
A Secure Voting Scheme based on Rational
Self-Interest

Jayadev Misra∗

May 21, 2012

Abstract

We propose a scheme for secure voting that involves the candidates themselves
in implementing the voting system. It exploits the competing interests (rivalry) and
mutual distrust among the candidates to force an honest election.

Keywords Secure voting, Rational self-interest, Absence of Coercion.

1 Introduction
This paper proposes a scheme for secure voting. Unlike existing schemes [1, 2], it
involves the candidates themselves in implementing the voting system. It exploits
the competing interests (rivalry) and mutual distrust among the candidates to force
an honest election.

We consider a voting system in which a voter1 is allowed to cast a single vote
for (exactly one candidate). It is required to publish the number of votes cast for
each candidate at the conclusion of voting. Our proposal, inits basic form is:
the voter transmits her vote to all the candidates; the candidates store the votes and
publish the list of votes at the end. This sounds outlandish.We modify this protocol
by having a trusted agent who (1) encrypts each vote, (2) transmits the vote to each
candidate, and (3) confirms to the voter that her vote has beenrecorded. The trusted
agent is designed so that if it crashes or is compromised during polling: (1) no data
about the votes cast will leak out, and (2) the election can continue by replacing
the trusted agent by another trusted agent. These requirements prevent the trusted
agent from simply counting the votes as they are cast. Instead, it relies on the
candidates to keep the counts. The proposed protocol ensures that a dishonest
candidate will not lose any vote that has been cast nor manufacture votes; it relies
on the candidates to police each other for these guarantees.We first discuss manual
voting at a precinct, and online voting in Section 4.2.

∗This work is partially supported by National Science Foundation grant CCF-0811536.
1Henceforth, the voter is referred to in the feminine gender.

1



Manual Voting The voting procedure at a precinct is identical to the cur-
rent practices from the voter’s perspective. The voter is first authenticated by the
precinct workers. Then she casts her ballot electronicallyin a booth. She is shown
a confirmation of how she has voted on a display screen. If she agrees with what
she is shown, she leaves the booth, otherwise, she may raise adispute; we discuss
dispute resolution below. The voter does not receive any physical evidence of how
she has voted, nor does she have to monitor the outcome later to ensure that her
vote has been counted appropriately. This prevents any formof coercion.

For each voting booth, the election commission supplies a network of commu-
nicating machines each of which has a different function. The voter casts her ballot
on one machine. This machine communicates with other machines that record the
vote, and yet other machines may display the result to the voter. At least two of the
machines run the software supplied by rival candidates; they record each vote as a
certificate signed by the other candidate’s machine. Upon completion of balloting
at the precinct, they publish the votes in such a way that the voters remain anony-
mous and the authenticity of the votes can be guaranteed. Thecontents of the lists
published by different machines will be identical. The outcome of the election can
then be computed from these lists by independent agencies.

A session corresponds to the casting of the vote by a single voter. Aplayer
during a session is either the voter or one of the machines. Weuse the termma-
chine to denote a logical process. The machines may be implementedon a single
physical machine, or as a network of physical machines. We assume that the ma-
chines and the software supplied by the election commissionare fault-free, though
no such assumption is made out about the software supplied bythe candidates. See
Section 5.1 for a discussion about software verification.

Disputes and their Resolution The machines that run candidates’ software
(“candidates’ machines”) may cheat in a variety of ways. A machine may show the
voter that she has voted differently from her actual vote. Or, a machine may record
a vote differently from what it shows the voter. Or a machine may change a vote
in the final published list. Additionally, machines may collude in their cheating,
for example, by agreeing beforehand to display the correct result to a voter and
publishing identical, though different, results in their final lists.

Some forms of cheating will lead to disputes. For example, ifthe voter sees
that her vote has been recorded differently from how she has voted, she may raise a
dispute; or, she may not, if she is dishonest and believes that the result supports her
candidate. Also, if the final published lists from various machines do not agree,
the electorate can raise a dispute. There are other kinds of cheating, involving
collusion, that may not raise any dispute.

To resolve disputes that may arise the network records the content and time of
transmission of each message only for the present session. The recording is erased
if the session ends without dispute. A dispute is resolved byconsulting the log
of transmitted messages and identifying the dishonest players. Disputes involving
final published lists are resolved by mere inspection. If allplayers behave honestly,
there is never any dispute.

The candidate corresponding to a guilty machine is punishedseverely, to the
extent of losing the election or being subjected to other severe civil or criminal
penalties. A voter found to be guilty is also severely punished. It is never in the
interest of a player to be identified as being dishonest even though it may cheat.

2



Rational self-interest implies that a candidate machine never takes a step that may
implicate it, even though the machine may be dishonest. We show that rational
steps, even though dishonest, will force honest outcomes.

Coercion An ideal voting system should make it impossible for any voter to be
coerced to vote in a certain way; nor can a voter provide any evidence of how she
has voted to gain any monetary benefits. Consequently, the published lists of votes
should not identify the voters. In fact, no information about the voting pattern
should be discernible from the published lists, because if the list of votes show the
sequence in which voting occurred, for instance, they leak information that can be
exploited by a coercer (a boss might tell his workers to cast their votes first thing
in the morning for a certain candidate).

