Distributed Computing (1986) 1:177-183

Systolic algorithms as programs

K. Mani Chandy and J. Misra

DISTRIBUNED
COMPUILIE

© Springer-Verlag 1986

Department of Computer Sciences, University of Texas, Austin, TX 78712, USA

Abstract. We represent a systolic algorithm by a
program consisting of one multiple assignment
statement that captures its operation and data
flow. We use invariants to develop such programs
systematically. We present two examples, matrix
multiplication and LU-decomposition of a matrix.

Key words: Systolic algorithm — Multiple assign-
ment — Invariant — Program development — Proofs
of programs

1 Introduction

Systolic algorithms [1] are synchronous parallel
programs executing on a number of nodes (ma-
chines) interconnected by a set of lines. Systolic
algorithms are often described by pictures of nodes
and lines, descriptions of processing at each node
in the picture and data movement between nodes.
A pictorial representation of an algorithm suggests
that it can be implemented on a VLSI chip; how-
ever, pictures do not lend themselves readily to
proofs of correctness.

We view systolic algorithms as programs and
apply traditional program development tech-
niques, based on invariants, in their design. In this
paper we carry out the development of algorithms
for matrix multiplication of band matrices and L-
U decomposition of a band matrices. Both algo-
rithms are from Kung and Leiserson [1].

We are far from proposing a VLSI design
methodology: we do not consider many of the limi-
tations in a physical realization; these are concerns

This work was supported in part by a grant from the Office
of Naval Research under grant N00014-85-K-0057

Offprint requests to: K.M. Chandy
For photographs and biographics see Distributed Computing
(1986) 1:40-52

for a later stage in the design. However, our use
of traditional program development techniques
seems to yield designs for which data flow rates,
initial and boundary conditions — the tedious de-
tails — are derived mechanically.

A great deal of work has been done on system-
atic methods for developing systolic algorithms
[5-8]. These methods are largely based on trans-
forming sets of equations into forms suitable for
implementation on systolic hardware. The primary
contribution of this paper is to represent systolic
algorithms by programs derived from invariants.
Each program consists of one multiple assignment
statement. Our goal is to apply traditional pro-
gramming techniques in developing systolic algo-
rithms.

2 Programs and systolic algorithms

2.1 Programs

Our programs have multiple assignment state-
ments. A multiple assignment statement of the
form,

x, y=f(x, ), g(x, »)

assigns f(x, y) and g(x’, ") to x, y respectively
where x’, y are the values of x, y prior to the
execution of the statement. We allow the right sides
of assignments to be conditional expressions. For
instance, we represent

0, if a>0
:{1, if a<0
by,
x=0if a>0~1if a<0

A program consists of declarations of its vari-
ables and their initial values and one multiple as-



178

signment statement. The program execution con-
sists of executing this statement repeatedly forever.
Non-terminating execution is convenient for rea-
soning; however, the program may be stopped
when the left and right sides of the statement are
equal in value, because no further change in vari-
able values is then possible. Restricting a program
to one multiple assignment may seem too restric-
tive. However, our experience suggests that such
programs are adequate for representing systolic al-
gorithms. A multiple assignment can be thought
of as a synchronous computation — computing all
expressions on the right side synchronously — and
hence, captures the essence of systolic computa-
tions. Elsewhere [2-4], we have shown that a set
of multiple assignment statements executed in a
non-deterministic fashion represents different
kinds of parallel and distributed computations; for
this paper we do not require this generality.

2.2 Systolic algorithms

A systolic algorithm is executed on a collection
of nodes and directed lines connecting pairs of
nodes. A step of the computation consists of some
nodes (1) reading values from (some or all of) their
input lines, (2) computing and (3) writing values
to (some or all of) their output lines. A value writ-
ten to a line is available at the next step at the
node to which the line is directed. We may repre-
sent local data at a node by placing the data on
lines directed from the node to itself.

