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Abstract 

Three different classes of programs are identi- 
fied for which the proof of correctness is shown to 
be "natural", in that the functional input-output 
specifications of the programs lead, in a straight- 
forward manner, to the verification conditions that 
should be proven. Furthermore, these verification 
conditions are shown to be necessary and sufficient 
so that a proof/refutation follows by proving/dis- 
proving the corresponding verification conditions. It 
is not necessary to follow the exact control flow of 
the programs to generate these conditions; certain 
simple checks are enough to show whether a particular 
program belongs to one of the classes. These apparent- 
ly different programs have the common feature that 
they operate "uniformly" on the data domain; changing 
the input to the program changes the dynamic behavior 
of the program in a predictable, easily definable 
fashion. Implications of this feature in program 
construction are discussed. 

i. Introduction 

One of the major problems encountered in using 
the inductive assertion method [4] of program verifi- 
cation is the generation of appropriate assertions. 
In order to be able to apply the inductive assertion 
or the Floyd method to a particular program, the p~o- 
grammer has to provide in addition to the input-output 
specifications of the program, a set of assertions at 
specific points in the program, which must include 
at least one cutpoint for each loop. Since in a 
loop the control may reach the same point several 
times with altered sets of values of variables, the 
assertions attached to a loop must capture the invar- 
iant properties of the loop iteration. These asser- 
tions furthermore, should be strong enough to imply 
the desired output condition on termination. We say 
that an assertion P is a loop invariant for a loop 
of the form while B do S if P ~ B { SI P, 
using the notation introduced in [6]. 

The main objective of this paper is to consider 
.the problem of deterministically generating loop 
invariants in order to be able to prove or disprove 
certain properties of the loop. Several heuristic 
methods for generation of the loop invariant appear 
in the literature [5,8,14]. These methods attempt 

to generate a loop invariant given a loop and its in- 
put-output specifications. While these methods are 
useful in a number of cases, in general, they provide 
little insight into the relationship between the 
computations of the loop (the function it is computing) 
and the invariance preserved by it. 

We have attempted to identify certain classes of 
programs for which the loop invariant can be generated 
directly or deterministically from the given input- 
output specifications. Clearly our approach does 
not cover all possible loop programs. However, a 
large number of "naturally occurring programs" fall 
into one of our classes. Basically we show that if 
the program under consideration is "well behaved" 
relative to the data domain it operates on, such that 
changes in the input parameters of interest causes the 
dynamic program behavior to change in a predictable 
fashion, then the available partial information about 
the input output behavior of the program can be deter- 
ministically extended to create a loop invariant. 
In using the word deterministic, we do not intend to 
imply decidability. In fact, the basic properties of 
interest are almost always undecidable. However, in 
case the program under consideration possesses certain 
specified properties, we show how the desired necessary 
and sufficient invariance relation can be obtained 
systematically. 

The output assertions we consider state that 
the program computes a given function over a certain 
domain. In a certain sense, this is the strongest 
assertion one can make about the program, and all other 
weaker properties are derivable from these output 
assertions. However, it is possible to extend these 
results to certain classes of relations at output [12]. 

The research reported here was motivated by 
attempts to obtain a relationship between computation 
and invariance properties of loop. We have found that 
in the process of loop computation, if the loop is 
constrained to accesslalter data in a "uniform" fashion 
then the loop invariant may be obtained quite systema- 
tically. Our primary goal is to develop a set of 
reasonable rules by which loop invariants may be dis- 
covered fairly systematically by programmers. 

In section 2, we introduce basic concepts and 
briefly review some previous results. We formulate 
the problem precisely and discuss several possible 
systematic approaches and their trade offs. Section 3 
is devoted to accumulating do-while programs. We 
introduce the notion of independent variables and 
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provide a theorem about the loop invariant for these 
programs. Several examples are used to illustrate 

these ideas. Stack programs are investigated in 
section 4. These programs naturally occur in imple- 
menting recursive procedures by iterative structure. 
We exploit certain specific properties of such pro- 
grams to obtain a loop invariant. This method is 
applied to a well known program for preorder 
traversal of a tree. 

