76 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. sg-1, no. 1, MarcH 1975

Proving Loop Programs

SANAT K. BASU, MEMBER, IEEE, AND JAYADEV MISRA, MEMBER, IEEE

Abstract—Given a “DO WHILE” program P and a function I on
a domain D, we investigate the problem of proving (or disproving) if
P computes F' over D. We show that if P satisfies certain natural
constraints (well behaved), then there is a loop assertion, independ-
ent of the structure of the loop body, that is both necessary and
sufficient for proving {he hypothesis. We extend these results to
classes of loop programs which are not well behaved and to FOR
loops. We show the sufficiency of Hoare’s DO WHILE axiom for
well-behaved loop programs. Applications of these ideas to the prob-
lem of mechanical generation of assertions is discussed.

Index Terms—Assertion, DO WHILE axiom, equivalence, loop
invariant, loop program, proof.

1. INTRODUCTION

ROGRAM proof techniques usually attach a set of

predicates to specific points in the program so that
the associated predicate is true whenever the control
reaches any given point. If the predicates satisfy certain
constraints, they can be used to prove that a certain
predicate is true at output, from which we can prove that
the program is correct (with respect to some given specifi-
cation). The associated predicate is called an assertion at
‘a particular point, following Floyd [5].

Proofs of assertions usually rely on an automatic or
semiautomatic theorem prover. A modest amount of suc-
cess in this area has been reported [6]. However, the
generation of assertions requires not only human inter-
vention, but demands a considerable amount of insight
and ingenuity on the part of the prover. Several heuristic
techniques to mechanically generate assertions have been
reported [11].

The major difficulty in the mechanical generation of
assertions arises whenever there is a loop structure in-
volved, so that the control may reach the same point in
the program several times with an altered set of variable
values each time. Since a loop may get iterated an un-
determined number of times, the assertion must be true
with respect to each iteration.

In this paper, we will only deal with loops of the form
wHILE B po S, which is shown in a flow chart notation in
Fig. 1. S may be any one-in one-out flow chart. We will
call this flow chart schema a loop program.

The point in the loop marked with an x will be called
the reference point of the loop. Any predicate P which is
true whenever the control reaches the reference point will

Manuseript received November 1, 1974; revised January 15,
1975. This work was supported in part by the National Science
Foundation under Grant GJ-36424.

The authors are with the Department of Computer Science, Uni-
versity of Texas at Austin, Austin, Tex. 78712.

be called a loop assertion. Note that the loop assertion
may depend on the program inside which the loop pro-
gram is embedded. P will usually be a proposition over
several quantified variables—some of the variables may
be variables of the program, and some may not.

We will use the notation Q{T}R due to Hoare [8],
which stands for the logical proposition: “If the predicate
Q is true before the execution of program T, then the
predicate R is true after the execution of T, assuming
that T terminates.” Usually QR will be predicates over
certain quantified variables whose value may be altered
by the execution of 7. We will call the predicate P (Fig.
1) a loop invariant for wHILE B DO S if and only if P A
B{S}P. Note that P is independent of the program inside
which the loop program is embedded.

Every loop invariant, if it is true on entrance to the
loop, is a loop assertion, although the converse is not true
in general. We will prove this fact in a later section. We
show in this paper that a loop assertion always exists
which is both necessary and sufficient to prove that a
loop program computes a particular function. This loop
assertion is related directly to the function computed by
the loop, and is independent of S (i.e., if S is replaced
by 8 such that the loop still computes the previous func-
tion, the loop assertion will remain unchanged). It is to
be noted that proving a predicate to be a loop assertion
might require global information about the program. This
point is further clarified later in the paper.

Standard methods of program proving, however, rely
on the existence of a loop invariant. Since a loop invariant
is context independent, a specific predicate may be proven
to be a loop invariant using only local properties of the
program. We give the necessary and sufficient conditions
for the existence of a class of loop invariants. Our proof is
constructive, yielding a loop invariant in case it exists.
This loop invariant, furthermore, is both necessary and
sufficient for proving correctness. It is directly derivable
from the function computed by the loop. We discuss the
implications of these results in program proving. We prove
the sufficiency of Hoare’s po WHILE axiom [87] under cer-
tain conditions.

Our results are applicable only to proving correctness,
but not termination. Thus we will often use statements

BASU AND MISRA! PROVING LOOP PROGRAMS

such as “if the loop terminates, then —.” Our approach is
funetion theoretic along the lines suggested by Mills [157;
in fact, one of our basic theorems is a generalization of
one due to Mills.

I1. NOTATIONS, TERMINOLOGY

We will abbreviate wuine B vo S to W(B,S). Usually
W (B,S) will accept input in certain variables, operate
on them, and terminate with output in certain variables.
We will assume that W (B,S) produces tls oulpul in the
input variables, i.e., inpul variables are transformed lo output
values as a resull of the application of W(B,S). W(B,S)
will thus be a mapping from n tuples to n tuples where n
is the number of input variables. Input variables to
W (B,8) will also be called global variables.

We will assume that B is a predicate over some or all
global variables.

Any particular S will act on some of the global variables
of W(B,S). It may also define and operate on certain
other variables, which we call the local variables of W (B,S).
We will assume that S operates on all global variables of
W(B,S) (even though some of the global variables may
not be referred to inside S; S will be assumed to be an
identity mapping for such variables). Thus S will be a
mapping from m tuples to m tuples where m > n.

Along with the usual values of a variable, we accept
« (undefined) as one of the possible values. We will adopt
the convention that the program does not terminate if it
ever attempts to examine or use a variable whose value
is w at the moment. We furthermore assume that the
program is not capable of assigning o to a variable. All
variables except the global variables are assumed to have
the value w at the beginning of the execution of W(B,S).

