410

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL, SE-4, NO. 5, SEPTEMBER 1978

An Approach to Formal Definitions and Proofs of
Programming Principles

JAYADEVY MISRA, MEMBER, 1EEE

Abstracr—A method for formal description of programming prinicples
is presented in this paper. Programming principles, such as sequential
search can be defined and proven even in the absence of an application.
We represent a principle as a program scheme which has partially inter-
preted functions in it. The functions must obey certain input con-
straints, Use of these ideas in program proving is illustrated with
examples.

Index Terms—Program design, program verification, proving program
schemas. ‘

I. INTRODUCTION

HIS work grew out of an effort to define well-known

programming principles, such as sequential search, in a
formal fashion. Such principles are common in their usage in
programming and teaching about programming. However, no
uniform methodology currently exists for defining them. This
prevents us from making precise statements about these
principles and proving their properties, independent of their
implementation and use.

Sequential search, for instance, is commonly used to access
every element of a data object. The data object may be an
array or a linked list or a binary tree. A program employing
sequential search would normally include in it a proof that
sequential search is correct. If such a principle can be defined
precisely and proven once and for all, then every application
of the principle can be proven by showing that input specifi-
cations are satisfied by the application, and hence it follows
that the output will satisfy the output specification of the
principle. Thus, a proof of a principle results in a proof
schema, which can be used as a basis for proving all applica-
tions of the principle.

Formal specifications of principles are important and useful
from several considerations. It will be straightforward to find
out if the input requirements of a principle are met by a
given problem, and hence if the problem could be solved by
the application of that principle. The principle can be studied
{its properties proved and its performance evaluated) even in
the absence of a particular problem. A proof of a principle
could be used as the basis of a proof for a family of programs
that use this principle. A principle’s definition can be the basis
for its implementation in any particular instance. In fact,
the technique suggested in this paper can be used directly asa
programming tool, by appropriately defining the implementa-
tion of uninterpreted functions.

Manuscript received August 13, 1976; revised January 12, 1978.
The author is with the Department of Computer Science, University
of Texas at Austin, Austin, TX 78712.

It would seem natural that a principle should be defined on
abstract data types. However, we use abstract data type in a
sense different from Clu [7] or Alphard [10]. A principle is
specified to work on any {abstract) data type which has a set
of functions defined on it. Data can be accessed/examined/
modified using only the given functions. In this sense, our
abstract data have much in common with the axiomatic ap-
proach for defining data types [7] in that these functions
alone define the data type. It may be noted that two pieces
of data may be considered equivalent (i.e., as of the same ab-
stract data type) by some principle P, though they may be
considered different by another principle P,. This is in con-
trast with current schemes, where the type of 2 data cbiect
is considered fixed by all procedures. {Hence, objects x,y of
identical types are either both legal inputs or both illegal in-
puts o a procedure.)

Dijkstra [1] has suggested that well-known programming
principles, such as linear search, should be isolated and studied
independent of their implementations. The method proposed
in this paper is a formal way of stating such principles. Notion
of “generic procedure” by Gries and Gehani [3] is most rele-
vant to the work reported here. They state, “If we write a
procedure to sort an array of values, we are not interested in
whether the values are integers or reals or what have you, but
instead we are interested in, and our proof of the sort pro-
cedure depends on, the fact that the assignment operator: =and
the ordering operator < are defined on the type of array
values.” They recommend extension to a programming
language, such as Pascal, so that a procedure may be called
from different program points with actual parameters which
are arrays of varying lengths, dimensions, and types of ele-
ments. This paper is motivated by similar considerations
though the suggested solution is different. Backtrack schema
has been studied in considerable detail by Gerhart and Yelo-
witz [4]. Their work is of the same flavor as the work re-
ported here, though they limit their discussion to backtrack
schema only, Program schemas have been studied by 3
number of researchers; an excellent survey may be found in
Manna [8].

A principle is represented as a program schema with partial
interpretations of certain functions. The partially interpreted
functions must satisfy certain properties called input con-
straints. Then it is shown that certain propositions (output
specifications) hold on termination of the principle. The
partially interpreted functions actually define the data object
on which the principle operates. We introduce the notion of
proof schema which forms the basis for proof of a family of
“almost identical” procedures.

0098-5589/78/0900-0410500.75 © 1978 IEEE



MISRA: FORMAL DEFINITIONS AND PROOFS OF PROGRAMMING PRINCIPLES

We describe the basic methodology in Section IL. Several
examples appear in Section III. Verification issues are con-
sidered in Section IV.