In section 5, we study uniform FOR programs, and 
show that a simple form of induction can be used to 
prove correctness of such programs. We discuss some 
extensions and limitations of this approach. 

Finally, we discuss the implications of these 
results, particularly as a methodology for program 
construction. 

2. Loop Pro$rams 

Let W(B,S) be an abbreviation for "while B do S". 
Let W(B,S) accept its input in (a vector of) variables 
X and produce its output in the same variables. Let 
S(X) denote the values obtained by executing S with 
input X. 

Let the possible set of input values of X, be 
drawn from a domain D. We say that W(B,S) computes a 
function F over D if for any input X from D, the 

o 
output is Xf=F(Xo) , (assuming that the program termi- 

nates for every input from D). 

We define D to be closed with respect to W(B,S) 
if X E n A B(X) ~S(X) e D. 

In other words, D is closed with respect to 
W(B,S) if and only if X E D is a loop invariant. 

Let P be a loop invariant of W(B,S) and let 
propositions QI' Q2 denote the input/output specifi- 
cations of W(B,S). We assume these are predicates on 
the variables X and their initial values. P is a 
sufficient loop invariant with respect to QI' Q2 

if P is a loop invariant and QI=~P and P A -~B =~ Q2" 

P is a necessar~ loop invariant with respect to QI' Q2 

if the falsity of either of the above propositions 
means that W(B,S) is incorrect with respect to QI' Q2" 

In [1,13] we investigated the problem of obtain- 
ing a necessary and sufficient loop invariant for 

W(B,S) with QI: [X 6 D] and Q2: [Xf = F(Xo)]. We 

showed that if D is closed, such an invariant is easily 
obtained. This is the content of the following theorem. 

Theorem i. Given that D is closed with respect to 
W(B,S), W(B,S) computes F over D if and only if 

(i) W(B,S) terminates for every X ~ D. 
and (2) [B(X)~ F(X) = F(S(X))] ~ [ riB(X) ~ F(X)=X] 
for every XE D. [] 

Condition (2) can be broken up into 
(i) [B(X) ~ [F(X) = F(S(X))]] 

and (ii) [IB(X)@ [F(X) = X]] 
(i) says that for an input X when B is false, 
F(X) = X, if W(B,S) computes F. (Thi§ f011ows trivially.) 
(ii) says that F(X) remains an invariant quantity 
through successive iterations with modified values of 
X. Note that F(X) is well defined since X 6 D, due 
to the closure property. 

Thus by theorem i, condition (2) is necessary 
and sufficient for proving that W(B,S) computes F. 

We illustrate this theorem by an example: 

Example i. Consider the following program for computing 
exponential. Initial value of w is i. Finally w is 

v 
set to u o o (Uo, v ° being the initial values of 

u,v). 
while v # 0 do 

if (odd v) then w~w * u; 
v & v/2; u~- u * u 

enddo; 

We would like to prove/dispmove that the program 
computes F < u, v, w> = < ~, O, w * u v> over 

m 

a domain D = ~u, v, w)[u, v, w integer~ v ~ 0~where 
denotes a component value that is of no interest 

to us at output. 
v~ w~ ° x: {u; o. 

B (x) : 
S(X) : ~if (odd v) then w~ w * u; v4-v/2; 

u ~ u * u .~ 

We prove closure of D by proving that 
~ 0 ~ v # ~v/2 ~ O. Then it is necessary and 

sufficient to prove that 

and 
(i) the loop terminates for every ~u, v, w> E D. 

v,0~w,uV_[W*U*(u2~V/2when v is odd 
(2) ~ ajl -~w*(u2) v/2 when v is even ] 

^ v=0 ' w*u v=w) 

Definition - A i0o p constant is an expression whose 
value remains unchanged after every iteration of the 
loop. 

A loop invariant is thus a loop constant. Using 
theoreml, F(X) is a loop constant. This notion helps 
us to avoid the use of X in statements of theorems. 

o 

Usually however the program will not appear in 
the form given above, but will be preceded by an 
initialization statement such as w:= i. In this 
case our knowledge of the input output behavior of 
the program is the following. 

