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ABSTRACT 

A method is proposed for reasoning 
about safety and liveness properties of 
message passing networks. The method is 
hierarchical and is based upon combining 
the specifications of component processes 
to obtain the specification of a network. 
The inference rules for safety properties 
use induction on the number of messages 
transmitted; liveness proofs use techniqu~ 
similar to termination proofs in sequential 
programs. We illustrate the method with 
two examples: concatenations of buffers to 
construct larger buffers and a special 
case of Stenning protocol for message com- 
munication over noisy channels. 
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i. INTRODUCTION 

This paper presents a method for rea- 
soning about safety and liveness proper- 
ties of networks of processes in which 
communication is through messages only. 
The key features of this method are: 

(i) Modular Specification: We present a 
scheme for specifying processes in a 
modular fashion. The specification 
relies exclusively on a process's 
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interaction with its environment and 
is independent of process implemen- 
tation. 

(2) Hierarchy: We present inference rules 
by which a specification for a net- 
work is derived from specifications 
of component processes. Thus the 
proof of a network is not concerned 
with implementations of component 
processes. 

(3) Compatibility With Sequential Pro- 
gramming Proof Techniques: We have 
extended well known sequential pro- 
gramming proof constructs such as pr~ 
condition, post-condition and the 
ideas of termination proof to distri- 
buted systems. Those familiar with 
the Floyd-Hoare proof technique for 
sequential programming should find 
our method to be straightforward. 

The organization of this paper is as 
follows. We describe a model of computa- 
tion in section 2. We discuss the proof 
technique in section 3. Section 4 con- 
tains the example of concatenations of 
buffers to construct larger buffers. We 
prove a special case of the Stenning pro- 
tocol for message communication over noisy 
channels, in section 5. 

Apt, DeRoever, Francez [i] and Levin, 
Gries [4] propose alternate proof tech- 
niques. Both these works depend upon 
analysis of code fragments of two communi- 
cating processes to ensure that only de- 
sirable communications take place. Pio- 
neering work using temporal logic in 
proving liveness properties is due to 
Owicki and Lamport [7]. Hailpern [2] pro- 
poses proof techniques using temporal log- 
ic for general concurrent programs which 
include both shared memory as well as 
message passing systems. A proof of Sten- 
ning protocol appears in Hailpern, Owicki 
[3]. 

2. MODEL OF A NETWORK 

Our reasoning technique is applicable 
to a variety of network models and proto- 
cols. However we confine our discussion 
to an extremely simple network model. In 
this section our goal is to define a mode~ 
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not a progra~aing language; hence syntac- 
tic issues will be treated informally. 

A process is either a sequential pro- 
cess or a network of processes. A sequen- 
tial process is a sequential program with 
commands for message transmission. It may 
have inpu t ports through which messages 
are received and output ports through 
which messaqes are sent. An output port 
of one process may be connected to the in- 
put port of another process by a directed 
channel. A port is connected to one cha- 
nel and a channel is always connected to 
one input port and one output port. All 
connections of ports and channels are 
static. 

A sequential process h can execute a 
send command which has the form: 

send m via p 

where m is a local variable and p is an 
output port of h. Process h continues exe- 
cution of its program following execution 
of the send command. Execution of this 
command results in a message m being sent 
along the channel to which output port p 
is connected. Messages sent along a chan- 
nel arrive at their destination in the 
order sent and after an arbitrary but fi- 
nite delay. 

A sequential process h can execute a 
receive command which has the form: 

receive m via p 

where m is a local variable and p an input 
port of h. Execution of this command re- 
sults in the first message (if any) which 
has arrived at the input port p being re- 
moved, and its value assigned to m. If 
there is no such message, h waits until a 
message arrives at the port. A process 
can also test whether there is a message 
at an input port; for instance it may 
execute a statement of the form: if there 
is a message at input port p then sl else 
s2. 

A network is also a process with input 
and output ports. A network consists of 
one or more component processes whose 
ports are connected by channels. Any port 
of a component process, which is not con- 
nected by a channel to another component 
process port, is a port of the network. 

Example: A Sequential Process: Merge2 

This process receives monotone increas- 
ing sequences along its two input ports 
i_nn[l] and i__nn[2] and produces the merged 
monotone increasing output sequence along 
its single output port out. Its sequen- 
tial program is given below. 