We avoid coercion in two ways: (1) the voter is not given proofof her vote,
thus eliminating any demands from a coercer for a proof, and (2) a published vote
carries no information about the voter or the sequence in which votes were cast.
We propose a new scheme to eliminate coercion in online voting; see Section 4.2.

Aspects addressed, and those ignoredThe proposed scheme addresses
most of the requirements of an honest election: (1) authentication: only and all
eligible voters are allowed to vote, (2) single vote: eligible voters may vote at most
once, (3) correct recording: each vote is counted appropriately, and (4) absence of
coercion: no one’s vote is revealed, and no one may be coercedto vote in a certain
way. Authentication requirement, (1), in manual voting is addressed manually; we
exploit the rivalry among the precinct workers representing different candidates to
keep authentication honest. We suggest a novel authentication scheme for online
voting that eliminates coercion. Requirement (2) is met by the design of the ma-
chines that allows only one vote to be cast per voting session, but we have no new
proposal to address this issue in online voting. This paper addresses the other two
concerns, correct recording (3) and absence of coercion (4).

Like all voting schemes, ours has certain limitations. We assume that the hard-
ware of the machines and the communication network are fault-free. We do not
address side-channel attacks: a machine may transmit voteswirelessly to another
device thus revealing the sequence of votes; a machine may take photographs of
the voters and remember how they cast their votes so that theyare denied privacy;
a voter may be required by her boss to carry a camera and capture a screenshot that
shows that a vote has been cast as instructed by the boss; or a precinct worker may
deliberately load different software from the one suppliedby a candidate. We have
to rely on reasonable social practices to ensure that such attacks are eliminated.
We address some of the engineering and social concerns in Section 5.

2 Voting Schemes
We first consider voting for a single office for which there arejust two candidates,
m andn. We relax these constraints in Section 4.1. We will describethe operation
of a single voting booth that allows one voter to vote at a time.

Precinct workers, representing the candidates, authenticate each voter. Be-
cause of their conflicting interests, we assume that only andall eligible voters are
authenticated. After authentication, the precinct workers together allow the voter
to enter a voting booth. We consider two schemes,Scheme A andScheme B, in this

3



section. In Scheme A, the machine supplied by the election commission generates
a random number in a session, encrypts the vote and the generated random number
with its own key, and transmits the message to the candidates’ machines. In the
Scheme B, the election commission machine merely generatesrandom numbers;
all other functionalities are delegated to candidates’ machines.

2.1 Scheme A

Figure 1: Voting Network for Scheme A

Honest Execution The communication network for this voting scheme, de-
ployed in each voting booth, is shown in Figure 1. Nodev represents the voter,e
the machine supplied by the election commission, andm andn are the candidates’
machines. The expected honest behaviors of the components are as follows. Voter
v sends her choice of candidatex —wherex is eitherm or n— to machinee.
Machinee generates a random numberi, and encrypts the pair(i, x) using itsown
encryption function; denote this encrypted value by(i, x)

e
. It sends this value to

both m andn. On receiving(i, x)
e

from e, each ofm andn creates a digitally
signed certificate from the received message; denote the certificate created bym
by ((i, x)

e
)m. Call i the index of this certificate and(i, x)

e
its content; see [6] for

a discussion of digital signatures. Certificates are assumed to be non-malleable,
unforgeable, incorruptible and verifiable. Each machine sends its certificate to its
rival. Upon receiving a certificate from its rival, a machineverifies that its content
matches the value received frome. If it does, it sends an acknowledgment toe; if
it does not, it raises a dispute. Machinee sends a confirmation tov after receiving
acknowledgments from bothm andn, and then ending the voting session.

Machinesm and n store the certificates they receive from their rivals. On
completion of balloting for the precinct, they both publishthe list of certificates
sorted by their indices; the sorting step obliterates the order in which the votes were
cast. Then, the election commission publishes the decryption function fore. Note
thate does not store the decryption function corresponding to itsown encryption,
to prevent leaking information if it is compromised. Now each certificate’s content
pair (i, x) can be recovered: first apply the encryption function ofm to ((i, x)

e
)m

to recover(i, x)
e

and then the decryption function ofe to this value to recover
(i, x). Independent organizations can ensure that each certificate is valid and that
the lists are identical in their contents. Then the number ofballots cast for each
candidate is easily computed (from either published list).

Honesty Assumptions We assume that machinee, programmed by the elec-
tion commission, carries out its steps honestly and that thehardware of the ma-

4



chines and the communication network are fault-free.
Machinee has a few simple tasks to perform: (1) generate random numbers,

(2) encrypt the pair(i, x), and (3) receive and transmit messages. It does not store
any information about the vote after a session is completed.Its program is so
simple that it can be publicly scrutinized and formally verified.

