method [4] of program verifi-
cation is the generation of appropriate assertions.
In order to be able to apply the inductive assertion
or the Floyd method to a particular program, the p~o-
grammer has to provide in addition to the input-output
specifications of the program, a set of assertions at
specific points in the program, which must include
at least one cutpoint for each loop. Since in a
loop the control may reach the same point several
times with altered sets of values of variables, the
assertions attached to a loop must capture the invar-
iant properties of the loop iteration. These asser-
tions furthermore, should be strong enough to imply
the desired output condition on termination. We say
that an assertion P is a loop invariant for a loop
of the form while B do S if P ~ B { SI P,
using the notation introduced in [6].

The main objective of this paper is to consider
.the problem of deterministically generating loop
invariants in order to be able to prove or disprove
certain properties of the loop. Several heuristic
methods for generation of the loop invariant appear
in the literature [5,8,14]. These methods attempt

to generate a loop invariant given a loop and its in-
put-output specifications. While these methods are
useful in a number of cases, in general, they provide
little insight into the relationship between the
computations of the loop (the function it is computing)
and the invariance preserved by it.

We have attempted to identify certain classes of
programs for which the loop invariant can be generated
directly or deterministically from the given input-
output specifications. Clearly our approach does
not cover all possible loop programs. However, a
large number of "naturally occurring programs" fall
into one of our classes. Basically we show that if
the program under consideration is "well behaved"
relative to the data domain it operates on, such that
changes in the input parameters of interest causes the
dynamic program behavior to change in a predictable
fashion, then the available partial information about
the input output behavior of the program can be deter-
ministically extended to create a loop invariant.
In using the word deterministic, we do not intend to
imply decidability. In fact, the basic properties of
interest are almost always undecidable. However, in
case the program under consideration possesses certain
specified properties, we show how the desired necessary
and sufficient invariance relation can be obtained
systematically.

The output assertions we consider state that
the program computes a given function over a certain
domain. In a certain sense, this is the strongest
assertion one can make about the program, and all other
weaker properties are derivable from these output
assertions. However, it is possible to extend these
results to certain classes of relations at output [12].

The research reported here was motivated by
attempts to obtain a relationship between computation
and invariance properties of loop. We have found that
in the process of loop computation, if the loop is
constrained to accesslalter data in a "uniform" fashion
then the loop invariant may be obtained quite systema-
tically. Our primary goal is to develop a set of
reasonable rules by which loop invariants may be dis-
covered fairly systematically by programmers.

In section 2, we introduce basic concepts and
briefly review some previous results. We formulate
the problem precisely and discuss several possible
systematic approaches and their trade offs. Section 3
is devoted to accumulating do-while programs. We
introduce the notion of independent variables and

400

provide a theorem about the loop invariant for these
programs. Several examples are used to illustrate

these ideas. Stack programs are investigated in
section 4. These programs naturally occur in imple-
menting recursive procedures by iterative structure.
We exploit certain specific properties of such pro-
grams to obtain a loop invariant. This method is
applied to a well known program for preorder
traversal of a tree.

In section 5, we study uniform FOR programs, and
show that a simple form of induction can be used to
prove correctness of such programs. We discuss some
extensions and limitations of this approach.

Finally, we discuss the implications of these
results, particularly as a methodology for program
construction.

2. Loop Pro$rams

Let W(B,S) be an abbreviation for "while B do S".
Let W(B,S) accept its input in (a vector of) variables
X and produce its output in the same variables. Let
S(X) denote the values obtained by executing S with
input X.

Let the possible set of input values of X, be
drawn from a domain D. We say that W(B,S) computes a
function F over D if for any input X from D, the

o
output is Xf=F(Xo) , (assuming that the program termi-

nates for every input from D).

We define D to be closed with respect to W(B,S)
if X E n A B(X) ~S(X) e D.

In other words, D is closed with respect to
W(B,S) if and only if X E D is a loop invariant.

