478

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-4, NO. 6, NOVEMBER 1978

Some Aspects of the Verification of
Loop Computations

JAYADEV MISRA, MEMBER, IEEE

Abstract—-The problem of proving whether or not a loop computes a
given function is investigated. We consider loops which have a certain
“closure” property and derive necessary and sufficient conditions for
such a loop to compute a given function. It is argued that closure is a
fundamental concept in program proving. Extensions of the basic re-
sult to proofs involving relations other than functional relations, which
typically arise in nondeterministic loops, are explored. Several appli-
cations of these results are given, particularly in showing that certain
classes of programs may be directly proven (their loop invariants gen-
erated) given only their input~output relationships. Implications of
these results are discussed.

Index Terms —Inductive assertions, loop invariants, nondeterministic
programs, program verification, proof rules, proving programs correct,
proving program schemas.

1. INTRODUCTION

ROGRAM verification has now assumed an important role

in the production of reliable software. The most popular
method of verification, called inductive assertion, is based on
the work of Floyd [10] as formalized by Hoare [14]. In this
method, a set of predicates (assertions) is invented and attached
to specific program points. These assertions are chosen in
such a manner that they can be shown to hold whenever the
program control reaches the corresponding point.

Programs that contain loops (as a majority do) pose the
problem of inventing assertions that capture the dynamic re-
lationship among the variables. The appropriate assertions
must remain true (invariant) through successive iterations of
the loop.

The results reported here grew out of an attempt to relate
the result computed by a loop to the invariant. Clearly, dif-
ferent loops may transform their input data in different fash-
ions. Surprisingly, however, certain general principles have
emerged which relate the function computed by a loop to its
invariant independent of the specific algorithm used for
transformation.

Major results of this paper are the following.

1) A relationship is derived between the function computed
by a loop and the invariant preserved by it. A loop computes
a certain function F if and only if a certain proposition (in-

Manuscript received August 13, 1976; revised March 30, 1978. This
work was supported in part by NSF Grants DCR75-03749 and DCR75-
09842 and Air Force Office of Scientific Research Contract F44620-
71-00091.

The author is with the Department of Computer Science, University
of Texas at Austin, Austin, TX 78712.

volving F) is a loop invariant, and a boundary and a termina-
tion condition hold. This result holds whenever the loop
meets a certain “closure” condition.

2) The form of the invariant is independent of the loop
body, depending only on the given function F.

3) It is argued that “closure” is a fundamental notion in
proving facts about loops.

4) These results are extended to prove general relations
(other than functional relations) between input values and
output results. It is shown that all equivalence relations can be
proven in this manner. This is applied to proving facts about
the nondeterministic loops of Dijkstra [5].

5) Two different program schemas are shown, which may be
proven directly from their input-output specifications by a
suitable extension of the basic theorem. These two program
schemas occur often in programming.

Sufficient conditions for proving facts about loops have ap-
peared in the literature [4], [9], [12], [13], [16], [22], [23],
[25]. In particular, the notion of subgoal induction [23] has
been found to be useful in a number of cases. However, since
these conditions are not necessary, an incorrect program can-
not be shown to be incorrect by these methods. Results in
this paper provide necessary and sufficient conditions in order
to relate the computed function to the invariant that must be
proven.

The research reported here was motivated by the work of
Mills [19] where the structure of computation of a loop pro-
gram was related to the function it computes. The notion of
“closure” was implicit in Mill’s work.

The problem of termination is not discussed in this paper;
termination has to be established by independent means. The
basic theory is discussed in the next section, and some of its
implications are studied in the following section. Some of
these results have appeared in a number of places {1], {2],
[20], [21]; this paper is an effort to present the results in a
coherent framework.

II. DEFINITION AND NOTATION

Loops of the form “while B do S enddo” will be considered
in this paper. The intuitive meaning is that the loop body S
is not executed if B is false on entry;else S is executed one or
more times until B becomes false. S is any one-in one-out
program.

Some important parameters of the loop are the global and
local variables, the input domain of values, and the output
from the loop. These are discussed below.

0098-5589/78/1100-0478300.75 © 1978 IEEE

MISRA: VERIFICATION OF LOOP COMPUTATIONS

We call the following program schema W(B, S):

begin
Declarations for local variables #; {This is optional}
while B do S enddo

end

Let x denote the vector of values of program variables that
are external (global) to W(B, S). Let xo, x7 denote the initial
and final values in x, respectively. We are not interested in the
final values of local variables 7. Initially, local variables have
undefined values. The program may not access a local variable
before it is assigned a value. Note that S may also have local
variables of its own.

We make no restriction on the values of variables. In par-
ticular, variables may represent complex data objects such as
graphs or entire data bases.