Dishonest Execution Unlike machinee, Machinesm andn may be dishonest.
They may send inappropriate certificates, or no certificate at all. Further, they may
create forged certificates or lose some of the certificates they have received, so that
their published lists are incorrect. The first form of dishonesty is easily checked by
the rival who raises a dispute. We show in Section 3.3 that publishing an incorrect
list will immediately identify the dishonest player, who will then be subject to
severe punishment.

The voter may cheat by claiming that the vote that has been cast differs from
her intention. Again, this will be identified as dishonest and the voter punished;
see below. Absence of output, given valid and timely inputs,is also regarded as
dishonest, and the player to receive that output should raise a dispute, if it is honest.

Dispute Resolution A dispute arises during a voting session in the following
situations.

1. Machinee never receives an expected message. The message could be from
the voter, or an acknowledgment fromm or n. After a suitable time period,
the machine raises a dispute.

2. Machinem or n receives an inappropriate certificate from its rival. It then
raises a dispute.

3. Voterv raises a dispute if she does not receive a timely confirmationfrom e.

We assume that each player has a mechanism to notify the authorities in case of
a dispute. The authorities resolve a dispute by taking a log of the messages trans-
mitted during a session betweene, m andn. But they do not examine the contents
of the channel fromv to e that will reveal the vote cast. They check the machines
m andn as follows: (1) recover the contents of the certificates theyhave sent to
each other (by encrypting each by the corresponding machine’s public key) and
check if the contents match the value sent to bye, and (2) determine if a machine
has sent an acknowledgment toe. These checks either identify one of the machines
to be dishonest or exonerate both of them, in which casev is dishonest, because
the remaining machine,e, is honest. Thus, dispute resolution does not reveal the
vote; it only uses publicly available information about encryption functions.

No player can afford to be identified as being dishonest. So, there is no dispute
in a rational execution. We prove this result formally for the Scheme B which
includes Scheme A as a special case.

A dispute may arise after the publication of the lists if theyare found to be non-
identical. No list will contain a corrupt certificate because that will be immediately
recognized and the culprit punished severely. We will show in Section 3.3 that
neitherm norn will suppress a certificate if they behave rationally. Therefore, the
published lists will contain the certificates corresponding exactly to the votes cast.

5



Need for Random Numbers, Encryption and Signatures Every vote
has an index, a random number, to distinguish it from anothervote cast in the
same way. Without an index, a candidate can duplicate a certificate from its rival
and claim that a certain vote has been cast by two voters. The votes are encrypted
so that no candidate knows what vote has been cast, and the voter intention is not
revealed during dispute resolution. This is especially important in online voting to
prevent coercion; see Section 4.2. The votes have to be signed by the candidates to
prevent duplication by a rival, and also to prevent a candidate from later disowning
a vote.

2.2 Scheme B
In Scheme A of Section 2.1, the election commission suppliesmachinee that is
deemed honest. Establishing the honesty ofe requires verification of its software.
Even though the program is simple, we can still avoid most of the verification
by delegating its major functionalities to the candidates’machines. The resulting
scheme has one major drawback; dispute resolution requiresrevealing the vote.
Though a rational execution is dispute-free (see Proposition 8 in Section 3.2), this
is a serious breach of voter privacy; it should be used only when the expectation of
dispute is negligible or revealing how a particular voter has voted to the authorities
is of no concern.

Figure 2: Voting Network for Scheme B

In the network of Figure 2, the functionalities ofe reside in three different
processess, r andf . Processs reads inputx from v and sends it to bothm and
n. Processr generates a random number for each voting session and sends it to
both m andn. Machinem sends certificate(i, x)m to n andn sends(i, x)n to
m. Each machine then validates the certificate it receives against i andx supplied
by r ands, respectively. Then each ofm andn sends an acknowledgmentx to
f . Processf , on receiving both acknowledgments, sends messagex to v. Observe
that the votes sent bys are in plain-text; so, the candidates’ machines know how
the vote is cast.

The assignment of software responsibilities to various parties is as follows: (1)
the election commission is responsible forr, (2) the candidates are responsible for
their corresponding machines,m andn, and (3) machiness andf are programmed
by different candidates.

The only verification responsibility for the election commission isr. We note

6



that r has no input; the system detects a new voting session when theprecinct
workers authenticate the next voter. Then, all the message logs are initialized, and
r sends the next random number.

Hardware random number generators are readily available [7]. Alternatively,
we can use a publicly available cryptographically secure pseudo-random generator
(CPRG). The program and its verification would be open to public scrutiny. The
only hidden items will be the seed and the other parameters required for random
number generation. For a CPRG, it is not possible to efficiently recreate the se-
quence given only the set of random numbers2, a property essential to ensuring
that no voting pattern in the sequence of votes cast be discernible from the pub-
lished lists. We require that no number be generated twice during the voting at a
precinct. Using a 40-bit key as the index, where each bit is randomly generated, in
a run of 4000 (which corresponds to a large precinct), the probability of repeating
a number is around4×10−9. If additional guarantee against repetition is required,
a longer index can be used, or a test to ensure no number is being repeated, due to
Floyd [3], may be employed.