Let P be a loop invariant of W(B,S) and let
propositions QI' Q2 denote the input/output specifi-
cations of W(B,S). We assume these are predicates on
the variables X and their initial values. P is a
sufficient loop invariant with respect to QI' Q2

if P is a loop invariant and QI=~P and P A -~B =~ Q2"

P is a necessar~ loop invariant with respect to QI' Q2

if the falsity of either of the above propositions
means that W(B,S) is incorrect with respect to QI' Q2"

In [1,13] we investigated the problem of obtain-
ing a necessary and sufficient loop invariant for

W(B,S) with QI: [X 6 D] and Q2: [Xf = F(Xo)]. We

showed that if D is closed, such an invariant is easily
obtained. This is the content of the following theorem.

Theorem i. Given that D is closed with respect to
W(B,S), W(B,S) computes F over D if and only if

(i) W(B,S) terminates for every X ~ D.
and (2) [B(X)~ F(X) = F(S(X))] ~ [riB(X) ~ F(X)=X]
for every XE D. []

Condition (2) can be broken up into
(i) [B(X) ~ [F(X) = F(S(X))]]

and (ii) [IB(X)@ [F(X) = X]]
(i) says that for an input X when B is false,
F(X) = X, if W(B,S) computes F. (Thi§ f011ows trivially.)
(ii) says that F(X) remains an invariant quantity
through successive iterations with modified values of
X. Note that F(X) is well defined since X 6 D, due
to the closure property.

Thus by theorem i, condition (2) is necessary
and sufficient for proving that W(B,S) computes F.

We illustrate this theorem by an example:

Example i. Consider the following program for computing
exponential. Initial value of w is i. Finally w is

v
set to u o o (Uo, v ° being the initial values of

u,v).
while v # 0 do

if (odd v) then w~w * u;
v & v/2; u~- u * u

enddo;

We would like to prove/dispmove that the program
computes F < u, v, w> = < ~, O, w * u v> over

m

a domain D = ~u, v, w)[u, v, w integer~ v ~ 0~where
denotes a component value that is of no interest

to us at output.
v~ w~ ° x: {u; o.

B (x) :
S(X) : ~if (odd v) then w~ w * u; v4-v/2;

u ~ u * u .~

We prove closure of D by proving that
~ 0 ~ v # ~v/2 ~ O. Then it is necessary and

sufficient to prove that

and
(i) the loop terminates for every ~u, v, w> E D.

v,0~w,uV_[W*U*(u2~V/2when v is odd
(2) ~ ajl -~w*(u2) v/2 when v is even]

^ v=0 ' w*u v=w)

Definition - A i0o p constant is an expression whose
value remains unchanged after every iteration of the
loop.

A loop invariant is thus a loop constant. Using
theoreml, F(X) is a loop constant. This notion helps
us to avoid the use of X in statements of theorems.

o

Usually however the program will not appear in
the form given above, but will be preceded by an
initialization statement such as w:= i. In this
case our knowledge of the input output behavior of
the program is the following.

The input domain of the program is D' -
{4u, v, w) I w = I, v ~ 0, u, v, w integer~ and

we wish to prove/disprove that the program computes
the function F' ~u, v, i)= <~, 0, uV>

However it is easy to see that D' is not closed
with respect to W(B,S) since the intermediate values of
w are not in D' and thus theorem 1 becomes inapplicable.
The basic problem then is that given D' and F', we
need to find a closed domain D and a function F on D
which are extensions of D', F'. Then theorem 1 can
be applied. Furthermore if D, F are properly chosen
extensions of D', F' then a proof/refutation that
W(B,S) computes F over D can be used as a proof/
refutation that W(B,S) computes F' over D'.

In order to facilitate discovering F, we need to
choose D carefully. There are two general approaches
for computing D which are quite useful in finding F.
One is to identify the various values of global
variables that occur in different iterations, starting
with an initial input. Once we have the description
of such a D in closed form, F is usually easy to
guess. The second approach is to consider all
possible values of inputs (with suitable restrictions,
such as all positive integers, etc.). As is to be
expected, F is usually more difficult to guess in such
a case. The following example illustrates a situation
where finding a closed D almost solves the problem
of finding F.