A certain n tuple of variable values may not lead
W(B,S) to termination. The reason for this could be
either an infinite looping or accessing a variable whose
value is w. This latter possibility can arise only inside S
where a local variable gets accessed without receiving a
value previously. We are thus led to the notion of the set
of m tuples, which when input to W(B,8), lead to termi-
nation.

Notatrons
D»(B,8) The set of n tuples, which when input to

W(B,S8), lead to termination.

The set of m tuples, which when input to

W (B,S) lead to termination.

The function computed by W(B,S) on the

global variables, i.e., for every x € D*(B,S),

Fp s(x) is the n tuple resulting from the

application of W{(B,S) to z, and for z ¢

D*(B,S), Fgz s(x) is undefined. When the

context is understood, we will abbreviate

F 5.8 tO F.

xt Denotes an m tuple where x denotes the first

n components and ¢ the last m-n compo-

D™(B,S)

Fz.s

77

nents. zw denotes the m tuple where the
last m-n components have undefined values.
We will adopt the convention in describing
an m-tuple (in the proper context) that the
first. n components refer to the global vari-
ables of W(B,S) and the last (m-n) com-
ponents to the local variables of W(B,S).

7 Denotes the first » components of y, ie., if
y = ual, then y = .

For o € D"(B,8) denotes the m tuple re-
sulting after the application of S to z. Thus
S(xw), x € D"(1B,8) denotes the n tuple re-
sulting after applying S 10 some xow.

S(x)

One is usually interested in proving 1hat a loop W(B,S)
computes a particular function over a certain domain D
where D may be a proper subsct of D"(53,8). Tt is to be
noted that we have imposed no restrictions on the data
structures the variables may represent. The results in this
paper are to be interpreted in this wider context. The ex-
ample below illustrates these points.

Ezample 1:
while 7 < n do
k=1t-—1
sum = sum + k
1=1-41
t=k
end

Global variables are {i,sum,t,n}.
Local variables are {k}.

S operates on {i,sum,t,k,n}. We have added n to this
list by convention.

D4(B,S) ={{sum,,n) |7 # w,sum ## w,t # w,n 3 w)
D3(B,8) = {{,sumt,nk) |7 wsum # wit ¥ w,n # w}.

Consider a set DWW = {{{sum,in)|n > O,S{Hn = (),
1 = 0} on which
. -1
FO = Fp s(dsumi,n) = (n, > jl— nm).
F=t—n

On a set, D@ = {{{sum,,n) | n > O,sum = 0, < n}

-1

Z]')t - n - 7’1”’)

J=trqpe i

F® = Fp s(isum,t,n) = {n,

Fig. 2.

On a set D® = {{{sum,t,n)|n > 0,0 < n}

-1
F® = Fyslisumitn) = (nsum + X jit —n — 4n).

Je= bt

F® is a restriction of F@, which is a restriction of F®,
Note that we have referred to the components of the 4-
tuple by the corresponding names of variables in the pro-
gram for ease of comprehension. |

For a given F and D, we call D range inclusive with
respect to (wrt) F iff for V2 €D, F(z) €D. Given a
particular F and D, we define F', D’ as follows (where D'
is range inclusive wrt F'):

1) DS D' andz € D— [F(z) = F'(z)]and Flx)y €D,
2) z €[D' — D]—[F'(x) = z],
3) if D’ satisfies 1) and 2), then D’ © D”.

It is easily seen that a particular W (B,S) computes a
function F over D (which may not be range inclusive) iff
it, computes F’ over D’ [where D’ is the smallest set having
properties 1) and 2)]. Without specific mention, we will
talk only of range inclusive domains, since it makes the
statements simpler.

III. FUNDAMENTAL THEOREM OF LOOP
ASSERTION

We will show in this section that W(B,S) computes a
certain function F over a certain domain D if and only if
a particular predicate is a loop assertion. This loop asser-
tion will use the symbols F,D and the variables z, which
are the global variables of W (B,S). We furthermore need
the initial values of the global variables. To this end, we
define an augmented schema W’(B,S) as shown in Fig. 2.

y is never referred to inside S; it only saves the initial
values of the global variables. (It is easy to show that a
predicate @(z), which does not refer to the initial values
y, is true at output iff z € D A T1B(x) = Q(z). Thus
only trivial statements can be made at output if we re-
strict ourselves only to the current values of the vari-
ables.)

Suppose W (B,8) computes F over a certain domain D.
The execution of the loop may be pictured as follows,
starting with some initial values of global variables .
The m tuples generated during the execution are Tow,Tit1,
Iola,* + = xuly. Furthermore, B(zo),B(z1), - ,B(z,..1) are
true and B(r,) 1s false.

In this scquence, some z; may belong to D, although it
may not contain any useful information about the output
—~the loop might manage to store the useful information
in {; and retrieve it in subsequent iterations. The following
theorem shows that the above ease can never arise.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MARCH 1975

Theorem 1 (Fundamental Theorem of Loop Assertion):
W(B,S) computes F over a range inclusive domain D if
and only if

1) input with any = € D, W(B,S) terminates with out-
put in D,

2) [z €D A T1B(2)] [F(2) = z],

3) {[y € D,x € D]— [F(z) = F(y)]} is a loop asser-
tion for W/(B,8).

Furthermore, conditions 1), 2), and 3) are mutually
independent.

Proof: We first show that if the above conditions hold
with some F and range inclusive domain D, then W (B,S8)
computes F over D. From 1), W(B,S) halts for every «
in D and D is range inclusive. Consider some input y € D
to W(B,8) for which z is the output.

