Volume 8, number 2

INFORMATION PROCESSING LETTERS

February 1979

SPACE-TIME TRADE OFF IN IMPLEMENTING CERTAIN SET OPERATIONS

Jayadev MISRA *

Department of Computer Science, University of Texas, Austin, TX 78712, U.S.A.

Received 11 June 1978; revised version received 10 October 1978

Algorithms, complexity, space-time trade off

1. Introduction

Let S be a set of integers that initially is {1, 2, ... h}.

Consider the following operations on S.

remove(i) : : [is removed from S.
next(;) : : returns the next larger number j, j >4,
JE S, if such aj exists.

We consider algorithms that trade off time for space
in implementing these operations. The following no-
tations are used in this paper: log denotes the base 2
logarithm. log’ (1) denotes log log -~ log n, where log
is applied ¢ times. By convention, log?(n) =n. G(n)

is defined as the smallest & such that log*(n) < 1, for
any positive integer n. a(n) is related to the inverse of
Ackermann’s function; an exact definition may be
found in [2]. We note that a(n) grows slower than
Gn).

We distinguish between two types of problems.

Type 1. next(f) is applied only if i€ S.

Type 2. next(i) may be applied irrespective of
whether i € § or not.

We use a logarithmic cost measure in stating the
time and space complexities. We assume that the time
needed to index into an array of size n is O(log)
and storage (number of bits) required to address any
one of potentially » items is O(log n).

We exhibit algorithms whose time and storage
requirements are summarized in Table 1, for any ¢,
1<t <G(n). Columns 2, 4 labelled ‘variation’ refer
to slight variations of the algorithms represented in

* Work partially supported by NSF Grant MCS77-09812.

the preceding columns. Variations reduce the storage
requirement to a linear function of n, for constant «.
Limiting behaviors of these algorithms are shown in
Table 2. This table is derived from Table 1 by setting
t=1and t =G(n) in turn. Algorithms corresponding
to =1 are known. t = G(n) is particularly interesting
since the time requirements are ‘almost’ optimal and
storage requirements are almost linear.

These operations were found necessary in a recent
algorithm [1], which used a sieve technique to find
all prime numbers between 2 and n. The algorithm
executes at most n remove and next operations of
type 1. A linked list was used to implement S. This
has a logarithmic cost of O(log n) time per operation
using O(n log n) bits of storage, since each link can
potentially address any one of n items. Using the
methods of this paper, for any constant ¢, an algo-
rithm that requires O(log n) time per operation can
still be constructed that uses storage of O(n log’ (1))
bits.

2. Solving the type 1 problem

Each operation can be done in O(log n) time by
maintaining S in a doubly linked list as follows. Let
BACK and FRONT be two arrays of length n each.
For any i € S, FRONT[i] denotes the next larger
element and BACK[7] denotes the next smaller ele-
ment in S; if no such elements exist, the correspond-
ing values are n + 1 or 0. Initially, BACK[i] =i - 1,

i >0and FRONT[i] =i+ 1,i <n. Operation next is
implemented by returning FRONT[i] if it is less than

81

Volume 8, number 2

Table 1

INFORMATION PROCESSING LETTERS

February 1979

Time and storage requirements (logarithmic) of the algorithms, forany 7,1 <1 < Gm)

Type 1 Typel

(Variation of preceding algorithi"n)

Type 2 Type 2

(Variation of preceding algorithm)

time O(t log n)
per operation per operation

storage O(n logfn+tn) O(tn)

O((r~1) log n +log n log n log"~1(n)) O@n log n a(n))

O log n log"~1(n) + tn log n a(n))

per O(n) operations per O(n) operations

O logl(n) + tn) O(tn)

n+ 1. Operation remove[i] links BACK [i] to
FRONT 7] properly.