Any player may raise a time-out dispute if it does not receivetimely inputs.
Additional disputes may arise during a session as follows.

1. Each ofm andn raises a dispute if it receives an inappropriate certificate.
Either the certificate is not properly signed, or its contents do not match
random numberi from r and/or votex from s.

2. Processf raises a dispute if it receives acknowledgments that differin their
contents.

3. Voterv raises a dispute if it receives a message whose content contradicts its
vote.

It is essential thats andf be programmed by different candidates. To see the
necessity of this requirement, supposes andf are both programmed bym. They
may collude in the following way to change a vote forn to m. Whenv casts a vote
for n, s instead sends votem to bothm andn, they exchange certificates,m sends
n to f (andn sendsm), andf sendsn to v. The voter does not dispute, neither
doesn.

Dispute Resolution Dispute resolution in Scheme B is similar to that in Scheme
A. As before, a log of the messages transmitted during a session is examined.
Given the vote (the contents of the channel fromv to s) and the random number
generated byr (the contents of the channel fromr to eitherm or n), the behaviors
of all other players are determined. If any player has deviated from the expected
behavior, either by sending an incorrect output or sending nothing at all, then it is
guilty. The certificates sent byn andm are checked by first decrypting them with
their public keys.

3 Correctness
Our goal in this section is to show that Scheme B of Section 2.2is correct in
the following sense: (1) every voting session ends without dispute, (2) the lists

2This observation is due to David Zuckerman.

7



published bym andn contain exactly the certificates for the votes that have been
cast. Additionally, as should be obvious from the algorithm, the only information
conveyed from the published lists is the number of votes. This implies that voter
coercion is impossible because a voter carries no evidence from the polling booth
of how she voted, nor can that information be deduced from thepublished lists
(except if all votes are cast for a single candidate). Further, the published lists
do not reveal any information about the times at which the votes were cast, nor
about the voting patterns of any group of individuals, such as those who voted in
sequence.

It is obvious that if every player is honest, the voting scheme meets its goal.
Also, it is obvious that if the players are arbitrarily dishonest, the voting scheme
fails. For example, ifm and n collude to suppress a vote forn but report the
correct vote tof , then the voting session ends without dispute; however, their pub-
lished lists will not contain the votes as they were cast, thus violating a correctness
requirement. We may address this problem by assuming that the candidates do not
collude; in this case it is inn’s interest to avoid collusion. But we do not need a
strong axiom, such as absence of collusion, which may not even hold is some cir-
cumstances. We use a weaker axiom whose essence is that no player would dare
to make the first dishonest move that would implicate it.

We define two machines to becohorts if they have been programmed by the
same candidate; machines that are not cohorts arerivals. The cohort relation is
an equivalence relation among machines. The voter could be acohort of some
candidate, but all it can do to help is vote for the candidate.It can raise a dispute
during its session in the hope of subverting the election, but a frivolous dispute will
implicate it.

We can expect cohorts to collude by, possibly, communicating additional in-
formation in order to cheat the voting system and gain a competitive advantage for
their candidate. But rivals have diametrically opposite interests. If a player can
dispute and implicate a rival it will do so; therefore, a player should never take a
step that will present a rival with such an opportunity. A player’s step is irrational
if it does present a rival with such an opportunity; it is rational otherwise. We show
that rational behaviors, even though dishonest, lead to honest outcomes. We define
these notions formally in the next section. We consider a single voting session and
prove that it ends without dispute, and that each ofm andn holds a certificate
from the other for the vote that has been cast. In Section 3.3,we show that each
candidate publishes exactly the set of certificates received.

3.1 Terminology and Notation
A step is a triple of the form(p, x, q) denoting that messagex has been transmitted
along channel(p, q) during a voting session. Anexecution of a voting session
is a set of steps. An execution corresponding to a completed session is called a
trace. Step(p, x, q) occurring in a trace denotes the sending ofx by p as well as
the receiving ofx by q, since the channels are deemed fault-free and a trace is a
completed execution.

A predicate is a step, or conjunction of steps and/or their negations. A predicate
denotes the set of traces in which the given steps have occurred and their negations
have not occurred. For example,(s, m,n)∧ (r, i, n)∧¬(n, m, f) denotes the set
of traces in each of which(s,m, n) and(r, i, n) occur and(n, m, f) does not.

8



Dispute Predicates The following predicates describe the conditions under
which various players may legitimately raise disputes. Forexample,m can raise
a dispute if it has received somex from s, somei from r, but not(i, x)n from
n. In each case, the absence of timely input or appropriate input raises a dispute.
Therefore, playerr, that has no input from another player, never disputes. Below,
x ranges over values from{m, n} andi is any integer.

m: (s, x, m) ∧ (r, i, m) ∧ ¬(n, (i, x)n, m)
n: (s, x, n) ∧ (r, i, n) ∧ ¬(m, (i, x)m, n)
f : (n, x, f) ∧ ¬(m,x, f) or (m, x, f) ∧ ¬(n, x, f)
v: (v, x, s) ∧ ¬(f, x, v)

A trace isp-disputable if the dispute predicate holds forp in that trace. Player
p is honest in a trace if its outputs are correct given its inputs.

