SIAM J. COMPUT
Vol. 6, No. 4, December 1977

PROSPECTS AND LIMITATIONS
OF AUTOMATIC ASSERTION GENERATION
FOR LOOP PROGRAMS*

JAYADEV MISRAY

Abstract. The problem of generation of loop invariants from the input, output assertions of a loop
program (while B do $) is considered. The problem is theoretically unsolvable in general. As a special
case we consider assertions of the form x Ry, where R denotes a binary relation, x denotes the
variables manipulated by the program and y denotes variables that are not modified by the/program.
We derive conditions for R such that if any loop program has x R y as the input and output assertions,
then x R y is a loop invariant. These conditions for R are shown to be necessary and sufficient in thatif
some R’ does not meet these conditions, then there are loop programs for which x R’ y holds at
entrance and exit, though not following every iteration. In particular it is shown that if R is an
equivalence relation, then under certain reasonable restrictions on the loop, x R y holds at entrance
and exit of the loop if and only if it holds after every iteration.

Key words. assertion, loop program, verification

1. Intreduction. One of the major difficulties in mechanical program proving
is to generate suitable assertions for a given program, given its input, output
specifications. In theory, the problem is unsolvable. The most difficult aspect of
assertion generation (by humans or algorithms) is in locating a “loop invariant”
[4] for every loop. For a loop of the form {while B do S}, a loop invariant is a
proposition P such that.P A B {S} P. It then follows that if P is true on entrance to
the loop, it can be asserted to be true on exit. In order to show that a proposition
O, is true at exit given that a proposition Q; is true on entry, itis sufficient toJocate
a proposition P such that (i) O, = P i) PAB{S}P (iii) PAr 1B = Q.

An important problem in mechanical program verification is to obtain a loop
invariant P as above, given Q;, Q.. Several heuristic techniques have been
reported [5], [8], [10]. Recently an interesting scheme called “subgoal induction™
[9] has been introduced which seems to be eflective in a large number of cases.

Due to lack of suitable general techniques, it is important to characterize
certain classes of input/output propositions for which the invariant may be
obtained algorithmically. Such a characterization is interesting if it includes most
of the commonly occurring forms of propositions which arise in actual programs.
The present paper is a step in that direction.

We will consider loops of the form {while B(x)do S(x)}: x denotes the set of
variables on which the loop operates; x has an initial value on entry to the loop.
The value of x is modified by the loop body. Let x R y denote that x isrelated toy
under R. A loop preserves a relation R if

xRy {while B(x)do S(x)} xR y.

* Received by the editors July 22, 1975, and in final revised form February 2,1977. A preliminary
version of some of these results appears in [6].

+ Department of Computer Sciences, University of Texas at Austin, Austin, Texas 78712. This
work was supported by the National Science Foundation under Grants GJ36424 and DCR75-09842.

! Using the notation introduced by Hoare [4].

718

AUTOMATIC ASSERTION GENERATION 719

y denotes some variables that are not modified by the loop. Verbally, the loop
preserves the relation R if x Ry true on entrance to the loop implies it remains
true on exit from the loop with the modified x, assuming termination. For instance,
x>y {while B(x) do x = x +1} x >y, for any B. A loop uniformly preserves a
relation R if x R y is a loop invariant; i.e., if

xRyaBx){Sx)}xRy.

Clearly, if R is uniformly preserved, then R is preserved by the loop. The converse
however is not true.

In this paper, we characterize the class of relations R having the property that
if R is preserved by any loop, then it is uniformly preserved. Clearly, the
characterization conditions are trivial for any specific loop while B(x) do S(x),
namely x Ry AB(x) {S(x)} x R y; the definition itself. Our interest in studying
such characterization is to prove/disprove x R y {while B(x)do S(x)} x R y, when
R meets the given characterization, by proving/disproving that x Ry is a loop
invariant. :

We will use the notion of closure introduced in [1]. We will define a class of
relations called generalized equivalence relations (GE relation) and show thatif R
is a GE relation and is preserved by any loop having closure, then it is uniformly
preserved. Conversely, if R is not a GE relation, then there exists a loop that
preserves R, but does not preserve it uniformly. Any equivalence relation is
shown to be a GE relation. Conditions for proving/disproving that a loop
computes a certain function can be derived from this characterization.

This paper generalizes the results in [1]. However, a knowledge of that paper
is not necessary to follow the results presented here. Implications of these results
in automatic program verification are discussed.