From 1),z € D.

From 3), F(z) = F(y).

Since the loop halts at z, B(x) is false. Hence from 2),
F(x) = x. Thus we conclude that F(y) = =z, i.e., we ob-
tain F(y) when we terminate for every y €D.

We now prove the converse.

If 1) does not hold, 3y € D such that the program
either does not halt or halts with some z ¢ D. In either
case, it does not compute F over the range inclusive do-
main D. Tf 2) does not hold, 3y € D such that "1B(y) A
F'(y) # y. Consider the action of W (B,8) with y as input.
Since B(y) is false, the program halts with y as output.
However, F(y) # y; hence W(B,S) does not compute F.

Condition 3) asserts that whenever any intermediate
z; € D, r; must necessarily contain all the useful informa-
tion regarding output. This part is easily provable in the
absence of local variables (see Mills). Intuitively, if after
some iteration F(x) s F(y), the program cannot distin-
guish whether is being input the first time or results
during the computation of y (since there is no local variable
to store this information). Hence it has to produce two dif-
ferent results F(«) and F(y) when input with z, which is
impossible.

The erux of Theorem 1 is that the result is still true
even in the presence of local variables. We first need to
prove a lemma.

Lemma 1: Let Z be a program, which input with zw,
produces z't’ as output. Then, input with zt(t # o), it
must produce z't” (for some t'’) as output.

Proof: Basically, the lemma says that if the program
halts with zw as input and produces some output z’ in the
first n components, then input with =zt it will produce
identical output in the first n components. The basic idea
of the proof is to show that the computations must be
identical with these two different inputs, and hence the
program never uses any value from ¢.

Assume that Z is represented in a flow chart form where
every line has a unique number. Initially the program
control is on the line leading to the first step to be executed
(predicate or function). A step of the program is the
execution of a predicate or a function. Txecution of predi-
cate moves the program control to one of the two lines
leading out. Execution of a function assigns values to

BASU AND MISRA: PROVING LOOP PROGRAMS

certain variables and moves the program control to the
line leading out.

The state of computation (with any input zt) after the
execution of the 7th step can be characterized by two pa-
rameters Cs(xt),Li(xt). Ci(xl) denotes the line number of
the program control after the execution of the sth step (if
the program terminates in less than ¢ steps, Ci(at) =
Ci1(xt), ie., the control remains on the output line per-
manently). L;(xt) is some set of ordered pairs of the form
{y,w(y)) where y is the name of a variable and v(y) (#w)
is its value after execution of the ith step (starting with
input).

Consider the computation starting with zw. Initially let
Lo(xw) contain the names and values in z. Construct
Li(xe) from L 1{rw) as follows:

1) if the 7th step was a predicate, let Li(zw) = Lia(ze);

2) if the sth step was a function, add the names and
values of all the variables defined in this step to L. (xw)
and modify the values of any existing variables in L. (zw)
to their new values.

Starting with xt, we define Lo(xt) to be the name, value
pairs from z only. L,(xt) is to be obtaned from L (at)
by application of rules 1) and 2). [Substitute Li(zt),
Lii(at) for Li(azw),Li1(aw) in 1) and 2).]

We will show that

Ci(zw) = Ci(xt)
1 > 0.
Lz(.ao) = Li<33t)

Proof is by induction on 7. For 7 = 0, obviously the above
is true. Assume that the above equalities are true up to
4 — 1. Now the ith step must be identical for both zw and
at [since Cioy(2w) = Ceia(at)). Since the ith step is ap-
plied to zw, it can only use (examine or access) a variable
from Li_1(zw). Since L;_i(zw) = Liy(xt), the outcome
will be identical (computations and results of tests will be
identical). Hence Ci(uxw) = Ci(zt) and Li(zw) = Li(at).
The argument is slightly modified when the program ter-
minates.

At termination, L. (2w) = L,(2t). However, once a
variable enters L;(xw) or L;(at), it remains defined. z was
initially in both.

Hence corresponding values are identical at the end.

(Proved.) Il

We will now show that if 3) is false, then W(B,S) does
not compute F over D. Suppose for some y € Dz €D,
F(x) # F(y). Then with zw as input to W(B,S), 1t halts
with output F(z). Hence with any «t as input to W(B,S),
it must halt with F(z) as output. When input with y,
W (B,S) computes some zf at an intermediate step, and
hence must output F(x) finally. Since F(z) = F(y),
W (B,S) does not compute F over D. We have assumed
that the program is not modified during its execution;
only data values get modified.

We now show that conditions 1), 2), and 3) are inde-
pendent. We will consider some programs which allege to
compute

79
Flup) = {u -+ v,0) over D = {{u,)|v > 0}
while v > 0 do
u=u—1
v=uv+1 :
eﬂd

The program never {erminates for any » > 0. Conditions
2) and 3) are, however, satishied.

while v > 0 do

if w = 5thenv

i

—10,

else u

fl

w41

end
end

The program terminates and satisfies 2) and 3), although
the output is not always in D.

while » > 0 do
u=u-41
v=0v—1
end
This program satisfies 1) and 3) with F(u) = 2(u -+ v),
0) over D = {{u,v) | v > 0}. However, it does not satisfy
2) since the following statement is not true:
[b<0Av>0]>[2u+v),0)= (u)l
Finally, consider

while v > 0 do
v=v—1
end

with Fuw) = (u + v,0) over {{u,p)|v > 0}. It satisfies
1) and 2), but not 3). (Proved.) I
As an aside, we state a simple lemma.
Lemma 2: Condition 2) in Theorem 1 can be strength-
ened to

[z €D]—[T1B(z) « F(x) = z].

