SIAM J. COMPUT.
Vol. 6, No. 1, March 1977

A LINEAR TREE PARTITIONING ALGORITHM*

SUKHAMAY KUNDUT anp JAYADEV MISRAL

Abstract. Given a rooted tree with a positive weight associated with every node, a linear
algorithm is presented that will partition the tree into a minimum number of subtrees such that the sum
of node weights in no subtree exceed a prespecified value k.

Key words. tree, partition

1. Introduction. Let T be arooted tree with a positive weight associated with
every node. A feasible k -partition C of T'is a set of edges such that upon removal
of these edges from the tree, each of the resulting component subtrees has a total
node weight (sum of node weights) at most k. The problem studied in this paper is
to find a feasible k-partition of minimum cardinality (an optimal k-partition).
Note that an optimal k-partition partitions the tree into minimum number of
components each of whose total weight is less than or equal to k. We will use
“partition” instead of “k -partition”” when the context is understood. The weight
of each node of T is assumed to be at most k.

A more general problem is when the edges are also weighted, and it is
required to find a k -partition that has minimum sum of edge weights. Lukes [5]
has given an O(k*n) algorithm for this general problem, where n = number of
nodes in the tree. We present an O(n) algorithm for the special case of unit edge
weights. Our algorithm is also valid for weighted edges if the weights satisfy a
certain monotone property, to be defined later. Note that for large k, say, order of
Vn, Lukes’ algorithm will be less efficient than a linear algorithm.

The tree partition problem arises in partitioning any hierarchical structure
into a minimum number of segments when there is a constraint on the size of a
segment. For example, distributing a hierarchical data base into a minimum
number of pages fits into this model; k denotes the size of a page. Usually the
nodes in the data base would be of different sizes reflected by the corresponding
weights. Partitioning of logic modules into a minimum number of blocks (when
block sizes are fixed) to minimize the total number of interconnections among
blocks also fits into this model assuming that the modules are arranged in the form
of a tree.

Problems of partitioning arise in several different contexts. For example [3],
[4] consider the problem of optimal segmentation of a program into pages so that
the average number of interpage branching is minimized ur.lor certain assumed
probabilities of branching. The problem of optimally partinoning a tree into
disjoint chains has been considered in [6].

2. Results. Let T, denote the subtree rooted at node p, S(p) the set of sons of
node p, w(p) the weight of node p, and W({p) the sum of node weights in T,,. The
following lemma is fundamental to our algorithm.

* Received by the editors September 24, 1975, and in revised form May 6, 1976.

1 Computer Science Department, University of Texas at Austin, Austin, Texas, Now at LOGI-
CON Corporation, San Pedro, California 90733,

1 Computer Science Department, University of Texas at Austin, Austin, Texas. This research was
supported in part by the National Scicnce Foundation under Grant DCR75-09842.

151

152 SUKHAMAY KUNDU AND JAYADEV MISRA

Limma 1. Let p be a node in T such that W(p)>k and W(r)=k,VreS(p).
Then there exists an optimal k-partition containing the edge (p, ry), where

W(ro) = max {W(r)}.
reSip)

Proof. Since W(p)>k, any feasible partition C necessarily contains an edge
from T,. Let (u, v) be such an edge in C from T,. If u # p, then (u, v) is in the
subtree T, r € S(p). Clearly, C' = C—{(u, v)}+{(p, r)}is afeasible k -partition, and
is also optimal. Wé may thus assume that each edge of C from T, is of the form
(p, r). The lemma follows by replacing one of the edges (p, r) in C by (p, ro)-

ro is called a heaviest son of p. Note that the sum of the node weights in a
subtree (not the weight of the node) determines the heaviest son. T—T, will
denote the rooted tree obtained upon deletion of T; from T.

LemMa 2. Let (p, r) be in some optimal partition of T. If C,, C, are optimal
partitions of T—1T, and T, respectively, then C= Ci+Co+H{(p,)} is an optimal
partition for T.

Proof. C is a feasible partition. Let C' be any optimal partition containing
(p,r),andlet Ci, C), denote the set of edgesin C' from T— T, and T, respectively.
Obviously, |Ci|=|Ci| and |G| =|C3|. Hence ICl=|C.

Lemmas 1 and 2 lead to the following algorithm. Find a node p such that
W(p)>k and W(r)=k.Vre S(p). Let ro be a heaviest son of p. Then constructan
optimal k-partition C, of T—T,, and let C=C, +{(p, ro)}- (Since W(ro) =k, the
optimal partition of Ty, is null.)

A node p as above can be located by proceeding along the tree level by level,
beginning at the highest level (distance from root) and going down to the root level
(level 1). At any stage of the algorithm, we have a single tree which is modified by
deletion of a subtree. We let W*(p) denote the weight of subtree rooted at node p
in the modified tree.