2. Some preliminary notions. We will be working with loops of the form
{while B do S}. We need to make explicit mention of variables on which the
program operates. Consider the following schema, which we call W(B, S).

begin
declaration for variables ¢; {This is optional}
while B do S

end;

We adopt the following conventions about W(B, S).

(i) W(B, S) accepts input in certain global variables. The set of global
variables will usually be denoted by x. Let xo denote the initial values of x before
entry into the loop.

(i1) The variables t as defined above are called local variables of W(B, S).
Local variables initially have undefined values. A local variable gets a value when
it is assigned one during computation. For the rest of the paper, global and local
refer to global and local variables x, t of W(B, S) respectively.

(iii) B isapredicate over some or all global variables. The rationale for such a
requirement is that local variables have undefined values on entry and certain
clauses in B may otherwise be undefined as a result.

(iv) The program W(B,S) does not terminate if it ever accesses
(examines/uses) a variable having an undefined value.

720 JAYADEV MISRA

(v)The output of W(B, S) appears in global variables x. Thus, the effect
of execution of the loop is to modify the values of x.

Local variables ¢t of W(B, S) are indeed in a certain sense global to “while B
do S”. However, we believe that the distinction between local and global variables
is important considering (i), (ii), (iv) and (v). Furthermore, local variables ¢ of
W(B, S) are different from any local variable that S may have; during iterations ¢
may retain values from iteration to iteration whereas local variables of S have
undefined values at the beginning of every iteration.

Our treatment of variables is general. We are not specifically interested in the
kind of data that a variable may represent: one variable may represent a tree,
another may represent a file segment etc. We require that the variable values be
drawn from a prespecified domain, but there is no restriction on the domain itself.

The next notion is fundamental; it was introduced in[1]. (“Domain” refers to
the set of initial variable values of interest.)

DerFINITION 1. A domain D is closed with respect to W(B, S) if and only if
x € D is a loop invariant, i.e.

xeD ABX){Sx)}xeD.

Observation. If D is closed, then starting with any initial value xo€ D, the
variable values after every iteration must be from D. If the loop terminates, the
final values are from D.

The importance of closure was demonstrated in [1], [7] where it was shown
that a knowledge of closure is essential in locating a suitable loop invariant. We
will assume closure of the input for the rest of the paper.

Example 1.
while v # 0 do
begin
u=ut+tl;o=v-1
end;

Let
D ={(u, v)|u, v integer; v =0},

D' ={(u, v)|u, v integer; v = 30},
D"={(u, v)|u, v integer; u = 30},

D, D" are closed with respect to the given program. D' is not closed since with
(u, v) = (5, 30)€ D', we obtain (6, 29) after one iteration, which is notin D'. 0

Depending on the context S(x) would either denote that S uses variables x
(asin x Ry {S(x)} x R y) or the value computed by § when x denotes the initial
values of its variables (as in S(x) R y).

DEFINITION 2. A set D is range inclusive with respect to a function F if for
every a € D, F(a) is defined and F (a)e D.

DEFINITION 3. W(B, S) computes a function F over a domain D if

(i) D is range inclusive with respect to F
and

(ii) foreveryinputxoeD, W(B, S) halts and produces F(x,) as the output (in
the global variables).

AUTOMATIC ASSERTION GENERATION 721

The following theorem is the basis of the results appearing in the next section.
It is from [1], [7].

THEOREM 1’ (see [1], [7]). Suppose D is closed with respect to W(B, S). Let D
be range inclusive with respect to a given function F. W(B, S) computes F over D if
and only if all of the following conditions hold.

1) W(B, S) terminates for every input from D.

2) xeDATIBx)=>F(x)=x).

3) [F(x) = F(y)]is a loop invariant for W(B, S).

Furthermore, conditions 1), 2) and 3) are mutually independent.

Condition 3) is the important invariant condition. It states that if F is the
function computed by W(B, S), then F(x) remains identical during successive
iterations with modified values of x in each iteration. Clearly, F(x) must be
defined for every such x generated during iterations: this is guaranteed by the
requirement of closure on D.

The following are the significant aspects of Theorem 1"

(i) the conditions in the theorem are necessary and sufficient. Thus
proving/disproving these conditions proves/disproves the claim. This is in con-
trast to many assertion generation systems which provide only sufficient condi-
tions.

(ii) The form of the invariant is independent of B and S.

