A Secure Voting Scheme based on Rational
Self-Interest

Jayadev Misra
May 21, 2012

Abstract

We propose a scheme for secure voting that involves the datedi themselves
in implementing the voting system. It exploits the compgfinterests (rivalry) and
mutual distrust among the candidates to force an honegtaiec

Keywords Secure voting, Rational self-interest, Absence of Coercio

1 Introduction

This paper proposes a scheme for secure voting. Unlikeiegisthemes [1, 2], it
involves the candidates themselves in implementing thegatystem. It exploits
the competing interests (rivalry) and mutual distrust agnibve candidates to force
an honest election.

We consider a voting system in which a vdter allowed to cast a single vote
for (exactly one candidate). It is required to publish thenber of votes cast for
each candidate at the conclusion of voting. Our proposaitsibasic form is:
the voter transmits her vote to all the candidates; the daels store the votes and
publish the list of votes at the end. This sounds outlandimodify this protocol
by having a trusted agent who (1) encrypts each vote, (23tnéa the vote to each
candidate, and (3) confirms to the voter that her vote hasfeeended. The trusted
agent is designed so that if it crashes or is compromisedglpolling: (1) no data
about the votes cast will leak out, and (2) the election canticoe by replacing
the trusted agent by another trusted agent. These requitempesvent the trusted
agent from simply counting the votes as they are cast. ldsieaelies on the
candidates to keep the counts. The proposed protocol entaea dishonest
candidate will not lose any vote that has been cast nor metuéavotes; it relies
on the candidates to police each other for these guaraméefirst discuss manual
voting at a precinct, and online voting in Section 4.2.

*This work is partially supported by National Science Fouimtlegrant CCF-0811536.
IHenceforth, the voter is referred to in the feminine gender.

Manual Voting The voting procedure at a precinct is identical to the cur-
rent practices from the voter’s perspective. The voter & &uthenticated by the
precinct workers. Then she casts her ballot electroni@aldybooth. She is shown
a confirmation of how she has voted on a display screen. If greea with what
she is shown, she leaves the booth, otherwise, she may rdispuae; we discuss
dispute resolution below. The voter does not receive angiphlevidence of how
she has voted, nor does she have to monitor the outcome dag¢mstire that her
vote has been counted appropriately. This prevents any dbaoercion.

For each voting booth, the election commission supplieswar& of commu-
nicating machines each of which has a different functiore ¥dter casts her ballot
on one machine. This machine communicates with other meashirat record the
vote, and yet other machines may display the result to ther.vat least two of the
machines run the software supplied by rival candidatey, theord each vote as a
certificate signed by the other candidate’s machine. Upampbetion of balloting
at the precinct, they publish the votes in such a way that ¢tieers remain anony-
mous and the authenticity of the votes can be guaranteedcartients of the lists
published by different machines will be identical. The ame of the election can
then be computed from these lists by independent agencies.

A session corresponds to the casting of the vote by a single votepl ajer
during a session is either the voter or one of the machinesud&dhe termma-
chine to denote a logical process. The machines may be implementadsingle
physical machine, or as a network of physical machines. \Aferas that the ma-
chines and the software supplied by the election commisgiefault-free, though
no such assumption is made out about the software supplitttlmandidates. See
Section 5.1 for a discussion about software verification.

Disputes and their Resolution The machines that run candidates’ software
(“candidates’ machines”) may cheat in a variety of ways. Ahiae may show the
voter that she has voted differently from her actual vote.a®nachine may record
a vote differently from what it shows the voter. Or a machireyrmahange a vote
in the final published list. Additionally, machines may calé in their cheating,
for example, by agreeing beforehand to display the core=lt to a voter and
publishing identical, though different, results in theidi lists.

Some forms of cheating will lead to disputes. For exampléhefvoter sees
that her vote has been recorded differently from how she bizglyshe may raise a
dispute; or, she may not, if she is dishonest and believésitbaesult supports her
candidate. Also, if the final published lists from variousamaes do not agree,
the electorate can raise a dispute. There are other kindkeaftiag, involving
collusion, that may not raise any dispute.

To resolve disputes that may arise the network records thi@aband time of
transmission of each message only for the present sesdierretording is erased
if the session ends without dispute. A dispute is resolveddrnsulting the log
of transmitted messages and identifying the dishonesepayisputes involving
final published lists are resolved by mere inspection. Ipyers behave honestly,
there is never any dispute.

The candidate corresponding to a guilty machine is punisiesdrely, to the
extent of losing the election or being subjected to otheewsexivil or criminal
penalties. A voter found to be guilty is also severely puedshlt is never in the
interest of a player to be identified as being dishonest eveagh it may cheat.

Rational self-interest implies that a candidate machinenikes a step that may
implicate it, even though the machine may be dishonest. W ¢hat rational
steps, even though dishonest, will force honest outcomes.