We assume that a player raises a dispute only if it will implicate a rival, not a
cohort. For example,f does not raise a dispute if it deems that only its cohortn

is dishonest. Ap-disputable trace may have ended without dispute becausep may
not have raised a dispute even though it had the option to do so. The formal proof
does not require a player to raise a dispute whenever it has the option of doing so.

Thestate of a player in a trace is the set of steps in which it has sent or received
a message. Step(p, x, q), wherep andq are rivals, isirrational in a given state of
p if there is a tracet such that:

1. t includesp’s given state and the step(p, x, q),

2. all rivals ofp are honest int, and

3. t is q-disputable.

Tracet, as described above, is called awitness to the irrationality of the step. A
step that is not irrational isrational.

Rationality Axiom Players take only rational steps.

The justification for this axiom is as follows. Consider a step (p, x, q) that is
irrational with tracet as a witness. Now,q can dispute int and the dispute will
implicate some cohort ofp (because rivals ofp are honest int). This is a possible
execution that is against the interest ofp. Therefore, rationally,p should not take
such a step.

An execution in which every player takes rational steps is arational execution,
and similarly we definerational trace. An honest execution is rational, but not
conversely. A player may send dishonest messages to its cohorts in a rational
execution. Our proof will show that such a step is useless andthe receiving cohort
will have to ignore it in order to take a rational step.

A player who receives valid inputs sends its output to a rivalin timely manner.
Waiting too long to output is irrational, because the rival could raise a dispute
implicating this player. Henceforth, we assume that in every rational trace if a
player has valid inputs, it sends some output to a rival.

In the following proofs, we prove the irrationality of a stepby displaying a
witness trace. In those cases where we can prove irrationality, we show that the
only possible rational step is the honest step.

9



3.2 Correctness of a voting session
For predicatesb andc, b ⇒ c means that ifb holds in arational trace, then so does
c. Most propositions we prove are of the formb ⇒ c whereb includes a step in
which p receives a message, andc is a step in which it sends a message to rival
q. Typically, we derive predicateb′ from b by assuming that rivals ofp are honest
and using the results of other propositions. Then we show that b′ ∧ ¬c implies the
dispute predicate ofq; that isq can possibly dispute and its doing so will implicate
a cohort ofp. Therefore, taking any step other thanc is irrational. Predicateb′

denotes some honest trace, and, hence, there is some rational trace whereb′ holds.
Henceforth, we assume the following cohort relation without loss in general-

ity: {s, m}, {n, f}, {v}, {r}. To see the main idea behind the proof, consider a
step that machinen is about to take after receivingi from r andx from s. It can-
not rationally send anything other than(i, x)n to m because: (1) it can not assert
that its rivals have been dishonest; so, (2)m may immediately raise a dispute and
implicaten if it receives something different fromn. Next, considerm that has
just received(i, x)n from n. It reasons exactly as above to deduce thatn has re-
ceivedi from r andx from s, otherwise it would have sent something different to
m. Therefore, ifm sends anything other than(i, x)m, n can raise a dispute im-
plicating eitherm or s, a cohort. As the chain of message transmission grows, the
reasoning gets more complicated. So, we have adopted this formalism to structure
and simplify the proofs.

Proposition 1

(s, x, n) ∧ (r, i, n) ⇒ (n, (i, x)n, m), for all x.
Proof: Assume that the rivals ofn are honest. Therefore,s andr are honest.

(s, x, n) ∧ (r, i, n)
⇒ {s is honest andr is honest.}

(s, x, m) ∧ (r, i, m)

Now, (s, x, m)∧ (r, i, m)∧¬(n, (i, x)n, m) implies the dispute predicate form.

Proposition 2

(n, (i, x)n, m) ⇒ (m, (i, x)n, n), for all x.
Proof: Assume that the rivals ofm are honest. Therefore,n is honest.

(n, (i, x)n, m)
⇒ {n is honest}

(s, x, n) ∧ (r, i, n)

Now, (s, x, n) ∧ (r, i, n) ∧ ¬(m, (i, x)m, n) impliesn’s dispute predicate. 2

Supposes has been dishonest in the message it sent tom, by either sending
nothing or a value different from what it sent ton. Playerm, on receiving the
message fromn knows exactly whatn has received and whats has sent ton.
From this proposition,m has no choice but to to shield its cohorts by sending
back the certificate corresponding to the vote inn’s certificate.

Proposition 3

(n, (i, x)n, m) ⇒ (m, x, f), for all x.
Proof: Assume that the rivals ofm are honest. Therefore,n andf are honest.

10



(n, (i, x)n, m)
⇒ {from Proposition 2}

(n, (i, x)n, m) ∧ (m, (i, x)n, n)
⇒ {n is honest. So,(n, (i, x)n, m) ⇒ (s, x, n) ∧ (r, i, n)}

(s, x, n) ∧ (r, i, n) ∧ (m, (i, x)n, n)
⇒ {n is honest.}

(n, x, f)

Now, (n, x, f) ∧ ¬(m, x, f) implies the dispute predicate forf .

