
may be used to establish an authenticated connection to 
be used conventionally. The intrinsic security require- 
ments of  a public-key authentication server are easier to 
meet than those of  a conventional one, but a complete 
evaluation of the system problems in implementing such 
a server in a real system, and the need to retain a secure 
record of  old public keys to guarantee future correct 
arbitration of  old signatures may minimize this advan- 
tage. We conclude that the choice of  technique should 
be based on the economy and cryptographic strength of  
the encryption techniques themselves, rather than for 
their effects on protocol complexity. 

Finally, protocols such as those developed here are 
prone to extremely subtle errors that are unlikely to be 
detected in normal operation. The need for techniques 
to verify the correctness of  such protocols is great, and 
we encourage those interested in such problems to con- 
sider this area. 

Acknowledgments. We are indebted to a number of  
people who have read drafts of  this paper and made 
careful and helpful comments, notably: Peter Denning, 
Stockton Gaines, Jim Gray, Steve Kent, Gerry Popek, 
Ron Rivest, Jerry Saltzer, and Robin Walker. 

Received September 1977; revised April 1978; final revision May 1978 

References 
!. Branstad, D. Security aspects of computer networks, Proc. AIAA 
Comptr. Network Syst. Conf., April 1973, paper 73-427. 
2. Branstad, D. Encryption protection in computer data 
communications. Proc. Fourth Data Communications Symp., Oct. 
1975, pp. 8.1-8.7 (available from ACM, New York). 
3. DiMe, W., and Hellman, M. Multiuser Cryptographic 
Techniques, Proc AFIPS 1976 NCC, AFIPS Press, Montvale, N.J., 
pp. 109-112. 
4. Feistel, H. Cryptographic coding for data bank privacy. Res. 
Rep. RC2827, IBM T.J. Watson Res. Ctr., Yorktown Heights, N.Y., 
March 1970. 
5. Kent, S. Encryption-based protection protocols for interactive 
user-computer communication, M.S. Th., EECS Dept., M.I.T., 1976; 
also available as Tech. Rep. 162, Lab. for Comptr. Sci., M.I.T., 
Cambridge, Mass., 1976. 
6. Kent, S. Encryption-based protection for interactive user/ 
computer communication. Proc. Fifth Data Communication Symp., 
Sept. 1977, pp. 5-7-5-13 (available from ACM, New York). 
7. National Bureau of Standards. Data Encryption Standard. Fed. 
Inform. Processing Standards Pub. 46, NBS, Washington, D.C., Jan. 
1977. 
8. Pohlig, S. Algebraic and combinatoric aspects of cryptography. 
Tech. Rep. No. 6602-1, Stanford Electron. Labs., Stanford, Calif., 
Oct. 1977. 
9. Rivest, R.L., et al. A method for obtaining digital signatures and 
public-key cryptosystems. Comm. A C M  21, 2 (Feb. 1978), 120-126. 

999 

Programming S.L.  Graham 
Techniques Editor 

A Linear Sieve 
Algorithm for Finding 
Prime Numbers 
David Gries 
Cornell University 

Jayadev Misra 
University of Texas at Austin 

A new algorithm is presented for finding aH primes 
between 2 and n. The algorithm executes in time 
proportional to n (assuming that multiplication of 
integers not larger than n can be performed in unit 
time). The method has the same arithmetic complexity 
as the algorithm presented by Mairson [6]; however, 
our version is perhaps simpler and more elegant. It is 
also easily extended to find the prime factorization of 
a// integers between 2 and n in time proportional to n. 

Key Words and Phrases: primes, algorithms, data 
structures 

CR Categories: 5.25, 5.24, 5.29 

I. Introduction 

An algorithm is presented for fmding all primes 
between 2 and n, for n _ 4, that executes in time 
proportional to n. Like the sieve of  Eratosthenes, it works 
by removing nonprimes from the set {2 . . . . .  n}. Unlike 
the sieve of  Eratosthenes, no attempt is ever made to 
remove a nonprime that was removed earlier; this allows 
us to develop a linear algorithm. 