Proof: We have proved that ~1B(z) — F(z) = =.
For every z € D,T1B(F(z)) since the loop must termi-
nate with F(z). Hence

[z =F(x)]— "1B(z). (Proved.)]

80

This lemma shows that the fixed points of F in D
uniquely characterize B when W (B,S8) computes F over D.

We will now show that any other loop assertion which
is sufficient for proving that W (B,8) computes F over D
must be at least logically as strong as [z € D,y € D] —
[F(z) = F(y)]. In W/(B,S), we define a set R, which is
a set of ordered pairs {y,z) which can possibly arise at the
reference point of the loop during any iteration, starting
with any z in D.

Let

Dy = {8 (yw) [0 < k < min TIB(S(yw))}

R = {<y>x>]x EDy,Z/ ED}

Corollary 1: Let q(x,y) be a loop assertion for W'(B,S),
ie.,

q(z,y) = true, v{y,z) €R.

Let [q(z,y) A T1B@)]— [z = F(y)]; then (y,z) € R A
q(zy) = [y €D €ED—F(z) = F(y)]

Proof: If not, then 3 {(y*,z*) € R such that
q(a*y*) N F(z*) = F(y*).

Using Theorem 1, W(B,S) does not compute F over D.
Since ¢(z,y) is true for all (y,z) € R, when the loop ter-
minates, we conclude that it computes F—a contradietion.
(Proved.) I
The significant aspects of Theorem 1 are that local vari-
ables do not enter into the loop assertion; the loop asser-
tion is completely determined by the function computed
by the loop and conditions 1), 2), and 3) are necessary as
well as sufficient.
We illustrate an application of Theorem 1 to prove a
well-known program for computing power.

Ezample 2:

while v = 0 do
r o= 0/2
t = 2=xr

if (1v)thenw =w*u

end

We would like to prove that the program computes
Flupw) = (\0,w *u?) over range inclusive D = {(u,
w) | v > 0}. Note that \ is a component value which is of
no interest to us at output. :

We must now prove the following.

1) The loop terminates for every (u,w) €D, and
when it terminates, » > 0.

JEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MARCH 1975

2) [{up,w) €D A [v=0]]— [Flupw) = (upw)]or
v = 0> \0,w*u’) = (up,w).

Note that this can be proven only for the second and
third components, although not for the first one.

3) In the program shown below, we have to prove that
v>00>0—(0=0) A{w=*u®=c=*a’) is a loop as-
sertion.

a=u
b=
c=w

while v & 0 do
r=1/2
= 2=%r

if (1) thenw = wxwu

U= Uu*u

end |

It may be noted that the loop assertion in this case is
identical to the one in the literature for this problem [127].
In fact, we have found this to be the case in most of the
examples studied so far.

We have derived the assertion to be proven independ-
ently of the program text. Furthermore, if we can prove
that this assertion is a loop assertion, we are assured that
the program computes F, and if we disprove this claim,
the program does not compute F. This is in contrast to
the existing schemes for generating assertions where dis-
proving the assertions does not necessarily mean that the
program is incorrect.

We now present an example in which the loop assertion
is nonvacuously true only at the beginning and end of the
loop execution.

Ezample 3:
while v = 0 do

if first then s = u, t = v, u = 50, v = 50,
first = false
else s=s4+1,i=¢t—1
ift=0thenu = s, v =1,

first = true end
end

end

BASU AND MISRA! PROVING LOOP PROGRAMS

Prove that F({upfirst) = (u 4 v,0,true) over D =
{(uw,first) | v > 0, first = true}.

Note that an initial assignment statement of the form
first = true can be absorbed into the domain D.

Consider W' (B,S) where a = u, b = v, ¢ = first. Then
the loop assertion is (assuming b > 0 A ¢ = true)

'p > 0 A first = true—[u+0v=a-+b].

The antecedent of the proposition is true only on en-
trance and exit. During iterations, the antecedent is false
and the statement is vacuously true.

Any proof of this assertion requires a look ahead (and
indeed would require proving the program by some other
technique). We will study the implications of this in
Section V. n

Finally, we specialize the resulis to a ¥or loop. Consider

for: = [Jk;Jk-H,' . ',Jn) do
S
end.

[JesJ i1y *) denotes the closed interval [JiJeta,: -,
Jn-lj- .

Let F be the function computed by the above program,
which we denote by ror(%,k,J,S).

Theorem 2: vor(z,k,J,S) computes a function Fy over a
range inclusive domain D iff

1) it terminates with output in D when input with any
z in D,

2) Vz €D, F.(z) =z,

3) b =t]—{ly €Dz €D]— Fi(y) = Fi(z)} is a
loop assertion for the program ror’(ik,/,S) (shown
below).

FOR' (4, ,8) :

y=z
for ¢ = [Jk,Jk.;_l,"',Jn) do
S

end

Proof: Follows from the proof of Theorem 1.

IV. COMPUTATIONS ON CLOSED DOMAIN

In the previous section, we discussed loop programs in
which the intermediate values of input variables may not
be in D. The only requirement was that the final value
be in D when the initial value is in D.

In a large number of loop programs, it turns out that
the intermediate computations (the values of input vari-
ables) remain in D or in some simple extension of D. In
such & case, the results of the previous sections specialize
to very simple forms which are amenable to proof by in-
duction.

81

Definition: W(B,S) is closed wrt D (D € D*(B,8)) if
and only if Vo € D[B(z) — S(zw) € D). W(B,S) issaid
t0 be closed if and only if it is closed wrt D»(B,S).

Without loss in generality, we may augment any D with
all those 2’s for which B(z) is false. From now on, we
assume that [7}B(x) — z € D]. The following lemma is
obvious.