Proposition 4

(m, x, f) ⇒ (f, x, v), for all x.
Proof: Assume that the rivals off are honest. Therefore,m ands are honest.

(m, x, f)
⇒ {m is honest.}

(s, x, m)
⇒ {s is honest.}

(v, x, s) ∧ (s, x, n)

Now, (v, x, s) ∧ ¬(f, x, v) implies the dispute predicate forv.

Proposition 5

f does not raise a dispute if(m,x, f) ∧ ¬(n, x, f) holds, for anyx.
Proof: From the proof of Proposition 4,(m,x, f) ⇒ (f, x, v). So,f does not

raise a dispute. If(m, x, f) ∧ ¬(n, x, f) holds, thenn is dishonest, andf shields
its cohortn in that case.

Proposition 6

(v, x, s) ⇒ (s, x, n), for all x.
Proof: Assume that the rivals ofs are honest. Supposes sendsy to n.

(s, y, n)
⇒ {r is honest and sends some indexi to n.}

(s, y, n) ∧ (r, i, n)
⇒ {n is honest}

(n, (i, y)n, m)
⇒ {from Proposition 3}

(m, y, f)
⇒ {from Proposition 4}

(f, y, v)

Thus,(v, x, s) ∧ (s, y, n) implies (v, x, s) ∧ (f, y, v) which implies the dispute
predicate ofv if x 6= y.

Proposition 7

Playerv receives confirmation for the vote she had cast.
Proof:

(v, x, s)
⇒ {from Proposition 6}

(s, x, n)
⇒ {from Proposition 1}

11



(n, (i, x)n, m), for somei (*1)
⇒ {from Proposition 2}

(n, (i, x)n, m) ∧ (m, (i, x)m, n) (*2)
⇒ {from Proposition 3}

(m, x, f) (*3)
⇒ {from Proposition 4}

(f, x, v) (*4)

Corollary 1 Playersm andn receive valid certificates from their rivals for the
vote that has been cast.

Proof: Follows from (*2) in the proof of Proposition 7.

Proposition 8

A rational trace is dispute-free.
Proof: We assert that no player raises a dispute. We need onlyconsider the

players{m, n, f, v} that have dispute predicates. Suppose(v, x, s) holds for some
x. Consider the proof of Proposition 7. Dispute predicate form does not hold,
from (*1). Dispute predicate forn does not hold, from (*2). Dispute predicate for
f has two parts: (1)(n, x, f) ∧ ¬(m, x, f) does not hold, from (*3), and (2) from
Proposition 5,f does not raise a dispute if the other part of the dispute predicate,
(m, x, f) ∧ ¬(n, x, f), holds. Dispute predicate forv does not hold, from (*4).

3.3 Correctness of the published lists
We have established in Proposition 8 in Section 3.2 that every rational voting ses-
sion is dispute-free, and in the Corollary of Proposition 7 that each ofm andn

receives certificates from its rival for every vote that is cast. LetSm andSn be
the list of certificates received bym andn, in the sorted order by their contents.
Upon completion of voting, they are required to publish these lists. They may be
dishonest and publish different lists. We show that, using the Rationality Axiom,
they must publishSm andSn.

One ofm andn publishes its list first, saym (formally, the publication bym
is not causally dependent on the publication byn; see [4]). Supposem publishes
a certificate that is not inSm. Such a certificate would be seen to be invalid,
because either it is not signed byn or it is a duplicate of one signed byn; in each
case,m will be punished. Supposem does not publish a certificate that is inSm.
We claim that this is irrational, becausen can publishSn that would contain the
corresponding certificate, implicatingm. Therefore,m publishesSm. Now,n has
to publishSn; otherwise, it will be implicated.

4 Extensions

4.1 Multiple Candidates
We propose generalizations when there are more than two candidates. We can not
then assume that all pairs of candidates are rivals. The schemes are applicable even
when some of the candidates collude. All that is needed is that not all candidates
collude together, i.e., there are at least two camps so that some pair of candidates
are rivals.

12



Scheme A of Section 2.1 is generalized by having each candidate machine send
its certificates to all machines. At the end of balloting, every machine publishes all
certificates, grouped by different machines, in sorted order. If it is deemed infea-
sible to require the candidates to keep track of all other candidates, a candidate’s
machine sends its certificate toe who verifies it and sends it to all other machines.

Scheme B of Section 2.2 requires a more significant modification. The election
commission can not choose programs fors andf from rival factions because (1)
there may be several rival factions, and (2) it can not identify the rival factions.
Instead, we require thats be programmed by the election commission. Each can-
didate machine sends certificates to all other candidate machines. The program for
f is picked randomly from the ones submitted by all the candidates, in order to
maintain symmetry among the candidates. It is not essentialto assume thatf is
honest. All the propositions proved in Section 3.2 still hold if only s is assumed
to be honest butf is arbitrary, because making components more honest does not
affect the correctness of the propositions.