II. Basic METHODOLOGY

It is best to illustrate the problems and the method with an
example. Consider the following program for finding the
maximum of an array 4[1 - - - 1] of positive integers.

max (= A[1];
fori:=2to n do if max <A [i] then max := 4[] end;

It may be noted that the same program is applicable to an
array of reals, to finding the minimum (if we redefine the
meaning of “<’’) and that the same basic idea is applicable to
any other data structure where all elements could be accessed
one by one through same accessing function. No particular
property of integers is being used except that they form a
linear ordering with respect to “<”. No property of an array
is being used except that all its elements can be processed by
properly incrementing an index.

These considerations lead us to the following program,
which is considerably more general than the previous one;
maxfinder (first, last, succ, value, R, max). A description of
the parameters, constraints among them, and body of the pro-
gram follow.

Informal Meaning of Parameters:

first/last tefer to first/last element of some structure of
elements. (These are actually functions of 0 argument, as-
suming that they are defined on a fixed structure.)

succ is a successor function, which returns the next element
in the structure given a current element, except when the cur-
rent element is the last element.

value returns the value of an element.

R is a (linear ordering) relation among elements of the struc-
ture; i.e., a Boolean-valued function of two arguments.

max is the output; it is of type element of the structure and
denotes the largest element with respect to R.

Inpur Constraints: (Let succ® k > 0 denote k applications
of the succ function, let elem denote objects of type element.)

1) 3k > 0, last = succ® (first), (starting with first, last will
be reached in a finite number of steps through successive ap-
plication of succ).

2) R(a,a), (R is reflexive). If a # b then either R(a,b) or
R(b,a).

R{a,b)<> "IR(b,a), a+#b (R is antisymmetric).
R(a,b) AR(b,c)=> R(a,c) (R is transitive).

Output Specification: (Max is the maximum)

1} vm,R|value(max), value(a)], a = succ™ (first),
0s<m<k.
2) 3n,R|[value(d), value(max)], b = succ”(first),
0 n<k.

Body of the principle:

var next: elem;
max := first; next : = first;
while next # last do

411

begin next : = succ(next);
if R(value(next), value(max)) then max := next end;

It is straightforward to show that if the input parameters are
of the type as specified in the parameter specification and if
the input constraints are met, then the output constraints wili
be met. The proof uses the following loop invariant.

Ip 2 0, next = succ?(first), and
Vq < p, R(value(max), value(succ?(first)}), and
Ir < p, max = succ(first)

Termination of the program can be shown by a direct applica-
tion of input constraint 1). The loop invariant along with the
loop termination condition implies the output specification.

A principle may be invoked by “calling” it with proper input
parameters. In order to use max-finder to find the maximum
of an array A[1 - - - n] of integers, we may use the following
calling sequence.

(Element is an index);
function first = 1;
function last = n;
function succ() =i + 1;
function value (i) = 4 [i]
functionR (a,b)=a>b; a,b integers

In order to show that max = maximum (4[1] -- - 4[r]) on
termination of max-finder, we have to show that the input
constraints of max-finder are met and that output specifica-
tions of max-finder suitably interpreted imply the desired
ouput condition. Thus, we need to show that

i) starting with i =1 and successively updating i to i + 1, we
will eventually reach n.

ii) “>” is a linear ordering among integers. Furthermore,
in order to guarantee that all elements are looked at, we need
to show that :

iii) all indices in 1 - - -7 are obtained by starting with7 = 1
and successively updating i by 1. ’

Max-finder may be used to find the extremal element with
respect to any linear ordering in any data structure whose ele-
ments can be accessed through a suitable traversal function.

Formal Definition of a Principle

1) A principle is defined to operate on one or more abstract
data types and to return results of some specific type.

2) Abstract data types are defined axiomatically by a set of
functions along with certain constraints on them. These are
termed the “input constraints.” The functions are uninter-
preted entities inside a principle’s body. They are solely used
to access/examine/modify the abstract data objects.

3) Abstract data objects cannot be accessed/examined/
modified by any other means by the principle.

4) Two data objects are considered to be of identical type
by a principle if they have the required functions defined on
them. Thus, maxfinder considers a tree (of character strings),
a linked list (of reals) and an array (of integers) to be identical,
assuming that suitable traversal routines and orderings (R)
have been defined for each one of them. Some other principle
may differentiate between linked lists and arrays, for instance.

Current methods for abstract type definition in program-
ming languages take the view that procedures should be de-



412

fined to work on fixed types. We have proposed that certain
(procedures) principles should be defined on all types satisfy-
ing certain axioms. This method can be used in conjunction
with usual techniques for abstract data type definition.

5) Output parameters are objects of specified types.

6) The only operation that is defined for all types is assign-
ment and equality comparison. Hence, any two objects of
identical types may be assigned to each other or compared.