401

Example 2. Factorial [London]

begin integer s, v;
while r ~ n do

s#-l; v4-u;
while s # r do

u4- u + v; s(--s + i
enddo ;
r4-r+l

enddo
end;

We are required to prove that over the input domain
function com- the {~r, u, n~ I r = i, u = I, n -~ 1 1

puted is F(r, u, n)= ~(n, n!, n> . Using the first
technique~we may identify the values of (r, u, n~
that occur in different iterations to obtain the
closed domain D' = ~ ~r, u, n>~ i ~ r ~ n;u = r! ~.
In fact locating D' and proving closure with respect

R B

to D' amounts to a proof of the original conjecture,
since X ~D' A -IB(X) - r ~ n A u = r! /% i _z r ~ n~
u=n!.

As the above example illustrates, finding a
closed domain D by identifying the intermediate values
of variables can be quite difficult. It seems plau-
sible that heuristic methods can be developed which
attempt to discover D.

We next investigate three classes of programs
for which the desired information can be obtained
directly from the output specifications. The con-
ditions imposed on these classes of programs ensure
that the dynamic behavior (the execution sequence
or components thereof) are well behaved relative to
certain components of their data domains. Roughly
speaking, we are constraining the dynamic program
behavior in order to obtain programs that are more
amenable to systematic verification techniques.

3. Accumulating Loop Programs

This class of programs have the following form.
PI:

begin

Z ~-'Zo,

W(B,S)
end ;

z is a variable whose value is being computed
by the loop; initial value of z is z . There are

o
many commonly occurring programs that fit into this
form. Usually z "accumulates" the result and the
loop is used to step through (and process) a set of
elements. Such a schema can be used to find the sum
or the maximum of a sequence. Following examples
illustrate a few more such programs.

Example 3.
(i) w ÷ i;

while v # 0 do
if (odd v) then w4- w * u;
vK-v/2; u4-u * u

enddo~
w plays the role of z in this program for

computing w = u Vo,~for any KUo,Vo> ~ ~<u,v>l
~. o

v- 0; u, v integer T .
(ii) found ~- false;

while T # nil do
found 4- found or (root (T) = key) ;
if key < root(T) then T 4- left (T)

else T4- right(T)
endif

enddo ;

found plays the role of z. This program gives
an (inefficient) method for finding out if key is at

a node in a given binary search tree (where every node

in the left/right subtree of a node are smaller/greater
in magnitude)~ nil denotes a null tree; root (T)
gives the element at the root of the tree T; left/rifmht
returns left/right subtree.

Let (X,z) be all the global variables of W(B,S).
We assume that at the end of the program, only the
value of z is of interest. We could absorb the initial
value of z i~to the domain D of W(B,S) to get
D ={ ~X, z>~ z = Zo; X from the specified domain~ TM i

Clearly D is not closed since z usually changes its
value• Hence we can't apply theorem i.

One important aspect of such a schema is that z
usually never occurs in a conditional statement inside
the loop to govern branching. Thus z is truly an
"accumulator"; its specific value does not alter the
course of computation. Secondly, assignments to z
inside the loop are usually of the form z4-z ~ g(X),
where ~ is some binary operator and g is some function
on the variables X.

We will prove that under certain conditions on •
and Zo, it is possibl 9 to specify the loop invariant,

if it is required to show that the final value of z
is a certain function of the initial values of X.

A variable r is independent of variable t (in
a given program) if a change in the input value of t
never results in a change in the value of r at any
step of computation, r is dependent on t otherwise.
Formal conditions on the schema:

i. All global variables X are independent of z.
2. Neither z nor any variable dependent on z is

used to govern a conditional branch inside the loop.
3. Every assignment to z inside the loop can be

written as z4- z • g(X) where ~ is an associative
operator that is identical for every assignment to z;
g is some function on variables X that may be different
for different assignments.

4. z is a (left and right) unity of O.
Note: If 0 ° has a left and right unity, they are iden-
tical and unique•

5. Domain D 1 of the global variables X is

closed with respect to W(B,S); i.e. values of X
obtained in different iterations belong to the input
domain.