Lemma 8: Let. W(B,S) be closed wrt D. Then for any
z € D, values of global variables after every iteration are
in D. If the loop terminates, the output is in D. n

We now state Theorem 1 for the case of closed W(B,S).

Theorem 17: Given that W (B,8) is closed with respect
to D, W(B,S) computes I' over the range inclusive domain
D if and only if

1) W(B,8) terminates when input with any = in D,

2) [« €D A TIB(@)]— [F(x) = o],

3) F(z) = F(y) is a loop vnvariani for W(13,8).

Furthermore, 1), 2), and 3) are mutually independent.

Proof: Similar to that of Theorem 1. [|

The importance of Theorem 1’ is that F(x) = F(y) is
a loop invariant (and not just a loop assertion). That is,
[F(s) = F(y) A B(x)]— [F(8()) = F(y)] is a the-
orem, independent of the program in which W{(B,S) is
embedded. Proposition 3) can thus be proved or disproved
by a theorem prover. This specialization rules out patho-
logical cases like the program in Example 3.

We state Theorem 1’ in a more symmetric form in the
following corollary. ’

- Corollary 2: Suppose [z € D A B(z) — S(zw) € D].
W(B,S) computes F over the range inclusive domain
D iff

1) W(B,S) terminates for every z € D,

2) [B(x) — F(z) = F(S(xw))] A [T1B(z) = F(2) = =],
Yz €D. |

Thus the proof of a program with closure reduces to
proof of termination and proof of proposition 2).

Ezample 4: Consider Example 2. We prove closure by
proving v 2> 0 A v = 0-—1v/2 > 0. We then prove ter-
mination.

Finally, the proof of proposition 2) reduces to proving

w * y * (u?)*? when v is odd
vEQ = fwry® =

w = (u?)*?2 when v is even

Av=0—=(w*xu = w).

Usually the loop has initializations in the beginning,
which restricts the domain over which there may not be
closure. However, it is usually possible to consider a super-
set of the given domain and to prove that W (£5,S) com-
putes a certain function over the superset whose restriction
(to the given domain) is the function desired. Ior instance,
in Example 2, restrict the domain to D’ = {{u,p,w) | v > 0,
w = 1} and prove that W(B,S) computes F{u,p,w) =
O\0,u?) over D’. W(B,8) is not closed wrt D’, although
it is closed wrt D.

In certain extreme situations, the program can be proved

i

82

simply by locating a suitable superset with respect to
which W (B,8) is closed. We consider a modified version
of a program due to London [14] for computing factorial

without multiplication.

Ezxample 6:
while R < N do

s=1
Vo= U

while s < R do

u=u-+v

s=s8-+1
end
R=R+1

end

Show that the program computes F(R,u,N) = (N,N!,
NY over D = {(Ru,N)|R=1, u=1 N2> 1}. If we
identify the values of input variables that occur after every
iteration, we get D' = {(R,u,N)|u = R, N > R, R >1}.
W(B,S) is closed wrt D’. In fact, proving the closure
wrt D’ is almost enough to prove that W (B,S) computes
F,since (€ D' A T1B(2)) = (R2 N A[u=RLR 21,
N > R]) —»u = N! Some ingenuity must go into locat-
ing D’ B

The results can be specialized to a For loop. The For
loop For(ik.J,S) has closure iff [z €D Ai=J,—
S(zw) € D7]. Note that ¢ is restricted to J = [Jy,+++,Ja].
We may restate Theorem 2 for this case.

Theorem 2': A For loop with closure computes Fj over
D if and only if

1) it terminates for every z € D and ¢ € J,

2) i3 J,— [Fi(z) = Feua(S@w))] A [Fulz) = 2]. I
"This may be contrasted with the approach in [10].

Ezxample 6: Prove that the following program computes:

n—1
F; sum,4,n) = (sum + 2, A(k),A,n)

b=j
over the domain D = {{sum,4,n)}
fori=jton — 1do
sum = sum + 4 (7)
end

We generate the theorem to be proven.

IEEE TRANSACTIONS ON SOPTWARE ENGINEERING, MARCH 1975

n~1

7 n—»{[sum 4+ > A(k) = sum + A7) + E‘,l A(k)]
k=1

k=t+1

/\[A=A]/\[n=n]}

A {[sum + EA(]C) =sum]A[Ad=A]A[n= n]}

k=n

We will now derive a necessary and sufficient condi-
tion for the equivalence of a loop program with some
other program.

Given two programs P and P/, it is often desired to
find if the programs are equivalent in the sense that they
produce identical results for every input. There are
several notions of equivalence, depending on the termina-
tion properties of P and P’. For our purposes, we define
equivalence as follows.

Definition: Two programs P and P’ are equivalent on
an input domain D if and only if for every z € D, they
both halt and produce identical outputs.

Theorem 3: Let W(B,S) be closed wrt D, and it halts
when input with any z € D. P is equivalent to W(B,S)
if and only if

1) P halts for every z € D,

9) Vaz € D {[B(x) = P(z) = P(S(zw))] A [1B(2) —
P(x) = z]}.

Proof: The theorem is identical to Corollary 1 except
that P has been substituted for F. []

We illustrate the application of the theorem with an
example.