3. Relations uniformly preserved by a loop. Conditions 1), 2) and 3) in the
statement of Theorem 1’ may be labeled as termination, boundary and iteration
conditions. The boundary condition is easy to derive (and usually simple to prove)
by considering the exit conditions. The iteration condition is the one that leads to
the Joop invariant which captures the “dynamics” of the loop. In this paper, we are
primarily interested in the generation of the iteration condition.

The major contribution of this paper is a generalization of Theorem 1'. We
characterize the class of binary relations which are preserved by any loop if and
only if they are uniformly preserved.

The motivation behind this extension is twofold. First, we often want to prove
a certain relationship between input and output of a loop without knowing the
exact functional relationship. For instance, we may want to show that the output
value is larger in magnitude than the input or that the output array is a permuta-
tion of the input array, etc. Secondly, we hope to establish a theoretical limitation
on what kinds of loop invariants can be generated without examining the loop
body.

Clearly, if R is uniformly preserved then it is preserved. However, the
converse is not true, even for transitive relations (such as = on integers), as shown
in the following exampile.

Example 2. Let W(B, S) be the following program.

while v # 1 do
ifodd(v)thenv =v+1
else v = v/2;

D={v|lv=1 and v integer}. Let the relation R be defined as follows:

vRuv=u.

722 JAYADEV MISRA

Clearly,
vRu{W(B,S)}vRu.

However, v R u isnotaloop invariant (as can be seenwithv =3 andu=3). U

We first derive the conditions on R, dependent on B and independent of S.
Next, we remove the dependence on B. We are thus given

(i) a binary relation R ona domain D;

(i) that D is closed with respect to W(B, S) and W(B, S) terminates for
every input from D;

(iii) and that W(B, §) preserves the relation R. We ask for the necessary and
sufficient conditions, independent of S, under which x R y is a loop invariant.

DEeFINITION 4. Given a domain D and a binary relation R on D, {a,be
D)a zbifandonlyif (Y ce D)(bR c=>aRc);a=bifandonlyifazbandb =a.
Note that,if @ceD,bRc),(Vae D)(a zb). = will be called the derived relation
of R.

Observation. For any R, the derived relation = is reflexive and transitive and
= is an equivalence relation.

Notation. 71(x R y) will denote that x is not related to y under R.

LEmMMA 1. Let F denote the function computed by W(B, S) on the closed
domain D. If R is preserved by W(B, S), then F(x)zx,VxeD. '

Proof. If R is preserved then xR y=>F(x) Ry. Hence the lemma follows
from definition. [

DerFNITION 5. R is a GE relation (generalized equivalence relation) with
respect to B if and only if

(Va,beD)B(a)rBb)r3ceDlczanc =zb]=>a=b).
Observation. If R is a GE relation with respect to B then
[B(a) aB(b)razbl>la =bh].

This follows by using the fact that a =a.
Example 3. The following are examples of GE relations:
(i) Let D ={x|x integer; x = 0}. For some fixed k,

B(x):x>k.
Define R to be

xRyo|x—y|sk, xyeD.

Note that if B(x) is true then there is no z # x for which z Zx. Hence (trivially) R
is a GE relation with respect to B. ’
(i) D = {x|x is an undirected graph}.

(x,yeD)xRy<x,y are isomorphic.
It can be shown (see next lemma) that R is a GE relation forany B. U

LeEMMa 2. If R is an equivalence relation, then itis a GE relation with respect to
every B.

AUTOMATIC ASSERTION GENERATION 723

Proof. We first show that
[xzylelxRy]
i) xRy=>x=Zy:
xRyanyRz=>xRz,

since R is an equivalence relation. Thus, x Ry >xZy.
() xzy=>xRy:

Vz[yRz=>xRz]

Since R is an equivalence relation, y R y holds. Hence, x Ry.
It thus follows that [x ZyJe[x R y].

ie.,[xzylelxRyleyR x]ely zx],
ie,[xRylelx=y]
je,dzeD[zzxnrzzyl>3zeD[z=xnz =y]=>[x=yl

Thus R is a GE relation for any B. U

The following theorem is the central result. In the statement of the theorem,
only those W(B, S) are considered for which D is closed and W(B, S) terminates
for all inputs from D.

THEOREM 2. Let R be a binary relation and B a predicate on a given domain D.
If R is a GE relation with respect 10 B then R is uniformly preserved by any W(B, S)
if it is preserved. Conversely, suppose R is not a GE relation with respect to B and for
some S is preserved by W(B, S). Then there exists W(B, S") for which R is preserved
though not uniformly.