Conditions (i) and (2) imply that z is truly an
accumulating variable: it does not govern the flow of
control nor does it affect the values of other
global variables. Conditions (3) and (4) make sure
that modification of z is "uniform". Finally condi-
tion (5), is a restatement of the closure condition
with respect to other variables.

Usually these conditions are verified easily for
any given program, such as the ones in example 3 (with
reasonable interpretation of the domains).

Theorem 2. Let Pl satisfy conditons 1,2,3,4,5. Let
X ° denote the initial values of X and Xf, zf denote the

final values of X, z (assuming that W(B,S) terminates
for every X from DI). Let h denote some function over

D I. Then, zf = h(Xo) if and only if

(i) z • h(X) is a loop constant (or equiwllently
z • h(X) = h(Xo) is a loop invariant).

(2) [~B(X) A X ~ D I] ~[h(X) = Zo]

We give an informal proof below. First, we apply
the theorem to the programs in example 3.

402

Example 3. (continued)
V

(i) Prove that wf = u o. We need to show that
O

i. w * u v = u Vo , is a loop invariant~
O

2. Iv = 0] ~[u v = i].

(ii) To prove that foundf = search(T,key);

where search is a function that returns 'true' if and
only if key is in the binary search tree T, we need
to prove that

i. found or Search(T,key) = Search (To,key)

2. (T = nil)=> [Search(T,key) = false] []

Informal proof of the theorem:

It is obvious that D = . - {~'X,z>l X E DI, z = Zol_

is not closed with respect to W(B,S). However we
know that for any(X,z) from D, we have zf = h(Xo)

at the end of the program. We next try to find out
the outputr . of W(B,S) when inputs are from
D' ~X,z> I X~ DI| . Clearly D' is closed.

We claim that the output zf = z' • h(X'), where X',z'

are the initial values of X, z (from D').

Starting with Zo, X' as input, the value zf

could be written as follows:
= h(X') = z ° • {terms dealing with X'~ ,

zf using

associativity of e. If we start with z' since
computation sequence is identical, and X values don't
depend on z,

= z' • ~same terms dealing with X'~ zf
J

O Z O { " }, since z is a left unity of O. Z'
O O

= z' • h(X'), from the given conditions.
Hence applying theorem i, the result follows.
Conversely, assume that (i) and (ii) hold. We will
consider those inputs for which the loop body is
never executed and those for which it is executed once
or more. In the former case, ~B(X) ~ X E D I.
Hence zf = z ° = h(Xo). In the later case, we have

Zo • h(Xo) = zf • h(Xf). Clearly,~B(Xf) A Xf ~ D I.

Thus, h(Xf) = Zo, and Zo • h(Xo) = zf • z o," or

zf = h(Xo) since z is the unity of 0. []
O

A cannonical form of ~uch schemas is then
z 4-Zo;

while h(X) # z do
O --

Modify X, z so as maintain z @ h(X) a constant
enddo;

A special case of the above theorem appears in
Katz and Manna [8]. An interesting corollary of the
theorem is that there always exists a loop invariant
for PI, using only the initial value z (of z),

o
operator @ and the computedl function h. Sometimes a

403

program may have to be transformed slightly to fit
into the above form,

Example 4. Following program finds the largest char-
acter in a string st, where characters are ordered
through a positive integer valued function ord. LC
denotes the largest character. Assume that ord(null)
= 0, where null denotes the null character/string.