Normally, W(B, §) would accept only those x satisfying
some input condition D. D defines the domain of input to
W(B, §). We will interchangeably use “input assertion” and
“input domain” to describe D. Let x, denote some initial
input value to W(B, §) and x the corresponding final value if
W(B, §) terminates. W(B, S) computes a function F on a
domain D if for every x, in D, W(B, §) terminates and Xp=
F(xy). ,

A proposition P is a loop invariant for W(B,S)if {P\ B} §
{P}, using the notation in [14]. An expression E is a loop
constant if (E'=C) is a loop invariant for any arbitrary constant
C. Thus, E’s value following every iteration remains unchanged,
and hence is equal to its initial value. An m-tuple of expres-
sions £=(ey, €5, " ",) isaloop constant if £ = K is a loop
invariant for any arbitrary m-tuple K =(k,, k,," " -, k,,) of
constants. Trivially, every loop invariant is a (Boolean) loop
constant.

III. Loopr CompuTATION ON CLOSED DOMAIN

In order to prove that a program W(B,) computes a func-
tion £ on a domain D, we need to find a proposition P such
that

D = P {Initially P is true}
{PAB}S {P} {Pisaloop invariant}

PATIB= xp=F(xo) {xg, Xy are initial and final values of
the global variables}.

We show in this section that under a condition of “closure,”
P may be automatically generated from F.

Definition: The input assertion D is closed with respect to
W(B, S) if D is a loop invariant.

It follows from this definition that for a closed D, if D is
true initially, it remains true through successive iterations,
and hence it is true at termination.

The next theorem provides the necessary and sufficient
conditions under which W(B, S) computes a given function F
on a domain D when D is closed with respect to W(B, S).

The following lemma and its proof appear in Basu and Misra
[1]. We present a stronger result in Theorem 1.

Lemma 1: Let D be closed with respect to W(B, S). For

479

every xo €D, W(B, §) computes F on D if and only if the fol-
lowing three conditions hold.

1) W(B, S) terminates for every input x, in D.

2) D) ATIB(x)] = [F(x) =x].

3) F(x) is a loop constant, i.e., F(x) has a constant value
through successive iterations of the loop.

Furthermore, conditions 1), 2), and 3) are mutually
independent. O

Intuition behind the lemma is as follows. It is impossible for
the loop to decide from the values of global variables x whether
x is fresh input or whether x is the intermediate result with
some other input. Hence, irrespective of whether x is an
initial input or an intermediate result, the final value Xr must
be identical. If input x, produces the sequence of intermediate
values x;, x5, " -, Xy, then with input x, , x, , or any other X;
from the sequence, the same final value xr must be obtained.
Xp=F(xo)=F(x1)=F(xy) = F(xy). Hence, F(x) remains
constant through successive iterations.

This argument has flaws, since local variables ¢ might retain
values from one iteration to the next. In such a case, they
might provide some information as to whether the current
x is a fresh input or some intermediate result. Conceivably,
the program could make the distinction and produce different
results in the two cases. However, the program cannot ex-
amine a local variable unless it is sure that x is not a fresh in-
put. Otherwise, local variables have undefined values. It is
possible to show that the local variables cannot effectively be
examined unless they have received a value in the same itera-
tion. It is thus impossible to carry information from one
iteration to the next in local variables.

Thus, in either case, F(x) is a loop constant. A simple ob-
servation is that for any input x for which B is false, F(x) = x
since the loop body will not be executed. This argument is
the basis for a formal proof of the theorem that appears in
[1].

One implication of this lemma is that the local variables of
W(B, S) can be made local to S without affecting the computa-
tion. These local variables can only be accessed if they have
received values during the same iteration. Thus, without loss
in generality, we can omit mention of such local variables or
consider them as local variables of S.

Let S(x) denote the values obtained by applying S to global
variable values x (assuming undefined values of local variables).
Lemma 1 can then be expressed in 2 more symmetrical form.

Corollary: Suppose D is aloop invariant for W(B,S). W(B,S)
computes F over D if and only if the following conditions
hold.

1) W(B,S) terminates for every input x from D.

2) [Blx) > F@x)=FSG)N] A[1Bx)~> F(x)=x],¥xED.

]

Example 1: Let W(B, §) be the following program.

begin integer r, s;
while v # 0 do
r < v/2; {integer division}
s 2%r;
if (s # v) then w < w * y endif;
U<

480

U<Uu*u
enddo
end;

Suppose it is required to show that W(B, S) computes Flu, v,
w)={g(u, v), 0, wxu") on the domain D= {{u, v, wv=0,
vinteger} where g(u, v) = u2 108 (0+ D",

We prove closure by showing that

[v=20Av#0] = [v/2>0].

We need to prove termination to satisfy condition 1). Finally,
condition 2) tells us to prove the following propositions.

2w, v)=g@w? v/2) and w=xu®

=wxu*w)?, if visodd

[v#0] —
gu,v)=gw? v/2) and w*u’

=wx (U2, if viseven

and [v=0] ~» [g(u,v)=uand w *u’ = w].

If these propositions are true, the loop computes the given
function; otherwise it does not. O

This example illustrates one weakness of Lemma 1. We are
interested only in the final values of w and v, and the function
computed in the ¥ component is of no interest, and hence may
not be specified. Lemma 1, however, requires us to prove that
each component remains a loop constant. If possible, we
would like to show that only the function value computed in
the w component is a loop constant. We have the following
lemma, the proof of which is left as an exercise to the reader.