Proof. Let R be a GE relation with respect to B. Let F be the function
computed by any W(B, §) on domain D. By assumption, D is closed with respect
to W(B, S) and W(B, S) terminates for every input from D. First we will show that

xRyaBx){Sx)}xRy
1e.,
xRyaB(x)=>Skx)Ry.
Case (i). 1B(S(x)):
B(x)=> F(x)=S(x)
xRy=>F(x)Ry,
since R is preserved. Hence,
xRyaB(x)=>Skx)Ry.
Case (ii). B(S(x)): The proof is by contradiction. Suppose that
xRyaBx)A1(S(x)R y).
Then
x#S(x),

724 JAYADEV MISRA

since x Ry and "1(S(x) Ry. Using Lemma 1, F(x) = x and F(S(x))=S(x). Using
Theorem 1', F(x) = F(S(x)). We thus have

Bx)ABS@)AFx)zx nF(x)ZS(x) ax#S(x).

Hence, R is not a GE relation with respect to B, contradiction.

Next we show that if R is not a GE relation with respect to some B and, for
some S, R is preserved by W(B, S), then there exists S’ such that

(i) D is closed with respect to W(B, ') and

(i) W(B, S’) terminates for every input from D, and

(ili) R is preserved by W(B, S"), and

(iv) R is not uniformly preserved by W(B, S").
We first state a claim whose proof is similar to that of Lemma 1.

Claim. If R is uniformly preserved by W(B, S) then Bx)=>Skx)=x.

If R is not a GE relation with respect to B then there exist x;, X3, X3€ D such
that

Bx))AB(X2) AX3ZX1AX32X2AX E Xy,

Since x; # x5, either x; Zx, or x, Zx,. Without loss in generality assume that
X2 le. .
The proof proceeds by constructing §'. Consider the following program.

while B do
if x =x; thenx = x,
else if x = x; then x = F(x3)
else S;

It can be verified that conditions (i), (ii), (iii) are met by this program. Next we
show that R is not uniformly preserved by this program. With input x,, we obtain
x2 and then F(x3). However, x, Z x;. Hence, according to the previous claim R is
not uniformly preserved. Note that the first “else” clause in S’ ensures that the
program would terminate when input with x;. 0

Theorem 2 says that given any W(B, §) and R which is a GE relation with
respect to B, in order to prove that R is preserved, it is necessary and sufficient to
prove that R is uniformly preserved. Conversely if R is not a GE relation with
respect to B, it is sufficient though not necessary to prove that R is uniformly
preserved in order to show that R is preserved.

CoROLLARY 1. Let R be an equivalence relation. For any W(B, S) {assuming
termination and closure of domain) R is preserved, if and only if it is uniformly
preserved.

Proof. Use Lemma 2 and Theorem 2. [

Example 4. Consider a program W(B, S) for sorting an array x of integers. It
is required to prove at the output that the resulting array is sorted and is a
permutation of the input array. To prove the latter, we need to prove

PERM (x, xo) {W(B, S)} PERM (x, x,),

where PERM (x, xo) stands for “x is a permutation of x,”. Clearly PERM is an
equivalence relation. Itis then necessary and sufficient to prove that PERM (x, x0)

AUTOMATIC ASSERTION GENERATION 725

is a loop invariant,

PERM (x, xo) A B(x)= PERM (S(x), xo),

1e.,
B(x)=>PERM (x,S(x)). O

The conditions derived in Theorem 2 clearly apply to the iteration condition
in Theorem 1'. This can be seen easily by defining an equivalence relation R on D
such that x Ry &[F(x) = F(y)]. Clearly if W(B, S) computes F, R is preserved.
" Using Theorem 2, it follows that it must be uniformly preserved.

We next formulate the conditions on R independent of B.

DEeFINITION 6. R is a GE relation on a domain D if and only if it is a GE
relation with respect to every predicate B (binary valued total function on D).

THEOREM 3. Ris a GE relation on D if and only if its derived relation (2)isan
equivalence relation.

Proof. If Z is an equivalence relation then

[czanrczbl=>[azbabzal>[a=b]

Hence R is a GE relation for any B. Conversely, if Z is not an equivalence relation
then there exist a, b such that a Zb and a#b. Consider some predicate B for
which B(a) and B(b) are true. R is not a GE relation with respect to this B since

Bl@)aBb)razanazbrazb. [

For any relation R, if we define the successor set of a, T(a)=1{b j a R b}, then
R is a GE relation if and only if no successor set T(a) strictly includes another
successor set T(b), since otherwise a =b and bZ q.