Process Merge2 (input port in[l], in[2]; 
output port out) 

receive x I via in[l]; 

receive x 2 via in[2]; 

while true do {loop forever} 
if x I < x 2 then 

begin send x I via out; 

receive x I via in[l] 
end 
else if x 2 < x I then 

begin send x 2 via out; 

receive x 2 via in[2] 
end 

else {x I = x 2 } 

begin send x I via out; 

receive x I via in[l]; 

receive x 2 via in[2] 
end 

Example: A Network: merge3 

merge3 receives monotone increasing 
sequences along 3 input ports in[l], in[2] 
and in[3]; it outputs the monotone increa~ 
ing merged sequence along its single out- 
put port out. merge3 can be implemented 
as a network of two component merge2 pro- 
cesses. 

3. PROOFS OF PROCESSES 

We use some ideas from sequential pro- 
gram proofs in proofs of message-passing 
systems. In an annotated proof of a se- 
quential program, each statement s has a 
precondition pre(s) and a postcondition 
post(s). The proof shows that if asser- 
tion pre(s) holds prior to execution of s, 
post(s) holds following execution of s 
assuming execution of s terminates. We 
shall use the precondition/postcondition 
concept for describing process safety pro- 
perties. Proofs of liveness (or termina- 
tion) in sequential programs are based on 
demonstrating the existence of a metric 
such that the execution of each statement 
causes the metric to decrease in value. 
~Te will use a similar technique in pro- 
cess proofs. However, processes can wait 
indefinitely for messages, something that 
conventional sequential programs do not 
do; to handle this we introduce a new con- 
cept called activit~ which is the condi- 
tion under which a process will definitely 
send or receive a message. Other liveness 
properties are derived from the basic pro- 
perty of activity and from safety. 

3.1 Trace 

A trace of a process h is a sequence 
of tuples <(port],v]), (port~,vg) , .... 
(pOrtn,Vn)>, where in some cSmp~tation the 

ith message sent or received by h is 
through port. and has value v.. If port. 

1 i 1 
is an output (input) port then h sent 
(received) v. through port.. Thus the 

l 1 
trace is a chronological sequence of all 
interactions that a process has with its 
environment in a particular computation. 

An assertion r holds at all points of 
a trace T: <(portl,Vl),... (pOrtn,Vn)...>, 

if r holds for all initial prefix traces 
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<(portl,Vl)... (porti,vi)>, ih0, of T. Note 

that r must then hold for the null trace, 
i.e. the trace which has no element. The 
trace T' : <T; (port,v)> which has T as 
the initial prefix trace and one more ele- 
ment, is called an extension of T. 

The sequence of messages transmitted or 
received by a process h via port will be 
denoted by h.port i (or port i whe~ we are 

discussing process h). Let Z, Zl and Z2 
be sequences of messages. Then IZI is the 
length of Z and Z1 ~ Z2 denotes that Z1 is 
an initial subsequence of Z2. Note that 
Z e Z, for all Z. 

3.2 Specification of a Process 

We use three propositions r, s and q to 
specify a process h, and the specification 

will be denoted by rI~Is ; r is called the 

precondition, s the postcondition and q 
the activity condition, r and s are asser- 
tions on traces of h while q is an asser- 
tion on the trace of h and the empty/non- 
empty status of the channels connected to 
its ports. 

h i s  means t h a t  

(I) s holds for the null trace, 

(2) if r holds at all points of a trace 
T of h then s holds at all points 
of any trace T' of h, where T' is 
an extension of T, 

(3) if r holds at all points of a trace 
T of h and q holds for T then there 
exists a trace T' of h which is an 
extension of T. 

The second condition does not state 
that the trace T will be extended to T'. 
it merely states that if the trace is ex- 
tended then s holds for the extended trace. 
The third condition is a sufficient condi- 
tion under which the trace of h will defi- 
nitely be extended. Since all process 
speeds are assumed to be non-zero and fi- 
nite, the phrase "trace of h definitely 
will be extended" means that no process 
can have its trace extended indefinitely 
without the trace of h being extended. 

h 
The proof rI~Is for a sequential pro- 

cess, requires Uone sequential program 
proof. A proof method appears in [5], 
when q is absent; it has been applied in 
a llumber of examples in [6]. We have not 
included the proof method in this paper. 
In next section, we show how the specifi- 
cations of a network can be proven from 
specificatio~;s of component processes. 