Systolic algorithms display regular structures:
there are only a few kinds of nodes, and intercon-
nections among nodes are regular. Furthermore,
in many cases, systolic hardware operates in a pipe-
lined fashion.

2.3 Representing systolic algorithms
by programs

We represent each line in a systolic circuit by a
variable; a variable value at any point in the com-
putation is the value on the corresponding line.
Each node in a systolic circuit is represented by
an assignment (in the multiple assignment state-
ment). A synchronous step in the systolic algo-
rithm is simulated by executing a multiple assign-
ment statement: it assigns new values to certain
variables based on current values of some vari-
ables. A small example is given below.

Example (Shift register). A systolic algorithm for
a shift register with N nodes is shown pictorially

K.M. Chandy and J. Misra: Systolic algorithms as programs

Fig. 1. Shift register

in Fig. 1. Every node transmits the value from its
input line to its output line in every step. Lines
are numbered as shown in the picture.

Let x[i] be the variable associated with the i'®
line. The multiple assignment statement which rep-
resents the operation of this algorithm is, (infor-
mally)

for all iin 0 to N—1::{assign in parallel}
x{i+1]=x[i].

We will write this as (in a notation to be introduced
later):

in0..N—1::
I x[i+1]:=x[i]
>

Note that there is no explicit mention in the pro-
gram about data movement. Data items move
within the array by being assigned to different ar-
ray elements, but our treatment does not trace the
movement of individual data items.

A multiple assignment statement may represent
an algorithm having no systolic realization. For
instance, a line value is read by exactly one node
in a systolic algorithm but a variable may appear
in the right hand side of more than one assignment
in our program. Similarly, computation at a node
usually depends on only a few input line values
due to physical constraints, but our programs al-
low expressions on the right hand side to have
arbitrary numbers of variables. We constrain our
programs to mirror these limitations of systolic
hardware.

Limited fan-in, fan-out: Each expression on the
right hand side of an assignment has a bounded
number of variables. This bound is the maximum
fan-in. Each variable appears at most once on the
left hand side of an assignment and at most once
on the right hand side of an assignment; this is
because each line is directed from one node to one
other node.

Systolic algorithms typically operate on arrays
of data items. Systolic algorithms require that the
speed at which data moves through the circuit be
independent of the index of the data items (usual-
ly). Hence, we propose:



K.M. Chandy and J. Misra: Systolic algorithms as programs

Linearity : The step number at which a computa-
tion is done is usually a simple (e.g., linear or pie-
cewise-linear) function of data indices.

We have shown the correspondence between
systolic algorithms and a special kind of program.
Henceforth, we deal only with issues of developing
such a program from a specification.

2.4 Program development

As in other areas of programming, an invariant
is a central concept in our approach to systolic
algorithms. In fact, it seems that the program de-
sign task is almost over once a suitable invariant
is found. We introduce a variable 7, denoting the
step number (7 is initially 0 and is increased by
1 in each execution of the statement) and state
an invariant relating various data items and . We
will be guided by the limited fan-in-fan-out and
linearity requirements in postulating an invariant.
The effect of statement execution is to preserve
the invariant when ¢ is increased by 1.

The invariant is useful in deriving initial condi-
tions and boundary conditions. Determining these
conditions and the rate of data flow are the most
tedious details one has to contend with; invariants
seem to simplify the effort.

2.5 Notation

We use || to break up a multiple assignment state-
ment into its component assignments for conve-
nience in reading. For instance,

X, y=y, X

is equivalent to

The following notation, where S is a set and
each Q(i) is an assignment (or multiple assign-
ment):

in S::1Q @)

denotes a statement obtained by enumerating, for
every element of S, Q(i) with i replaced by that
element. For example {7 in 0..1:|[X[q]:=Y[i]) is
equivalent to || X[0]:= Y[0] | XT1]:=Y[1]. We
omit S when it is clear from the context. The state-
ment,

x=eif b
is to be interpreted as

x=eif b~xif —1b.