Coercion An ideal voting system should make it impossible for any vtwebe
coerced to vote in a certain way; nor can a voter provide aideece of how she
has voted to gain any monetary benefits. Consequently, thiessped lists of votes
should not identify the voters. In fact, no information abthe voting pattern
should be discernible from the published lists, becaudwifist of votes show the
sequence in which voting occurred, for instance, they lafdrination that can be
exploited by a coercer (a boss might tell his workers to daeit votes first thing
in the morning for a certain candidate).

We avoid coercion in two ways: (1) the voter is not given probher vote,
thus eliminating any demands from a coercer for a proof, a8pd published vote
carries no information about the voter or the sequence ichviiotes were cast.
We propose a new scheme to eliminate coercion in online gpsiee Section 4.2.

Aspects addressed, and those ignoredThe proposed scheme addresses
most of the requirements of an honest election: (1) autb&timin: only and all
eligible voters are allowed to vote, (2) single vote: eligiboters may vote at most
once, (3) correct recording: each vote is counted apprigtyjaand (4) absence of
coercion: no one’s vote is revealed, and no one may be cotra@de in a certain
way. Authentication requirement, (1), in manual votingdsi@essed manually; we
exploit the rivalry among the precinct workers represantifferent candidates to
keep authentication honest. We suggest a novel authéaticstheme for online
voting that eliminates coercion. Requirement (2) is meth®ydesign of the ma-
chines that allows only one vote to be cast per voting sesbignve have no new
proposal to address this issue in online voting. This pagdresses the other two
concerns, correct recording (3) and absence of coercion (4)

Like all voting schemes, ours has certain limitations. Wauage that the hard-
ware of the machines and the communication network are-feadt We do not
address side-channel attacks: a machine may transmit watsssly to another
device thus revealing the sequence of votes; a machine rkeyptetographs of
the voters and remember how they cast their votes so thattieeyenied privacy;
a voter may be required by her boss to carry a camera and eapsareenshot that
shows that a vote has been cast as instructed by the bosstemiagb worker may
deliberately load different software from the one suppbga candidate. We have
to rely on reasonable social practices to ensure that sti@bkatare eliminated.
We address some of the engineering and social concernstioiséc

2 Voting Schemes

We first consider voting for a single office for which there prst two candidates,
m andn. We relax these constraints in Section 4.1. We will desdtileeoperation
of a single voting booth that allows one voter to vote at a time

Precinct workers, representing the candidates, autlzetigach voter. Be-
cause of their conflicting interests, we assume that onlyadireligible voters are
authenticated. After authentication, the precinct waskegether allow the voter
to enter a voting booth. We consider two schenseleme A andScheme B, in this

section. In Scheme A, the machine supplied by the electiomtigsion generates
a random number in a session, encrypts the vote and the getheaadom number
with its own key, and transmits the message to the candida@shines. In the

Scheme B, the election commission machine merely generate®m numbers;
all other functionalities are delegated to candidates’hirass.

2.1 Scheme A

CONC))

~e)

Figure 1: Voting Network for Scheme A

Honest Execution The communication network for this voting scheme, de-
ployed in each voting booth, is shown in Figure 1. Nedepresents the votet,
the machine supplied by the election commission,arahdn are the candidates’
machines. The expected honest behaviors of the comporreras &ollows. Voter
v sends her choice of candidate—wherez is eitherm or n— to machinee.
Machinee generates a random numbaeand encrypts the pafi,) using itsown
encryption function; denote this encrypted value(hyr)z. It sends this value to
bothm andn. On receiving(i, x)z from e, each ofm andn creates a digitally
signed certificate from the received message; denote thiéicade created byn
by ((i, z)z)m. Calli theindex of this certificate and:, =) its content; see [6] for
a discussion of digital signatures. Certificates are asdumée non-malleable,
unforgeable, incorruptible and verifiable. Each machinisets certificate to its
rival. Upon receiving a certificate from its rival, a machireifies that its content
matches the value received framlf it does, it sends an acknowledgmentetaf
it does not, it raises a dispute. Machineends a confirmation to after receiving
acknowledgments from botlr andn, and then ending the voting session.
Machinesm andn store the certificates they receive from their rivals. On
completion of balloting for the precinct, they both publigte list of certificates
sorted by their indices; the sorting step obliterates the order in which the votagwe
cast. Then, the election commission publishes the decnyftinction fore. Note
thate does not store the decryption function corresponding tovits encryption,
to prevent leaking information if it is compromised. Now kaertificate’s content
pair (i, x) can be recovered: first apply the encryption functiomato ((¢, z)z)m
to recover(i, z)z and then the decryption function efto this value to recover
(¢, z). Independent organizations can ensure that each ceeifcaalid and that
the lists are identical in their contents. Then the numbdratiots cast for each
candidate is easily computed (from either published list).

Honesty Assumptions We assume that machire programmed by the elec-
tion commission, carries out its steps honestly and thah#&rdware of the ma-

chines and the communication network are fault-free.

Machinee has a few simple tasks to perform: (1) generate random nunber
(2) encrypt the paiti, z), and (3) receive and transmit messages. It does not store
any information about the vote after a session is completéxprogram is so
simple that it can be publicly scrutinized and formally Viex.