3.3 Theorem of Hierarchy 

The theorem of hierarchy gives the con- 

ditions under which we canhdeduce RIHIs, 
%4 

for a network H, given r i s i , for all 

processes h. in H. We first present an 
axiom - thelcommunication Axiom C - which 
captures the essence of the proposed com- 
munication protocol. The only assumption 
made about the communication protocol in 
the theorem of hierarchy is the communica- 
tion axiom C; therefore changes in the 
protocol only affect C and not the theorem 
of hierarchy directly. 

We give C for the model of section 2. 
If there is a channel linking the output 
port p~ of process h. with input port p^ 

± z 
of h^ ~hen the secuence of messaoes re- 
ceived by h. through p^ must be an initial z z 
subsequence of the messages sent by h 1 
through PI" Formally, 

h2.P 2 ~_ hl.P 

Let the port P of the network H be the 
same as the port p of the component pro- 
cess h; then since renaming of a port does 
not alter the message sequence through it, 

H.P = h.p 

Combining these we have the communication 
axiom, 

C :: If there is a channel linking 
output port Pl of h I with input 

port P2 of h2, then h2.P2 ~ hl.Pl. 

If port P of H is the same as 
port p of h, then H.P = h.p . 

h, 

Given riI¢Isi , for all processes 

h i , i=i,2 .... in a network H, we give con- 

ditions under which RI~IS holds. Let, 

and and or 
s = C "i si' r = i ri' q = -i- qi 

3.3.1 S tatpmgnt of the The0rempfHierarch[ 

h. 

If, (i) riI~iIsi , i=1,2 .... 

(ii) s and R ----> r, {harmony} 

(iii) s => S, {abstraction} 
< 

(iv) s and Q ~ q {progress} 

(V) S and Q => (~ trace length 
i 

of h i ) ~ F (trace length of H), 

for some function F {boundednes~ 

then RI~[S. 

3.3.2 Explanation 

Conditions (ii) and (iii) deal with 
safety and (iv) and (v) with liveness. 
Condition (ii), called the harmony condi- 
tion says that all preconditfons assumed 
by the component processes are implied by 
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the precondition of the network H and the 
postconditions of the component processes. 
Condition (iii), called the abstraction 
condition, says that the network's post- 
condition must be derivable from the post- 
conditions of component processes. Condi- 
tion (iv), called the progress condition, 
states that the network can be active only 
if some component process is active. Con- 
dition (v), called the boundedness condi- 
tions, states that processes cannot send 
or receive messages indefinitely without 
the network communicating as well + . The 
essence of the safety rules is: each time 
the trace of some process h. is extended, 

1 

process h i guarantees s i (and hence s is 

maintained) and harmony guarantees r for 
the extended trace. 

4. AN EXAMPLE: CONCATENATION OF BOUNDED 
BUFFERS 

4.1 Operational Description of a Bounded 
Buffer 

A bounded buffer process of size b is 
shown schematically in Figure i. This 
process can hold at most b, b>0, items of 
data. It is interposed between a producer 
and a consumer. The process sends requests 
for data via ro to the producer if it has 
room for data (not all buffer spaces are 
full) and if it has no outstanding request 
to the producer. It receives data from 
the producer through di. It receives re- 
quests from the consumer for data via ri 
if it has some data (the buffer spaces are 
not all empty) and if it has already ser- 
viced all consumer requests; it subse- 
quently sends data through do in such a 
case. The goal of this example is to show 
formally that concatenation of N buffers 
of sizes bl,b2,...,bN is equivalent to a 

N 
single buffer of size Z b.. 

i=l i 

producer 

di 

r£ 
do 

-? 
on_ consumer 

Figure i: Bounded buffer of size b. 

4.2 Specification of Bounded Buffer of 
Size b 

The buffer process of size b can be 
specified by the assertions r, s and q. We 
present each of the assertions in a formal 
notation and then explain in English. In 
the following "a is empty," where a is a 
port of some process h, denotes that the 
channel oonnected to a is empty. 

r :: true 

+Hoare terms this "absence of infinite 
chatter." 

s :: Idol !Iril ! Idol + i (sl); 

{The data to and requests from 
the consumer alternate} 

Idil i Ir°l < Idil + i (s2); 

{The requests to and data from 
the producer alternate} 

Iril!Idil (s3) 

{no buffer underflow, i.e. no 
request from the consumer is 
accepted unless there is data} 