The algorithm deals with sets S satisfying S C 
{2 . . . . .  n}. Two operations will be required on such sets: 

Permission to copy without fee all or part of this material is 
granted provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by 
permission of the Association for Computing Machinery. To copy 
otherwise, or to republish, requires a fee and/or  specific permission. 

This research was partially supported by the National Science 
Foundation under Grants DCR75-09842 and MCS76-22360. 

Authors' addresses: D. Gries, Computer Science Department, 
Cornell University, Ithaca, NY 14853; J. Misra, Computer Science 
Department, University of Texas at Austin, Austin, TX 78712. 
© 1978 ACM 0001-0782/78/12(10-0999 $00.75 

Communications December 1978 
of Volume 21 
the ACM Number 12 



Table I. Execution o f  the Algori thm for n = 27. 

p q S 

® 2 
3 
5 
7 
9 

I1 
13 
3 
5 
7 
5 

2 3 (~) 5 6 7 9 10 11 12 
2 3 5 ~) 7 9 10 11 (~  
2 3  5 7 9 O l l  
2 3 5 7 9 11 
2 3 5 7 9 11 
2 3 5 7 9 11 
2 3 5 7 9 11 
2 3 5 7 (~) 11 
2 3 5 7 11 
2 3 5 7 11 
2 3 5 7 11 

13 14 15 (~  17 18 19 20 21 22 23 24 25 26 27 
13 14 15 17 18 19 20 21 22 23 ~ 25 26 27 
13 14 15 17 18 19 ~ )  21 22 23 25 26 27 
13 ( ~  15 17 18 19 21 22 23 25 26 27 
13 15 17 O 19 21 22 23 25 26 27 
13 15 17 19 21 ~ 23 25 26 27 
13 15 17 19 21 23 25 ~ 27 
13 15 17 19 21 23 25 O 
13 O 17 19 21 23 25 
13 17 19 O 23 25 
13 17 19 23 O 

remove(S, 0 
next(S, 0 

is defined for i ~ S and implements  S := S - {i}. 
is a function defined only for i E S such that there is an  
integer larger than i in S; it yields the next larger integer 
i nS .  

In order to achieve linearity, the total time spent 
executing these operations must be no worse than pro- 
portional to n. Thus this algorithm provides an interest- 
ing context for a discussion of  selection of  data structures. 

2. The Algorithm 

For  i ~ 2, denote by Ip( 0 the lowest prime that divides 
i evenly. The algorithm is based on the following theo- 
rem. 

THEOREM 2. I. A nonprime x can be written uniquely 
as  

x = p k . q  

where (1)p  is prime, p = lp(x); (2) 1 _ k; (3)p  = q o r p  
< lp(q). 

PROOF. By the unique factorization theorem (see, for 
example, LeVeque [5]), x can be written uniquely as 

X ~ r t l  /Ira pl ..... pm 

where m _> 1, the pi are primes, pi < pi+l for 1 ___ i < m, 
and m = 1 implies n l  > 1. Hence the following yields the 
only choice for/7, q, and k of  the theorem: 

I f m  = 1, l e tp  = p , ,  q = p l ,  and k = nl - 1. I f m  >1, l e tp  =p~,  q = 
p ~  ..... p ~  and k = nl. [] 

Subsequently, we write x --- X(P, q, k) to denote that 
x is nonprime and x = p , .  q where p, q, and k have the 
properties described in Theorem 2.1. 

A prime cannot be written as described in the theo- 
rem, so the algorithm to delete nonprimes from S need 
only produce all combinations of  (p, q, k) and delete the 
corresponding nonprimes x = X(P, q, k). The trick is to 
produce each combination exactly once, and in such an 
order that the next combination can be efficiently cal- 
culated from the current one. For this purpose, we use 
the total ordering a on nonprimes x = X(P, q, k) induced 
by the lexicographic ordering of  the corresponding triples 
( p , q , k ) .  