Dishonest Execution Unlike machines, Machinesn andn may be dishonest.
They may send inappropriate certificates, or no certificeadl.a-urther, they may
create forged certificates or lose some of the certificashhve received, so that
their published lists are incorrect. The first form of disesty is easily checked by
the rival who raises a dispute. We show in Section 3.3 thalighibg an incorrect
list will immediately identify the dishonest player, who lisihen be subject to
severe punishment.

The voter may cheat by claiming that the vote that has bearddéers from
her intention. Again, this will be identified as dishonestl @dhe voter punished,;
see below. Absence of output, given valid and timely inpigtslso regarded as
dishonest, and the player to receive that output should eaiispute, if it is honest.

Dispute Resolution A dispute arises during a voting session in the following
situations.

1. Machinee never receives an expected message. The message couldhbe fro
the voter, or an acknowledgment framor n. After a suitable time period,
the machine raises a dispute.

2. Machinem or n receives an inappropriate certificate from its rival. ltrthe
raises a dispute.

3. \Voterv raises a dispute if she does not receive a timely confirmétion e.

We assume that each player has a mechanism to notify theriigthn case of
a dispute. The authorities resolve a dispute by taking afalgeomessages trans-
mitted during a session betweenm andn. But they do not examine the contents
of the channel fromv to e that will reveal the vote cast. They check the machines
m andn as follows: (1) recover the contents of the certificates taye sent to
each other (by encrypting each by the corresponding mashinblic key) and
check if the contents match the value sent tazpgind (2) determine if a machine
has sent an acknowledgmenttolhese checks either identify one of the machines
to be dishonest or exonerate both of them, in which easedishonest, because
the remaining machine, is honest. Thus, dispute resolution does not reveal the
vote; it only uses publicly available information about etion functions.

No player can afford to be identified as being dishonest. l&wetis no dispute
in a rational execution. We prove this result formally foe tBcheme B which
includes Scheme A as a special case.

A dispute may arise after the publication of the lists if tlagg found to be non-
identical. No list will contain a corrupt certificate becaubkat will be immediately
recognized and the culprit punished severely. We will shov@éction 3.3 that
neitherm norn will suppress a certificate if they behave rationally. Tlere, the
published lists will contain the certificates correspogdéxactly to the votes cast.

Need for Random Numbers, Encryption and Signatures Every vote
has an index, a random number, to distinguish it from anotbés cast in the
same way. Without an index, a candidate can duplicate dicaté from its rival
and claim that a certain vote has been cast by two voters. dties are encrypted
so that no candidate knows what vote has been cast, and #en@ntion is not
revealed during dispute resolution. This is especiallydrtgmt in online voting to
prevent coercion; see Section 4.2. The votes have to becsignine candidates to
prevent duplication by a rival, and also to prevent a canditfam later disowning
a vote.

2.2 Scheme B

In Scheme A of Section 2.1, the election commission suppliashinee that is
deemed honest. Establishing the honesty @fquires verification of its software.
Even though the program is simple, we can still avoid mosthef terification
by delegating its major functionalities to the candidatesichines. The resulting
scheme has one major drawback; dispute resolution requevesling the vote.
Though a rational execution is dispute-free (see Propos8iin Section 3.2), this
is a serious breach of voter privacy; it should be used onlgmthe expectation of
dispute is negligible or revealing how a particular votes tated to the authorities
is of no concern.

Figure 2: Voting Network for Scheme B

In the network of Figure 2, the functionalities efreside in three different
processes, r and f. Process reads inputr from v and sends it to botim and
n. Process generates a random number for each voting session and sends i
bothm andn. Machinem sends certificatéi,)., to n andn sends(:, x), to
m. Each machine then validates the certificate it receivemsigaandx supplied
by r and s, respectively. Then each af andn sends an acknowledgmentto
f. Procesd, on receiving both acknowledgments, sends messdge. Observe
that the votes sent hy are in plain-text; so, the candidates’ machines know how
the vote is cast.

The assignment of software responsibilities to variousigmis as follows: (1)
the election commission is responsible f9(2) the candidates are responsible for
their corresponding machines, andn, and (3) machinesand f are programmed
by different candidates.

The only verification responsibility for the election conssion isr. We note

thatr has no input; the system detects a new voting session whepréoenct
workers authenticate the next voter. Then, all the messaggedre initialized, and
r sends the next random number.

Hardware random number generators are readily availaplelternatively,
we can use a publicly available cryptographically secuseige-random generator
(CPRG). The program and its verification would be open toipuarutiny. The
only hidden items will be the seed and the other parametersresl for random
number generation. For a CPRG, it is not possible to effiljigecreate the se-
quence given only the set of random numbges property essential to ensuring
that no voting pattern in the sequence of votes cast be dikberfrom the pub-
lished lists. We require that no number be generated twicagithe voting at a
precinct. Using a 40-bit key as the index, where each bitidwenly generated, in
a run of 4000 (which corresponds to a large precinct), thbatsiity of repeating
anumber is around x 10~°. If additional guarantee against repetition is required,
a longer index can be used, or a test to ensure no number i tegiaated, due to
Floyd [3], may be employed.