Ezample 7: Consider the programs shown below, which
are to be proved equivalent over the input domain
D = {v|v > 0}. First we must prove closure of W(B,S)
wrt D.

while v # 0 do if v £ 0 then

=10 —1 while » £ 0 or v 32 1 do
v=10v— 2
end end
W(B,S) if v = 1 then
=9 —1
end
end
P

BASU AND MISRA: PROVING LOOP PROGRAMS

To prove equivalence of P and W(B,S) over D, we
generate the following condition to be verified:

v_>_0-j->[v¢0——>P(v) =P —1)]
Afv=0-— P =v]

This technique is most fruitful when P is a straight
line program so that a symbolic computation [13] of P
may be performed with z and S(z) and symbolic results
tested for equality. [

V. CONDITIONS FOR THE EXISTENCE OF LOOP
INVARIANT AND SUFFICIENCY OF HOARE'S DO
WHILE AXIOM

Given any W (B,S), we call a predicate P a loop in-
variant if it satisfies the following conditions.

1) P is a predicate over some or all global variables
of W(B,S) and possibly certain other variables (which
may not be in the program). Local variables must never
occurin P. Thus P has the form P(x,y) where z is the
set of global variables and y certain other variables not
occurring in W(B,8).

2) P(zy) A B(z) = P(S8(zw),y).

Every loop invariant is a loop assertion, although the
converse is not true, as shown by the following example.

Ezample 8: s=ul=1v

while » 0 do
u=u-+1
v=1v—1
end

A loop assertion is [v = 0 — u = s + t]. However, this
is not a loop invariant since [v=0—u = s+ {]JA
[v£0]—[v—1=0—u-+1=s+1]is not a theo-
rem (as can be seen by substituting v = Lu =5, s =1,

= 3 into the above statement). B

There could be several loop invariants for any particular
W (B,S). Not all of them would be powerful enough to
prove that W (B,S) computes a particular function. Hence
we define P to be an F-adequate loop invariant iff it is a
loop invariant and

P(zy) A T1B(z) =z = F(y).

We have shown in the previous section that an F-
‘adequate loop invariant exists when W(B,8) is closed
wrt D. We will show in this section that F-adequate loop
invariants do not exist unless there is closure (or an
extended form of closure) wrt D*(B,S).

We define a few terms needed to state the result.

W (B,S) is closed if and only if it is closed wrt D*(B,S).
zt € D~(B,S) is reachable iff 3y € D*(B,S) such that
S*(yw) = at for some k and B(S*(yw)) for every ¢ < k.
Reachability of zt essentially means that z¢ appears as an
intermediate value during iterations for some y as input.

83

W (B,S) is eclosed (extended closed) if and only if for
any «x,xly and zi, are reachable implies that W (B,S) yields

identical output (in the first » components) when input
with xt; or xts.

Note 1: If © € D*(B,8), then 2t € D=(B,S) for any t.
Using Lemma 1, W(B,S) must yield identical output for
every «l as for zw. Henece if W(B,S) is closed, then it is
e-closed. ‘

Note 2: The above definition of e-closure can be easily
generalized to {ake into account some rather than all the
local variables of W (13,5).

We give examples of closure and eclosure below.

Ezxample 9:
while » # 0 do

u=1u-+1
v=v—1
end
D*(B,8) = {{uw)|v = 0}
W (B,8) is closed.
while » 5= 0 do
ifv=—1thenv =tu=u—0v

elseu =u+1lp=v— 1l =0,

v=—lu=u-+1
end
end
D*(B,8S) = {{up)|v =0}
D¥(B,S) = {{upt)|v>0o0rv = — Land { > 0}

The above program is not closed, since during itera~
tions, we obtain values such as (u,—1). However, it is
e-closed since {(u,—1,t) and {u,—1,) lead to identical
outputs (in the first two components).

while v # 0 do
if first then ¢ = v, = 50, first = false
else u=u-+1t=¢—1
if t = O then v = {, first = true end
end

end

B4

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MARCH 1975

Zz2 +« X
Does' not
. simuiate s
terminate W(B,S) with Terminates
z
Regquires a
value for
some undefined
variable
. imulate W(B,S
No padding 5}2: j gteés)
found on zt.
(see bdlow)

Locate terminal
padding t'

=]

T

Fig. 3.

D3(B,8)
D#(B,S)

{{up, first) | u > 0, first = true}
{{uv, first, {) | v > 0 and first

i

= {rue or first = false and ¢ > 0}

This program is not e-closed (or closed) since (u, 50,
false, #;) and {(u,50, false, &) lead to different outputs,
namely, (u + £,0, true) and (u + $,0, true). B

Theorem 4: Let W(B,S) compute F. Then W (B,S) has
an F-adequate loop invariant if and only if it is e-closed.

Proof: If W(B,S) is closed and it computes a func-
tion F over D=(B,8), then the following is an F-adequate
loop invariant:

¢ € D*(B,S) A F(z) = F(y).

The proof follows from Theorem 1’.

We now prove the result when W(B,S) is e-closed but
not closed. We will construct S’ such that W(B,S’) is
equivalent to W(B,8) over D*(B,S). Furthermore,
W (B,8") would be closed [wrt D*(B,S8")]. Thus there
exists a loop invariant of the form

x €D(B,S") A F'(z) = F'(y)

for W(B,8"), where F' is the function computed by
W (B,8"). It will be shown that the above loop invariant
is an F-adequate loop invariant for W (B,S).

The construction of S’ uses a standard technique from
automata theory. We first define a terminal padding. For
any z,0’ is a terminal padding if W (B,S) terminates with
#t’ as input and no «f for any ¢ occurs as an intermediate
value during execution of W(B,S) with zt’. Thus if ¢’ is
a terminal padding for z, we are assured that x will never
appear again as the first. » components during execution
of W(3,8) with «t'.

We can now deseribe S Input with any «w,S" will
determine if there is any zt for which W(B,S) terminates.

In case there is, it locates a terminal padding ¢’ and
inputs zt’ into S. Assume that the different paddings may
be indexed b, - - - ete.

We show S’ schematically in Fig. 3.