7) An invocation of a principle is an interpretation for each
input parameter (functions) and a proof that input constraints
are satisfied. It then follows that the corresponding output
constraint suitably interpreted holds on termination of the
principle. Thus, we have factored the proof of some proce-
dure into a proof schema and a proof that a certain interpreta-
tion satisfied the (input constraints) axioms of the schema,
and a proof that the output constraints of the proof schema
along with the given interpretation imply the desired output
condition of the procedure. Clearly, the same proof schema is
applicable as a basis for proofs of a family of different proce-
dures.

There is a great deal of similarity between principles and pro-
cedures. Both techniques are means of specification of general
computation rather than computational steps of any particular
instance. Both achieve their power through parameterization;
that the same computation may be applied to objects belong-
ing to certain well-defined classes. Both techniques seem cru-
cial for transparent programming since they implement an ab-
straction in a general form.

The major difference between the two techniques seems to
be the abstract data type definition. Principles, in this sense,
may be regarded as a generalization of procedures. Each
uninterpreted function, suitably interpreted usually results in a
procedure. As a procedure gives rise to many possible invoca-
tions, a principle may be the basis for many possible proce-
dures. As a proof of a procedure could be applied in proving
effects of certain instances of the procedure call, a proof of
principle may serve as a basis for proofs of all instances of the
applications of the principle.

III. ExamMpPLES

Two examples are given to illustrate the ideas of the previous
section,

Example 1 (Sequential Search)—It is required to search over
every element of a data object using a function (coroutine)
traverse, Program is terminated as soon as an element meets a
criterion or traversal is complete. A Boolean variable success
is set to true if and only if criterion is ever met.

var v: elem;
success : = false; traverse (v);
while not success and not complete do
if criterion (v) then success : = true else traverse (v).

Description of Functions:

traverse: It is a coroutine that returns new element or sets a
Boolean flag complete to true if there is no more element.

criterion: It is a Boolean-valued function that returns true if
the given element meets the requirement.

Input Constraints: None.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-4, NO. 5, SEPTEMBER 1978

Output Specification:
1) Program terminates.
2) Let T(v) be a predicate which denotes that an element
v will be obtained if traverse is applied a sufficient. number of
times.

[3v, T(v) A criterion(v)] < [success = true].

Example 2 (Gradient Search)—The following program finds
an optimal solution using gradient search, There are a finite
number of solutions to some problem. Each solution has one
or more neighbors. Each solution has a positive integer value.
If a solution is not optimal (does not have the maximum
value) then there is a neighboring solution with a higher value.
Gradient search starts with an arbitrary solution. If a current
solution is not optimal, it moves to the neighboring solution
of highest value.

var current-soln, new-soln, ¢ : solution; max value : integer;
choose (new-soln);
repeat
current-soln : = new-soln; max-value := 0;
for ¢ eneighbor (current-soln) do
if value (#) > max-value then
begin
new-soln ;= ¢;
max-value : = value(?)
end
until value (new-soln) < value (current-soln);

Description of Functions:

choose: returns (nondeterministically) any solution,

neighbor: for any solution, returns the set of all neighboring
solutions.

value: returnsthe value of any solution as a positive integer.

Input Constraints:

1) There are a finite number of solutions.

2) value(t) = 0, for every solution ¢.

3) Every nonoptimal solution has a neighbor having a
higher value. Clearly, an optimal solution is one which does not
have a neighbor having a higher value. Define a predicate
optimal, optimal(S) <=V t[value(S)>value(s)]. We require
that,

Tloptimal($)=> 3¢ eneighbor(S) [value(S) < value(?)].

Hence, optimal(S) <> V¢ eneighbor(S) [value(S) = value(r)].
Qutput Specification:
1) Program terminates.
2) Optimal (current-solution).

IV. VERIFICATION ISSUES

A principle may be verified with respect to the input con-
straints and output specification in a manner similar to the
usual program verification [5]. We are restricted to using the
axioms involving functions on the abstract data type and the
assignment axiom and usual rules of inference for the control
structures used. We illustrate the method with verification of
Example 2, Gradient Search,

We first show how an auxiliary fact may be proven from
input constaints. Define a predicate reachable, where reach-
able (u,s) denotes that a solution u can be reached from solu-



MISRA: FORMAL DEFINITIONS AND PROOFS OF PROGRAMMING PRINCIPLES

tion 5 by moving through some sequence of neighbors. More
formally,

reachable (u,s) = u = s or u eneighbor(s) or
{u eneighbor() and reachable (z,5)].

We wish to show that the input constraints imply that starting
with any initial solution, it is possible to reach an optimal
solution.

Proposition
¥ S, Ju {reachable(u,s) and optimal(u)] .

Proof: For any initial solution S, let U, be such that

1} reachable (U,, S,),

2) value(U,) is maximum among all reachable solutions
from §,.