Any player may raise a time-out dispute if it does not recéireely inputs.
Additional disputes may arise during a session as follows.

1. Each ofm andn raises a dispute if it receives an inappropriate certificate
Either the certificate is not properly signed, or its cordedd not match
random numbef from r and/or voter from s.

2. Procesd raises a dispute if it receives acknowledgments that difféneir
contents.

3. Voterv raises a dispute if it receives a message whose contenadif its
vote.

It is essential that and f be programmed by different candidates. To see the
necessity of this requirement, suppasend f are both programmed by.. They
may collude in the following way to change a vote foto m. Whenv casts a vote
for n, s instead sends vote to bothm andn, they exchange certificates, sends
n to f (andn sendsm), and f sendsn to v. The voter does not dispute, neither
doesn.

Dispute Resolution Dispute resolution in Scheme B is similar to that in Scheme
A. As before, a log of the messages transmitted during a®essiexamined.
Given the vote (the contents of the channel frorto s) and the random number
generated by (the contents of the channel frorto eitherm or n), the behaviors

of all other players are determined. If any player has dediditom the expected
behavior, either by sending an incorrect output or sendatging at all, then it is
guilty. The certificates sent by andm are checked by first decrypting them with
their public keys.

3 Correctness

Our goal in this section is to show that Scheme B of Sectioni® @rrect in
the following sense: (1) every voting session ends withaspute, (2) the lists

2This observation is due to David Zuckerman.

published bym andn contain exactly the certificates for the votes that have been
cast. Additionally, as should be obvious from the algoritiine only information
conveyed from the published lists is the number of votess Thplies that voter
coercion is impossible because a voter carries no evideooethe polling booth

of how she voted, nor can that information be deduced fronptiidished lists
(except if all votes are cast for a single candidate). Furttie published lists

do not reveal any information about the times at which thesatere cast, nor
about the voting patterns of any group of individuals, suelth@se who voted in
sequence.

It is obvious that if every player is honest, the voting schemeets its goal.
Also, it is obvious that if the players are arbitrarily distest, the voting scheme
fails. For example, ifm andn collude to suppress a vote far but report the
correct vote tof, then the voting session ends without dispute; howeveir, pob-
lished lists will not contain the votes as they were cast thalating a correctness
requirement. We may address this problem by assuming thatthdidates do not
collude; in this case it is im’s interest to avoid collusion. But we do not need a
strong axiom, such as absence of collusion, which may nat gkl is some cir-
cumstances. We use a weaker axiom whose essence is thatyeo wtauld dare
to make the first dishonest move that would implicate it.

We define two machines to lmehorts if they have been programmed by the
same candidate; machines that are not cohortsigaks. The cohort relation is
an equivalence relation among machines. The voter could d@hart of some
candidate, but all it can do to help is vote for the candidétean raise a dispute
during its session in the hope of subverting the electionalftivolous dispute will
implicate it.

We can expect cohorts to collude by, possibly, communigadieditional in-
formation in order to cheat the voting system and gain a ceithygeadvantage for
their candidate. But rivals have diametrically oppositeiasts. If a player can
dispute and implicate a rival it will do so; therefore, a @aghould never take a
step that will present a rival with such an opportunity. Aygles step is irrational
if it does present a rival with such an opportunity; it is oatkl otherwise. We show
that rational behaviors, even though dishonest, lead testmutcomes. We define
these notions formally in the next section. We consider glsinoting session and
prove that it ends without dispute, and that eachnofindn holds a certificate
from the other for the vote that has been cast. In SectionvB3Fhow that each
candidate publishes exactly the set of certificates redeive

3.1 Terminology and Notation

A step is a triple of the form(p, z, ¢) denoting that messagehas been transmitted
along channelp, ¢) during a voting session. Amxecution of a voting session

is a set of steps. An execution corresponding to a complassian is called a
trace. Step(p, z, ¢) occurring in a trace denotes the sending:dfy p as well as

the receiving ofr by ¢, since the channels are deemed fault-free and a trace is a
completed execution.

A predicateis a step, or conjunction of steps and/or their negationsedipate
denotes the set of traces in which the given steps have ectand their negations
have not occurred. For exampl@, m,n) A (r,i,n) A =(n, m,) denotes the set
of traces in each of whicls, m, n) and(r, ¢, n) occur andn, m, f) does not.

Dispute Predicates The following predicates describe the conditions under
which various players may legitimately raise disputes. é&@mple,m can raise

a dispute if it has received somefrom s, some: from r, but not(z, z), from

n. In each case, the absence of timely input or appropriatgt irgises a dispute.
Therefore, player, that has no input from another player, never disputes.v8elo
2 ranges over values frofm, n} andi is any integer.

m: (s,z,m) A (r,i,m) A =(n, (i, 2)n, m)

n: (s,x,m) A(r,i,n) A =(m, (i, 2)m, n)
fr(n,z, f) A=(msz,) or (m,z, f) A=(n, @, f)
U: (U7 I? 8) /\ _‘(f7 ‘r7 U)

A trace isp-disputable if the dispute predicate holds ferin that trace. Player
p is honest in a trace if its outputs are correct given its inputs.