4.2 Online Voting
The manual voting schemes described so far prevent a candidate’s machine from
communicating with any external machine (besides the ones explicitly shown) or
retaining information about the voting pattern. In online voting, the machines may
identify voting patterns, or a voter’s authentication information may be demanded
by a boss who can then cast the vote on her behalf. We propose a novel authentica-
tion protocol to address coercion and a method by which voting pattern information
can be destroyed.

We propose to use Scheme A of Figure 1 (page 4) for online voting. As before,
e is honest and the machines and hardware are fault-free. Current technology is
mostly adequate for fault-free communication, particularly since the number of
messages and the rate of message transmission are both very low.

A Novel Authentication Scheme A major problem in online voting is au-
thentication, more specifically, authentication that prevents coercion. Imagine a
boss demanding all the authentication information from a subordinate and then
himself voting as the subordinate.

A typical authentication attempt has two possible outcomes: (1) it succeeds,
which allows the voter to vote, or (2) it fails and the voter isnot allowed to vote. We
permit an authentication attempt to have three possible outcomes: (1) it succeeds,
which allows the voter to vote, (2) itnearly succeeds, which allows the voter to
vote; the voter is made to believe that she has voted successfully, but the vote is
not counted, or (3) it fails and the voter is not allowed to vote.

Usually, an authentication requires the voter to provide a name and a “pass-
word” in addition to possible biometric data such as iris scan, finger print or voice
print. For each genuine password we propose to have a set of “fake” passwords
that are different from the genuine. For example, a fake password may differ in 5
symbols from the genuine one, or the fake and the genuine match only for a proper
prefix. The rule for creating a fake password from a genuine will be publicly avail-
able. An authentication attempt nearly succeeds if it presents a fake password in
addition to all other required data.

The voter can supply a fake password to the coercer, or login with a fake if
the coercer is watching. The response to a vote with a fake password is exactly

13



the same as for a genuine password. However, the vote is not counted; see below
for further discussions. Coercion is now meaningless, because a voter can not
be coerced to vote for a particular candidate nor can she provide proof that she
actually voted in a certain manner.

Fake Voting It is not sufficient fore to reject a vote when presented with a fake
password. A candidate’s machine may keep a tally of when the votes were cast
and deduce information about whether a coercer succeeded. To overcome such
problems,e actually sends a vote to all the machines, butfor a fake candidate. The
candidates’ machines can not decipher the vote since it can only be decrypted bye.
So, the normal voting pattern is preserved. The votes for thefake candidate in the
published lists will be discarded. Further, if it is important to avoid deduction about
the degree of coercion from the lists published after the election, or the timing of
vote casting, even the fake votes could be faked, bye voting for the fake candidate
with high frequency.

4.3 End-to-end verifiability
End-to-end verifiability of an election system guarantees that upon completion of
the election every voter can check that her vote has been counted. The schemes
proposed in this paper do not provide such guarantee. We propose a variation
of Scheme A that allows a voter to verify that her vote has beencounted, at the
expense of violating one of our earlier requirements one, namely that it stores no
information across voting sessions.

The simple extension is to tell the voter the index generatedon her behalf; she
can then check the index against the published lists. This extension has serious
consequence for coercion. A coercer may demand to know the index. The voter
can not simply make up an arbitrary index, as she could for on-line authentication,
because the coercer will check the index against the published lists. So, we propose
a slightly more elaborate subterfuge. Scheme A will be extended to allow a voter
to cast fake votes for one or more candidates. Such votes willbe treated exactly
like genuine votes, but machinee keeps a count of the number of fake votes cast for
each candidate and publishes it separately after the publications of the voting lists,
to allow computation of vote counts. The voter can show the index corresponding
to a fake vote to her coercer. In order to avoid detection of any pattern of fake
voting for specific candidates —say one candidate receives hundreds of fake votes
whereas others have none— machinee itself casts fake votes for all candidates
such that every candidate receives equal number of fake votes. Again, we assume
thate’s software and hardware are infallible.

Here we would like to contrast two different notions of verifiability, static and
dynamic. Consider the software correctness problem. Given a program for, say,
sorting a list of numbers, we may either prove the program correct for all inputs
by supplying a static proof, or we may verify that the output is correct each time
the program is run with some specific input, a dynamic proof. Every voter needs a
proof that her vote will be counted. She can rely on a static proof, the kind we have
advocated, by having the software be subject to public scrutiny and formal verifi-
cation. Or, she may demand a dynamic proof when she votes so that she can later
establish from the published lists that her vote has been counted. Static proofs are
best employed when the conditions under which the software operates are tightly

14



controlled, as would typically be the case in running a sorting program. Dynamic
proofs are essential in a more chaotic environment, where other aspects, such as
side-channel attacks, are real. Dynamic proofs are often preferred in voting, not
only because the environment is chaotic, but also for the social acceptability of
electronic voting. We advocate static proofs because the suggested voting schemes
are simple enough that automatic verification of the associated software is practical
today.