Observation. If R is a GE relation then either all successor sets are null or
none is.

In program proving, it would be easier to consider general GE relations
rather than GE relations with respect to a specific B. Theorem 3 provides a useful
technique for proving that a certain R is a GE relation. The next theorem

essentially provides the verification conditions that must be proved to ensure that
a GE relation is preserved.

THEOREM 4. Let R be a GE relation. Then (assuming termination and closure)
xRy {W(B,S)}xRy,
if and only if
B(x)=[x=5(x)].
Proof. We first show that if R is a GE relation,
xRy{W(B,S)}xRy
if and only if
x=z{W(B,S)x=z.

726 JAYADEV MISRA

Let F be the function computed by W(B, S) (on the domain D). Thenif R is
preserved by W(B, S), F(x)=x or F(x)=x, since R is a GE relation. This says
that the input x and output F(x) belong to the same equivalence class under =.

Conversely, let

x=z {W(®B,S)}x=z.

Thus, F(x)=x. Hence F(x)Zx or xRy = F(x) Ry. Hence, R is preserved
by W(B, S).
Using Corollary 3,

x=z {WB,S)x=z
if and only if = is uniformly preserved, i.e.,
x=zABx)2>SKx)=z,

Bx)=>kx=Sx)). O

Example 5. The following program is claimed to compute the greatest
common divisor of m, n using successive subtraction.

begin
integer ¢;
while m # n do
begin
ifm<nthenbegint =m;,m=n;n =1 end;
m=m-n
end
end;

Let D ={(m, n) I m, n integer; m, n > 0}. Let GCD be the function of two argu-
ments that has the value of the greatest common divisor of the arguments. Let H
be a function from domain D to range D, defined as follows:

H(m, n)=(GCD(m, n), GCD(m, n)).
We wish to show that
[H(m, n)=H(mo, no)|[{W(B, S)} [H(m, n) = H(mo, no)l,

where W(B, S) represents the above program and (m, n), (mo, no) € D atentrance
to the loop.

The reason for using H instead of GCD is that the former is a function from D
to D, as required by Theorem 4, whereas the latter is a function from D to a subset
of positive integers.

We must first prove closure and termination.

(i) Closure:

m,nintegeranm>0arn>0Am#n {S}m, n integer,m >0,n>0.
Equivalently, we must show,

[m,n imeger,m>O/\n>0/\m<n]::>[m,n——m integeran —m>0am >0]

AUTOMATIC ASSERTION GENERATION 727

and
[m,n imeger/\m>0/\n>0Am>n]:>[n,m—nimeger/\m—n >0An>0]

(ii) Termination: It is then necessary and sufficient to show that H(m, n)=
H(mo, no) is a loop invariant, i.e.

[H(m7 n) ::H(mOs no)] Am#Fn {S} [H(ma n') :H(m07 nO)]a

ie.
[m#n am<n]=>[H(m, n)=H(n—m, m)]
and
[m#n Am>n]:>[H(m,n)=H(m-—n,n)]
i.e.,
[m <n=>GCD(m, n)=GCD(n —m, m)]
and

[m>n=>GCD(m,n)= GCD(m —n, n)].

All that remains to be proved is the boundary condition given below, in order
to show that m, n both have the value of GCD(mo, no) at the exit.

{m =n r[H(m, n)=H(mo, no)}=>{m = GCD(myo, no) An = GCD(mo, no)}- O

Finally, we show that a certain simple class of relations, as given in Example
3, can be shown to be preserved by extending the given relation to an equivalence
rélation and proving that the latter is preserved.

DeriniTION 7. Given any relation R on D, define the reflexive, symmelric,
ransitive closure R™ of R as follows.

aR*b¢:>(a=b)vavabRav[3c(aR*C/\cR*b)], a,b,ceD.

Thus, R * is an equivalence relation. Under certain conditions, it is both necessary
and sufficient to prove that R* is uniformly preserved, in order to show that R is
preserved.

THEOREM 5. Let R be any relation on D and R* be its reflexive, symmelric
mransitive closure. Suppose for some predicate B on D,

X]R*le\-_]B(Jﬁ)jleXz, Vxl,XQED.
Then
xRy {W(B,S)}xRy

if and only if R* is uniformly preserved, assuming closure and termination.
Proof. We show that

xRy {W(B,S)}xRy ifand onlyif xR*y {W(B, S)} x R*y.