1000  

DEFINITION 1. Let x = X(P, q, k) and 5c = 
X(P, ~/, k). Then 

xa& ¢~ p </5 or 

(p  = ,b and q < ~) or 
(p  = ,b and q = ~/and k < k). 

Table I illustrates this ordering and at the same time 
depicts how the algorithm works. The rows give succes- 
sive values for pairs (p, q), together with the contents of  
the set S before nonprimes with this p and q are deleted. 
In each row, the nonprimes x = X(P, q, k) to be deleted 
for k = 1, 2, 3 have been circled. 

The algorithm uses a variable S, which initially con- 
tains the set {2 . . . . .  n} and from which nonprimes are to 
be deleted, and integer variables p, q, k, and x used to 
generate nonprirnes in the order defined by a. The 
invariant relation P used in the loop of  the algorithm is 
given in Definition 2. It is not difficult to follow; condi- 
tions (1)-(3) describe properties of  p, q, and k, condition 
(4) describes the properties of  the value x under consid- 
eration for deletion, and condition (5) describes the 
current contents of  set S. 

DEFINITION 2. 

P ~ (1)p  prime, 4 _<p2 _< n; 
(2)p  = q o r p  < Ip(q);p.q <_ n; 
(3) 1 _< k; 

(4) x = X(P, q, k); 
(5) S = {2 ..... n} - {YlY nonprime andy a x}. 

The goal of  the loop of  the algorithm is to have S 
contain only the primes in {2 . . . . .  n}. The object of  each 
iteration of  the loop is to get us closer to this goal, while 
keeping P invariantly true. We now investigate opera- 
tions with this property. 

I f  x = X(P, q, k) <_ n, then clearly x is to be deleted 
from S, and P can be restored by executing k, x := k + 
l , p . x .  1 I f x  > n, we need to determine the next nonprime 

y (say), according to ordering a, to be deleted from S. 
Remarkably  enough, Lemmas  1 and 2 indicate that 
under suitable conditions y = p.  next(S, q), so that one 
can change p, q, k, x to denote the next nonprime to 

' A  concurrent assignment x l ,  x2, ... := el ,  e2, ... calls for 
concurrent evaluation o f  the ei, followed by simultaneous assignment 
of  the values ei to the variables xi (which must  be all different). See 
[31. 

Communica t ions  December  1978 
of  Volume 21 
the ACM Number  12 



delete by executing q := next(S, q); k, x := 1, p.q.  
Similarly, Lemmas 3 and 4 state the conditions under 
which y = next(S, p)2. We shall prove these lemmas in 
Section 3. 

LEMMA 1. lnvariant P implies that next(S, q) is de- 
fined, next(S, q) < n, and p < lp(next(S, q)). Writing y 
= X(P, next(S, q), 1), we have x a y. 

LEMMA 2. Suppose (P and x > n). Write y = 
X(P, next(S, q), 1). Then no nonprime z in S satisfies x ,  
z O l y .  

LV.MMA 3. lnvariant P implies that next(S, p) is de- 
fined, next(S, p)  < n, and next(S, p) is prime. Writing y 
= x(next(S ,p) ,  next(S,p),  1), we have x ay .  

LEMMA 4. Suppose (P and x > n and p .  next(S, q) > 
n). Write y = next(S, p) 2. Then no nonprime z in S satisfies 
x a z a y .  

We write Algorithm 1 using guarded commands  [1]. 
The arguments necessary to ascertain correctness will be 
discussed in Section 3. Note that variable k is used only 
in assignments to itself, so that all references to it may be 
deleted. It has been included only to clarify the relation- 
ship between p, q, and x. 

A L G O R I T H M  1. 