We assume that a player raises a dispute only if it will ingdkca rival, not a
cohort. For examplef does not raise a dispute if it deems that only its cohort
is dishonest. Ap-disputable trace may have ended without dispute begaosay
not have raised a dispute even though it had the option to .ddtsformal proof
does not require a player to raise a dispute whenever it leagption of doing so.

Thestate of a player in a trace is the set of steps in which it has sergagived
a message. Step, z, q), wherep andgq are rivals, isrrational in a given state of
p if there is a trace such that:

1. tincludesp’s given state and the stép, , q),
2. allrivals ofp are honest i1, and
3. tis g-disputable.

Tracet, as described above, is calledvitness to the irrationality of the step. A
step that is not irrational isational.

Rationality Axiom Players take only rational steps.

The justification for this axiom is as follows. Consider apstg, x, ¢) that is
irrational with tracet as a witness. Nowy can dispute int and the dispute will
implicate some cohort gf (because rivals gf are honest irt). This is a possible
execution that is against the interestpofTherefore, rationallyp should not take
such a step.

An execution in which every player takes rational stepsriti@nal execution,
and similarly we defineational trace. An honest execution is rational, but not
conversely. A player may send dishonest messages to itstsahoa rational
execution. Our proof will show that such a step is uselesdladeceiving cohort
will have to ignore it in order to take a rational step.

A player who receives valid inputs sends its output to a fivéimely manner.
Waiting too long to output is irrational, because the rivalld raise a dispute
implicating this player. Henceforth, we assume that in yvetional trace if a
player has valid inputs, it sends some output to a rival.

In the following proofs, we prove the irrationality of a stbp displaying a
witness trace. In those cases where we can prove irratignak show that the
only possible rational step is the honest step.

3.2 Correctness of a voting session

For predicate$ andc, b = ¢ means that ib holds in arational trace, then so does
c¢. Most propositions we prove are of the folm=- ¢ whereb includes a step in
which p receives a message, aads a step in which it sends a message to rival
q. Typically, we derive predicatl from b by assuming that rivals of are honest
and using the results of other propositions. Then we shotbtha—c implies the
dispute predicate af; that isq can possibly dispute and its doing so will implicate
a cohort ofp. Therefore, taking any step other thats irrational. Predicaté’
denotes some honest trace, and, hence, there is some ratiaeavhereé’ holds.
Henceforth, we assume the following cohort relation withioss in general-
ity: {s,m},{n, f},{v}, {r}. To see the main idea behind the proof, consider a
step that machine is about to take after receivingrom r andz from s. It can-
not rationally send anything other th&h z), to m because: (1) it can not assert
that its rivals have been dishonest; so,{2)nay immediately raise a dispute and
implicaten if it receives something different from. Next, considem that has
just receivedi, =), from n. It reasons exactly as above to deduce thags re-
ceiveds: from r andx from s, otherwise it would have sent something different to
m. Therefore, ifm sends anything other tham,), n can raise a dispute im-
plicating eitherm or s, a cohort. As the chain of message transmission grows, the
reasoning gets more complicated. So, we have adopted thiglism to structure
and simplify the proofs.

Proposition 1

(s,z,n) A (r,i,n) = (n, (i,z)n, m), for all z.
Proof: Assume that the rivals afare honest. Therefore,andr are honest.
(87 :Z:, n) /\ (r7 7:7 n)
= {sis honest and is honest}
(57 z, m) A (T7 i m)
Now, (s, z,m) A (r,i,m) A =(n, (i, z)n, m) implies the dispute predicate fot.
Proposition 2

(n, (i, 2)n, m) = (m, (4, 2)n,n), forall z.
Proof: Assume that the rivals of are honest. Therefore,is honest.

(n, (4, T)n, m)
= {nishones}
(s,z,n) A (r,i,m)

Now, (s, z,m) A (r,i,n) A =(m, (i,)m, n) impliesn’s dispute predicate. O

Supposes has been dishonest in the message it sent tdy either sending
nothing or a value different from what it sent o Playerm, on receiving the
message fromn knows exactly what: has received and what has sent ton.
From this proposition has no choice but to to shield its coharby sending
back the certificate corresponding to the votemcertificate.

Proposition 3

(n, (2, 2)n,m) = (m,z,), for all z.
Proof: Assume that the rivals af. are honest. Therefore,and f are honest.

10

(n, (4, 2)n, m)

= {from Proposition 2
(n, (i, 2)n, m) A (m, (4, 2)n,n)

= {nishonest. Son, (i,2)n, m) = (s,x,n) A (r,i,n)}
(syz,n) A (r,3,m) A (m, (3, 2)n,n)

= {nis honest}

(n,z, f)
Now, (n, z, f) A =(m, z, f) implies the dispute predicate fgt

Proposition 4

(m,z, f) = (f,z,v), forall z.
Proof: Assume that the rivals gfare honest. Therefore; ands are honest.