Lemma 2: Suppose £'=(e;,e,," *,e,,)is aloop constant.
Then each e; is a loop constant. O

Note that the corresponding result for loop invariants does
not hold; if p Aq is a loop invariant, then possibly neither p
nor g is a loop invariant. We can now combine Lemmas 1 and
2 to state a theorem that effectively says that, for the variables
of interest, the computed function must be a loop constant.
Let x denote the vector of all variable values, z a (single)
variable value of interest, zy its final value, and x,, Xr the
initial and final values, respectively, of all variables.

Theorem 1: let D be closed with respect to W(B, S). For
every xo €D, zp=g(xo) if and only if the following three con-
ditions hold.

1) W(B, S) terminates for every input x, from D.

2) [DOx)ABE)] = [z =g(x)].

3) g(x)is a loop constant. O

Note that g(x) initially has the value g(x,). Hence, the
value of g(x) at any iteration must equal g(xo) and g(xy) =
g(xg). If S(x) denotes the variable values obtained by ex-
ecuting § with values x, then Theorem 1 may be restated as
follows.

Corollary: Under the conditions of Theorem 1 and assum-
ing termination as in (1), zy = g(xo) if and only if

[1BG) AD(x) =z =g(x)] A [B(x) AD(x) = g(x)
=g(S())]. 0

1] = least integer greater than or equal to L.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-4, NO. 6, NOVEMBER 1978

If we are interested in several values on termination z, fs Z2fs
"> Zyr, then Theorem 1 may be applied for each z;;.
Example 1 (continued): In order to show that

v
Wy = Wq * up®

it is only necessary to show that w = u’ is a loop constant.
O

We empbhasize the following aspects of Theorem 1.

1) The conditions presented are necessary and sufficient.
Hence, a loop program may be proved or disproved on the
basis of this theorem.

2) The closure condition must be met before the theorem
can be applied. We discuss the problem of nonclosed domains
in a later section. This situation typically arises when the loop
is preceded by an initialization.

3) The conditions are independent of the algorithm used
for computing F. Hence, F(x) is a loop constant, if the loop
computes F, regardless of how F is computed.

IV. EXTENSIONS OF THEOREM 1

The three conditions in Theorem 1 are called the termina-
tion, boundary, and iteration conditions, respectively. The
boundary condition is usually quite simple to derive and prove
by considering those inputs for which the loop body is never
executed. It is the iteration condition that is the central prob-
lem in dealing with loop structures. Theorem 1 completely
solves the problem for closed domains when an explicit func-
tional relationship between input and output is known. The
next step is to relax one or both of these restrictions and look
for iteration conditions similar to condition 3). The problem
of nonclosed domains is discussed in a later section.

In this section, we assume that an explicit functional rela-
tionship between the input and output of W(B, S) is not
known. Instead, it is required to show that for some binary
relation R, xeRxy holds between initial value x, and final
value x,. For instance, it may need to be proven that the
output is greater in magnitude than input. Of course, if we
knew the functional relationship, we could prove such a fact
easily. Often it is difficult, if not impossible, to guess the
function being computed.

We characterize those relations for which a result analogous
to Theorem 1 holds. Specifically, we show that if R is an
equivalence relation and X¢Rxo holds at termination, then
xRx, must hold following every iteration. Conversely, if R
is not such a relation (or some slight extension of it), then, in
general, it is not possible to conclude that xRx, holds foltow-
ing every iteration. This result effectively characterizes the
entire set of relations for which results analogous to Theorem
1 hold.

Theorem 2: Suppose D is closed with respect to W(B, S).
Let R be any equivalence relation on D such that every pair of
initial and final values xo, x, belong to the same equivalence
class under R. Then every intermediate result x arising out of
initial xo must belong to the same equivalence class as x,.

]

A proof and a number of generalizations of this theorem ap-
pear in [20]. In particular, it is shown that this theorem can
be extended to any R that is a slight generalization of equiva-

MISRA: VERIFICATION OF LOOP COMPUTATIONS

lence relations; furthermore, the theorem does not hold for
any other relation.

The iteration condition [condition 3)] of Theorem 1 is a
special case of Theorem 2.

Corollary 1: If W(B, S) computes F over a closed domain,
then F(x) is a loop constant.

Proof: Define the equivalence R by xRy iff F(x) = F(y).
Clearly, xo, xs belongs to the same equivalence class. Hence,

applying Theorem 2, F(x) is a loop constant.]
Corollary 2: Under the conditions of Theorem 2,
XfRxo iff [B(x)=S(x)Rx]. O

The following example shows that a relation may hold
initially and at termination, although not following every
iteration.

FExample 2.

while v # 1 do

If odd(v) then v := v + 1 else v = v/2 endif
enddo
D= {vlv>1 and vinteger}.

It is required to show that the value of v does not increase as
a result of execution of the loop. Thus, for any arbitrary u,
we want to show

{v<u} W(B,S) {v<u}.