{n --> 4} 
p , q , k , x , S : = 2 , 2 ,  1,4, {2 . . . . .  n}; 
do x <-- n --~ remove(S, x); 

k , x : = k +  1 , p . x  
llx > n andp .nex t (S ,  q) < n ~ q := next(S, q); 

k , x : =  l , p . q  
l1 x > n and p .  next(S, q) > n and next(S, p)2 <_ n 

--~ p := next(S, p); 
q , k , x : = p ,  l , p . p  

od 
{S = {.y[2 --<y --< n a n d y  prime) 

Algorithm 2 is essentially the same algorithm as 
Algorithm 1 but written more conventionally. We feel 
that Algorithm 1 is easier to understand and prove 
correct; one loop with one invariant is easier to under- 
stand in this instance than three nested loops with three 
invariants. 

A L G O R I T H M  2. 

p, S := 2, (2 . . . . .  n}; 
while p . p  _< n do begin 

q :=p; 

while p . q  < n do begin 
x :=p.q;  
while x _< n do begin 

remove(S, x); x := p . x  
end; 

q := next(S, q) 
end; 

p := next(S, p) 
end 

3. Showing Correctness and Linearity 

In this section the proofs of  Lemmas 1-4 are given. 
The axiomatic proof  method with respect to guarded 

commands  [1] is also discussed and some of  the details 
of  the proof  are given. 

In preparation for proving Lemmas  1 and 2, we first 
prove the following. 

LEMMA 5. Consider any nonprime z = X(P, ?t, fc). We 
have (P and x a z and ~ <_ n) implies ?t E S. 

PROOF. I f  ~ (_n) is prime it is in S. Suppose ~ is 
nonprime. From x a z and the decompositions of  x and 
z we deduce lp(x) = p <_ p < lp(~) so that x a ~. From 
the definition of  S and x a ~ we deduce ~ E S. [] 

Our proofs of  Lemmas 1 and 2 rest on the remarkable 
fact that for any positive integer i > I there is a prime v 
satisfying i < v < 2i. 2 

PROOF OF L E n A  1. Let v be a prime satisfying 
q < v < 2.q. From P we conclude 

p <_ q < next(S, q) < v < 2. q < p .  q < n 

and hence next(S, q) < n. Secondly, no nonprime in S 
has a divisor less than p, so that p < lp(next(S, q)). To 
show that p # lp(next(S, q)), consider the fact that any 
nonprime z = X(P, ~t, f~) in S must have q _ ~. Hence the 
smallest such nonprime z that may be in S is p.q .  Since 
next(S, q) < p.q,  next(S, q) cannot be a nonprime with 
p = lp(next(S, q)). 

Hence p < lp(next(S, q)). The relation x a y = 
X(P, next(S, q), 1) follows immediately. 

PROOF OF LEMMA 2. From x = X(P, q, k) > n and 
Y = X(P, next(S, q), 1), we see that a z in S satisfying x 
a z a y would have a decomposition z = X(P, ?t, k) with 
q < ?t < next(S, q). But ~ would not be in S, contradicting 
Lemma 5. 

PROOF OF LEMMA 3. Let v be a prime satisfying 
p < v < 2.p. From P we have 

p < next (S ,p)  <-- v < 2 .p  <--p2 <_ n 

and next(S, p) < n. Secondly, no nonprime in S has a 
divisor less than p, so that for all nonprimes z E S we 
have p2 _< z. Since next(S, p) < p2, next(S, p) must be 
prime. The fact x a y -- x(next(S, p), next(S, p), 1) 
follows immediately. 

PROOF OF LEMMA 4. This is similar to the proof  of  
Lemma 2 and is left to the reader. 

We now discuss the proof  method and give some 
details. The main part of  Algorithm 1 is a loop of  the 
form 

do B1 ~ SL1 II B2 ~ SL2  II B3 ~ SL3 od 

Showing correctness involves exhibiting an invariant P 
(ours is given in Definition 2) and an integer function t, 
and showing that the following hold: 

2 As might be imagined, this is difficult to prove. J. Bertrand 
conjectured this fact in 1845, after showing empirically that it was true 
for i _< 106. Chebyshev proved the conjecture in 1850 (see [5] for 
details). Our  first draft of  a proof and algorithm did not  rely on this 
fact at all. It used weaker lemmas with more complicated proofs and 
required the additional element n + 1 to be in S so that next(S, i) 
would be sure to be defined. For example, the original Lem m a  l read: 
Let  y = p .nex t (S ,  q). Suppose P and x > n. Then either next(S, q) = n 
+ 1; o r y  = X(P, next (S, q), 1) and x cxy. 