5 Designing a Practical Voting System
We have advocated an unusual voting system that may seem impractical at the
outset. In this section, we separate the technical and non-technical concerns in this
voting system. We argue that that the technical concerns arecompletely solvable.
The non-technical concerns, though unusual, seem no more difficult than the ones
in the traditional schemes.

5.1 Technical Concerns
We have assumed in Section 2.1 that (1) the hardware of the machines and the
network are error-free, and (2) the software provided by theelection commission
is error-free. We can meet these assumptions reasonably. First, let all the machines
be implemented on a single physical machine, and the channels be implemented
as words in the shared memory. Each machine runs in its own partition, so that it
does not affect any other machine. A machine sends a message along a channel
by writing into a specific word in the memory, and it can write into a word at most
once during a session. A machine reads from a channel by reading the value of the
shared word. The shared words are reset (to some specific value) at the beginning
of a voting session. Currently available technology for fault-tolerance through
replication should be adequate for fail-stop systems with independent faults. If the
degree of replication is large enough, it would also tolerate Byzantine faults [5].
After each logical machine publishes the list of votes, the contents of the partitions
are erased so that no trace of the computation remains in the machine.

We insist that the candidates provide the software but not the machines on
which the software runs. This prevents a machine from recording additional in-
formation about votes which the candidates may later exploit, to gain information
about voting patterns, for instance.

5.2 Non-technical Concerns
There are many side channel attacks that may compromise an election. There is
no technical fix for such problems. Some of the issues in side-channel attacks
can be resolved by adopting strict manual procedures. For example, a bipartisan
committee could oversee the loading of candidates’ software in the machines.

The most obvious non-technical problem is the requirement that the candidates
provide the software. It is reasonable to argue that a candidate has no legal obliga-
tion to provide software. If a candidate contracts with another party to deliver the
software, he may have no guarantee that the contractor has the same interest as the
candidate, and, it is not clear who should be punished in caseof a dispute. This

15



seems to be a social problem based on trust. Establishing trust in software through
automatic verification is a viable approach.

The specification of candidates’ software is simple and precise. We expect
that software vendors will market software meeting the specification. They will
have to convince their clients, the potential candidates, of the correctness of their
code. They can do so by providing a completely automated proof of the software
along with the code. The proofs may be checked automaticallyby standard proof
checkers.

Free market provides other incentives for building trust. Asoftware vendor
may take a large amount of insurance against failure of its software. The insuring
companies will clearly need proofs of correctness along thelines we have sketched.

Another possible approach is for a community to build open software that is
checked in a variety of ways by a multitude of experts. No one makes any money
in this process, but the cost of ensuring honest elections isthen largely eliminated.

6 Concluding Remarks
Every voting scheme is beset by engineering, social and legal problems. Ours is no
exception. Ensuring that the machines and communication channels are fault-free
is an engineering problem. The problem is essentially solved for closed systems, as
in a polling booth. It is not so easily solved for communication over the internet.
The non-technical problems, particularly, side-channel attacks, require different
strategies for solution.

In spite of these shortcomings, we expect that voters will welcome a system
that deviates very little from how they already vote, that isopen to public scrutiny
and yet provides the guarantees for an honest election.

Acknowledgment I am thankful to David Dill, Nickolai Zeldovich, Adam Kli-
vans and Gordon Novak for discussions and advice on an earlier draft of this paper.
Special thanks to David Zuckerman for discussions about cryptographically secure
pseudo-random number generators. Mike Fischer, David Jefferson, Vladimir Lif-
schitz and Elaine Rich have provided many perceptive comments. Several mem-
bers of IFIPS WG 2.3, in particular, Carroll Morgan, Ernie Cohen, Rajeev Joshi
and Rustan Leino, were most helpful with their constructivecriticism. Suggestions
from the anonymous referees have improved this paper substantially.

References
[1] David Chaum. Secret-ballot receipts: True voter-verifiable elections.IEEE

Security & Privacy, 2(1):38–47, 2004.

[2] Markus Jakobsson, Ari Juels, and Ronald L. Rivest. Making mix nets robust
for electronic voting by randomized partial checking. InIn USENIX Security
Symposium, pages 339–353, 2002.

[3] Donald E. Knuth. Seminumerical Algorithms, volume 2 ofThe Art of Com-
puter Programming. Addison-Wesley, Reading, Massachusetts, third edition,
1997.

16



[4] Leslie Lamport. Time, clocks, and the ordering of eventsin a distributed
system.Communications of the ACM, 21(7):558–565, July 1978.

[5] Leslie Lamport, Robert Shostak, and Marshall Pease. TheByzantine Generals
Problem.TOPLAS, 4(3):382–401, July 1982.

[6] R.L. Rivest, A. Shamir, and L. Adelman. A method for obtaining digital signa-
tures and public key cryptosystems.Communications of the ACM, 21(2):120–
126, Feb 1978.

[7] G. Taylor and G. Cox. Digital randomness.Spectrum, IEEE, 48(9):32 –58,
september 2011.

17