The input domain of the program is D' - 
{4u, v, w) I w = I, v ~ 0, u, v, w integer~ and 

we wish to prove/disprove that the program computes 
the function F' ~u, v, i)= <~, 0, uV> 

However it is easy to see that D' is not closed 
with respect to W(B,S) since the intermediate values of 
w are not in D' and thus theorem 1 becomes inapplicable. 
The basic problem then is that given D' and F', we 
need to find a closed domain D and a function F on D 
which are extensions of D', F'. Then theorem 1 can 
be applied. Furthermore if D, F are properly chosen 
extensions of D', F' then a proof/refutation that 
W(B,S) computes F over D can be used as a proof/ 
refutation that W(B,S) computes F' over D'. 

In order to facilitate discovering F, we need to 
choose D carefully. There are two general approaches 
for computing D which are quite useful in finding F. 
One is to identify the various values of global 
variables that occur in different iterations, starting 
with an initial input. Once we have the description 
of such a D in closed form, F is usually easy to 
guess. The second approach is to consider all 
possible values of inputs (with suitable restrictions, 
such as all positive integers, etc.). As is to be 
expected, F is usually more difficult to guess in such 
a case. The following example illustrates a situation 
where finding a closed D almost solves the problem 
of finding F. 
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Example 2. Factorial [London] 

begin integer s, v; 
while r ~ n do 

s#-l; v4-u; 
while s # r do 

u4- u + v; s(--s + i 
enddo ; 
r4-r+l 

enddo 
end; 

We are required to prove that over the input domain 
function com- the {~r, u, n~ I r = i, u = I, n -~ 1 1 

puted is F(r, u, n)= ~(n, n!, n> . Using the first 
technique~we may identify the values of (r, u, n~ 
that occur in different iterations to obtain the 
closed domain D' = ~ ~r, u, n>~ i ~ r ~ n;u = r! ~. 
In fact locating D' and proving closure with respect 

R B 

to D' amounts to a proof of the original conjecture, 
since X ~D' A -IB(X) - r ~ n A u = r! /% i _z r ~ n~ 
u=n!. 

As the above example illustrates, finding a 
closed domain D by identifying the intermediate values 
of variables can be quite difficult. It seems plau- 
sible that heuristic methods can be developed which 
attempt to discover D. 

We next investigate three classes of programs 
for which the desired information can be obtained 
directly from the output specifications. The con- 
ditions imposed on these classes of programs ensure 
that the dynamic behavior (the execution sequence 
or components thereof) are well behaved relative to 
certain components of their data domains. Roughly 
speaking, we are constraining the dynamic program 
behavior in order to obtain programs that are more 
amenable to systematic verification techniques. 

3. Accumulating Loop Programs 

This class of programs have the following form. 
PI: 

begin 

Z ~-'Zo, 

W(B,S) 
end ; 

z is a variable whose value is being computed 
by the loop; initial value of z is z . There are 

o 
many commonly occurring programs that fit into this 
form. Usually z "accumulates" the result and the 
loop is used to step through (and process) a set of 
elements. Such a schema can be used to find the sum 
or the maximum of a sequence. Following examples 
illustrate a few more such programs. 

Example 3. 
(i) w ÷ i; 

while v # 0 do 
if (odd v) then w4- w * u; 
vK-v/2; u4-u * u 

enddo~ 
w plays the role of z in this program for 

computing w = u Vo,~for any KUo,Vo> ~ ~<u,v>l 
~. o 

v- 0; u, v integer T . 
(ii) found ~- false; 

while T # nil do 
found 4- found or (root (T) = key) ; 
if key < root(T) then T 4- left (T) 

else T4- right(T) 
endif 

enddo ; 

found plays the role of z. This program gives 
an (inefficient) method for finding out if key is at 

a node in a given binary search tree (where every node 

in the left/right subtree of a node are smaller/greater 
in magnitude)~ nil denotes a null tree; root (T) 
gives the element at the root of the tree T; left/rifmht 
returns left/right subtree. 