!001 Communicat ions  December  1978 
of  Volume 21 
the ACM N u m b e r  12 



(1) P is true before execution of  the loop; 
(2) P and n o t  (BI  or  B2  or  B3) implies the desired result; 
(3) {P and Bi} SLi  {P) for i = I, 2, 3; 
(4) Execution of  the loop terminates: 

(a) (P and (BI or B2 or  B3)) ~ t _> 0 
(b) Execution of  SLi  reduces t (for 1 _< i < 3). Using an extra 

variable T, this means that 
{P and Bi} T :~ t; SL i  {t <_ T -  1}. 

Point (1) is obvious; point (2) we leave to the reader, 
since it can be shown quite easily with the help of  Lemma  
4. Point (3) concerns the invariance of  P under execution 
of  each guarded command  SLi. The only difficulty 
concerns the generation of  new values for q, p, and x to 
satisfy P. Lemmas  1-4 yield the necessary facts. 

To  see this a bit more formally in at least one case, 
consider determining the precondition Q in (Q} SL3 
{P) where SL3 is the third guarded command  list of  the 
loop of  Algorithm 1 and P is in Definition 2. SL3 is a 
sequence of  assignments, so we apply the normal  assign- 
ment and concatenation rules to arrive at: 

Q ~- (1) next(S,p)  prime, 4 _< next(S,p)  2 < n; 
(2) next(S, p) = next(S, p) or (next(S, p) < lp(next(S, p)); 

next(S, p)2 <_ n; 
(3) 1 _ 1; 
(4) next(S, p)2 = x(next (S  ' p), next(S, p), 1); 
(5) S = (2 . . . . .  n} - {YlY nonprime a n d y  a next(S,p)2}. 

It is then a simple matter  to prove that ( P  and B3) 
implies Q, with the help of  Lemmas  3 and 4. To show 
termination, we use the function t: the number  of  non- 
primes z ~ S satisfying (x  = z or x a z) plus the number  
of  nonprimes z E S satisfying x a z. 

Note that t _> 0. Execution of  the first guarded 
command  SL 1 reduces the first term of  t by at least one, 
since it removes x from S. Execution of  the second or 
third guarded command  begins with x = x0 (say) and x 

S and finishes with x0 a x and x E S; hence they 
reduce the second term by one. Hence we conclude that 
the algorithm terminates. 

The initial value for t is a bound on the number  of  
times the loop will iterate. The initial value is bounded 
by 2 . (number  of  nonprimes in S) < 2.n. Hence the 
algorithm is linear if  we can satisfactorily implement S 
and the operations on it. The implementation is the 
subject o f  Section 4. 

4. Implementing the Set S 

We discuss three approaches to implement S C 
(2 . . . . .  n}, all dealing with forms of linked lists. We will 
actually implement sets S U {n + 1 }. The purpose is to 
provide an "anchor"  for one end of  the linked list. The 
integer 2 serves the same purpose at the other end of  the 
list since it is never deleted. 

Approach 1. I f  we implement S as a doubly linked 
list, then remove(S, 0 and next(S, i) each can be per- 
formed in constant time. Thus we use 

var s: array (2:n + !) of record (pred, succ:integer) 

where the various parts of  s are used as follows: 

s(O.succ = next(S U {n + 1}, 0 for i E S; 
s(O.pred =- unique integer j  such that next(s , j )  = i, for i E S U 

{ n +  i}, i ~  2. 