JroJ < Idol + b (s4); 

{no buffer overflow} 

do ~ di (sf); 

{buffer transmits the received 
data in sequence} 

q :: (]do I < Idil and 

(Idol < Iril or ri is not empty)) 

{buffer is not empty and all 
requests sent by the consumer 
have not been processed; data 
will be sent to consumer} 

or (Idil < Idol + b and 

(Irol = Idil or di is not empty)) 

{buffer is not full and producer 
has responded to all requests 
for data; request will be sent 
to producer} 

The problem is to show that concatena- 
tion of any N buffers of sizes bl,b 2 ... 

b N has the same specification as a buffer 
N 

of size Z b.. We show that the concate- 
i=l 1 

nation of two buffers of sizes bl,b 2 has 

the same specification as a single buffer 
of size b I + b 2. The proof follows for 

N > 2 in a straightforward manner. 

H 
ft . . . . . . . . . . . . . . . . . . . . . . . . . . .  i 

' d i  . 
~ DI . O~ ~rdO di - .do, DO ,~ 

~I ! r~ ~iiR I li 
~/RO ,,r h I i h2 ~--~I ~ 

f9  ',L, bll" 
I m 
', bl+b2~ 
. . . . . . . . . . . . . . . . . . . . . . . . . .  i 

Figure 2. Concatenation of two 

buffers of sizes bl,b 2. 

4.3 Proof of Bounded Buffer Concatenation 

4.3.1 Harmony 

Trivial, since r is true. 
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4.3.2 Abstraction 

(sl) [ D o l ! I R ! l ! I D O l  + 1 : 

follows from, 

lh2.dol!lh2.ril!lh2.dol + 1 (s I f o r  h 2) 

and the communication axiom C. 

(s2) Proof similar to (sl). 

(s3) I~II~ID<I: 

I~_~I = [h2-ril!lh2-diI(C, s3 for h2) 

lh2.di I< lhl.dO I (C) 

lhl.dOI@lhl.dil = IP~I 

(sl,s3 for hl,C) 

(s4) I~oliIDol + b l+ be: 

IRO I = lhl.rol!lhl.ri I + b I 

(C and s4, sl for h I) 

lhl.ril!lh2.ro I (C) 

lh2.rol!lh2.do I + b 2 

=IDol + b 2 
(s4 for h 2, C) 

(s5) Similar to proof of (sl). 

4.3.3 Progress 

We will show that if h I is not active 

(ql is false), h 2 is not active (q2 is 

false) and s holds then H is not active 
(Q is false). The negation of ql can be 

written as a conjunction of two proposi- 
tions, (i) and (ii) : 

(i) the buffer in h I is empty (lhl.dO I = 

]hl.di ]) or h I is waiting for requests 

from its consumer h 2 (]hl.dOl=lhl.ril 

and channel hl.ri is empty), and 

(ii) the buffer in h I is full (lhl.di [ = 

lhl.dO I + b I) or h I is waiting for 

from the producer Ihl.di ] < response 

(~l.ro] and channel hl.di is empty). 

A similar set of propositions correspond 
to ~q2 and ~Q. 

It is straightforward to conclude from 
~ql and ~q2 that all buffers in h I are 

empty or all buffers in h 2 are full. We 
now show that the corresponding conditions 
(i) and (ii) hold for H in this case. 
Condition (i) for H is: all buffers in H 
are empty or H is waiting for requests 
from the consumer. If all buffers in H 
are not empty, then from the observation 

in the first line of this paragraph, all 
buffers in h 2 cannot be empty, and there- 
fore from ~q2' h2 is waiting for requests 

from the consumer. Condition (ii) can be 
proven symmetrically. 

4.3.4 Boundedness 

We can show using (sl), (s2), (s3), (s4) 
for h I and h 2, that the trace lengths of 

h I and h 2 is no more than twice the trace 

length of H. 

5. STENNING PROTOCOL WITH WINDOW SIZE 1 
[3,67 

Stenning protocol can be used to send 
messages from a producer to a consumer 
over noisy channels. We consider a spe- 
cial case of the Stenning protocol in 
this paper - the transmitter sends a new 
message only after it receives an ack- 
nowledgement from the receiver for the 
previous message; if it receives no ack- 
nowledgement within a specified time 
period, it retransmits the message. The 
full Stenning protocol allows the trans- 
mitter to send more than one message with- 
out having received acknowledgements. 
Conceptually, the proof of full Stenning 
protocol is only slightly more difficult 
than the one presented here; a proof of 
safety for the general case using methods 
of this paper appears in [6]. 