Since R* is an equivalence rejation, the statement in the theorem would foliow.
Let F be the function computed by W(B, S). Suppose

xRy {W(B,S)}xRy.

728 JAYADEV MISRA

Then
xRy=>F(x)Ry=>F(x)R*x.
Thus, x and F(x) belong to the same equivalence class under R* or
xR*y{W(B,S)} xR*y.

Next, suppose, x R*y {W(B, S)} x R*y. Then on termination, T1B{(x) A
XxR*y=>xRy, orxR*y{W(B,S)}xRy.

Since x Ry - x R*y, it follows that x Ry {W(B, S)} xRy. 0O

Example 6.

) begin _
whilev #0andv#1dov =v -2
end;

D={v|lv=0; v integer}. v, ue D, v Ru (v =u) and u, v have identical parity
(both even or odd). v R* u ¢>u, v have identical parity.

(v,ueD){oR*unrlv=0vo=1}=>[v=ul,

and u, v have identical parity.
Hence, according to Theorem 5, it is necessary and sufficient to prove that
v R*u is a loop invariant, in order to show that R is preserved; i.e.

VR*urv#0rv#1=>w~2)R*u.
Termination and closure must be proven separately. [

4. Summary and conclusion. We have shown that any equivalence relation is
uniformly preserved if it is preserved by a loop program. Theorem 5 extends the
results somewhat for relations that are essentially equivalence relations except
for certain boundary conditions. A practical outcome of this result is that loop
invariants may be generated algorithmically for certain classes of input/output
relations. There is no need to look through the body of the loop to generate the
invariant, provided closure and termination have been proven separately.

Unfortunately, the results also establish that such conditions cannot be
obtained for any other classes of relations. Thus, even a simple transitive relation
such as “="" on positive integers is not uniformly preserved even though it is
preserved. We believe that one needs to look at the program body S, for
generating the loop invariant, for all other classes of relations.

One promising direction of research is to consider other classes of relations
and “reasonable” programs. The loop invariant could be generated if the program
meets certain reasonable restrictions; for example, we may assume that a program
operating on stacks may not process any other element, before processing the top
element, (i.e. it should not be allowed to save the top element, process and remove
the second element from top and then restore the top element). Some preliminary
results appear in [3], [7].

Another problem we have not considered in this paper is the problem of
nonclosed domains. Frequently, a loop is preceded by initializations which restrict
the input domain. Most of the time, the domain will not be closed with respect to
the program. It is often required to prove a certain relation (such as a functional

[

-

AUTOMATIC ASSERTION GENERATION 729

equality) in the restricted domain. This problem has been considered for the case
of functional equality in [2], [3], [7]. This seems to be the major problem in
synthesis of loop invariants. It seems likely, however, that by suitably restricting
the operations of the program, it may be possible to prove that the program
computes a certain relation over a superset of the given domain (which is closed)
from which the stated conjecture may be proven.

Acknowledgment. The author is indebted to the referees for their construc-
tive comments.

REFERENCES

{1] S. Basu AND J. MISRA, Proving loop programs, JEEE Trans. on Software Engrg., 1 (1975), pp.
76-86.

[2] , Deterministic generation of inductive assertions, IEEE Workshop on Automated
Theorem Proving, Argonne National Lab., Argonne, IL, 1975.
[3] , Some classes of naturally provable programs, Proc. Second International Symposium on

Reliable Software, San Francisco, 1976.
[4] C. A. R. HOARE, An axiomatic approach to compulter programming, Comm. ACM, 12 (1969),
pp. 576~-580, 583.
[5] S. KATZ AND Z. MANNA, A heuristic approach to program verification, Proc. 3rd International
Conference on Artificial Intelligence, Stanford Univ., Stanford, CA, 1973.
[6] J. MiSrRA, Relations uniformly conserved by a loop, Proc. 9th International Symposium on
Proving and Improving Programs, Arc et Senans, France, 1975, pp. 71-80.
[71 . Some aspects of verification of loop compuiation, unpublished manuscript.
[8] M. MORi1CONI, Semiautomatic synthesis of inductive predicates, ATP-16, Dept. of Mathematics,
Univ. of Texas at Austin, 1974.
[9] J.H.MORRIS AND B. WEGBREIT, Subgoal Induction, Xerox Palo Alto Research Center, 1975.
[10] B. WEGBREIT, Heuristic methods for mechanically deriving inductive assertions, Proc. 3rd
International Conf. on Artificial Intelligence, Stanford Univ., Stanford, CA, 1973.