(m,z, f)
= {mis honest}
(s,z,m)
= {sis honest}
(v,z,8) A (s,z,n)

Now, (v, z, s) A =(f, z,v) implies the dispute predicate for
Proposition 5

f does not raise a dispute(ifn, x, f) A =(n, z, f) holds, for anyz.

Proof: From the proof of Proposition &4y, x, f) = (f,z,v). So,f does not
raise a dispute. Ifm, z, f) A =(n, z, f) holds, them is dishonest, and shields
its cohortn in that case.

Proposition 6

(v,z,s) = (s,z,n), forall z.
Proof: Assume that the rivals efare honest. Supposesendsy to n.

(s,9,n)

= {ris honest and sends some inder n.}
(s,4,m) A (1,4, n)

= {nishones}
(n, (4, y)n, m)

= {from Proposition 3

(m,y, f)

= {from Proposition 4
(fry,0)
Thus, (v, z, s) A (s,y,n) implies (v, z, s) A (f,y,v) which implies the dispute
predicate ofv if x # y.

Proposition 7

Playerv receives confirmation for the vote she had cast.

Proof:
(v,z,5)
= {from Proposition 6
(s,2,n)

= {from Proposition }

11

(n, (2,)n, m), for somei (*1)
= {from Proposition 2

(1, (i, @), m) A (m, (4, T)m, 1) (*2)
= {from Proposition 3

(m,z, f) (*3)
= {from Proposition 4

(f,z,v) (*4)

Corollary 1 Playersm andn receive valid certificates from their rivals for the
vote that has been cast.

Proof: Follows from (*2) in the proof of Proposition 7.
Proposition 8

A rational trace is dispute-free.

Proof: We assert that no player raises a dispute. We needconkider the
players{m,n, f, v} that have dispute predicates. Supp@ser, s) holds for some
x. Consider the proof of Proposition 7. Dispute predicaterfodoes not hold,
from (*1). Dispute predicate for does not hold, from (*2). Dispute predicate for
f has two parts: (1jn, z, f) A =(m, z, f) does not hold, from (*3), and (2) from
Proposition 5,f does not raise a dispute if the other part of the dispute paéali
(m,z, f) A —(n,z, f), holds. Dispute predicate ferdoes not hold, from (*4).

3.3 Correctness of the published lists

We have established in Proposition 8 in Section 3.2 thatyexagional voting ses-
sion is dispute-free, and in the Corollary of Propositiorh@tteach ofn andn
receives certificates from its rival for every vote that istcaLet .S,, and.S,, be
the list of certificates received by, andn, in the sorted order by their contents.
Upon completion of voting, they are required to publish ¢éhksts. They may be
dishonest and publish different lists. We show that, usirggRationality Axiom,
they must publists,, andS,,.

One ofm andn publishes its list first, sayn (formally, the publication byn
is not causally dependent on the publicationrhysee [4]). Suppose: publishes
a certificate that is not ir%,,,. Such a certificate would be seen to be invalid,
because either it is not signed hyor it is a duplicate of one signed hy;, in each
case,;m will be punished. Suppose does not publish a certificate that is$f), .
We claim that this is irrational, becausecan publishS,, that would contain the
corresponding certificate, implicating. Thereforeyn publishesS,,. Now, n has
to publishS,,; otherwise, it will be implicated.

4 Extensions
4.1 Multiple Candidates

We propose generalizations when there are more than twadzded. We can not

then assume that all pairs of candidates are rivals. Thersehare applicable even
when some of the candidates collude. All that is needed tsibtaall candidates

collude together, i.e., there are at least two camps so tina¢ pair of candidates
are rivals.

12

Scheme A of Section 2.1 is generalized by having each catedidachine send
its certificates to all machines. At the end of balloting,rgveachine publishes all
certificates, grouped by different machines, in sortedroridiét is deemed infea-
sible to require the candidates to keep track of all othedicktes, a candidate’s
machine sends its certificate¢avho verifies it and sends it to all other machines.

Scheme B of Section 2.2 requires a more significant modifinaff he election
commission can not choose programs dand f from rival factions because (1)
there may be several rival factions, and (2) it can not idenkie rival factions.
Instead, we require thatbe programmed by the election commission. Each can-
didate machine sends certificates to all other candidatbimes: The program for
f is picked randomly from the ones submitted by all the cartd&lain order to
maintain symmetry among the candidates. It is not essemntiassume thaf is
honest. All the propositions proved in Section 3.2 stillchdlonly s is assumed
to be honest buf is arbitrary, because making componemhore honest does not
affect the correctness of the propositions.