179

The scope of if will be shown explicitly, if needed,
as in the following.

x, y="(ey, e,)if b

is equivalent to,

x, y=e, if b, e, if b
and also equivalent to,

(x, y=¢;, ) if b

3 Band matrix multiplication
The problem is to compute
C=A4'B

where A, B are band matrices and “-” denotes
multiplication.
We have,

Cli, kl=}, Ali,j1x Blj. k]

This expression cannot be used directly for
computing C[i, k] since that would violate the lim-
ited fan-in-fan-out requirement. Therefore, we de-
fine as in [1}:

0, if j<0

Cli, k]:{cf*l[i, K]+ Ali, j1x Blj, k],ifj=0

(D
Equation (1) suggests that A[L, /] and B[j, k] will
be multiplied in some step. Using the linearity cri-
terion, we may postulate that they will be multi-
plied in a step which is a linear function of i,j, k.
If this linear function is independent of one of its
arguments, say i, then for any fixed value of j, k,
Ali, j] and B[j, k], will be multiplied in the same
step for all i; that is B[j, k] will appear in more
than one computation in a step, thus violating the
limited fan-in-fan-out requirement. Hence, we may
assume that A[i,f], Blj, k] are multiplied in a step
that is a nontrivial linear function of each of its
arguments — we choose the simplest such function;
i+j+k.

Since A, B are band matrices, we postulate that
each diagonal (main, subdiagonal or superdia-
gonal) is pipelined. Let one node be assigned for
each pair of diagonals — one from 4 and one from
B — to carry out computations on element pairs
from these diagonals. Element A[i,j] belongs to
diagonal (i—)) of A and B[j, k] to diagonal (j—k)
of B; hence index the node at which they are mul-
tiplied by (i—j,j—k).

Equation (1) suggests that A[i,jl, Blj, kI, ¢t
[i, k] be made available at the same time at some



180

node and, from this discussion, that node is (i—j,
J—k). Therefore, each node (v, w) has three input
lines X[v, w], Y[v, w] and Z[v, w], along which A4,
B, C respectively are pumped into it. From this
discussion, we have the following invariant.

Invariant:

t=i+j+k=

[X[l"_ja]_k] :A [l:]] and)
Y[i—j,j—k]= B[}, k] and
Zli—j,j—kl=C"" i, k].

]

The variables i, j, k, ¢ in the invariant are univer-
sally quantified over all integers; ignore the equa-
tions corresponding to undefined subscript values
in the right side.

Our design task is nearly complete! We merely
have to show how to establish the invariant initial-
ly, and how to preserve it when ¢ is increased by 1.

3.1 Initial Conditions

Initially, let ¢ be 0. Then for any i, j with k= — (i +
J), we are required to have,

Xli—j,i+2/]1=Ali, j].
Similarly,

Let j=—(i+k), where i>0, k>0. Then, j<0.
Hence,

i k) =0.

Substituting — (i+ k) for j in the invariant,
Z2i+k, —i —2k}=0.

Summarizing the initial conditions,

X[i—j, i+ 2j]1=A[i,j], for all i, j
Y[-2j—k,j—k]l=B[j. k], for all j, k
Z[2i+k, —i —2k]=0, for i>0, k>0.
=0

3.2 Preserving the invariant

We show how to preserve the invariant when ¢
is increased by 1. First, we simplify the notation
by introducing,

v=i—jand w=j—k.

First consider the data item A4[i, /]. From the invar-
iant, it equals X[v, w] at r=i+j+k. It must equal
X[v, w—1] after ¢ is increased by 1. This can be

K.M. Chandy and J. Misra: Systolic algorithms as programs

accomplished by the assignment,

X[v, w—1}= X{v, w].

Similarly, we get the assignments,

Y[v+1, wl:= Yo, w] and,

Zlv—1, w+1]:=Z[v, wl+ X[v, w] x Y[o, w].