We use the standard mapping ¥ of pairs of integers to
integers where ‘

t+5—-1) +j—2)

BG.j) = -

+J.

Whenever F(7,7) is enumerated, we simulate W (B,8) for
J steps on zt;. During the process of simulation, we retain
the last value zt’ which occurs as an intermediate value.
If the simulation leads to termination, ¢’ serves as £. The
reason for locating such a ¢’ is to avoid any looping, since
we are certain that zw will never be input to S’ again.

We now show that D*(B,S’) 2 D*(B,S). Suppose some
z € D*(B,S). Then W(B,S) terminates with zw. S" will .
eventually discover this fact in the first simulation step
and will just apply S to zw. Suppose = ¢ D*(B 8), but
2t € D~(B,S). Then 8 will discover this fact in the second
simulation step. Furthermore, all zt,zt, yield identical
results; hence it will pad z with some terminal padding ¢’
and ask S to execute on at'.

Thus z § D*(B,S),xt € D=(B,S)xt was reachable im-
plies that = € D*(B,8"). W(B,S") is obviously closed.
The function F’ computed by W(B,S’) is

F'(z) is equal to F(z) when 2 € D*(B,S)

and F’(z) is the unique value produced by W (B,S) on
reachable 2zt € D™(B,S). It is straightforward to see that
the loop invariant for W(B,S’) is also a loop invariant
for W(B,S) and that it is F-adequate.

It is possible to prove the result more simply be de-
fining F',D~(B,S8’) starting from F and D*(B,8). Then
one can show that ¢ € D(B,8') A F'(z) = F'(y) is a

BASU AND MISRA: PROVING LOOP PROGRAMS

ZtT’\/\" Different
th/\/\/\, outputs

Fig. 4.

loop invariant for W (B,S). However, the above construc-
tion shows that there is a finile description for F', namely,
F’ is the funection computed by W(B,S"), and we have
demonstrated a finite deseription of W (B,S").

To complete the proof, we show that there can be no
F-adequate loop invariant when W (B,S) is not e-closed.
Since W (B,S) is not eclosed, there exist zt,2t; € D™(B,8)
which are reachable (from ¥1,%:) and which yield different
results. Let the input variables be denoted by z. The
situation is shown pictorially in Fig. 4.

Let ¢’ be a terminal padding for z.

Consider the following program W (B,S’).

while B do
ifz = zthent = ¢’ end
S
end

This program computes a function different from F since
2ty,2t» will yield identical results in W(B,8’). Now suppose
there was an F-adequate loop invariant P for W(B,S).
P is also a loop invariant for S’ since

P(zy) A B(z) {8} P(zy)
P{x,y) A B(z) {ifz = zthent = t'} P(z,y) A B(x)
implies
P(x,y) A B(z) {if z = z then t = t'; S} P(z,y).
Since P was F-adequate, P(x,y) A " |B(z) — ¢ = F(y).

‘Thus we may conclude that W(B,S’) also computes F,

which 1t does not.
We remark that the program W(B,8’) may not be

-effectively constructible. However, the existence of such a

program is sufficient to prove the result. (Proved.) [|
Example 9 (Continued): An F-adequate loop invariant
for the second program in Example 9 is

[v=0A (u+v)=@+b]Alv=—1Au=a-+ bl

The third program in the same example has no F-
adequate loop invariant which does not involve .]

Theorem 4 basically shows that if the local variables
carry useful information across iterations, then they must
be included in the loop invariant. Conversely, if they do
not carry any useful information, they need not appear
in the loop invariant. We believe that a “well-behaved
loop” does not employ the local variables across itera-
tions. However, Theorem 4 can be generalized to Theorem
4/, which takes care of “bad loops.”

85

Theorem 4': Let W(B,S) compute F. There exists an
F-adequate loop invariant which uses the global variables
and a subset of local variables if and only if W(B,S8) is
e-closed with respect to these variables.

Proof: Similar to Theorem 4.]
Again closure (e-closure) emerges as a eentral theme. '
One simple way to assure closure is to make every

variable global (by assigning them arbitrary values in the
beginning). This, we believe, is self defeating in that the
proof process now has to cope with complications. It is
worthwhile and important to note the scope (the lifespan)
of every variable.

Finally, we show that Hoare’s axiom for po wHILE
defines a unique computation when W (B,S) is closed.

Theorem 5: A schema 8'(B,S) is equivalent to W{B,8)
(which is closed) if and only if for every P,B,S

P A B{S}P
PSP A B

2) either they both halt or both diverge for every
input.
Proof: It is straightforward to show that if S'(B,S)
is equivalent W(B,8), then 1) and 2) hold. We will
show that if 1) and 2) hold, then S’(B,S) is equivalent
to W(B,S).
Let P be z € D"(B,S) A Fps(x) = Fps(y). P A

B{S}P since P is a loop invariant for W(B,S).
Furthermore, 71B(x) A ¢ € D*(B,S) —» F 3 5(x) = z
Since P{S’'}P A 7B,

z € D*(B,8) A Fps(z) = Fps(y) {8 (z)}z € D*(B,S)
A Fss(z) = Fps(y) A 1B(x)

1) d

or
z €D"(B,S) A Fps(x) = Fp s(y) {8 (2)}Fp s(x)
=Fps(y) N Fps(z) = .
Since x = y— Fp s(x) = Fg s(y), we conclude
x €D (BS) A (z =yiS (@)} z = Fssy)

which says that S’ computes whatever W (B,S) computes.
(Proved.) |}

VI. DISCUSSION

The main results of this paper can be summarized as
follows.

1) There always exists a loop assertion, related to the
function computed by the loop, which is both necessary
and sufficient for proving correctness.