The storage requirement of O(n log n) bits can be
drastically reduced with a slight increase in time
requirements as shown below; the amount of trade
off depends on 7, 1 <1 < G(n). The algorithm is
easily explained when ¢ = 2. Assume that n = 22% for
some k > 0. Divide the set {1, 2, ..., n} into-contigu-
ous blocks of length log n. There are thus nflog n
blocks. Element i belongs to the [z’/]og n]—th block;
note that this block number can be computed for
any i by properly shifting the bit representation of i,
since log n is a power of 2. A block is gerive if it has
some element x, x € S; a block is inactive otherwise.
Initially all the blocks are active.

At any point in the algorithm, an element i € S is
linked to its predecessor and successor in its own
block. If an element does not have a predecessor or
successor in its own block, the corresponding link
field is null. Similarly, all the active blocks themselves

Table 2

are doubly linked. Furthermore, each active block b
holds a pointer, first(p), to the smallest LieSin
that block.

Initialization of this data structure can be done in
O(r log n) time; each element i is linked to @i-1n
and (i + 1) if these are in the same block and each
block is linked to its preceding and succeeding blocks.
Operation next(7), i € S may be implemented as fol-
lows: determine whether 7 has a successor j in its own
block. If so, j is the answer; otherwise, find the suc-
cessor block b of the parent block of i, (The parent
block of i must be active.) If b is null then i does not
have a next element, else first(p) is next (). Operation
remove(i) may be implemented as follows: remove i
from the doubly-linked list in its own block. If both
predecessor and successor of i were null, then 7 was
the only element in S in its block; hence its removal
makes its block inactive. Then remove the block
from the doubly-linked list of blocks. Furthermore,
first (b) needs to be updated properly if the removed

Limiting behaviors of the algorithms represented in Table 1.1 = 1, corresponds to known algorithms.

Type 1 Type 1 Type 2 Type 2
(Variation) (Variation)
t=1 Time O(log n) O(n log n) O(n log 11 a(n)) o(n? log n)
per operation per operation per O(n) operations per O(n) operations
Storage O(n log n) O(n) O(n log n) O(n)
Known Doubly linked Linear search Disjoint set union Linear search
algorithm list manipulation (without links) (without links)

t=G(n) Time

Storage

O(log n G(n))
per operation

O(n G(n))

O(log'n G(n))
per operation

O(n G(n))

O(n log n G(n) a(n)}
per O(n) operations

O(n G(n))

O(n log n G(n) a(n))
per O(n) operations

O G(n))

82

Volume 8, number 2

element is the first one belonging to S in the block.
Operation next may involve finding the next element
within the block and the next of the parent block.
Similarly remove may delete an element from a
doubly-linked list within a block and also delete the
parent block from the list of active blocks. Each
application of next or remove requires O(log n) step
for each level. Storage required is O(x log log n) for
links within the blocks and O((n/log 1) log(n/log 1))
for linking the blocks. O((n/log n) log log n) bits are
required to maintain first for all the blocks combined.
Hence the total storage is

O(n log]ogn)-ro(—n_ log(n))

logn 1" \logn

+ O(" log log n) = O(n log log n)+ On).
log n

It is straightforward to generalize this idea of
splitting into blocks to more than two levels. For
instance with ¢ = 3, we will split each block of size
log n into smaller blocks each of size log log .

We now describe the algorithm for any arbitrary ¢,
1 <t < G(n). We associate a tree structure having
(¢ + 1) levels with the set {1, 2, ..., n}. The root is at

level 0 and it corresponds to the entire set {1, 2, ...,n}.