Since there are a finite number of solutions (input constraint
1), U, is well defined. If U, is not optimal, according to input
constraint 3), it has a neighbor U, having higher value. But
then U satisfies Conditions 1) and 2) above. Contradiction!

C

Proof of this fact is important in order to make sure that a
program can be written meeting the output specifications. We
now give an informal proof of termination.

Proposition
value(new-soln) is (strictly) monotone increasing in each
iteration.
Proof: Follows from the loop exit condition. O
Termination follows since there are a finite number of solu-
tions and value(new-soln) strictly increases in each iferation.

Proposition
At the termination of the loop, optimal (current-soin).

Proof: Tt may be shown (easily) that the following propo-
sition P holds after every execution of the loop body.

P = value(new-soln) > value(r)), teneighbor(current-soln)
and new-soln € neighbor (current-soln).

On termination of the loop, we may assert P and value(new-
soln)< value (current-soln). This is equivalent to,

Vt, teneighbor (current-soln), value(currentsoln) =
value(r).

Using input constraint 3), it follows that

optimal (current-soln). O

It may be noted from this proof that a level of abstraction
has been introduced by the definition of the principle. Neither
the representation nor any other facts about the abstract data
object solution are used, except those explicitly stated in the
input constraint. The proof given is actually a proof schema
in that every problem using gradient search may be proven in a
similar manner by suitably defining the functions, choose,
neighbor, value.

V. SuUMMARY AND CONCLUSION

We have described a technique for formally defining and
proving programming principles independent of their applica-
tion. This usually leads to more transparent programming and
more structured proofs. We particularly note the following
advantages.

1) Formal specification of programming principles: A pro-

413

gramming principle can be stated and proved formally in the
absence of a problem. Conditions for applicability of a prin-
ciple are formally stated.

2) Proof factorization: The proof of the principle serves as
a basis for any application of the principle. In particular, it is
sufficient to show that the input specifications are met, in
order to prove that the corresponding output specifications
hoid on termination.

3) The definition of the principle can be used directly as a
programming tool, much like a procedure in the current pro-
gramming languages. Unlike a procedure, the inputs are now
functions (rather than data objects). Burden of proving that
the principle is being called correctly, i.e., the input specifica-
tions are being met, is up to the programmer.

4) Use of principles leads to a new form of abstraction and
to more transparent programs and proofs. Aspects that are
problem dependent are separated from aspects that may be
considered inherent in the algorithm.

We believe that programming languages currently in use can
be easily extended to facilitate the definition of principles. A
language such as Pascal allows the passing of functions and
procedures as parameters. Furthermore, procedures for assign-
ment and for checking the equality of two objects of some
abstract data type should be defined. These simple extensions
are sufficient to describe most principles.

It may often be necessary to optimize the invocation of a
principle. For instance, the general gradient search schema
could be considerably simplified and made efficient for a par-
ticular case, such as linear programming problems. These
optimizations should best be performed manually along with
a proof that the optimizing steps preserve the input, output
relationships.

REFERENCES

[1] E. W. Dijkstra, “Notes on structured programming,” in Struc-
tured Programming, C. A. R. Hoare, Ed. New York: Academic,
1972.

R. W. Floyd, “Assigning meanings to programs,” in Proc. Symp.
Applied Mathematics, American Mathematical Society, J. T.
Schwartz, Ed., Providence, 1967.

D. Gries and N. Gehani, “Some ideas on data types in high level
languages,” Commun. Ass. Comput. Mach., vol. 20, no. 6, pp.
414-420, June 1977.

S. L. Gerhart and L. Yelowitz, “‘Control structure abstractions of
the backtracking programming technique,” IFEE Trans. Software
Eng., vol. SE-2, pp. 285-292, Dec. 1976.

C. A. R. Hoare, “An axiomatic basis for computer program-
ming,” Commun. Ass. Comput. Mach., vol. 12, no. 10, pp. 576~
583,1968.

C. A. R. Hoare and N. Wirth, “An axiomatic definition of the
programming language PASCAL” Acta Informatica, vol. 2, pp.
335-355;

B. H. Liskov and S. N. Zilles, “Specification techniques for data
abstraction,” IEEE Trans. Software Eng., vol. SE-1, Jan. 1975.

Z. Manna, Mathematical Theory of Computation. New York:
McGraw-Hill, 1974.

N. Wirth, “Program development by stepwise refinement,”
Commun. Ass. Comput. Mach., vol. 14, pp. 221-227, 1971.

W. A. Wulf, R. L. London, and M. Shaw, ““Abstraction and verifi-
cation in Alphard,” Information Sciences Institute, Univ. Southern
Calif., ISI/RR-76-46, June 1976.

Jayadev Misra (8°71-M’72), for a photograph and biography, see p. 69
of the January 1978 issue of this TRANSACTIONS.