Let (X,z) be all the global variables of W(B,S). 
We assume that at the end of the program, only the 
value of z is of interest. We could absorb the initial 
value of z i~to the domain D of W(B,S) to get 
D ={ ~X, z>~ z = Zo; X from the specified domain~ TM i 

Clearly D is not closed since z usually changes its 
value• Hence we can't apply theorem i. 

One important aspect of such a schema is that z 
usually never occurs in a conditional statement inside 
the loop to govern branching. Thus z is truly an 
"accumulator"; its specific value does not alter the 
course of computation. Secondly, assignments to z 
inside the loop are usually of the form z4-z ~ g(X), 
where ~ is some binary operator and g is some function 
on the variables X. 

We will prove that under certain conditions on • 
and Zo, it is possibl 9 to specify the loop invariant, 

if it is required to show that the final value of z 
is a certain function of the initial values of X. 

A variable r is independent of variable t (in 
a given program) if a change in the input value of t 
never results in a change in the value of r at any 
step of computation, r is dependent on t otherwise. 
Formal conditions on the schema: 

i. All global variables X are independent of z. 
2. Neither z nor any variable dependent on z is 

used to govern a conditional branch inside the loop. 
3. Every assignment to z inside the loop can be 

written as z4- z • g(X) where ~ is an associative 
operator that is identical for every assignment to z; 
g is some function on variables X that may be different 
for different assignments. 

4. z is a (left and right) unity of O. 
Note: If 0 ° has a left and right unity, they are iden- 
tical and unique• 

5. Domain D 1 of the global variables X is 

closed with respect to W(B,S); i.e. values of X 
obtained in different iterations belong to the input 
domain. 

Conditions (i) and (2) imply that z is truly an 
accumulating variable: it does not govern the flow of 
control nor does it affect the values of other 
global variables. Conditions (3) and (4) make sure 
that modification of z is "uniform". Finally condi- 
tion (5), is a restatement of the closure condition 
with respect to other variables. 

Usually these conditions are verified easily for 
any given program, such as the ones in example 3 (with 
reasonable interpretation of the domains). 

Theorem 2. Let Pl satisfy conditons 1,2,3,4,5. Let 
X ° denote the initial values of X and Xf, zf denote the 

final values of X, z (assuming that W(B,S) terminates 
for every X from DI). Let h denote some function over 

D I. Then, zf = h(Xo) if and only if 

(i) z • h(X) is a loop constant (or equiwllently 
z • h(X) = h(Xo) is a loop invariant). 

(2) [~B(X) A X ~ D I] ~[h(X) = Zo] 

We give an informal proof below. First, we apply 
the theorem to the programs in example 3. 
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Example 3. (continued) 
V 

(i) Prove that wf = u o. We need to show that 
O 

i. w * u v = u Vo , is a loop invariant~ 
O 

2. Iv = 0] ~[u v = i]. 

(ii) To prove that foundf = search(T,key); 

where search is a function that returns 'true' if and 
only if key is in the binary search tree T, we need 
to prove that 

i. found or Search(T,key) = Search (To,key) 

2. (T = nil)=> [Search(T,key) = false] [] 

Informal proof of the theorem: 

It is obvious that D = . - {~'X,z>l X E DI, z = Zol_ 

is not closed with respect to W(B,S). However we 
know that for any(X,z) from D, we have zf = h(Xo) 

at the end of the program. We next try to find out 
the outputr . of W(B,S) when inputs are from 
D' ~X,z> I X~ DI| . Clearly D' is closed. 

We claim that the output zf = z' • h(X'), where X',z' 

are the initial values of X, z (from D'). 

Starting with Zo, X' as input, the value zf 

could be written as follows: 
= h(X') = z ° • {terms dealing with X'~ , 

zf using 

associativity of e. If we start with z' since 
computation sequence is identical, and X values don't 
depend on z, 

= z' • ~same terms dealing with X'~ zf 
J 

O Z O { " }, since z is a left unity of O. Z' 
O O 

= z' • h(X'), from the given conditions. 
Hence applying theorem i, the result follows. 
Conversely, assume that (i) and (ii) hold. We will 
consider those inputs for which the loop body is 
never executed and those for which it is executed once 
or more. In the former case, ~B(X) ~ X E D I. 
Hence zf = z ° = h(Xo). In the later case, we have 

Zo • h(Xo) = zf • h(Xf). Clearly,~B(Xf) A Xf ~ D I. 