However, v < u is not a loop invariant. 0

It is interesting to note that, for Example 2, subgoal induc-
tion [23] generates the following verification condition which
does not hold.

[v#F1Aodd() Avr<v+1=0,<v]
Ao#1 Aeven(v) A vy <v/2 = v <u].

Example 3: The following program claims to compute the
greatest common divisor of two positive integers m, n.

begin
integer 1,
while m+#n do
if m <nthent :=m;m :=n;n =t endif;
m=m-n
enddo
end;

Let D= {{m, n)lm, n integer; m, n > 0}. It is easy to show
that D is closed. Let GCD(x, y) denote the greatest common
divisor of positive x, y. Let H{(m, n) ={(GCD(m, n), GCD(m,
n)y. We wish to show that the loop computes H. Define the

relation R on D as follows.
m,myR{m’,n'y iff H(m,n)=Hm' n.

Clearly, R is an equivalence relation. If (m,, ny?denotesinitial
values, {m, n) denotes values at any iteration and (my, ny) de-
notes final values, then in order to show that (my,ns R (m,,
no? (using Corollary 2), we have to show that

m'=m,n' =nm#Enm<n}t =mym:=n,n =t

m=m-n {{m nRm , n"}

481
and
{m'=m,n=nm#*nm=2n}m:=m-n
{im,ny R{m',n"}.
Simplifying, we have to prove the following two facts.
m<n=GCD(m,n)=GCD(n - m, m)
m >n=GCD(m,n)=GCD(m - n,n). |

V. CoMPUTATIONS WITH NONDETERMINISTIC Loops

Dijkstra [5] has introduced a nondeterministic guarded
command loop of the following form.

do
0B, =8,

0B, S,
od

The B;’s are Boolean expressions called “guards” and the S;’s
are “statement lists” consisting of a sequence of one or more
statements of the traditional kind. The intuitive meaning of
this construct is that an “‘iteration” consists of arbitrarily
choosing one guarded command whose guard is true and then
executing the associated statement list. In case no guard is
true, loop execution is terminated.

The schema may have local variables (which could carry
values from one iteration to next) in addition to local variables
of S;’s. However, as we have argued following Lemma 1, the
local variables of the schema can be considered local to each
S; without affecting computation. Hence, we make no further
mention of these variables.

We present two theorems in connection with nondetermin-
istic loops that are direct counterparts of Theorems 1 and 2.
We first define closure for nondeterministic loops.

Definition: D is closed with respect to a given nondeter-
ministic loop of the above type if

{DAB;}S; {D},

Let NDW(B,S) denote the nondeterministic loop shown above.

Theorem 3: Let D be closed with respect to NDW(B, §).
For a variable z, zf=g(x0) if and only if the following three
conditions hold.

1) NDW(B, §') terminates for every input x, from D.

2) [D(x) Ni=y Bi(x)] = [g(x) =z].

3) g(x)is a loop constant, i.e.,

[DG) AB;(x)] = [g(x) = g(S:(x))],

Theorem 4: Let D be closed with respect to NDW(B,S). Let
R be any equivalence relation on D. xoRxg, for every initial
value xo and final value x; from D, if and only if [B;(x) =
S;(x)Rx],1<i<n. O

It follows from these theorems that a nondeterministic
loop must be carefully constructed if the goal is to compute
a given function or an equivalence relation on termination.
Every statement list S; must preserve the function value or

1<i<n

I<i<n 0

482

the equivalence relation. Conversely, this requirement guaran-
tees the computation of the desired result.

VI. SYsTEMATIC GENERATION OF LooP INVARIANTS

There are two natural ways of looking at loop invariants.
A loop invariant could be a proposition about “what has been
done” or a proposition about “‘what remains to be done.” In
the first approach, the current values of global variables are
related to the original values of those variables. Then it is
shown that on termination, the desired function has been
computed. The second approach, the one advocated in this
paper, relates the output from current values of global variables
to the output from initial values of these variables. Both ap-
proaches are illustrated in the following example.

Example 4: This program sums an array A|1 - - - n] of real
numbers.

{i=0and sum=0and n >0}

while i#n do
i =i+1;sum = sum+4 [{]
enddo

One possible invariant (using the first approach) relates the
(current) value of “sum” to the array elements.

i
sum = Alk].

k=1

Coupled with the loop exit condition (i =n), it proves that
variable sum holds the sum of array elements at termination.
The second approach is based on Theorem 1, which says that
the eventual result obtained by starting from the values of sum,
A, i at an arbitrary iteration is the same as starting with their
initial values. Such aloop invariant is

sum + }ri A[k] =sumg + }n: Alk]. O

k=i+1 k=iy+1

An observation of the second approach appears in London
[17], who attributes it to Jim King. It is quite likely that
there may not be any simple relationship among variables
as required by the first approach. For instance, in Example
1, it is difficult to state w as a function of u, v, ug, vo. How-
ever, Theorem 1 guarantees that there is an invariant of the
second kind provided the function is defined over a closed
domain. The first approach seems to be more natural; hence,
most people tend to think in terms of “variable values at a
general iteration” when confronted with formulating a loop
invariant for a new problem. The second approach is not as
intuitive. In fact, when both approaches are applicable to a
problem, the second approach leads to a somewhat more com-
plicated form of the invariant. We have, however, found that
the second approach is far superior in its generality, and with
practice one can learn to use it quite effectively.

