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A Technique of Algorithm Construction on Sequences

JAYADEV MISRA,; MEMBER, IEEE

Abstract—A technique is presented which is shown to be useful in
designing algorithms which operate on sequences (strings). A general-
ization of the principle is presented for more general data structure.

Index Terms—Algorithm design, recursive data structure, successive
approximation.

INTRODUCTION

ATELY there has been considerable interest in identifying

approaches to problem solving rather than a specific
algorithm for a specific problem. The goal of such research is
to systematize the intuitive process of algorithm construction.
Once certain systematic schemes for handling a class of prob-
lems are known, a programmer would attempt to apply these
schemes rather than attempt to solve a problem by some ad
hoc technique. An example of a general principle is “depth
first search” which has been explored in great detail for prob-
lem solving on graphs [9] .

Admittedly, the approaches usually taken for problem solv-
ing depend on human intuition and differ considerably from
problem to problem and person to person. However, in a
surprisingly large number of cases similar methods of attack
are often successful on problems having similar structure.
Clearly a mathematical study of problem solving must include
a rigorous definition of the structure of a problem (so that
conditions may be derived under which two problems may be
considered to be of identical structure), and a rigorous formu-
lation of the problem solving approach and conditions under
which a certain approach is applicable to a certain problem.

Though a mathematical formulation is desirable and is an
important research area, it is hard (with the current methods)
to characterize any nontrivial class of problems. Difficulties
arise due to many special restrictions attached to a specific
problem. It is thus worthwhile to study approaches which
may be termed systematic though not algorithmic. Such
schemes usually involve some human intuition. For example,
dynamic programming [2] may be viewed as a process where
the applicability criterion is dependent on human intuition.

In this paper, we will mainly study a class of problers which
arise in connection with sequences (strings/one-dimensional
files). The problems are usually of the type where a certain
quantity needs to be computed from a given sequence by
a “left to right scan” type of algorithm. We will present
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a systematic way of generating such algorithms by a process
of iteration. Human intuition would be involved in answering
questions such as, “‘given x, is it possible to compute »?” or
“what is needed to compute y given x?” We believe that
algorithm designers follow a similar process without explicit
recognition of the process of iteration that takes place sub-
consciously. (Brighter ones, of course, skip all the iterations.)
We will consider certain nontrivial problems and apply the
principle to obtain algorithms. In a later section, we discuss
the general problem of designing algorithms which compute
specific functions on nonlinear recursive structures such as
trees. A generalization of the principle for sequences is shown
to result in a principle for more general structures. Implica-
tions of these results are discussed in the final section.

PROBLEMS ON SEQUENCES

We consider sequences of the form x:(x; x2 x3 ' *X,),
n>1, where each x; is of a certain given type. Character
strings, sequences of integers, etc., fit into the above defini-
tion. We will not put any a priori bound on n, the length of
the sequence; the implication is that the algorithms which
would be designed, would be general enough to work for all
nonnull sequences.

Let D be a certain function that is defined on any sequence:
D(x; x, -**x,) denotes the value of the function on the
sequence (x, X, -+ *x,). Our problem is to design an algor-
ithm which computes D for any input sequence x. For in-
stance, D may be a simple term (the value of the maximum
element on an integer sequence), a substring (e.g., the longest
contiguous subsequence of a character sequence that does not
contain the character “d”), or another sequence (e.g., the
sorted sequence from the given one). In fact, D could be any
computable function on sequences.

One typical method of attack for computing D is to com-
pute D(x,), then D(x; x,), then D(x; x, x3), etc., where
D(x, x5 ***x;4;) is computed from D(x; ** - x;) and Xz, .
Thus finally D(x, x, - - - x,) is obtained.

Example 1: Find the maximum of any sequence (x; * * * X,),
n > 1, where each x; is a positive integer. Clearly, max(x,) =
x, and max(x; X, ***X;4p) = maximum (max(x; x, X5,
X;51). Thus an iterative algorithm as shown below may be
employed.

max :=x,;1:=1;

doi<n—
i:=1i+]1;
max := maximum (max,x;)

od

However, it is often impossible to compute D(x; x5 * ** X;41)
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solely from D(x; x, - - -x;) and Xx;,,. Suppose for instance
that D(x, x, **-x;) represents the length of the longest
substring (contiguous elements of the sequence) that does
not contain the character “d.” Then the knowledge of
D(xy x; - +x;) and x4, is not sufficient for computing
D(xy -+ x;4,). Consider the string “adbcdpqr.” 1t is not
possible to compute D(adbcdpqrd) given only that the last
character is “d” and that D{(adbcdpgr)=3. In this case, we
need to compute and carry along something more than D.
Example 2: Suppose we want to compute the length of the
longest substring not containing “d.” Then we may compute