Thus, h(Xf) = Zo, and Zo • h(Xo) = zf • z o," or 

zf = h(Xo) since z is the unity of 0. [] 
O 

A cannonical form of ~uch schemas is then 
z 4-Zo; 

while h(X) # z do 
O -- 

Modify X, z so as maintain z @ h(X) a constant 
enddo; 

A special case of the above theorem appears in 
Katz and Manna [8]. An interesting corollary of the 
theorem is that there always exists a loop invariant 
for PI, using only the initial value z (of z), 

o 
operator @ and the computedl function h. Sometimes a 
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program may have to be transformed slightly to fit 
into the above form, 

Example 4. Following program finds the largest char- 
acter in a string st, where characters are ordered 
through a positive integer valued function ord. LC 
denotes the largest character. Assume that ord(null) 
= 0, where null denotes the null character/string. 

LC4"null; 
while st # null do 

if ord (LC) < ord(head(st)) then LC~- head~t~ 
st 4- tail(st) 

enddo; 
Since there is a conditional branching involving LC, 
theorem 2 is not applicable. However that statement 
may be rewritten as 

LC4" maxhead(LC,st), 
where maxhead(x,y): if ord(head(x))•ord(head(y)) then 

head(y) else head (x) 
endif; 

Maxhead is an associative function and all other 
conditions in theorem 2 are applicable. ~] 

4. Stack Schema 

An explicit stack is often used to simulate a 
recursive procedure by an iterative one. Problems of 
this kind are frequently encountered in graph algo- 
rithms, tree traversal routines etc. We consider a 
stack schema P2, as given below; stk denotes an 
object of type stack; t denotes an object of a certain 
type which is initially put in the stack (all elements 
of the stack would be of this type); the notation 
stk~ t stands for "push t onto stk"; t4= stk stands 
for "remove the top element of stk and put it in t"; 
A stands for a null stack; stk4- (t) stands for 
"let stk contain only the element t". 
P2: 

begin 
stk(- (t); 
while stk # A do S enddo 

end 

Example 5. This example is a routine for preorder 
traversal of a tree T; t denotes the root node of T; 
left (P), right (P) denote the left and right sons of 
node P. 
begin 

stk4- (t); 
while stk # A do 

P4~ stk; visit P; 
if right (P) # nil then stk~ right(P); 
if left (P) # nil then stk~left (P) 

enddo 
end; 

The usual output specification is that a certain 
function of t is computed (in some specified variables) 
at the end of the program. Note that the methods of 
section 3 are not applicable here since the stack 
variable is used to govern the branching of the main 
loop. 

We are going to exploit the structure of the 
stack to arrive at the loop invariant: We know that 
access to the stack is restricted so that the elements 
are processed in last-in-first-out order. However, a 
programmer may save the top element, process the 
next-to-top element and then process the (saved) top 
element. We believe that such programming is not 
"clean"; we thus need a syntactic restriction to 
avoid such programming. We require that the stack 
be not examined for emptiness inside S. This will 
effectively restrict the progran~ner of S so that he 
can only remove the top element of the stack or push 
an element onto the stack; however, he cannot get at 
the nextto top element without potentially getting 



into an error situation (popping off an empty stack). 

We now formally state the requirements on the 
stack schema. Let CX, stk) be the set of global 
variables to W(B,S). Let the global variables X to 
the program be from the domain D I. Let the domain of 
the elements that are pushed onto the stack be D 2. 

We require that P2 satisfy the following two 
conditions. 

i. stk is not examined for emptiness inside S. 
2. D 1 is closed with respect to W(B,S) for any 

t ~ D 2 in the stack, i.e. if we start with any X ~ D 1 

and any t E D 2 in the stack, the resulting values of 

variables X at any iteration are in D I. Assume that A 
is an element of D 2. 

Let the initial and final values of the global 
variables and stk be (Xo,to) and (Xf, ~ ) respectively. 