Theorem 1 provides a technique for generating a (suitable)
loop invariant when the input domain D is closed. We next
consider the problem when D is not closed. The most im-
portant case of a nonclosed domain arises when the loop is
preceded by an initialization. Such a program can be con-
verted to a loop program by removing the initialization and

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-4, NO. 6, NOVEMBER 1978

by suitably restricting the domain D to the initial values of
variables. However, then D is nonclosed if any of the initialized
variables receives a different value inside the loop.

In case D is nonclosed, the following technique may be used
whereby Theorem 1 can be applied. Find D', a superset of D
that is closed with respect to W(B, S). Next, find a function
F’ on D' such that W(B, S) computes F over D if and only if
it computes F' over D'. Then Theorem 1 may be applied to
prove/disprove that W(B, S) computes F' over D', which in
turn would prove/disprove that it computes F over D.

One rule for finding D' and F' is to somehow identify the
values of global variables that arise in different iterations,
starting from the set of input values. If a closed form ex-
pression describing these intermediate values can be found,
then we have located a domain D' that is closed with respect
to W(B,). Usually F' is quite easy to guess once we have
suchaD'.

However, it may sometimes be quite difficult to find a D' as
described above. In that case, we may let D' be the set of all
possible values, sometimes suitably specialized, such as all
integers; then D’ is trivially closed. F'is usually more difficult
to find in such a case. In the next section, we illustrate the
power of this approach by specifying the invariants for certain
program classes.

A. Two Classes of Naturally Provable Programs

As we have noted earlier, initialization creates a nonclosed
domain for which Theorem 1 is not directly applicable. We
show that for certain program classes (having special proper-
ties), one may obtain generalizations of Theorem 1 that allow
initialization. We investigate programs of the form

Initialization;
while B do S enddo;

Accumulating Loop Programs: For alarge number of loops,
the initialization is of a particularly simple kind that involves
a single variable z initialized to z,. Furthermore, the body of
the loop only changes the value of z, but does not branch de-
pending on the value of z. Several typical examples are shown
below.

Example 5:

a) (exponentiation)

z:=1

while v#0 do
if odd (v) then z = z*xu endif;
vi=0/2u = wku

enddo

b) Finding the sum of an array sequence A [i] through 4 [n].

z =0,
while i <n do
z:=z+tA[] ;i =i+l
enddo
¢) Removing blanks from a string. Input is a string s; out-

put is string z. Null denotes the null string, || denotes the con-
catanation operator, head(s) is the first character of string

MISRA: VERIFICATION OF LOOP COMPUTATIONS

when s # null, tail(s) is the string obtained from s after re-
moving its first character when s is nonnull.

z = null;
while s#null do
if head(s) = * "then
z =z || head(s) endif;
s = tail(s)

enddo Wy

It should be noted that in the above examples z accumulates
the results. Typically, it is required to show at termination of
the loop that z holds a certain function value of the input
variable values. We show that the loop invariant can be gen-
erated (deterministically) for such problems under a few mild
restrictions that seem to be almost always met in practice.

We require that the program meet the following conditions;
in the following x denotes the values of global variables (other
than z).

Condition 1): Closure with respect to the domain of x. This
is the usual closure condition applicable to all variable values
except that of z. Let D denote the closed domain.

Condition 2): z is an accumulating variable.

a) The values of x are independent of that of z. In other
words, if the initial value of z is modified, x is not affected.
This is guaranteed if z does not appear in the right-hand side of
an assignment when some other variable is on the left-hand
side. (A similar rule can be given when procedure calls are
allowed.)

b) Neither z (nor any other variable whose value depends
on z) governs a conditional branch inside the loop. Thus, z
only accumulates the result, but does not guide the course of
computation.]

Condition 3): Assignments to z are of a simple type.

a) Every assignment to z inside the loop is of the form
z =2z @ f(x) where @ is an associative operator that is iden-
tical for every assignment; f is any function of global variables
that may differ for different assignments.

b) Initial assignment is z 1=z, where z, is the unique left
and right unity of @ .

We emphasize that these conditions seem to be met in prac-
tice in a large number of loop programs.

Theorem 5: Let T be any program satisfying conditions 1),
2), and 3) given above. Let x, denote the initial values of
global variables (other than z) and z; denote the final value
of z. Then (assuming program termination), z; = g(xo) for
some function g if and only if,

a) z @ g(x) is a loop constant {or z @ g(x) =g(x,) is a
loop invariant)

b) TBx)ANx€ED=g(x)=z,. |

A proof of this result appears in [2], [21].