Note that these steps need be carried out only for
t, i, J, k satisfying t=i+j+k, ie., t=(0{—)—(G—
k)+3j. We rewrite this condition — weakening it
somewhat, to eliminate 7, j, k — as = (v —w) mod 3.
This results in the following program.

Program P1 {for multiplying band matrices}

initially :
(for all4,7:: X[i — 7, ¢ + 27 = Alr,g)
(for all jk:: Y[ — 25—k, j— k] == Bl3,k] }
(for allk s Z[2i + k, — 1~ 2k] = 0)
assign  : {for all v, ws
(I Xfow—1] = Xl
i T+ Lw = Yw
H2lv—1w+1] = Zvuwl+ XpwxYow] )
if t=={v—w) mod3)
Il toi= t+1
end {P1}

This program represents a systolic array. We
have finished a large part of the design. What re-
mains to be done is to determine the size of the
systolic array and the number of steps required
to complete execution.

3.3 Determining array size
and number of steps

Program P1 does not specify the dimensions of
X, Y, Z nor the step number 7, up to which pro-
gram execution should continue. These parame-
ters, and others, can be deduced from the invariant
using the sizes of input matrices 4, B as parame-
ters.

Let BA, TA (bottom of A, top of A) have the
following meaning: A[i, j] is zero unless BA <i—
J<TA. Likewise, define BB, T B for matrix B. The
multiplication in program P1 vyields a zero if
X[v,w]=0 or Yo, w]=0. Therefore, we may re-
strict v, w to the range BA<v<TA and
BB<w<TB for computation of the product.
Hence, Z can be dimensioned (BA—1..TA,
BB .. TB+1). Other assignments merely move the
clements of 4 or B; this corresponds to feeding
the systolic array appropriate elements of 4 and
B.

Next, we determine when and where C[i, k],
for any given i, k, becomes available. That 18, we
want to find T and v, w such that,

(t="T)=(Z[v, w]=Cli, k).




K.M. Chandy and J. Misra: Systolic algorithms as programs

First we determine j such that:
Cli, k1= C7 7 i, k. 2

This holds when A[i, ]=0 or B[j, k]=0. (4[i, /1=
0 and B[j, k]=0 if j exceeds the number of columns
of A. To eliminate special case analysis, we assume
that 4, B are augmented with a suitable number
of zeros for larger values of j.)

Ali, j1=0, for j=0, if i—j<BA,
B[j, k]=0, for j=0, if j—k>TB.

Hence the minimum value of j for which (2) holds
is j* given by

j*=min(i—BA, k+TB)+1
From the invariant, at T=i+j*+k,

Note that in case —BA=TB, j*=min(i, k) +
TB+1. Hence the systolic array has a pleasing
diamond structure as given in [1]. However, for
arbitrary BA, T B, the structure is not as regular.
We show the relevant portion (i.e., where multipli-
cation is done) of an arbitrary systolic array in
Fig. 2.

The invariant simplified the considerations of
initial and boundary conditions and data flow
rates. In this particular example, we imagined that
all the elements of matrices 4, B are initially placed
on certain lines, though the useful work (of multi-
plication) is performed in a limited region. Now
we consider an example, L-U decomposition,
where such an assumption cannot be made; in fact,
the goal of the algorithm is to compute something
akin to 4, B from C.

4 L-U Decomposition of a band matrix

Given a band matrix 4, its L-U decomposition
is a pair of matrices L and U where L is a lower
diagonal matrix with I's on diagonals and U is
an upper diagonal matrix, satisfying the following
equations. (These equations are from [1] with indi-
ces renamed and renumbered starting from 0.)