LC4"null;
while st # null do

if ord (LC) < ord(head(st)) then LC~- head~t~
st 4- tail(st)

enddo;
Since there is a conditional branching involving LC,
theorem 2 is not applicable. However that statement
may be rewritten as

LC4" maxhead(LC,st),
where maxhead(x,y): if ord(head(x))•ord(head(y)) then

head(y) else head (x)
endif;

Maxhead is an associative function and all other
conditions in theorem 2 are applicable. ~]

4. Stack Schema

An explicit stack is often used to simulate a
recursive procedure by an iterative one. Problems of
this kind are frequently encountered in graph algo-
rithms, tree traversal routines etc. We consider a
stack schema P2, as given below; stk denotes an
object of type stack; t denotes an object of a certain
type which is initially put in the stack (all elements
of the stack would be of this type); the notation
stk~ t stands for "push t onto stk"; t4= stk stands
for "remove the top element of stk and put it in t";
A stands for a null stack; stk4- (t) stands for
"let stk contain only the element t".
P2:

begin
stk(- (t);
while stk # A do S enddo

end

Example 5. This example is a routine for preorder
traversal of a tree T; t denotes the root node of T;
left (P), right (P) denote the left and right sons of
node P.
begin

stk4- (t);
while stk # A do

P4~ stk; visit P;
if right (P) # nil then stk~ right(P);
if left (P) # nil then stk~left (P)

enddo
end;

The usual output specification is that a certain
function of t is computed (in some specified variables)
at the end of the program. Note that the methods of
section 3 are not applicable here since the stack
variable is used to govern the branching of the main
loop.

We are going to exploit the structure of the
stack to arrive at the loop invariant: We know that
access to the stack is restricted so that the elements
are processed in last-in-first-out order. However, a
programmer may save the top element, process the
next-to-top element and then process the (saved) top
element. We believe that such programming is not
"clean"; we thus need a syntactic restriction to
avoid such programming. We require that the stack
be not examined for emptiness inside S. This will
effectively restrict the progran~ner of S so that he
can only remove the top element of the stack or push
an element onto the stack; however, he cannot get at
the nextto top element without potentially getting

into an error situation (popping off an empty stack).

We now formally state the requirements on the
stack schema. Let CX, stk) be the set of global
variables to W(B,S). Let the global variables X to
the program be from the domain D I. Let the domain of
the elements that are pushed onto the stack be D 2.

We require that P2 satisfy the following two
conditions.

i. stk is not examined for emptiness inside S.
2. D 1 is closed with respect to W(B,S) for any

t ~ D 2 in the stack, i.e. if we start with any X ~ D 1

and any t E D 2 in the stack, the resulting values of

variables X at any iteration are in D I. Assume that A
is an element of D 2.

Let the initial and final values of the global
variables and stk be (Xo,to) and (Xf, ~) respectively.

It is required to show that

Xf = h(Xo,to) , where h is a function

h: D 1 x D2--) D I.

Assume that h(X,A) = X, for every X E D I. Also

assume that termination has been proven separately, for
every X ~ D 1 and t ~ D 2. (It then follows that the

program will terminate for any X and any number of
elements in the stack as input).

Theorem 3. Xf = h(Xo,to) , for every X oE D I and t o6 D 2

if and only if,

h(...h(h(X, tl),t2)..),t n) is a loop constant, where

(tl...t n) denote the contents of the stack

from top to bottom (at any iteration). []

Example 6. The following program is a slight modifica-
tion of example 5. The string 'pre' denotes the
sequence of node names which are traversed in preorder
traversal of a tree; 'name (P)' gives the name of a
node P. ~I denotes concatanation.

pre ~ null;
pw

stkK-- (t);
while stk # A do

P ~ stk; pre~ pre ~I name(P);
if right(P) # nil then stk~=right(P);
if left (P) # nil then stk~left(P)

enddo;

It is required to prove at the end of the program that
pref = preorder(t) where 'preorder' is a function

(defining the preorder traversal of the tree rooted at
t). We first dispose of the initialization to 'pre',
using methods of section 3. We then have to prove that
starting with any initial value preo, pref = preo~ ~

preorder (t) in the above program (without the initia-
lization of 'pre'). Thus pref = h(preo,t) where

h(x,y) = x ~I preorder(t), x a string, t a node at
which some tree is rooted. Next, using the fact that
D 2 is the set of nodes in the tree rooted at t and

h(x, A) = x, we can apply theorem 3.