This example illustrates the use of 
the theorem of hierarchy on a problem in 
which (i) the communication axiom C des- 
cribed earlier is no longer valid, since 
a channel can lose, duplicate and permute 
messages and (2) time-out is an essential 
feature of the protocol. 

5.1 Description of Stenning protocol 

The communication network is shown 
within dotted lines in Figure 3. For 
simplicity of description, each channel 
has a name which is identical to the port 
names at both ends. 

I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  J 

i I 

] ctr f i ~ ctr 

:prod f . ~ ~~consl 
~ t rans- I ctr (receiver~ 
~ i ~mitter~ crt ~ J , o = 

i I 

I . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  J 

Figure 3. A network to implement 

Stenning Protocol. 

The channels linking the transmitter 
and receiver can lose, duplicate or per- 
mute messages sent along them. The trans- 
mitter receives a message from the pro- 
ducer and transmits it along channel ctr 
after appending an idenfifying sequence 
number. It continues to retransmit the 
message after some time unless it receives 
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an acknowledgement (ack) for that message 
along crt. Upon receiving an ack for the 
last message sent, transmitter receives 
the next data item from the producer. The 
receiver, upon receiving a data item along 
ctr, checks to see if it is the last data 
item it has transmitted to the consumer - 
in this case it sends an ack along crt - 
or if it is the next item to be trans- 
mitted to the consumer (this is deter- 
mined by the sequence number appended to 
every data item) - in this case, it sends 
the data item to the consumer and an ack 
along crt. 

If a channel loses all messages or 
never delivers some particular message 
even if it is transmitted many many times, 
we cannot guarantee eventual delivery of a 
message. Therefore we postulate the fol- 
lowing communication axioms for every 
channel a, {a.read(v)/a.sent(v) denotes 
the number of times message v has been 
received/sent along channel a}, 

(CI) a.read(v) > 0 ~ a.sent(v) > 0, 
for all v; 
{every message received must have 
been sent} 

(C2) there exist monotone nondecreasing 
functions f]'f2 such that 

fl (a-read(v)) ! a.sent(v) 

f2(a.read(v)) for all 

{every message sent often enough will 
be received often enough and no 
message is duplicated infinitely 
often. This means in particular 
that a sender process cannot be 
infinitely faster than the receiver 
process} 

Notation: To simplify notation, we assume 
that every message is a tuple consisting 
of a sequence number (a positive integer) 
and a data item. Thus the messages sent 
by the producer to the transmitter, by 
the transmitter to the receiver, by the 
receiver to the consumer and the acks sent 
by the receiver to the transmitter are all 
tuples of the same form. 

5.2 Specifications of Component Processes 

5.2.1 Specification of the transmitter 

Let <(Cl,Vl)... (ci,vi)... (CL,VL)> be 

the trace. 

r :: jth item received along port prod, 
has sequence number j 

s :: (i) c i = prod, cj = prod, i < j ~ ~k, 

i<k<j, (Ck,Vk) = (crt,v i) 

{A message is received along prod 
only if ack to all earlier mes- 
sages have been received} 

(2) c. = ctr ~ ~i, i<j, 
3 

(ci,v i) = (prod,vj) and k, i<k<j, 

(Ck,V k) fl (crt,vj) 

{A message is transmitted along 
ctr only if it has been received 
along prod and no ack for it has 
been received} 

q :: ~i(ci,v i) (crt,prod (N)), 

{The trace will definitely be 
extended if an ack for the N-th 
message has not been received} 

Note: It follows that the last message 
received from the producer will be retrans- 
mitted indefinitely often unless an ack 
for it is received. The trace will be 
extended as long as ack for the N-th mes- 
sage has not been received. 

5.2.2 Specificatign of the receiyer 

{<(Cl,V I) .... (ci,v i) .... (CL,VL)> 

denotes the trace.} 

r :: true {no assumptions made about the 
input data} 

s :: (I) cj = cons ~ (Cj_l,Vj_ I) = (ctr,vj) 

{Only the last message received 
along ctr can be sent along cons} 

(2) cj = crt ~ [cj_ 1 = cons o_rr 

c. = ctr] and 
3-i 

[vj = last(cons) 

= last(ctr) ], 

where last(Z) denotes the last 
message sent or received along 
port Z. 