It is required to show that 

Xf = h(Xo,to) , where h is a function 

h: D 1 x D2--) D I. 

Assume that h(X,A) = X, for every X E D I. Also 

assume that termination has been proven separately, for 
every X ~ D 1 and t ~ D 2. (It then follows that the 

program will terminate for any X and any number of 
elements in the stack as input). 

Theorem 3. Xf = h(Xo,to) , for every X oE D I and t o6 D 2 

if and only if, 

h(...h(h(X, tl),t2)..),t n) is a loop constant, where 

(tl...t n) denote the contents of the stack 

from top to bottom (at any iteration). [] 

Example 6. The following program is a slight modifica- 
tion of example 5. The string 'pre' denotes the 
sequence of node names which are traversed in preorder 
traversal of a tree; 'name (P)' gives the name of a 
node P. ~I denotes concatanation. 

pre ~ null; 
pw 

stkK-- (t); 
while stk # A do 

P ~ stk; pre~ pre ~I name(P); 
if right(P) # nil then stk~=right(P); 
if left (P) # nil then stk~left(P) 

enddo; 

It is required to prove at the end of the program that 
pref = preorder(t) where 'preorder' is a function 

(defining the preorder traversal of the tree rooted at 
t). We first dispose of the initialization to 'pre', 
using methods of section 3. We then have to prove that 
starting with any initial value preo, pref = preo~ ~ 

preorder (t) in the above program (without the initia- 
lization of 'pre'). Thus pref = h(preo,t ) where 

h(x,y) = x ~I preorder(t), x a string, t a node at 
which some tree is rooted. Next, using the fact that 
D 2 is the set of nodes in the tree rooted at t and 

h(x, A) = x, we can apply theorem 3. 

Let (tl...tn) be the stack contents from top 

to bottom at any iteration. We then have to prove that 
h(h...h(h(pre,tl),t 2) is a loop constant, or 

pre I~ pre°rder(t I) II preorder (t2) ... preorder (tn) is 

a loop constant, or preol ~ preorder(t) = 
D~ 

II pre 

preorder(~)...preorder(tn) is a loop invariant. 

This says that the current string 'pre' 

concatanated with the preorder traversals of 
(tl,t2,.,tn) remiins invariant during successive 

iterations. [] 

Informal proof of theorem 3: We consider only the loop 
program with input X E D 1 and any number of elements 

from D 2 in the stack. Clearly we have closure for such 
a domazn. We want to find the function computed by 
the loop, starting with such inputs so that we can 
apply theorem i. Suppose the stack has (tl...t n) 

from top to bottom. If we start the loop with input 
X ° and only tlin the stack, it would terminate after 

sometime with X set to h(Xo,tl). However with (t%... 

tf) in the stack, the program will not terminate, 
although the value of X will be h(Xo,t I) by the time 

t I is popped off. By the time the next element t 2 

is popped off, value of X is h(h(Xo,tl),t2). Contin- 

uing in the similar manner, it follows that Xf = 

h(h...h(h(Xo,tl),t2),..),tn). Hence applying theorem i, 

h((h(X, tl),t2...,tn) is a loop constant. The proof 

in the opposite direction is straight forward and is 
omitted. 

The property that we have exploited is the nature 
of access to a stack which implies that computations 
with only t I on the stack is a prefix of the computa- 

tion with(tl,t 2) on the stack (t I at the top). Even 

though the loop does not exactly do the same sequence 
of computations (as in section 3), the sequence can be 
obtained through a generic sequence. We note that 
it was important to prohibit the examination of stack 
for emptiness in S. We are then assured of the 
sequence of processing of the elements in the stack. 
Note that many new elements may be pushed onto the 
stack during the computation with (tl...tn) ; however 

it is not necessary for us to know about them to get 
the output function. 

5. FOR Programs 

In previous sections, we studied iterative pro- 
grams in which the number of loop iterations is a 
priori unknown. Often, however, we encounter 
iterative structures, where the number of iterations 
to be performed is known at entry to the loop. In 
such cases, it is natural to use a FOR loop. If we 
attempt to use the approach outlined in previous sec- 
tions, by rewriting the FOR loop in the do-while form, 
we encounter several difficulties. Specifically, 
the loop predicate of such a do-while would examine 
the iteration parameter. Thus the execution sequence 
depends on the initial value assigned to the iteration 
parameter. 