4.2 Online Voting

The manual voting schemes described so far prevent a caedidaachine from
communicating with any external machine (besides the oxjglécily shown) or
retaining information about the voting pattern. In onlireing, the machines may
identify voting patterns, or a voter's authentication imfiation may be demanded
by a boss who can then cast the vote on her behalf. We propasebauthentica-
tion protocol to address coercion and a method by which gggattern information
can be destroyed.

We propose to use Scheme A of Figure 1 (page 4) for online gofis before,
e is honest and the machines and hardware are fault-free e@ugchnology is
mostly adequate for fault-free communication, partidylaince the number of
messages and the rate of message transmission are botbwery |

A Novel Authentication Scheme A major problem in online voting is au-
thentication, more specifically, authentication that pres coercion. Imagine a
boss demanding all the authentication information from laostinate and then
himself voting as the subordinate.

A typical authentication attempt has two possible outconf&yit succeeds,
which allows the voter to vote, or (2) it fails and the votemdt allowed to vote. We
permit an authentication attempt to have three possibleoouts: (1) it succeeds,
which allows the voter to vote, (2) itearly succeeds, which allows the voter to
vote; the voter is made to believe that she has voted sucdigsiut the vote is
not counted, or (3) it fails and the voter is not allowed toevot

Usually, an authentication requires the voter to provideame and a “pass-
word” in addition to possible biometric data such as irissdemger print or voice
print. For each genuine password we propose to have a sedld™passwords
that are different from the genuine. For example, a fakevpassmay differ in 5
symbols from the genuine one, or the fake and the genuineoatg for a proper
prefix. The rule for creating a fake password from a genuirbeipublicly avail-
able. An authentication attempt nearly succeeds if it prissa fake password in
addition to all other required data.

The voter can supply a fake password to the coercer, or logim avfake if
the coercer is watching. The response to a vote with a fakewuad is exactly

13

the same as for a genuine password. However, the vote is notexty see below
for further discussions. Coercion is now meaningless, Uea voter can not
be coerced to vote for a particular candidate nor can shddegroof that she
actually voted in a certain manner.

Fake Voting Itis not sufficient fore to reject a vote when presented with a fake
password. A candidate’s machine may keep a tally of when theswvere cast
and deduce information about whether a coercer succeededvercome such
problemsg actually sends a vote to all the machines,fbut fake candidate. The
candidates’ machines can not decipher the vote since itrgrbe decrypted by.
So, the normal voting pattern is preserved. The votes fofake candidate in the
published lists will be discarded. Further, if it is impartao avoid deduction about
the degree of coercion from the lists published after thetigle, or the timing of
vote casting, even the fake votes could be faked; bgting for the fake candidate
with high frequency.

4.3 End-to-end verifiability

End-to-end verifiability of an election system guarantées tipon completion of
the election every voter can check that her vote has beentemuithe schemes
proposed in this paper do not provide such guarantee. Weogeop variation
of Scheme A that allows a voter to verify that her vote has bmmemted, at the
expense of violating one of our earlier requiremente omamely that it stores no
information across voting sessions.

The simple extension is to tell the voter the index generatelder behalf; she
can then check the index against the published lists. Thinsion has serious
consequence for coercion. A coercer may demand to know tlexinThe voter
can not simply make up an arbitrary index, as she could fdimenauthentication,
because the coercer will check the index against the padlits. So, we propose
a slightly more elaborate subterfuge. Scheme A will be eledrto allow a voter
to cast fake votes for one or more candidates. Such votedbwilieated exactly
like genuine votes, but machiré&keeps a count of the number of fake votes cast for
each candidate and publishes it separately after the jatibiis of the voting lists,
to allow computation of vote counts. The voter can show thiexcorresponding
to a fake vote to her coercer. In order to avoid detection of fzattern of fake
voting for specific candidates —say one candidate receipdriads of fake votes
whereas others have none— machiniself casts fake votes for all candidates
such that every candidate receives equal number of fake.vAggain, we assume
thate’s software and hardware are infallible.

Here we would like to contrast two different notions of vexifility, static and
dynamic. Consider the software correctness problem. Given a prodoa, say,
sorting a list of numbers, we may either prove the programecoifor all inputs
by supplying a static proof, or we may verify that the outmutorrect each time
the program is run with some specific input, a dynamic proeeri voter needs a
proof that her vote will be counted. She can rely on a statofpthe kind we have
advocated, by having the software be subject to public isgraind formal verifi-
cation. Or, she may demand a dynamic proof when she votesisstid can later
establish from the published lists that her vote has beentedu Static proofs are
best employed when the conditions under which the softwpeeates are tightly

14

controlled, as would typically be the case in running a sgrigrogram. Dynamic
proofs are essential in a more chaotic environment, whérer @spects, such as
side-channel attacks, are real. Dynamic proofs are oftefeped in voting, not
only because the environment is chaotic, but also for theakacceptability of
electronic voting. We advocate static proofs because thgested voting schemes
are simple enough that automatic verification of the asgetisoftware is practical
today.

5 Designing a Practical Voting System

We have advocated an unusual voting system that may seeradtigal at the

outset. In this section, we separate the technical andexmical concerns in this
voting system. We argue that that the technical concernsampletely solvable.