The first condition implies that

20 @g(xo) =" =z@glx)="" =z, 0g(xy).

This condition says that the value of the current accumulating
variable z and the values of global variables x would lead to the
same final value as z, and x,. The crucial part (only if, of
the theorem) is proven through an appeal to Theorem 1.

483

Example 5 {continued):
a) In order to show that z,= ug° , it is necessary and suf-
ficient to show (following proof of termination)
i) z * u” = ug® is a loop invariant and
i) v=0=wW"=1).

n
b) Toshow thatz= 3" A[k], we need to prove
k=i

n 14
i) z+3 Alk] = > A[k] isaloop invariant and
&, :

i k=1,

i) i>n=>[S A[k] = o].
k=i
¢) To show that z = NBL(s) where NBL is a suitably de-
fined function, we need to show that
i) z |l NBL(s) = NBL(s,) is a loop invariant and
i) [s=null] = [NVBL(s) = null]. O
A special case of Theorem 5 appears in {16].
Programming with a Stack: We consider the following
schema where T is a stack.

T := (eo); {stack T is initialized to contain eq }
while 7 # empTY do S enddo

Global variables have initial value x, and final value xp. We
do not have closure with respect to stack 7, which is also a
global variable to the loop. It is required to show that x,=
Xo @ey for some given binary operator ®. The special
nature of stacks permits us to prove a theorem regarding the
loop invariant. Let T be a stack consisting of elements (e,
ey, ' ,e,) from top to bottom. Define

, x, if Tisempty
x@® T=
(((x@e))@ey)) Dey),

We make the following restriction on the stack schema: the
stack is not examined for emptiness in S. This guarantees that
the stack elements will be processed in the intended manner
from top to bottom. Without this restriction, a tricky pro-
grammer may rearrange the stack elements during an iteration
by saving e;, removing e,, pushing e;, pushing e,, etc. We
furthermore assume closure with respect to D, the domain
of x. :

Theorem 6: Let x denote any global variable values and let
[e] represent a stack containing a single element e. Let x' |
denote the global variable values and T' the stack content
after one iteration through the loop.

otherwise.

xp=xo @eo if and only if,

x®e=x ®T', foreveryx,e. O

A proof of this theorem appears in [21].

Example 6 (Preorder Traversal of a Tree): The following
program computes the sequence of nodes visited during pre-
order traversal of a binary tree using a stack 7. The variable
root is a pointer to the root of the tree to be traversed; the
variable traversal denotes a sequence; || is the concatanation
operator on a sequence; for a node P, left(P) and right(P)

484

are pointers to left and right sons (nil if there is no correspond-
ing son), and name(P) denotes the name of the node to which
P points.

traversal := null; {Initialize traversal to a null sequence}
T := (root); {Initialize T to contain the root node}
while 7 # EmpTY do
begin

P < T, {Pop the top off the stack}

traversal := traversal || name(P);

if right (P) # nil then T < right(P) {Push onto stack}

endif;

if left(P) # nil then T < left(P) endif

enddo

It is required to show that traversal, = preorder (root) where
preorder is a given function defined on the node of a tree that
returns the sequence of nodes in preorder traversal. Preorder
has to be defined formally in order to formally verify the above
program. We can, however, state the conditions that need to
be proven.

We first note that traversal behaves as an accumulating
variable, || is an associative operator, and null is its (left and
right) unity. Hence, we may consider the following input
constraint, which ignores initialization to traversal.

Input Constraint: Root is a node of some tree; traversal is
some sequence,

T = (root).
We will have to prove that with this input constraint
traversal, = traversalo || preorder (root).

This is in the form x,=xo @ eo.
We can define @' as follows:

traversal if 7= EMPTY

traversal ®' T =

if 7 contains (e;,e,, " -

Theorem 6 can now be applied. We will have to show the
following: starting with an arbitrary value of traversal and
an arbitrary element p on the stack, if we get traversal’ and
T’ after one iteration, then

traversal ® p = traversal’ @' 7.

We may simplify this statement by considering the four
different cases as follows. (Note that traversal’ = traversal ||
name(p). Furthermore, traversal ® p = traversal || preor-

der(p).)
1) p hasno son:

traversal || preorder(p) = traversal || name(p)
{stack is empty after the iteration}.
2) p has a left son but no right son:
traversal || preorder(p) = traversal || name(p) || preor-

der(left(p)) {stack contains left(p) after the

iteration}.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-4, NO. 6, NOVEMBER 1978

3) p has a right son but no left son:
traversal || preorder(p)
= traversal || name(p) || preorder (right(p))
{stack contains right (p) after the iteration}.
4) p has both sons:
traversal || preorder(p)
= traversal || name(p) || preorder (left(p))
|| preorder(right(p)) {stack contains left(p),
right (p) in this order from top to bottom}.

These verification conditions can be further simplified by
noting that a||b=a| ¢ implies b=c. We can completely
avoid traversal and obtain the following conditions, proofs
of which depend only on preorder.