A°[i, k]=A[i, k]
AT k)= A'i, K] — L{i, 1< UG, K1, j=0

0, 1if i<y
Lli,jl= 11, if i=j
AT, AU, A 1>

0,if j>k

b k]:{ A, KL if <k

181

N
PPN
I~

w.
%

S
AN
N
& P
IR A

Fig. 2. Relevant portion of a systolic array for multiplications
of band matrices with BA= —3, TA=2, BB= —1, TB=1

We adopt the convention that A’[i, k],=A[i, k},
for j>0. As described in the last section, let
BA TA be such that A[, /=0 unless
BA>i—j>TA. It can be shown for band matrices
that

A K] =
Al K], if (i—j>TA) or (j—k<BA)
Al[i, k]—Lli, jl x U, k], otherwise

The form of computation on 4 suggests matrix
multiplication. Hence, we attempt using the invar-
jant for matrix multiplication, with variables suita-
bly renamed for this problem. In the following in-
variant we have constrained certain indices because
L is a lower diagonal and U an upper diagonal
matrix.

Invariant:
t=i+j+k=
=0, i=], k>j= X[i—j,j—kl=Lli, j]) and
(G=0,i>j, k=j= Y[i—j, j—kl=Ulj,k])and
(i=0, k=0,i>/, k>j=Z[i—j, j—kl=Ali, k])
]

As before, we give initial conditions satisfying
the invariant and show how to preserve the invar-
iant when ¢ is increased by 1. The major difference
from matrix multiplication is that L, U, unlike in
matrix multiplication, are not available initially
and have to be computed.

4.1 Initial conditions

For ¢t=0, the first two conditions in the invariant
are vacuously satisfied because there are no i, J, k



182

satisfying these conditions. The last condition, for
any i>0, k=0, can be satisfied by letting j= — (i +
k) and hence.

Z[2i+k, —i —2k]=A[i, k]= A[i, k] {since j< 0}

4.2 Preserving the invariant
As before, we use
v=i—jand w=j—k.

It follows from the invariant that we need only
consider the cases for v>0 and w<0.

4.2.1 Preserving the first condition
in the invariant

We now consider preservation of,
t=i+j+kand j>0,i>/, k>j=
Xlv, wl= L[4, J].

For any i,j,t where i>j>0 and r>i+2;: there
is some (v, w), v>0, w<0 such that, X[v, w]=
L[i, j].

We now ask ourselves how this requirement
is to be met. If #>i+2j, L[i, /] has already been
computed and has to be assigned to the proper
Xlv, w]. If t=i+2j, then L[i, /] is to be computed
and assigned to the appropriate X[v, w].

Case 1. t>i+2j {equivalently, w <0} :
Then, X[v, wl=L[i, j].

The invariant is preserved by:

X, w—1}=X[v, w]

Case 2. t=i+2j {equivalently, w=0}:

The invariant is preserved by computing L[i, /] ac-
cording to its defining equation and then assigning
it to the proper variable.

At the following step, i.e., the (¢+1)" step, the
only k satisfying

(+1=i+j+k
isk=j+1.

Hence at this step we must have
Xlv, —1]=LIi, ]|
substituting for L[z, j]:

AL UG if i>j~1 if i=).

K.M. Chandy and I. Misra: Systolic algorithms as programs

From the invariant, at r=i+2j,
A, J1=Z[i—j, 0].

Also, at t=i+2j{i>j, k=j}, U[j, jl]= Y[i—}, 0].

Hence, the following assignment preserves the in-

variant {i<j is rewritten as v>0}:
X[v, —1]=Z[v, 0]/Y[v, 0] if v>0~1 if p=0.

4.2.2 Preserving the second condition
in the invariant

By similar reasoning we identify two cases.

Case 1. t>2j+k {equivalently v>0}:
Yio+1, wl=Y[v, w]

Case 2. t=2j+k {equivalently v=0}:
Y1, wl=A’[j, k]

At t=2j+k, A'[j, k]=Z[0, j—k]. Hence,
Y11, wl=Z[0, w]

4.2.3 Preserving the third condition
in the invariant

From the equations,

Ali, k), if i—j>TA or j—k < BA

AT k= A
[i, &1 {Af[i, Kl— L[i, | x U}, k], otherwise

By similar arguments we derive the following as-
signment to preserve the invariant.