{An ack is sent only if the 
last(ctr) and last(cons) match. 
Vurthermore at most one ack is 
sent after receiving a message.} 

(3) The jth message sent along cons 
has sequence number j. 

q :: c L = ctr and [v L = last(cons) o__rr 

v L = last(cons) 0 I], 

where last(cons) @ 1 denotes a mes- 
sage with sequence number 1 higher 
than last(cons). 

{The receiver will extend its trace 
if it receives along ctr, last(cons) 
or last(cons) ~ i; in the former 
case, it sends an ack along crt and 
in the latter case, it also sends a 
message to the consumer.} 
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5.2.3 Desired network proof 

{<(Cl,Vl).. (CL,VL)> is the network's 

trace.} 

R :: The jth message received along prod 
has sequence number j. 

S :: ci+ 1 = prod ~ c i = cons 

ci+ 1 = cons ~ (ci,v i) = (prod,vi+ I) 

{Messages from the producer and to 
the consumer alternate.} 

Q :: Iconsl < N 

{Network's trace will be extended, 
i.e. a message will be received from 
the producer or sent to the consumer, 
if all N messages have not been sent 
to the consumer.} 

5.3 Proof of the Stenning Communication 
Protocol 

5.3.1 Harmony 

{s and R ~ r} 

Trivial, since R ~ rtransmitte r 

rreceiver = true. 

and 

5.3.2 Abstraction 

Lemma i: Given s, every message sent 
along cons must have been received along 
prod. 

Proof: Every message sent along cons 
must have been received by the receiver 

along ctr {from Sreceiver}. Every mes- 

sage received along ctr must have been 
sent along ctr {from channel axiom Cl}. 
Every message sent along ctr must have 
been received along prod {from 

Stransmitter}" 

The lemma follows. 

Lemma 2: Given s, the transmitter 
receives an ack v only if v has been 
sent along cons. 

Proof: Follows from s and chan- 
receiver 

channel axiom Cl, applied to channel crt. 

Proof of abstraction hypothesis: From 
lemma 1 and the fact that the jth message 
sent along cons has sequence number j, it 
follows that the sequence of messages sent 
along cons is the same as the sequence 
received along prod. Therefore it remains 
to show that the network% operation alter- 
nates between receiving from prod and 
sending to cons. If c. = prod and c. = 

l 3 
prod, i < j, in the network trace, then 

from Stransmitter, the transmitter must 

have received v i along crt prior to receiv- 

ing v. along prod. From lemma 2, there 
3 

exists k, i<k<j such that (Ck,V k) = 

(cons, vi) . It is straightforward to show 

that between every two message sends along 
cons, there must be a message receipt 
along prod. 

5.3.3. Progress 

{s and Q ~ q} 

Q says that Iconsl < N. From s, jth 
data item sent along cons has sequence 
number j. Therefore, no data item with 
sequence number N has been sent along cons, 
if Q holds. From lemma 2, transmitter 
could not have received an ack for prod(N). 

Therefore qtransmitter holds. 

5.3.4 Boundedness 

{s and Q ~ ( I trace length of h. < 
i l - 

F(trace length of H), 

for some function F} 

We show boundedness from s alone. We 
will in fact show a bound on the number of 
times that any message v is transmitted 
along the channels crt and ctr. In any 
computation of the network, consider the 
point at which the transmitter last sent 

message v along ctr. From Stransmitter, 

transmitter has received 0 acks for v 
along crt at that point. From channel 
axiom C2, receiver has sent no more than 
f2(0) acks for v. Since v is the last 
message being sent by the transmitter, 
from s the receiver sends an ack 

receiver' 
every time it receives v and hence the 
receiver could not have received v more 
than f2(0) times. Therefore from C2 

transmitter could have sent v at most 
f2(f2(0)) times. A message is received 

a bounded number of times if it is sent 
a bounded number of times (from C2). The 
result follows. 

6. CONCLUSION 

The goal of this paper has been to ex- 
tend the ideas of sequential program prov- 
ing to proofs of message communicating 
systems. Ideas of pre- and post condi- 
tions and boundedness seem to have natural 
analogs in message passing systems. It is 
hoped that the full power of sequential 
program proving methods can be applied to 
these systems; to do so we need to develop 
a convenient notation for descriptions of 
traces and operations on them. 
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