1) p has noson:

preorder(p) = name(p).
2) p has a left son but no right son:
preorder(p) = name(p) || preorder(left(p)).
3) p has a right son but no left son:
preorder(p) = name(p) || preorder(right(p)).
4) p has both sons:
preorder(p)
= name(p) || preorder(left(p)) |i preorder(right(p)). O

Correctness conditions could be derived in this case without
a deep understanding of the functioning of the program.

traversal || preorder (e,) || preorder (e;) - - - || preorder (e,,)

*, e,) from top to bottom.

VII. RELATED WORK

Study of functions as computed by programs was initiated
by Mills [19]. He showed that for any loop, successive values
obtained after any number of iterations can be represented
by rooted directed trees in the input domain where an arc
from one value to another represents that the latter is ob-
tained from the former after one iteration. This idea has been
used to obtain the major results of this paper.

Subgoal induction, recently proposed in [23], seems to be a
powerful scheme for proving most programs that arise in prac-
tice. There is a great deal of similarity between subgoal induc-
tion and the work reported here. However, there are some
major differences. Subgoal induction applies to arbitrary rela-
tions; we only consider functional and equivalence relations.
Subgoal induction is not guaranteed to prove a correct pro-
gram correct. In particular, it is easily seen that it fails to
prove Example 2. Our emphasis has been on necessary and
sufficient conditions. Some of the results obtained in [20]
imply that it is not possible to obtain such conditions unless

MISRA: VERIFICATION OF LOOP COMPUTATIONS

we deal with equivalence relations (or some slight generaliza-
tions) of equivalence relations.

Generation of loop invariants using difference equations has
been suggested by Elspas [9]. In this scheme, the values of
variables at a general ith iteration are expressed as functions
of variable values at (i - 1)th iteration. These equations are
then “‘solved” and i is eliminated to obtain the desired in-
variant. A similar method using counters has been proposed
by Katz and Manna [16].

Aside from the difficulty of systematically generating in-
variants by this technique, the variable values at the ith itera-
tion may be difficult to specify even though the overall be-
havior may be quite simple to state. For instance, Example 1
manipulates w in such a fashion that the value of w at the ith
iteration is difficult to state as a function of u, v, and their
initial values. This technique seems to be useful when the
body S of the loop is a straight line program so that the
variable values depend in a certain simple way on the itera-
tion number.

Another technique [25] is to push the output assertion ¢
backward through the loop once, twice, three times, etc. to
obtain assertions q,, g, ¢3, etc., which are successive approxi-
mations to the oop invariant. A human could possibly isolate
the general pattern from these approximations. A dual tech-
nique is to execute the program forward symbolically to ob-
tain a few forward patterns from which a general pattern
could be deduced.

A method of recursion induction used by Topor [24] re-
places the loop by an equivalent recursive procedure. It is
interesting to note that Topor’s replacements are always done
in a fashion that ensures closure. The recursive version is then
proven, which, along with the initialization, is then shown to
imply the desired assertion.

Dijkstra {5] has suggested a different approach to program
verification. Starting from the program specification, he con-
structs programs in such a manner that reasoning about cor-
rectness is done during the construction process, making it
unnecessary to verify programs afterwards. In synthesizing
loops from specifications, he often has to weaken (generalize)
the post conditions to come up with invariants.

One general theme that stands out in all the methods is the
notion of “generalization” of the proposition to be proven.
A loop invariant is necessarily a generalization of the proposi-
tion to be proven in that the former captures the relationship
among variables in all iterations, whereas the latter relates the
variable values at termination. This generalization may be
done over iterations, leading to a proposition with the itera-
tion number i as an explicit or implicit parameter, which
roughly states what conditions hold at a general ith iteration.
This paper attempts a generalization in another direction,
namely, the general function F’ computed if the global variables
are drawn from some closed domain D', which is a generaliza-
tion of D. Theorem 1 guarantees the existence of a “‘simple”
loop invariant of this nature.

Recursive programs are often much easier to prove than
iterative ones. This phenomenon can be explained in terms
of closure. Every recursive program is written in such a
fashion that the computed values (of parameters) are legal

485

inputs to the program. Hence, it follows that the recursive
programs must be explicitly defined to compute a certain
function over a closed domain. Thus, the proposition to be
proven is trivially obtained from the function definition it-
self, without explicit recognition of the domain. A special
case of Theorem 5 appears in [16].

VIII. CoNCLUSION

We have argued in this paper that closure is a fundamental
notion in dealing with loops. Any attempt at finding a loop
invariant must explicitly or implicitly convert the problem to
one over a closed domain. Once we have found the function
computed by the loop over a closed domain, we can trivially
generate the necessary and sufficient conditions for proof of
this fact. In some sense, Theorem 1 implies that a loop in-
variant can be stated independent of how the loop operates;
instead it depends only on what the loop does eventually.

Our attempt at applying these results to programs with
initialization has met with a fair amount of success [21].
Most actual programs seem to be simple enough so that a
closed domain and a corresponding function are usually
easy to find. In fact, we have isolated several classes of pro-
grams that are naturally provable in this sense.