A node at the jth level, 0 <7 <, corresponds to a
contiguous block of log!(n) unique elements; different
nodes at the same level correspond to blocks of dis-
joint sets of elements. Hence the entire set {1, 2, ...,n}
is represented at the ith level by n/log'(n) nodes,
0 <i <1 Ablock of length log'(n) corresponding to
a node at ith level is split into smaller blocks of length
log™(n) which correspond to sons of this node at
(i + 1)stlevel,i+ 1 <1 There are n nodes at the rth
level, each corresponding to one individual element.
A node is active if there is an element x € S, in the
block corresponding to it. Initially all nodes are
active. As a result of remove operation some nodes
may become inactive. Inactive nodes never become
active again. Clearly a rth level node is active if the
element corresponding to it is in S; an ith level node,
0 <i<y, is active if it has a son which is active.
It is important to note that no explicit pointers
are required to maintain the tree structure. An array
can be maintained corresponding to every level; given
the index of a node at (i + 1)st level, the index of its
father node at ith level can be computed easily by

INFORMATION PROCESSING LETTERS

February 1979

arithmetic manipulations. We next superimpose a
doubly linked list structure on each level — all the
active brother nodes in a level are doubly linked.
Furthermore, every active internal nodes has a pointer
to its first active son.

The amount of storage used is O(n log’n) for
doubly linking all the rth level nodes since they have
log"~!(n) brothers each. A node at the ith level, i <,
has log~! (n)/log’ (n) brothers; number of nodes at
the ith level is n/log’ (n). Hence number of bits for
doubly linking nodes at ith level is O(n/log’ (n)
log(log'~* (n)/log'(n)) = O() — O(n log™* 1 (n)/log!(n)) =
O(n), 1 <i<r. Additional data kept with each node
requires no more than O(#) storage per level for all
nodes combined. Hence total amount of storage is
bounded by O(x log" (n)) + O(tn). The time required
for processing each instruction is O(f log n), since at
worst, we may have to go up the tree up to the first
level (and then possibly climb down all the way to
find the next element, for instance).

This technique can be applied even when n is not
a power of 2, without ‘padding’ with dummy ele-
ments. Let Ig(n) denote the next power of 2 greater
than or equal to log n;1g%() = n and 1g* 1 (n) =
lg(lg'(n)). Forany ¢, 1 <t < G(n), we have the tree
structure consisting of (¢ + 1) levels as before. All
nodes at the ith level, 0 <i <1, except possibly the
rightmost node, correspond to blocks of length 1g'(n);
the last node corresponds to the remaining n —
Ln/lgi(n)J -1g°(n) elements, if 1g/(n) does not evenly
divide n. Thus, number of nodes at the ith level is
[n/lgi(n)] and number of brothers of each ith level
node is at most []gi‘l(n)/]gi(n)]. Hence time and
storage requirements are of the same order as in the
previous analysis. Since lgi"l(n)/lgi(n), foranyi>1,
is a power of 2, index of the father of any jth level
node j, can be computed by simple manipulation of
the bit representation of j.

3. Solving the type 2 problem

We show that this problem is reducible to the dis-
joint set union problem [2]; hence n applications of
remove, next require no more than O(n log n a(n))
steps using O(n log n) bits of storage. The technique
of the last section can then be used to obtain the
space-time tradeoff.

83

Volume 8, number 2

GivenSC {1,2, ..., n}, we define an equivalence
relation = on the set {1, 2, ..., n} as follows. Let
SUCC() denote the smallest j, j >i and j € §; SUCC
is undefined if there is no such j. Define an equiv-
alence relation = as follows; i; = i, if and only if
SUCC(i;) = SUCC(iy) or SUCC is undefined for both.
Initially, each element belongs to a separate equiv-
alence class. Effect of remove (/) is to adjoin two
equivalence classes; namely the class corresponding
to (f — 1) and the one corresponding to i, Effect of
next(/) is to find the unique SUCC associated with
the equivalence class of i — data which can be main-
tained with each equivalence class.

Forany 1, 1 <1< G(n), we associate a tree struc-
ture of 7 + 1 levels with the set {1,2, ..., n}. We
define active nodes as given earlier. We redefine SUCC
for any node b, SUCC(b) is the first active brother to
the right * of b, if such a node exists. Two brother
nodes will be called equivalent if both have the same
SUCC or SUCC is undefined for both. Data structure
for the disjoint set union algorithm is maintained
corresponding to the set of brother nodes at every
level. It is thus possible to find the SUCC of any node
using the disjoint set union algorithm. Furthermore,
a pointer to the first active son of every internal node
is maintained with every node in the data structure.