In this section we show that proving the correct- 
ness of FOR programs is amenable to a simple approach 
under certain conditions. 

Consider a program P3 of the form 
P3: 

b e~in 

z~--. Zo; 
for i(-- I to n do 

s 

endfor 
end; 

Let X be the variables of P3 to which values are 
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assigned at input and suppose at output we would like 
to show that z = F(X ,n) where X is the initial value 

O O 
of X. We could attempt to locate the extended domain 
and function relative to z, X and n, Instead, we 
assume that the FOR program satisfies certain condi- 
tions which restrict the dynamic control structure of 
the program. 

These conditions are stated below. 
(i) neither n, nor any variable dependent on n 

appear in S. 
(2) S does not alter the value of X. 

Condition (I) is sufficient to ensure that for 
any two different values nl! n 2 of n(n 2> nl), 

computations are identical (output z, X are identical) 
through the first n I iterations. 

Condition (2) states that only z is modified in 
S. (It can be relaxed as we shall show subsequently.) 
Thus the loop steps through a set of elements and z 
accumulates the result. 

If the FOR program satisfies the above condi- 
tions, a simple form of induction can be used to prove 
correctness of such a program. This is the content of 
the following theorem. 

Theorem 4. If P3 satisfies conditions (i) and (2) 
then z = F(Xo,n) holds at the exit of P3 for every X ° 

and n ~ 0, if and only if 
(i) z ° = F (Xo,O) 

and 
(ii) (z = F(X o, i-l)) {S~ (z=F(Xo,i)) 

for i ~ i ~ n and all permissable initial values Xo. 

Proof (outline): It is easy to verify that if (i), 
(ii) hold then the required proposition is true at the 
end of the program. Conversely, if z = F(Xo,n) for 

any Xo, n a 0, then z ° - = F(Xo,0 ). For n ~ I, 

zg~z; 
o 

for i~l to n do S; 

is equivalent to 

~ z ~ Zo; 

for i4-i to n-i do S~ ; 
S "(with n s~stitut-eed for every occurrence of i), 

Part of the program inside braces have the effect 
of keeping X invariant (condition i) and setting 
z = F(X ,n-l). Hence it must be that if we start with 

z = F(Xo,i-l) and execute S, we must get z = F(Xo,i), 

We will illustrate the theorem with a few examples, 

Example 7. The following program sums the elements of 
an array A(1), ... A(n). 

sum ~ 0; 
for i~ i to n do 
sum~ sum + A(i) 
endfor; n 

We wish to show that sum = ~ A(j). Then it is 
j=l 

necessary and sufficient to show that 
0 

(i) (0 =~ A(j)) 
j=l 

i-i 
and (ii) (sum = ~ A(j)) ~sum~ sum + A(i)# 

j=l 
i 

(sum = ~ A(i)) [] 
j=l 

Example 8. The following is a program for computing 
factorial, (See also example 2). 

u~-l; 
for r ~-i to n do 

v~-u; 
for s 4--1 to r do 
v~--v + u 
endfor ; 
u4--v 

endfor ; 
At output we would like to prove that u = (n + i)! 

Using theorem (4), we need to prove 
(i) 

(ii) 
i= i! ur{vu o I for s4- i to r d__ (u = (r+l)!) 

V~-v+u 
endf or ; 
u~-v; 

(ii) above aimplifies to 

~for s~ i to r d OI(v=(r+l), ) [(u=r!) A (v=r!)] v~ v+u ~ e n d f o r ;  

Note that we cannot apply the same theorem again since 
the initial values of u, v depend on the iteration 
parameter r. 

Suppose now that the FOR body S modifies the 
value of X. Then theorem 4 fails to hold. In this 
case, knowing the value of z at the beginning of an 
iteration, the loop body to be executed, and the value 
of Xo, does not allow us to conclude the desired 

property of z at the end of the iteration. The 
following example illustrates this situation. 