Let (tl...tn) be the stack contents from top

to bottom at any iteration. We then have to prove that
h(h...h(h(pre,tl),t 2) is a loop constant, or

pre I~ pre°rder(t I) II preorder (t2) ... preorder (tn) is

a loop constant, or preol ~ preorder(t) =
D~

II pre

preorder(~)...preorder(tn) is a loop invariant.

This says that the current string 'pre'

concatanated with the preorder traversals of
(tl,t2,.,tn) remiins invariant during successive

iterations. []

Informal proof of theorem 3: We consider only the loop
program with input X E D 1 and any number of elements

from D 2 in the stack. Clearly we have closure for such
a domazn. We want to find the function computed by
the loop, starting with such inputs so that we can
apply theorem i. Suppose the stack has (tl...t n)

from top to bottom. If we start the loop with input
X ° and only tlin the stack, it would terminate after

sometime with X set to h(Xo,tl). However with (t%...

tf) in the stack, the program will not terminate,
although the value of X will be h(Xo,t I) by the time

t I is popped off. By the time the next element t 2

is popped off, value of X is h(h(Xo,tl),t2). Contin-

uing in the similar manner, it follows that Xf =

h(h...h(h(Xo,tl),t2),..),tn). Hence applying theorem i,

h((h(X, tl),t2...,tn) is a loop constant. The proof

in the opposite direction is straight forward and is
omitted.

The property that we have exploited is the nature
of access to a stack which implies that computations
with only t I on the stack is a prefix of the computa-

tion with(tl,t 2) on the stack (t I at the top). Even

though the loop does not exactly do the same sequence
of computations (as in section 3), the sequence can be
obtained through a generic sequence. We note that
it was important to prohibit the examination of stack
for emptiness in S. We are then assured of the
sequence of processing of the elements in the stack.
Note that many new elements may be pushed onto the
stack during the computation with (tl...tn) ; however

it is not necessary for us to know about them to get
the output function.

5. FOR Programs

In previous sections, we studied iterative pro-
grams in which the number of loop iterations is a
priori unknown. Often, however, we encounter
iterative structures, where the number of iterations
to be performed is known at entry to the loop. In
such cases, it is natural to use a FOR loop. If we
attempt to use the approach outlined in previous sec-
tions, by rewriting the FOR loop in the do-while form,
we encounter several difficulties. Specifically,
the loop predicate of such a do-while would examine
the iteration parameter. Thus the execution sequence
depends on the initial value assigned to the iteration
parameter.

In this section we show that proving the correct-
ness of FOR programs is amenable to a simple approach
under certain conditions.

Consider a program P3 of the form
P3:

b e~in

z~--. Zo;
for i(-- I to n do

s

endfor
end;

Let X be the variables of P3 to which values are

404

assigned at input and suppose at output we would like
to show that z = F(X ,n) where X is the initial value

O O
of X. We could attempt to locate the extended domain
and function relative to z, X and n, Instead, we
assume that the FOR program satisfies certain condi-
tions which restrict the dynamic control structure of
the program.

These conditions are stated below.
(i) neither n, nor any variable dependent on n

appear in S.
(2) S does not alter the value of X.

Condition (I) is sufficient to ensure that for
any two different values nl! n 2 of n(n 2> nl),

computations are identical (output z, X are identical)
through the first n I iterations.

Condition (2) states that only z is modified in
S. (It can be relaxed as we shall show subsequently.)
Thus the loop steps through a set of elements and z
accumulates the result.

If the FOR program satisfies the above condi-
tions, a simple form of induction can be used to prove
correctness of such a program. This is the content of
the following theorem.

Theorem 4. If P3 satisfies conditions (i) and (2)
then z = F(Xo,n) holds at the exit of P3 for every X °

and n ~ 0, if and only if
(i) z ° = F (Xo,O)

and
(ii) (z = F(X o, i-l)) {S~ (z=F(Xo,i))

for i ~ i ~ n and all permissable initial values Xo.