Zlv—1, w+i]=
Zlv, wlifv>TA or w<<BA ~
Zlv, w]—X[v, wlx Y[v, w]if v< T4 and w> BA

Program P2 {L-U decomposition of a band matrix}

initially : ¢ =0,
(forall £ >0,k>0: Z[2i+k, —{— 2k} = Ali,k] }

assign : (for all v,w:
H Xy, w—1] = Xvw]ifw <0~ Z[v,0)/Y]v,0]if w=0and v>0
~ 1lifw==0and v==0
i Yo+ 1w = Ywulifv> 0~ Z0wifv=0
I Zlv—1,w+1] = Zvw] — X[v,0]XYvu]ifv< T4 and w > BA
~ Zlvw]ifv>TAor w< BA)
if ¢ == (v—w)mod 3)
I ¢ o=t 1
end {P2}



K.M. Chandy and J. Misra: Systolic algorithms as programs

5 Discussion

Programs P1, P2 capture the essence of the algo-
rithms given in [1] for the corresponding problems.
The multiple assighment statement in each pro-
gram can be implemented by associating a node
with each (v, w) and carrying out the operations
in each step as given by the algorithm. The algo-
rithm tells us that node v, w accepts inputs along
X[v, w], Y[v,w], Z[v,w] and produces results
along X[v, w—1], Y[v+1,w] and Z[p—1, w+1]
in each step ¢, where /= (v —w) mod 3. Some ingen-
jous optimizations have been applied in [1] so that
only one kind of node — that receives three values
A, B, C and computes 4+ Bx C — may be used
almost completely throughout the systolic array.

This work is part of an ongoing project called
UNITY [2-4] to provide a unified framework for
the development of sequential, parallel and distrib-
uted programs. A thesis of UNITY is that early
stages of program design should not be concerned
with architectural and programming language
issues: these concerns are appropriate only for
later stages of design. Another thesis is that diverse
applications — ranging from VLSI algorithms to
communication protocols, from command and
control systems to spread-sheets — are programs
and amenable to a common design strategy. UNITY
has yet to give conclusive proof of these theses
— but we are hopeful.

VLSI implementations require considerably
more than an algorithmic description. We have

183

only addressed concerns dealing with correctness
arguments and systematic program development.
It is straight-forward to map our programs to cir-
cuits with limited fan-in and where each line is
directed from one node to one node. However,
not all such circuits can be implemented in VLSL

6 References

1. Kung HT, Leiserson CE (1980) Algorithms for VLSI Proces-
sor Arrays (Section 8.3). In: Mead C, Conway L (eds) Intro-
duction to VLSI Systems. Addison-Wesley

2. Chandy KM (1985) Concurrency for the Masses. Invited Ad-
dress: Third Annual ACM Symposium on Principles of Dis-
tributed Computing, August 1984, Vancouver, Canada. Pro-
ceedings of Fourth Annual ACM Symposium on Principles
of Distributed Computing

3. Chandy KM, Misra J (to be published) An Example of Step-
wise Refinement of Distributed Programs: Quiescence Detec-
tion. ACM Trans Program Lang Syst

4. Chandy KM, Misra J (1985) Programming and Parallelism:
The Proper Perspective. Research Report, Computer
Sciences Department, University of Texas, November 1985

5. Leiserson C, Rose F, Saxe J (1983) Optimizing Synchronous
Circuitry by Retiming. In: Bryant R Third Caltech Confer-
ence on VLSI California Institute of Technology, March
1983, pp 87-116

6. Li GJ, Wah BW (1985) The Design of Optimal Systolic Ar-
rays. IEEE Trans Comput. C-34: 66-77

7. Chen MC (1985) A Parallel Language and its Compilation
to Multiprocessor Machines or VLSI. Research Report, Yale
University, DCS-RR-432, October 1985

8. Chen MC (1985) The Generation of a Class of Multipliers:
A Synthesis Approach to the Design of Highly Paraliel Algo-
rithms in VLSI. Research Report, Yale University, DCS-RR-
442, December 1985