ALGORITHM FOR OPTIMAL k-PARTITION

begin ,
C = @ assign W¥(q) = w(q) to all leaf nodes in T;
for i = maximum-level-in-T downto 1 do
begin process ith level:
while there is an unprocessed node p in level i do
begin process node p:
remove heaviest sons of p one by one from S(p) until
W*(p)= qusm W*(q)+w(p)=k;
For every such son r removed, add the edge (p,r)to C
end process node
end process level
end algorithm;

A simple technique to process node p is to rank order all the sons of p based
on their W*(+) value. The heaviestsons can then be removed one by one until the
total weight is less than or equal to k— w(p). This step however, requires
O(S(p)|log |S(p)}) time to process node p and hence the overall running time of
the algorithm becomes O(nlogn).

A LINEAR TREE PARTITIONING ALGORITHM 153

The following technique for processing node p was suggested by an anony-
mous referee, resulting in a reduced running time for this step to O(|S(p))) only.
“Process node p” step essentially partitions S(p) into two subsets S (p) and Su(p)
(light and heavy) such that : o

(1) g€ S.(p) and reSu(p)=> W*(q)é W*(r),
@ Y WHgt+wp)=k .
qeSuip)
3) SZ() W*(q)+w(p)+ W*(r)>k, VreSu(p).
qe€ L»P

This partitioning can be performed by successively splitting S(p) using 2
linear median finding algorithm [1]. First S(p) is split into two parts Su(p), Sulp)
satisfying (1) and 1Su(p)| =S, (p)|=|Su(p)|+1. Then conditions (2), (3) are
checked in O(S(p))) time. If both conditions hold, we have located the desired
partition. 1f (2) holds but (3) does not hold, then Su(p) is split into “lower”” and
‘“upper’’ parts and the algorithm is repeated. If (3) holds but (2) does not hold,
then Sy (p) is split.

More formally, the following routine returns the set Sy as value given the
inputs S and k—w(p). Medianfind-and-halve(S, S,) returns the “ypper” half $;
of S. ‘

split(S, k):
begin g
if |S|=1 then [split = if W*(q), ge S=k then &
, else S]
else begin
medianfind-and-halve(S, S
1= Yoes, WHA)s
case ¢ of
t=k:split=Sy;
t < k: split = split(St, k—1);
1>k split = sphit(S— S, k)+S,
end
end split;

Medianfind-and-halve takes linear time. Since we examine a set of approxi-
mately half the size in every succeeding step, split(S(p), k) requires

S S(
L%gn+L%z>_i+.)= 0(se))

ofjswl+
time. Hence the running time of the optimal k -partition algorithm is O(n). For
small values of k, good running time can be obtained by distributing S(p) into k
buckets—node g goes to the ith bucket for W*(g) =1i,q € S(p). Then lighter sons’
weights are successively added to obtain a value as close as possible, but not
exceeding k —wi(p).
Remarks. The algorithm presented above can be applied to a few other
similar problems. First, assume that the edges are also weighted and the weights
satisfy the following monotone property: on cach path from the root toa node of

154 SUKHAMAY KUNDU AND JAYADEV MISRA

the tree, the edges closer to the root have smaller weights than those that are
further away, and all edges directed away from a node have equal weights. To
obtain a k-partition with minimum sum of edge weights, the partition algorithm
can be used successfully since at each iteration step an edge is added t0 C which s
as close to the root as possible.

Next, consider the partition problem where it is required that each rooted
subtree of the partition be a simple chain with total weight not exceeding k. We
process the nodes p from higher to lower levels as before. In the step “process
node p,” we remove all but the lightest son of p, i.e., we find r € S(p), where

W*(r)= min, {W*(@)}

and add every (p, 9), 4 #r,qeS(p)to C. 1f furthermore w(p)+ W*(r) >k, then
(p,r)is also added to C. The running time of this algorithm is also O(n).

Acknowledgment. The authors are indebted to an anonymous referee who
suggested the use of mediap finding algorithm in processing a node. This has
lowered the running time to O(n) from the previous bound of O(n log n).

REFERENCES

{1] M. BLum, R. FLOYD, V. PRATT, R. RivesT anD R. TARIAN, Time bounds for selection, 1.
Comput. Systems Sci., 7 (1973), pp. 448-461.

[2] M. R. GAREY, D.S. JoHNsON AND L. . STOCKMEYER, Some simplified NP-complete problems,
6th ACM Symp. on Theory of Computing, Seattle, WA, 1974, pp. 47-68.

[3] B. W. KERNIGHAN, Optimal sequential partitions of graphs, J. Assoc. Comput. Mach., 18 (1971),
pp- 34-40.

[4] J. KRAL, To the problem of segmentation of a program, Information Processing Machines, (1965),
pp- 140-149.

[5] 3. A. LUKES, Efficient algorithm for partitioning of trees, IBM I. Res. Develop., 18 (1974), no. 3,
p. 217.

[6] J. MISRA AND R. E. TaRJAN, Optimal chain partitions of trees, Information Processing Lett., 4
(1975), pp. 24-26.

[7] W. H. HOSKEN, Optimum partitions of tree addressing SITUCIUIes, this Journal, 4 (1975), pp-
341-347.