Proof (outline): It is easy to verify that if (i),
(ii) hold then the required proposition is true at the
end of the program. Conversely, if z = F(Xo,n) for

any Xo, n a 0, then z ° - = F(Xo,0). For n ~ I,

zg~z;
o

for i~l to n do S;

is equivalent to

~ z ~ Zo;

for i4-i to n-i do S~ ;
S "(with n s~stitut-eed for every occurrence of i),

Part of the program inside braces have the effect
of keeping X invariant (condition i) and setting
z = F(X ,n-l). Hence it must be that if we start with

z = F(Xo,i-l) and execute S, we must get z = F(Xo,i),

We will illustrate the theorem with a few examples,

Example 7. The following program sums the elements of
an array A(1), ... A(n).

sum ~ 0;
for i~ i to n do
sum~ sum + A(i)
endfor; n

We wish to show that sum = ~ A(j). Then it is
j=l

necessary and sufficient to show that
0

(i) (0 =~ A(j))
j=l

i-i
and (ii) (sum = ~ A(j)) ~sum~ sum + A(i)#

j=l
i

(sum = ~ A(i)) []
j=l

Example 8. The following is a program for computing
factorial, (See also example 2).

u~-l;
for r ~-i to n do

v~-u;
for s 4--1 to r do
v~--v + u
endfor ;
u4--v

endfor ;
At output we would like to prove that u = (n + i)!

Using theorem (4), we need to prove
(i)

(ii)
i= i! ur{vu o I for s4- i to r d__ (u = (r+l)!)

V~-v+u
endf or ;
u~-v;

(ii) above aimplifies to

~for s~ i to r d OI(v=(r+l),) [(u=r!) A (v=r!)] v~ v+u ~ e n d f o r ;

Note that we cannot apply the same theorem again since
the initial values of u, v depend on the iteration
parameter r.

Suppose now that the FOR body S modifies the
value of X. Then theorem 4 fails to hold. In this
case, knowing the value of z at the beginning of an
iteration, the loop body to be executed, and the value
of Xo, does not allow us to conclude the desired

property of z at the end of the iteration. The
following example illustrates this situation.

Example 9. Consider the following program,
z4- 0;
for i(--i to n do
X4-" X + i;
z(--z +X
endfor;

+ n (n+l)
We would like to prove at output z = n X ° 2

Applying theorem 4, we would obtain

(z=n X + n(n+l) [1 o 2 ") X~X+l;z4-z+X (z=(n+l)X£ (n+l)2 (n+2))

But this cannot be proved since no relation between
X and X is known.
o

If we include the function computed in the X-
component as well, we obtain

n(n+l){
(n~0)A(X=X0+n)A(z=n Xo + 2) X~X+l;z@z+X

(z=(n+l)Xo + (n+l)(n+2) 2) ~ (X=Xo+n+l)

and the corresponding verification condition generated
is a theorem.

We thus observe that condition (2) on P3 can be
omitted if we take into account the X-component of
the function computed as well. This leads us to the
following stronger form of theorem 4, which we state
without proof. We assume that the values of X
obtained after any number of iterations belong to a
closed domain D.

Theorem 5. Let P3 satisfy condition (I) above. Then
)^ (x D (n 0) {P3 z ,x (Xo,n ,G (Xo,n)>)

if and only if
(a) ((Zo,X ~ =(F(Xo,0),G(Xo,0)>)

405

and
(b) (XoEDIA(<z,X>=~(Xo,i-I),G(Xo,i-I)>) {S }

((z, X) =(F (Xo, i) ,G (X ° , i))) []

We have shown that for a wide class of for loop
programs, which define well behaved computations,
necessary and sufficient conditions for correctness
can be generated from the given output specifications.
We observe that we have been able to apply a relatively
simple form of induction to the problem since the
computations of the FOR programs under consideration
behave uniformly relative to the iteration parameter.
Further, the output specification itself (in a
slightly modified form) serves as the induction
hypothesis.

While the class of FOR programs we have inves-
tigated includes a large number of naturally occurring
programs, it is quite easy to construct FOR programs
which fall outside this class, as the following example
illustrates.