At any time, the elements of  S can be found by following 
the successor chain beginning at s(2) and ending just 
before s(n + 1). This approach requires roughly 2n 
locations (each of  In n bits), a The three operations on S 
are: 

S := {2 ..... n} :: i :=  1; 
do i < n ---* i := i + l; s(O.succ : = i +  1; 

s(i + l).pred := i od; 
remove(S, 0 :: s(s(O.pred).succ := s(O.succ; 

s( s( O.succ ).pred := s( O.pred; 
next(S, 0 :: s(O.succ 

Approach 2. 4 Under  the assumptions that 2 is not 
removed from S and remove(S, 0 is only executed if i is 
in S, a singly linked list can be used to implement S E 
{2 . . . . .  n}. We use an array s: 

var s: array (2..n) of Integer. 

I f  i E S, then s(0 will contain its successor next(S U 
{n + 1}, 0. It will also be necessary to determine i 's 
predecessor. Clearly, if  i E S and (i - 1) E S, then i - 1 
is i 's predecessor and s(i - 1) = i. On the other hand, if  
i E S and (i - I) ~ S, the element s(i - 1) can be used 
to contain i 's predecessor. Note then that for i > 2, i E 
S, i 's predecessor is given by min (i - 1, s(i - 1)). Thus 
the array s above is used to describe S as follows: 

2 ~  S; 
for i E S, s(O = next(S U {n + 1}, 0; 
f o r  i E S, i # 2, the predecessor i is min (i - 1, s(i - 1)). 

At any time S is the set of  values 2, s(2), s(s(2)) . . . . .  up 
to but not including the value n + 1. 

The three operations S := (2, ... , n), remove (S, O, 
and next (S, 0 are then 

S : =  (2 . . . . .  n): :  i :=  1; 
d o i <  n---* i :=  i +  l; s(i) := i +  1 od; 

remove(S, 0 :: pred := min (i - 1, s(i - l)); [pred is local] 
s(pred) := s(i); 
s(s(i) - l) := pred', 

next(S, i) :: s(i) 

Approach 3. In Approach 2, the value s(0 always 
contains an integer representing a successor or predeces- 
sor j of  value i in the set. Instead, one could store the 
increment needed to get from i to j; that is, the value 
i - j .  Since the increment will in general be much smaller 

3 Throughout, In refers to he base 2 logarithm. 
4 In our Initial formulation of  Approach 2, we used an extra bit 

vector in, where in(O denoted whether or not i E S. Remove(S, 0 simply 
set in(O to false. However, next(S, 0 was a complicated operation that 
in order to achieve a linear algorithm, had the "benevolent side effect" 
of  changing the representation of  S without changing the values of  
next(S, 0 for any i. During a presentation of  the algorithm at Harvard, 
Norman Cohen proposed a technique that was further refined by the 
authors to yield the present Approach 2. The development of  next(S, 
0 in the case that remove(S, 0 simply sets in( 0 to false might be an 
interesting exercise for the reader. 

1002 Communications December 1978 
of  Volume 21 
the ACM Number 12 



than n, we may be able to reduce the number of bits 
needed for each s(0. Asymptotically speaking, there are 
n/ln n or more primes in {2, ... , n), and if they were 
evenly distributed the increment to get from one to 
another would not be greater than In n. Hence we would 
need only ceil(In In n) bits for each s(0 instead of  
ceil(In n). 

Unfortunately, the primes are not evenly distributed, 
so we cannot assume s(0 will be so small. Knuth [4, p. 
402] gives a table of  "record breaking" gaps between 
prime numbers. For primes less than or equal to 
20831533 we see that the largest gap is 210, so that eight 
bits will suffice for n _< 20831533. 

rithm and the complexity of  its mathematical underpin- 
nings, two quite different things. Finally, the algorithm 
provides a good basis for a discussion of  control struc- 
tures and programming style--we showed two ways of  
writing the algori thm--and for a discussion of  the selec- 
tion of  data structures. 