Di(xy x5 *** x;) =length of the longest substring in
(x1 x5 ** *x;) not containing “d”
Dy (xy x5 -+ x;) = length of the substring following the

last (rightmost) “d” in (x; x, * - *x;). (Itis equal to

[if thereisno “d”inx, x, - * - x;).
For example, D, (adbcpdqr) =3 and D, (adbcpdgr) = 2. Now,

0ifx, =“d”

Dy(xy)=
Lifx, # %“d”
0ifx, = “d”

Dy(xy)=
lifx; #+“d”

Next suppose that D (x, - -
computed. Then D, (x,
computed as follows:

if x;04 ¥ “d” then

-x;) and D, (x; - - - x;) have been
“*xipy)and Dy (xy ¢ - xy,q ) may be

Dy(xy Xz =t xi4)=1+Dy(x; -+ %))
Dy (xy xz ** * Xp4q) = maximum (D, (x; - - x;),
Dy(xy * Xiar))
if x40 = “d” then
Dy(xy - xi41)=0
Di(xy * - x1) =D (xy T ).

These equations follow from the definition of D,,D,.

In Example 2, we needed to compute and carry along D, and
D, , even though we only needed the final value of D;. This
situation occurs quite often in solving problems on sequences
as well as on more general data structures. Thus the major
aspect of algorithm construction for computing D involves
identifying certain sets of quantities D' such that

1) D'(x,)is easy to compute,

2) D'(x; * * " X441 ) can be obtained easily from D'(x; * - - x;)
and x;41 ,
3) D(x; - - x;) can be computed easily from D'(x, - - - x;).

Then the algorithm for computing D looks as follows:
compute D": = D'(x,);i:=1;
doi<n—
i:=i+l1;
compute new D' from old D" and x;;
od;
compute D from D’;

In Example 2, D"= {D,,D,}. Trvially, D'(x; - - x;) may

just be the string (x; - - -x;). This D', however, yields little
clue as to how to proceed from one step to the next; how to
compute D'(x; -+ " x;4,) from D'(x; * -+ x;) and x;,,. Princi-
ple A, given below will almost always yield a nontrivial D’.
Since D’ represents the amount of information that needs to
be carried along, D' should be as small as possible. Further-
more, we should be able to compute 2), 3) as fast as possible.
The following principle uses a scheme similar to successive
approximation for locating D', starting with D as an initial
estimate of D'. We will assume throughout that D(x, ) is easy
to compute. In the following description, D; and D; denote

D(x, -+ x;)and D'(x; - - - x;), respectively.
Principle A: (for locating D', given D)
letD' :=D;

do Dj,; cannot in general be obtained easily from D}, X;,,
(for arbitrary i=1) —>
Let D" be some quantity such that D},; can in general
be computed (easily) from D}, x;.1;
DI ::D"
od

This principle may be applied for computing successive D’
such that the final D' obtained meets condition 2). Usually
condition 1) is trivially met. Condition 3) would be met since
computation of D’ would include the computation of D.

Example 2 (continued): We apply the principle to the prob-
lem of locating the length of a longest substring not containing
“d,” in a character string. Initially let D; be the length of the
longest substring in (x; * ' - x;) not containing “d.” As we
noticed earlier, D},; cannot be computed from D} and x;,, .
Hence, we have to locate D" such that we can compute the
length of the longest substring in (x; ** - x;,;) given D} and
Xis1- D" = {Dy, D, } is a suitable candidate, where D,, D, are
as defined in Example 2. Next we consider whether D and
X;+; are sufficient to compute D7,; . Since they are sufficient,
we terminate the process.

The next example illustrates the application of the proposed
method on a nontrivial problem.

FExample 3: Given a sequence x = (xy X5 **"x,),n=1, of
positive integers, it is required to find a longest ascending sub-
sequence (not necessarily contiguous); ie., a subsequence
(xj, x;, *+x;,) such that iy <i; -+ -<i, and X <Xz v
<x;, and r is as large as possible. For the sequencex = (673 5
192 12), two longest ascending subsequences are (3 59 12)
and (6 79 12).

We will abbreviate “longest ascending subsequence” by LAS.
Algorithms for the problem appear in [4], [8]. The following
algorithm derived from Principle A closely resembles an
algorithm developed independently by Matuszek [6].

We start the process with D' =D = LAS. Next we ask the
question whether it is possible to easily obtain Dj,; from Dj
and x;4y; ie., given any LAS for (x; - - -x;) and x;,,, is it
possible to obtain an LAS for (x; -*-x;.;)? Suppose the
last element of the LAS for (x; - - *x;) is larger than x;,,. In
this case the current LAS cannot be extended. However, if
there is another LAS whose last element is less than x;,, , then
that LAS can be extended. We thus conclude that from an
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arbitrary LAS for (x; * - *x;) and x;,;, we can not in general
get another LAS for (x; ** * Xj41)-

However, these arguments show that if we pick an LAS
from (x; - *-X;) whose last element is as small as possible,
we can compute an LAS for (x; - X;.) from this LAS
and X;4 : if X4, is smaller than the last element of the current
LAS, the current LAS is an LAS for (x; - * - Xx;4); otherwise
the current LAS can be extended to include x;,,. Thus let
Dj be an LAS from (x; * - - x;) whose last element is as small
as possible. We call such an LAS, a best LAS or BLAS.