Operation next(/) may be implemented as follows.
Find the successor SUCC of the (7th level) node cor-
responding to £ If it has no successor, repeat this

step on the father node and successive ancestor nodes.

Ultimately, either no successor is found (next is
undefined) or a successor node of an ancestor is
found. Then the first active son of b is found and
this step is repeated until an active terminal node
corresponding to an element in S is found.

Operation remove () is implemented as follows.
Whenever a node b is made inactive, the equivalence
class corresponding to b and that corresponding to
the brother node to the left of 4 (if one exists) get
merged. The pointer of b’s father to the first active
son may need to be modified. This process continues
up the tree as long as the removed node was the only
active son of its father.

Disjoint set union algorithm requires O(r logr) .

* A node nj is to the right of n in the same level if the
elements in the block corresponding to ny are all smaller
than those corresponding to g,

84

INFORMATION PROCESSING LETTERS

February 1979

bits of storage for 7 elements. Every node at the ith
level has logi(n)/logi+l(n) sons, i + 1 <{, which is the
set size for the disjoint set union algorithm at G+ Hih
level corresponding to the sons of this node. Since
number of nodes at the ith level is n/lqgi(n), total
storage requirement for (7 + 1)th level is

n_ log'(n) logi(n) _
O(log"(n) log™*1(n) 10g(log"“”(n))) =0G).

A (t — Dth level node corresponds to a block of size
log"~(n) and hence has log’~(n) sons. Thus storage
requirement for the rth level is

O(#% “log™ () log(log™! (n)))

= O(n log' (n)).

Total storage requirement is O(n log? (n)) + O(n).

Every next and remove operation involves at mos
O(z) disjoint set union operations on sets of size Jess
than n. Total time required for O(n) operation is
bounded by O(tn log n a(n)).

4. A variation

A slight variation of the data structure results in a
different space-time trade off. In the type 1 problem
we do not doubly link the terminal (rth level) nodes.
A linear search is performed at rth level to find the
next active brother of an element. Rest of the levels
are doubly linked as given before. Thus the total
storage requirement is O(zn) for all the levels com-
bined, since only O(n) storage (instead of O(n log'(n))
is needed for the rth level. However linear search at
the lowest level may Jook at as many as log™ ()
elements, resulting in a cost of O(log n log"1(n)) for
that Jevel. Costs for other levels is O((r — 1) log n);
hence the total cost is Olog 7 log"~* (1)) + O((z — 1)
log n). A similar variation for the type 2 problem
results in a storage complexity of O(zn) and time
complexity of O(n log n log" (1)) + O(tn log n a(n)).

Acknowledgement -

I'am indebted to Professor S. Rao Kosaréju of
Johns Hopkins University who made many helpful

Volume 8, number 2 INFORMATION PROCESSING LETTERS February 1979

suggestions. Earlier work with Professor David Gries References

on implementing a sieve algorithm for finding prime

numbers led to this problem. Professors C.L.Liuof {1] D. Gries and J. Misra, A linear sieve algorithm for finding
the University of Illinois and Jim Bitner of the Uni- prime numbers, CACM. To appear.)

versity of Texas made helpful comments on improving (2] R.E. Tarjan, Efficiency of a good but not linear set

union algorithm, JACM 22 (2) (1975).

[3] P. Van Emde Boas, Preserving order in a forest in less
than logarithmic time, Proc. 16th Ann. Symp. Founda-

problem. tions Comput. Sci., October 13—15, 1975, University of
California at Berkeley.

[4] P. Van Emde Boas, Preserving order in a forest in less
than logarithmic time and linear space, Information
Processing Letters 6 (3) (1977) 80--82.

the style of the paper. I am grateful to a referee who
pointed out reference [4], which discusses a related

85