We believe that our ultimate ability in writing correct pro-
grams would be based on isolating such easily provable pro-
gram structures.

ACKNOWLEDGMENT

I am indebted to Prof. S. K. Basu, who helped in formulating
and developing a number of ideas in this paper and coauthored
a previous paper. Dr. H. D. Mills introduced the author to this
subject area; he stressed the importance of a functional ap-
proach to verification. Prof. R. Yeh and D. Matuszek of the
University of Texas have spent a considerable amount of time
reading several drafts of this paper and commenting on them.

I am grateful to the reviewers for the detailed technical com-
ments and suggestions for improving the style of the paper. I
would also like to thank D. Davis for her editorial assistance.

REFERENCES

[1] S. Basu and J. Misra, “Proving loop programs,” IEEE Trans.
Software Eng., vol. SE-1, pp. 76~86, Mar. 1975.

{2] —, “Some classes of naturally provable programs,” in Proc.
2nd Int. Conf. on Software Eng., San Francisco, CA, Oct. 1976.

[3] R. Boyer and J. S. Moore, “Proving theorems about LISP func-
tions,” J. Ass. Comput. Mach.,vol. 22, pp. 129-144, Jan. 1975.

[4] M. Caplain, “Finding invariant assertion for proving programs,”
in Proc. Int. Conf. on Reliable Software, Los Angeles, CA, Apr.
1975.

[5] E. W. Dijkstra, A Discipline of Programming. Englewood Cliffs,
NJ: Prentice-Hall, 1976.

{6] O.J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, Structured Pro-
gramming. New York: Academic, 1972.

{7] L. P. Deutsch, “An interactive program verifier,” Ph.D. disserta-
tion, Dep. Comput. Sci., Univ. California, Berkeley, June 1973.

{8] B. Elspas, K. N. Levitt, and R. J. Waldinger, “An interactive sys-
tem for the verification of computer programs,” SRI, Menlo
Park, CA, Research Rep., Sept. 1973.

[9] B. Elspas, “The semiautomatic generation of inductive assertions

for proving program correctness,” SRI, Menlo Park, CA, Research

Rep., July 1974.

R. W. Floyd, “Assigning meanings to programs,” in Proc. Symp.

on Applied Math.,vol. 19,J. T. Schwartz, Ed., Amer. Math. Soc.,

Providence, RI, 1967, pp. 19-32.

{10]

486

(11]

{12]

{13}

(18]

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-4, NO. 6, NOVEMBER 1978

D. I. Good, R. L. London, and W. W. Beldsoe, ““‘An interactive
program verification system,” presented at the Int. Conf. on
Reliable Software, Los Angeles, CA, Apr. 1975.

S. M. German, “A program verifier that generates inductive
assertions,” B.A. thesis, Harvard Univ., Cambridge, MA, May
1974.

I. Greif and R. Waldinger, ““A more mechanical heuristic ap-
proach to program verification,” in Proc. Int. Symp. on Pro-
gramming, Paris, France, Apr. 1974, pp. 83-90.

C. A. R. Hoare, “An axiomatic basis of computer program-
ming,” Commun. Ass. Comput. Mach., vol. 12, pp. 576-580,
583, Oct. 1969.

S. Igarashi, R. L. London, and D. C. Luckham, “Automatic
program verification, AIM-200,” Stanford Artificial Intelligence
Project, Stanford Univ., Stanford, CA, 1972.

S. M. Katz and Z. Manna, “Logical analysis of programs,” Com-
mun. Ass. Comput. Mach.,vol. 19, pp. 188-206, Apr. 1976.

R. L. London, “A view of program verification,” in Proc. Int.
Conf. on Reliable Software, L.os Angeles, CA, Apr. 1975,

Z. Manna, Mathematical Theory of Computation. New York:
McGraw-Hill, 1974.

{19]
[20]
{21]
{22]
[23]
[24]

[25]

H. D. Mills, “The new math of computer programming,” Com-
mun. Ass. Comput. Mach.,vol. 18, pp. 43-48, Jan. 1975.

J. Misra, “Prospects and limitations of automatic assertion gen-
eration for loop programs,” SIAM J. Comput., Dec. 1977.

—, “Systematic verification of simple loops,” unpublished
manuscript.

M. S. Moriconi, “Towards the interactive synthesis of assertions,”
Univ. Texas at Austin, Res. Rep., Oct. 1974.

J. H. Morris and B. Wegbreit, “Subgoal induction,” Commun.
Ass. Comput. Mach.,vol. 20, Apr. 1977.

R. W. Topor, “Interactive program verification using virtual
programs,” Ph.D. dissertation, Dep. Artificial Intelligence, Univ.
Edinburgh, Edinburgh, Scotland, 1975.

B. Wegbreit, “The synthesis of loop predicates,” Commun. Ass.
Comput. Mach.,vol. 17, pp. 102-112, Feb. 1974.

Jayadev Misra (§°71-M’72), for a photograph and biography, see p. 69
of the January 1978 issue of this TRANSACTIONS.