Example i0. This example uses a modified version of a
program from [5]. It sets the boolean variable prime
to true or false depending on whether input J is
pri~e ;r no~: The domain D of inputs is ~J I J~3
and integer o

begin
prime~-true;
for i4- 2 to J - 1 do

if i divides J then prime W- false
endfor

end;
The theorem is not applicable since S depends on the
iteration parameter.

6. Conclusion and Discussion

We have investigated three classes of (program)
schema, for which we have been able to determine a
closed domain and hence a necessary and sufficient
loop invariant from the given (partial) input output
specifications. If we examine these classes closely,
we find that in each case, the extended domain is
located by using the fact that the dynamic program be-
havior is in some sense uniform relative to some input
parameters. Thus for the while do programs (sec. 3),
the conditions imposed assume that the execution
sequence of the program is independent of the initial
value assigned to z and further that the result of
this computation depends on z in a predictable fashion.
In case of the stack schema we observe that the execu-
tion sequence of the program depends only on the top
element of the stack until such time as the element
below it is examined for the first time. Similar
remarks hold for the FOR loop. We do not attempt to
define this notion of uniform behavior of a program
relative to a data space here. However, we hope to
have convinced the reader that these semantic
(dynamic?) considerations play an important role in
constructing programs whose correctness can be de-
monstrated (or refuted) relative to given input output
specifications easily. We hasten to add that the above
statement makes no reference to the difficulty of
proving or disproving the theoremhood of the veri-
fication conditions generated. Rather we have
attempted to generate invariance information that is
in some sense natural to the problem under
consideration.

is interesting to note that almost all programs
which have been constructed with provability in
mind do obey the principles discussed above. By
explicitly enunciating them and studying their
properties, we hope this would take us a little closer
to the goal of understanding the "art of programming".

Acknowledgment s

This research was partially supported by NSF
Grant DCR75-90842. An earlier version of these
results were presented at the IEEE Workshop on
Theorem Proving held at Chicago, Illinois, June 1975.

References

i. Basu, S.K. and J. Misra, "Proving Loop Programs",
IEEE Trans. on Software Engineering, vol. SE-I,
March 1975.

2. Basu, S.K. and J. Misra, "Deterministic Generation
of Inductive Assertions", presented at IEEE
Workshop on Theorem Proving, Chicago, Illinois,
June 1975.

3. Burstall, R.M., "Program Proving as Hand Simulation
with a Little Induction", Prec. IFIP Congress,
1974.

4. Floyd, R.W., "Assigning Meanings to Programs". Prec.
Symposium in Appl. Math., vol. 19, 1967.

5. German, S.M. and B. Wegbreit, "A Synthesizer of
Inductive Assertions", IEEE Trans. on Software
Engineering, vol. ~E-I, March 1975.

6. Good, D.I., "Provable Programming", Prec. Int.
Conf. on Reliable Software, Los Angeles, April
1975.

7. Hoare, C.A.R., "An Axiomatic Basis for Computer
Programmlng , CACM 12, 1969.

8. Katz, S. and Z. Manna, "Logical Analysis of
Programs", Technical Report, Dept. of Applied
Math., Weizmann Institute of Science, Rehovot,
Israel, 1975.

9, King, J.C., "A Program Verifier", Carnegie-
Mellon University, PhD Thesis, 1969.

, " nit i0. London, R.L. "A View of Program Verificatlo ,
Prec. International Conf. on Reliable Software,
Los Angeles, April 1975.

ii. Manna, Z., "A Mathematical Theory of Computation",
McGraw-Hill, 1975.

12. Misra, J., "Relations Univormly conserved by a Loop';
Prec. of Int. Symp. on Proving and Improving Pro-
grams, Are et Senans, France 1975.

13. Misra, J., "A Study into the Nature of Loop Computa-
tion", unpublished manuscript.

14. Morris, J.H., & Wegbreit, B., "Subgoal Induction",
Xerox Pale Alto Research Center, Report CSL 75-6,
(July 1975)

From the above considerations, it appears that
certain basic principles are beginning to emerge which
supplement the existing methodologies for program
construction. These additional constraints on the
program development process would thus lead to pro-
grams which in some sense are naturally provable. It

406