The non-technical concerns, though unusual, seem no niiitdithan the ones
in the traditional schemes.

5.1 Technical Concerns

We have assumed in Section 2.1 that (1) the hardware of thainescand the
network are error-free, and (2) the software provided byellketion commission
is error-free. We can meet these assumptions reasonaldy,. |Ef all the machines
be implemented on a single physical machine, and the chaiveeimplemented
as words in the shared memory. Each machine runs in its owitigayr so that it
does not affect any other machine. A machine sends a meskamgeaachannel
by writing into a specific word in the memory, and it can writéoi a word at most
once during a session. A machine reads from a channel byniggttté value of the
shared word. The shared words are reset (to some specifig)althe beginning
of a voting session. Currently available technology forltfémierance through
replication should be adequate for fail-stop systems witlependent faults. If the
degree of replication is large enough, it would also tokeiByzantine faults [5].
After each logical machine publishes the list of votes, irgents of the partitions
are erased so that no trace of the computation remains indbhine.

We insist that the candidates provide the software but netntlachines on
which the software runs. This prevents a machine from reéegrddditional in-
formation about votes which the candidates may later exgtngain information
about voting patterns, for instance.

5.2 Non-technical Concerns

There are many side channel attacks that may compromiseeetioel. There is
no technical fix for such problems. Some of the issues in eidamnel attacks
can be resolved by adopting strict manual procedures. Fampbe, a bipartisan
committee could oversee the loading of candidates’ soétwathe machines.

The most obvious non-technical problem is the requirentettthe candidates
provide the software. Itis reasonable to argue that a cateliths no legal obliga-
tion to provide software. If a candidate contracts with aeotparty to deliver the
software, he may have no guarantee that the contractor éasithe interest as the
candidate, and, it is not clear who should be punished in chaedispute. This

15

seems to be a social problem based on trust. Establishisigitraoftware through
automatic verification is a viable approach.

The specification of candidates’ software is simple andipeecWe expect
that software vendors will market software meeting the gjgation. They will
have to convince their clients, the potential candidatéthecorrectness of their
code. They can do so by providing a completely automatedf mfoine software
along with the code. The proofs may be checked automatibglistandard proof
checkers.

Free market provides other incentives for building trustsaftware vendor
may take a large amount of insurance against failure of ftsvace. The insuring
companies will clearly need proofs of correctness alongjties we have sketched.

Another possible approach is for a community to build opéitwsoe that is
checked in a variety of ways by a multitude of experts. No oaé&easa any money
in this process, but the cost of ensuring honest electiotieislargely eliminated.

6 Concluding Remarks

Every voting scheme is beset by engineering, social andpegblems. Ours is no
exception. Ensuring that the machines and communicatianreis are fault-free
is an engineering problem. The problem is essentially sidieclosed systems, as
in a polling booth. It is not so easily solved for communioatover the internet.
The non-technical problems, particularly, side-channlchs, require different
strategies for solution.

In spite of these shortcomings, we expect that voters wiltorae a system
that deviates very little from how they already vote, thaipen to public scrutiny
and yet provides the guarantees for an honest election.

Acknowledgment | am thankful to David Dill, Nickolai Zeldovich, Adam Kli-
vans and Gordon Novak for discussions and advice on anedirditt of this paper.
Special thanks to David Zuckerman for discussions abotogyaphically secure
pseudo-random number generators. Mike Fischer, Davidrdeifi, Vladimir Lif-
schitz and Elaine Rich have provided many perceptive consneSeveral mem-
bers of IFIPS WG 2.3, in particular, Carroll Morgan, Ernieh@a, Rajeev Joshi
and Rustan Leino, were most helpful with their construatiigcism. Suggestions
from the anonymous referees have improved this paper suizdha

References

[1] David Chaum. Secret-ballot receipts: True voter-vehfe elections.|EEE
Security & Privacy, 2(1):38-47, 2004.
[2] Markus Jakobsson, Ari Juels, and Ronald L. Rivest. Mgkimx nets robust

for electronic voting by randomized partial checking.ItnJSENIX Security
Symposium, pages 339-353, 2002.

[3] Donald E. Knuth. Seminumerical Algorithms, volume 2 ofThe Art of Com-
puter Programming. Addison-Wesley, Reading, Massachusetts, third edition,
1997.

16

[4] Leslie Lamport. Time, clocks, and the ordering of eveintsa distributed
system.Communications of the ACM, 21(7):558-565, July 1978.

[5] Leslie Lamport, Robert Shostak, and Marshall Pease.Bjlzantine Generals
Problem.TOPLAS 4(3):382—-401, July 1982.

[6] R.L.Rivest, A. Shamir, and L. Adelman. A method for olniiag digital signa-
tures and public key cryptosystent@ommunications of the ACM, 21(2):120—
126, Feb 1978.

[7] G. Taylor and G. Cox. Digital randomnes§pectrum, |EEE, 48(9):32 -58,
september 2011.

17