Acknowledgments. We note that Gale and Pratt [2] 
have discovered a different linear sieve algorithm. The 
authors would like to thank Jim Donahue, Don Knuth, 
and Gary Levin for carefully reading earlier drafts of  
this paper and for providing many constructive criti- 
cisms; and Norman Cohen and Dexter Kozen for their 
suggestions. 

5. Discussion Received June 1977; revised April 1978 

Mairson's [6] paper, which tied for second place in 
the annual George E. Forsythe Student Paper Compe- 
tition, also presents a linear sieve algorithm. To delete 
from S all composite integers whose lowest prime factor 
is p, Mairson's algorithm first uses the set S to compile 
a list of  these integers, then sequences through this list to 
delete them from S. The use of  an auxiliary list is 
unnecessary in our algorithm because of  Theorem 2.1. 
Mairson does an excellent job in analyzing the efficiency 
of his algorithm, and most of  his analyses will carry over 
to our algorithm. 

Algorithm 1 also works for n -- 2 and n = 3; the 
condition n _> 4 is used only to simplify the proof. 

Dexter Kozen has discovered an easy way to extend 
the algorithm to find the complete factorization of  an 
integer n in no worse than linear time. This extension is 
not surprising, since Shank's [8] algorithm finds factors 
of  n in t i m e  O(n (1/4+0) for c > 0. However, Kozen's 
technique actually can be used to build a table in time n 
that yields the complete factorization of  all integers 
between 2 and n! It is quite simple. Assume a singly 
linked list is used to implement set S, say using Approach 
2, and use three new arrays xp, xk, xq(2 . . . . .  n). Initially, 
let xp(x) = x, for all x. When a nonprime x = pk .q  is 
about to be deleted in Algorithm 1 the values p, k, and 
q are available, so just record them in xp(x), xk(x), and 
xq(x). Upon termination, for each i, 2 < i < n, if 
xp(O < i then i is not prime, i's lowest prime factor is in 
xp(O and its multiplicity in xk(i), while the other factors 
can be determined from xq(O in a similar fashion. 

The development of  this algorithm emphasizes sev- 
eral points. First, it could not have been developed 
without recognition of an important property of  non- 
primes--their  unique decomposition given in Theorem 
2.1. Efficient algorithms come less from clever tricks 
than from a good understanding of  properties of  the 
values being manipulated. Secondly, the correctness of 
the algorithm rests on some nontrivial mathematical 
theorems (Lemmas 1-4). Once these theorems are un- 
derstood, the algorithm itself seems quite simple. We see 
here a distinction between the complexity of  an algo- 

References 
1. Dijkstra, E.W. Guarded commands, nondeterminacy and formal 
derivation of programs. Comm. A CM 18, 8 (Aug. 1975), 453-457. 
2. Gale, R., and V. Pratt. CGOL--an algebraic notation for 
MACLISP users. Working paper, M.LT. AI Lab., Cambridge, Mass., 
January 1977. 
3. Gries, D. The multiple assignment statement. IEEE Trans. 
Software Eng. SE-2 (March 1978), 89-93. 
4. Knuth, D. The Art of Computer Programming, 1Iol. 3: Sorting and 
Searching. Addison-Wesley, Reading, Mass., 1973. 
5. LeVeque, W.J. Topics in Number Theory, Volume 1. Addison- 
Wesley, Reading, Mass., 1956. 
6. Mairson, H.G. Some new upper bounds on the generation of 
prime numbers. Comm. ACM 20, 9 (Sept. 1977), 664-669. 
7. Miller, G.L. Riemann's hypothesis and tests for primality. Proc. 
Seventh Annual ACM Syrup. Theory of Computing, 1975, 234-239. 
8. Shank, D. Class number, a theory of factorization and Genera. 
Proc. Symp. in Pure Mathematics 20, 1969, Amer. Math. Soc., 
Providence, R.I., 1971, 415--440. 

1003 Communications December 1978 
of Volume 21 
the ACM Number 12 