At the next iteration, we ask the question whether a
BLAS;,; can be obtained easily from BLAS; and x;,. Sup-
pose we can extend the BLAS; by addition of x;,, at the end.
Then this must necessarily be a BLAS;,, (since there is no
other ascending subsequence of equal length whose last ele-
ment is smaller than x;,,). Next suppose that BLAS; cannot
be extended by adding x;,; at the end, which would be the
case if X;4; is smaller than the last element of BLAS;. Is
BLAS; equal to BLAS;,; in that case? Note that BLAS
(125)=(125). However, BLAS (1253)=(123). Thus,
unfortunately, the answer to the question posed above is
“no.”

Using the arguments presented previously, we see that
BLAS;.; can be obtained from x;,;, BLAS; and the best
ascending subsequence whose length is one less than BLAS;.
Thus D' for the next iteration is BLAS and the best ascending
sequence of length one less than BLAS {we denote it by
BLAS(-1)].

On the next iteration, using similar arguments, we conclude
that in order to compute BLAS;,, and BLAS;,,(-1), we need
to have BLAS;, BLAS;(-1), and BLAS;(-2). It is then easy
to see that continuing iterations will lead us to require D'=
{BLAS, BLAS(-1), BLAS(-2) - - }, i.e., D" will be the set of
best ascending subsequences of all possible lengths starting
from length 1 and including a best longest ascending subse-
quence. It may be easily verified that such a D' indeed satisfies
the condition for the iteration in Principle A to terminate.

Now that we have located a proper D' to carry forward the
computation, the major design problems have almost been
solved. It remains to design the proper data structure for D,
such that D;,, may be quickly computed from Dj and x4 .
We omit these details here, noting that only the last elements
of various BLAS need to be stored. Since these elements
would necessarily be sorted (a best ascending sequence of
length j must have a last element which is strictly smaller than
the last element in the best ascending sequence of length
7+1), a binary search can be carried out with x;,; to locate
that particular best ascending sequence which should be
modified (extended).

We note the following important facts above the proposed
scheme, as exemplified above.

1) We had no need to decide on the complexity of com-
puting Dj,; from D; and x;,;. Throughout the example
(except at the very end) it was impossible to compute Diyy
from D; and x;4; . Thus we did not have to make any difficult
design decisions of comparing alternate D"

2) D can almost always be computed easily from D’. Thisis
a consequence of the initialization and our insistence that we
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only consider those D' from which the previous D' can be
computed. .

3) D" usually includes D' in successive iterations. In the
example studied, the successive approximations led from any
LAS to BLAS to best ascending sequence of all lengths. Such
refinements are almost always encountered in dynamic pro-
gramming type situations, where in order to compute a certain
function, a more general function is computed. The value of
the desired function is obtained by setting certain arguments
in the generalized function to certain specific values.

4) D’ finally obtained may be regarded as being closed in
that D; and x;,, permit computation of Dj.,. There are two
conceivable techniques of creating such a closed set: we start
with a large set and shrink its size, or we start from a small set
and increase its size. The first technique corresponds to start-
ing with Dj being the string (x, * * * x;), which is the maximum
amount of information we would ever need to compute any
function. The difficulty with this approach is that little, if
any, clue exists as to how to proceed. We have adopted the
second technique in this paper; in addition to providing a
systematic scheme for progressing toward a solution, we are
assured at every step that D can indeed be computed from D'.

5) Human intuition played an important role in deciding
whether a certain quantity could be computed from another.
This question is usually quite simple to answer by enumerating
several possibilities and determing whether there is enough
information to carry the computation forward.

EXTENSIONS TO OTHER DATA STRUCTURES

The ideas of the previous section can be extended to com-
pute useful functions on data structures other than sequences,
such as trees. Usually there are two kinds of generalization
involved in computing D over such a data structure.

Structural Generalization: We may compute the quantity
over various substructures of the original structure, each sub-
structure being of the same type as the original structure.
Finally, we combine the various D values computed on sub-
structures to compute D over the original structure. Note
that D for each of the substructures may be computed re-
cursively by the same technique by decomposing it into its
substructures.

Examples of structural generalization abound: finding the
maximum element in an integer sequence (where substructures
are the subsequences which start from the beginning of the
sequence) and finding the maximum path length in a tree
(substructures are subtrees) are two simple applications. Sub-
structure generalization is a basic property of many algorithms
that work on recursively defined data structures.