2) There does not exist an F-adequate loop invariant,
in general, unless W (B,S) is closed or e-closed.

3) In the latter cases, the loop invariant is related to
the function computed and is derivable from 1).

We believe that loop invariants intuitively capture our
notion of what is provable by inductive assertion. Thus the
program in Example 3 is not provable by inductive
assertion (unless we let the local variables enter into the
invariant). We feel that closure of a loop (with respect to

86

s global variables) s one of 1ts most important properties.
Then the program is not using the local variables across
iterations. Most well-written programs seem to satisfy
this requirement.

"These results will have practical applications in proving
programs. We have pointed out the form of the F-adequate
loop invariant under closure. For a pure loop program
with closure, it is now trivial to generate the assertion to
be proved. Usually loops do not occur in a pure form as
assumed. The initializations will usually restriet the
domain over which there may not be closure. One has to
discover a superset with respect to which there is elosure
and the function computed over the superset. This may
be complicated in cases, but we hope we have convinced
the reader that no blind heuristic would suceeed in such
a case, since the heuristic must essentially discover the
superset and the function.

We remark here that once we prove that W(B,S)
computes F, we can prove any other partial property of
W(B,S) that might be required.

ACKNOWLEDGMENT

The authors are indebted to Dr. H. D. Mills of IBM,
whose work inspired the present work. Thanks go to M.
Conner of the University of Texas for pointing out an
error in the original formulation of Theorem 1. D. Good,
also of the University of Texas, has been a patient listener
and an important critic during the entire course of this
research. The idea of augmented schema is due to C.
McGowan of Brown University.

REFERENCES

[1] S. Basu and R. Yeh, “Program verification by predicate trans-
formation,” Inst. Comput. Sci. Comput. Appl., Univ. Texas,
Austin, Rep. SESLTC-1, Aug. 1974.

[2] R. Boyer and J. Moore, “‘Proving theorems about Lisp func-
tions,” in Proc. 3rd Int. Conf. Artificial Intelligence, Stanford
Univ., Stanford, Calif., 1973.

[3] O. J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, Structured
Programming. London: Academie, 1972.

[4] B. Elspas, K. Levitt, R. Waldinger, and A. Waksman, “An
assessment of techniques for proving program correctness,”
Computing Surveys, vol. 4, June 1972.

5] R. W. Floyd, ‘“Assigning meanings to programs,” in Proc.
Amer. Math. Soc. Symp. Appl. Math., vol. 19, 1966.

[6] D. Good, R. London, and W. Bledsoe, “ An interactive program
verification system,” Univ. Southern California, Los Angeles,
USC Inform. Sci. Inst. Tech. Rep. 22, Sept. 1974.

{7] C. A. R. Hoare, ‘‘Algorithm 65, Find,” Commun. Ass. Comput.
Mach., vol. 4, July 1961.

(8] , ‘‘An axiomatic approach to computer programming,”’

[9]

Commun. Ass. Comput. Mach., vol. 12, Oct. 1969,

, “Proof of a program: FIND,” Commun. Ass. Comput.
Mach., vol. 14, Jan. 1971.

, ““A note on the FOR statement,” BIT, vol. 12, 1972.

[10]

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MARCH 1975

[11] 8. Katz and Z. Manna, “A heuristic approach to program
verification,” in Proc. Srd Int. Conf. Artificial Intelligence,
Stanford Univ., Stanford, Calif., 1973. .

[12] J. King, ‘A program verifier,” Ph.D. dissertation, Carnegie-
Mellon Univ., Pittsburgh, Pa., 1969.

[13] , “Symbolic execution and program testing,” IBM Res.
Rep. RC5082, 1974.

[14] R. London, private communication, 1974.

[15] H. D .Mills, “Mathematical foundations of structured program-,
ming,” IBM Federal Syst. Div., Gaithersburg, Md., Rep. FSC
72-6012, Feb. 1972.) ’

[16] M. Moriconi, ‘‘Semiautomatic synthesis of inductive predi-
cgges,” Dep. Math., Univ. Texas, Austin, Rep. ATP-16, June
1974.

[17] L. C. Ragland, “A verified program verifier,”” Ph.D. disserta-
tion, Univ. Texas, Austin, 1973.

[18] B. Wegbreit, ‘‘Heuristic methods for mechanically deriving in-
ductive assertions,” in Proc. 8rd Int. Conf. Artificial Intelligence,
Stanford Univ., Stanford, Calif., 1973.

i

Sanat K. Basu (M’71) received the B.Se. and
M.Sc. degrees from Banaras University,
India, in 1957 and 1959, respectively, and
the Ph.D. degree from the University of
Bombay in 1966. .

He was a Fellow of the Tata Institute of
Fundamental Research from 1960 to 1969,
and a Research Scientist with the Depart-
ment of Computer Science, Carnegie-Mellon
University, from 1967 to 1969. He then joined
the Electrical Engineering Department and
the Computer Center of the Indian Institute of Technology, Kanpur,
as an Assistant Professor. Currently he is a Visiting Associate Pro-
fessor in the Department of Computer Science, University of Texas,
Austin.

Dr. Basu is a member of SIGACT and CSI.

Jayadev Misra (S'71-M’72) received the °
B. Tech. degree in electrical engineering from
the Indian Institute of Technology, Kanpur,
in 1969, and the Ph.D. degree in computer
science from The Johns Hopkins University,
Baltimore, Md., in 1972.

He worked for IBM, Federal System Di-
vision, from January 1973 to August 1974.
He is currently with the Department of Com-
puter Science, University of Texas, Austin.

Dr. Misra is a member of the Association
for Computing Machinery.