Example 9. Consider the following program, 
z4- 0; 
for i(--i to n do 
X4-" X + i; 
z(--z +X 
endfor; 

+ n (n+l) 
We would like to prove at output z = n X ° 2 

Applying theorem 4, we would obtain 

(z=n X + n(n+l) [ 1 o 2 " ) X~X+l;z4-z+X (z=(n+l)X£ (n+l)2 (n+2)) 

But this cannot be proved since no relation between 
X and X is known. 
o 

If we include the function computed in the X- 
component as well, we obtain 

n(n+l){ 
(n~0)A(X=X0+n)A(z=n Xo + 2 ) X~X+l;z@z+X 

(z=(n+l)Xo + (n+l)(n+2) 2 ) ~ (X=Xo+n+l) 

and the corresponding verification condition generated 
is a theorem. 

We thus observe that condition (2) on P3 can be 
omitted if we take into account the X-component of 
the function computed as well. This leads us to the 
following stronger form of theorem 4, which we state 
without proof. We assume that the values of X 
obtained after any number of iterations belong to a 
closed domain D. 

Theorem 5. Let P3 satisfy condition (I) above. Then 
)^ (x D (n 0) {P3 z ,x (Xo,n ,G (Xo,n)>) 

if and only if 
(a) ((Zo,X ~ =(F(Xo,0),G(Xo,0)>) 
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and 
(b) (XoEDIA(<z,X>=~(Xo,i-I),G(Xo,i-I)>) {S } 

((z, X) =(F (Xo, i) ,G (X ° , i))) [] 

We have shown that for a wide class of for loop 
programs, which define well behaved computations, 
necessary and sufficient conditions for correctness 
can be generated from the given output specifications. 
We observe that we have been able to apply a relatively 
simple form of induction to the problem since the 
computations of the FOR programs under consideration 
behave uniformly relative to the iteration parameter. 
Further, the output specification itself (in a 
slightly modified form) serves as the induction 
hypothesis. 

While the class of FOR programs we have inves- 
tigated includes a large number of naturally occurring 
programs, it is quite easy to construct FOR programs 
which fall outside this class, as the following example 
illustrates. 

Example i0. This example uses a modified version of a 
program from [5]. It sets the boolean variable prime 
to true or false depending on whether input J is 
pri~e ;r no~: The domain D of inputs is ~J I J~3 
and integer o 

begin 
prime~-true; 
for i4- 2 to J - 1 do 

if i divides J then prime W- false 
endfor 

end; 
The theorem is not applicable since S depends on the 
iteration parameter. 

6. Conclusion and Discussion 

We have investigated three classes of (program) 
schema, for which we have been able to determine a 
closed domain and hence a necessary and sufficient 
loop invariant from the given (partial) input output 
specifications. If we examine these classes closely, 
we find that in each case, the extended domain is 
located by using the fact that the dynamic program be- 
havior is in some sense uniform relative to some input 
parameters. Thus for the while do programs (sec. 3), 
the conditions imposed assume that the execution 
sequence of the program is independent of the initial 
value assigned to z and further that the result of 
this computation depends on z in a predictable fashion. 
In case of the stack schema we observe that the execu- 
tion sequence of the program depends only on the top 
element of the stack until such time as the element 
below it is examined for the first time. Similar 
remarks hold for the FOR loop. We do not attempt to 
define this notion of uniform behavior of a program 
relative to a data space here. However, we hope to 
have convinced the reader that these semantic 
(dynamic?) considerations play an important role in 
constructing programs whose correctness can be de- 
monstrated (or refuted) relative to given input output 
specifications easily. We hasten to add that the above 
statement makes no reference to the difficulty of 
proving or disproving the theoremhood of the veri- 
fication conditions generated. Rather we have 
attempted to generate invariance information that is 
in some sense natural to the problem under 
consideration. 

is interesting to note that almost all programs 
which have been constructed with provability in 
mind do obey the principles discussed above. By 
explicitly enunciating them and studying their 
properties, we hope this would take us a little closer 
to the goal of understanding the "art of programming". 
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