Functional Generalization: 1t is often necessary to compute
something more than D on substructures so that D may be
computed over the original structure, We have discussed the
need for such a generalization on sequences. Similar argu-
ments apply to other recursive data structures. A generaliza-
tion of Principle A for such structures is given below.

Principle A': Perform a substructure decomposition; i.e.,
identify the different substructures of the original structure
and substructures of substructures, etc.; apply Principle A
to locate D' such that for any substructure S, given D’ values
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of all its substructures (and some nominal information about
the substructure S itself) D' for S can be computed.

Clearly, we could then successively compute D’ of larger
substructures and then compute D of the original structure
from it.

Two types of structural generalization have been found
useful for sequences.

1) Substructures are subsequences which start from the
beginning of the sequences—this was implicit in the previous
section,

2) Substructures are all possible (contiguous) subsequences.
Computation is performed starting with subsequences of the
smallest length and then in the order of increasing length.

The next example illustrates an application of 2).

Example 4: [1]: Consider the evaluation of the product of
n matrices

M=M xM; xM;x---xM,,

where each M; is a matrix with r;.; rows and r; columns.
Assume that it takes pgr scalar multiplications to multiply a
pxq matrix with a gxr matrix. The order of multiplication of
matrices has a significant effect on the total number of multi-
plications. It is required to find a particular order of matrix
multiplication that minimizes the total number of scalar
multiplications.

In this case, the sequence is the given sequence of matrix
sizes and D is the minimum number of scalar multiplications.
Applying 2), we need to compute the minimum number of
multiplications required for computing

Mixll/.f,-ﬂ X 'Mj.

We denote this quantity by m;;. Next, we ask whether it is
possible to compute m;;, given the corresponding m values for
all smaller sequences. It is straightforward to verify that
Oifi=j
mi; =
min (Mg + Mycay,j+ 7y T 77), i<k <

We illustrate the application of Principle A’, on a problem
involving binary trees.

Example 5: Consider a binary tree each node of which holds
a certain symbol. Symbols may be repeated. An example of
such a tree is shown in Fig. 1. Given some symbol s, it is re-
quired to find out if the symbol s occurs on any longest path
from root to a terminal node. A usual substructure decompo-
sition with trees is to take each subtree as the substructure. D
is a yes/no type of answer. Applying Principle A, we first ask
whether, given yes/no from the two subtrees L, R and the
symbol p (as shown in Fig. 2), we could compute yes/no for
the entire tree 7. For the moment, we ignore the possibility
that either or both L, R may be null.

Consider the case where Dy = “no” and Dg = “yes” and
p #s. Suppose the maximum path length in L is larger than
that in R; then the answer should be “no.” However, if max-
imum path length in L is less than or equal to that in R then
the answer should be “yes.” Hence we conclude that it is
impossible to compute Dy from D, Dp, and p.

/N
/\

Fig. 1. A binary tree with symbols “g,” “b.”
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Fig. 2. Decomposition of tree T.

Using the above argument, we may set Dy = {D;, maximum
path length in J} for any subtree /. We now question whether
D}, Dg, and p can be used to compute Dy and maximum
pathlength in T. Let Py, Py denote the maximum pathlength
from L, R, respectively. Clearly, Py = 1+ max (Pr, Pr). The
following table lists the value of D for various possibilities.

Dy, Dp p Dy
no no #§ no
no no =s yes
yes no #$ yes if Py = Pg; no otherwise.
ves no =$ yes
no yes #8 yes if Pp > Py ;no otherwise.
no yes =g yes
yes yes N yes
yes yes =3 yes

From the above table, it is clear what needs to be done for the
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case of null tree: maximum pathlength for a null tree is zero
and D should be “no.”

CONCLUSION AND SUMMARY

The problem of designing algorithms on certain classes of
data structures has been considered. A principle of successive
approximation was presented which yields the required infor-
mation to be computed of the substructures in order to
iteratively compute a particular function on the original
structure. The method could be applied systematically where
every iteration involves answering questions of the type “can x
be computed from y?” or “what is needed to compute x?”
Interestingly, answers to such questions are often reduced to
enumerating several mutually exclusive possibilities and
answering questions individually for each one.

The algorithms generated by Principle A are of “left to
right scan” type. Hence, a sorting algorithm designed by using
Principle A, would most likely be similar to insertion sort. An
efficient algorithm such as quicksort [5] requires a deeper
understanding of the problem structure. The proposed method
is not intended to replace a mathematical analysis of the
problem. For some problems, there are no left to right scan
algorithms; hence they cannot be solved by techniques pre-
sented in this paper. Furthermore, the analysis involved in
applying the principle will vary from person to person leading
to different algorithms. However, we believe that such unified
principles are useful heuristics for construction of a large class
of algorithms.
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