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A Categorization Approach to  
Automated Ontological Function Annotation 

Karin Verspoor∗, Judith Cohn, Susan Mniszewski, and Cliff Joslyn 
Los Alamos National Laboratory 

ABSTRACT 
Automated Function Prediction (AFP) methods increasingly use knowledge discovery 
algorithms to map sequence, structure, literature, and/or pathway information about proteins 
whose functions are unknown into functional ontologies, typically (a portion of) the Gene 
Ontology (GO). While there are a growing number of methods within this paradigm, the general 
problem of assessing the accuracy of such prediction algorithms has not been seriously 
addressed. We present first an application for function prediction from protein sequences using 
the POSet Ontology Categorizer (POSOC) to produce new annotations by analyzing collections 
of GO nodes derived from annotations of protein BLAST neighborhoods. We then also present 
hierarchical precision and hierarchical recall as new evaluation metrics for assessing the 
accuracy of any predictions in hierarchical ontologies, and discuss results on a test set of protein 
sequences. We show that our method provides substantially improved hierarchical precision 
(measure of predictions made which are correct) when applied to the nearest BLAST neighbors 
of target proteins, as compared with simply imputing that neighborhood’s annotations to the 
target. Moreover, when our method is applied to a broader BLAST neighborhood, hierarchical 
precision is enhanced even further. In all cases, such increased hierarchical precision 
performance is purchased at a modest expense of hierarchical recall (measure of all annotations 
which get predicted at all).  
KEYWORDS: Protein function prediction, Gene Ontology, GO, prediction evaluation metrics. 
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1. INTRODUCTION 
Recent advances in genome sequencing are creating an increasing volume of data, leading to 
more urgent interest in methods for automated function prediction (AFP). These methods 
increasingly use knowledge discovery algorithms to map sequence, structure, literature, and/or 
pathway information about proteins with unknown function into ontologies, such as the Gene 
Ontology1 (GO, Gene Ontology Consortium, 2000), representing protein functions. We present 
an approach to AFP that combines knowledge of the structure of GO with BLAST e-values. 
While our method assumes that proteins which are similar in sequence or structure are more 
likely to share a function, we do not simply transfer the annotations of a similar protein to the 
target protein. Rather, we search for annotations that are representative of the annotations of 
similar proteins, based on the distribution of those annotations within the ontological structure of 
GO. Specifically, we employ a novel knowledge discovery technique, which we call 
“categorization”, to automatically identify those GO nodes which most accurately represent 
another group of GO nodes, in this case those which are annotated to proteins similar in some 
respect to a target protein. 
The system we have developed is an application within our POSet Ontology Laboratory 
Environment (POSOLE), which consists of a set of modules supporting ontology representation, 
mathematical analysis of those structures, categorization of nodes in an ontology, and evaluation 
of the predicted categorization with respect to a given set of expected answers. The system 
defines QueryBuilders specific to an application for mapping its relevant input to a set of 
ontology nodes, in this case by identifying the sequence neighborhood of the protein and 
associating those neighbors to GO nodes (other QueryBuilders might utilize bibliometric data 
(Verspoor et al 2005) or structural data). The POSet Ontology Categorizer (POSOC)2 then 
categorizes this set of GO nodes to identify the most representative nodes as putative functions 
of the input protein.  
Essential to any AFP method is the ability to measure the quality of predictions. We are keenly 
aware that the nature of GO as a hierarchically structured database makes traditional evaluation 
measures inadequate. We therefore conclude with the presentation of new evaluation metrics 
called hierarchical precision and hierarchical recall, which we are developing for the general 
task of evaluating methods for AFP into the GO. 

2. RESULTS 
POSOC was designed to take a large set of GO nodes and identify clusters with a richer 
concentration of relevant information. This results directly in an increase in hierarchical 
precision (an extension of the standard precision measure, to be defined below). Generally in 
knowledge discovery algorithms, increased precision comes at the expense of decreased recall, 
and vice versa, as is true here.  
Figure 1 shows the results of applying our method to our test data set, both of which are 
described in detail in Section 3. Note the improvement in hierarchical precision (HP) when 
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2 http://www.c3.lanl.gov/posoc. POSOC was originally (Joslyn et al, 2004) called the Gene Ontology Categorizer, 
but then was generalized for use with any partially ordered ontology. 



POSOC is included in the processing, especially on the full BLAST neighborhood as opposed to 
the BestBLAST neighborhood (both also described below). This comes at a modest expense of 
hierarchical recall (HR), resulting in relatively little variation in the hierarchical F-score. 
We have explored the behavior of our system at different values of the POSOC parameter called 
specificity s, which controls whether POSOC favors annotations which are shallow or deep in 
the GO (see below). We have found that the increase in hierarchical precision over the baseline 
scenarios is most marked at the relatively low value s=2 (results not shown). This follows from 
the observation that higher precision using the hierarchical measures occurs when more 
predictions are more general than the correct answers, and the fact that lower specificity favors 
more general results. However, it is not the case that simply returning the top node in each 
branch would give us the best results, as this would result in a large decrease in recall. Our 
results at s=2 show a drop in hierarchical recall over BaselineBestBLAST, but not an 
unacceptable drop as evidenced by the lack of substantial change in the balanced hierarchical F-
score as seen in Figure (1). 
We believe that, in general, users of AFP systems would tend to value precision over recall, or 
false negatives over false positives. Said another way, they would prefer that annotations be 
accurate at the risk of not all annotations being provided. As such, the POSOC results indicate 
that our system provides an important boost over the alternative baseline scenarios at achieving 
results these users are interested in. 

3. METHODS 
A simple formulation for generic AFP into the GO can be described as follows. Assume a 
collection of genes or proteins and a set of GO nodes (perhaps for a particular GO branch). Then 
“annotation” can be regarded as assigning to each protein some collection of GO nodes. Where a 
known protein may have a known set of annotations, a new protein will not, and we wish to build 
some method which returns a predicted set of GO nodes for that target protein. Typically, we 
have some information about the target protein such as sequence, structure, interactions, 
pathways, or literature citations, and we exploit knowledge of the proteins that are “near” to it, in 
one or more of these ways, which do have known functions. The annotation method presented 
here exploits the BLAST sequence neighborhoods of target proteins, coupled with the POSOC 
categorizer.  
In a testing situation, we start with a known protein with known annotations, and compare these 
against the annotations predicted by the method as if they weren’t known. So while our focus 
below is our particular POSOC methodology, our general formulation of AFP is motivating our 
introduction of our novel evaluation measures, which are intended to be applicable to any AFP 
architecture.  

POSOC Method within POSOLE 
Our particular architecture for AFP using sequence data, within our general POSOLE 
environment, is shown in Figure 2. At its heart are a QueryBuilder module associating an input 
query sequence with a weighted collection of GO nodes, and the POSOC module for identifying 
proper categorizations of that collection as GO annotation predictions. In the testing context, this 
process is carried on with knowledge of the known GO annotations of the sequence.  
The current query builder uses a “nearest neighbor” approach to identify annotations of close 
neighbors of the input sequence in sequence space. We perform a PSI-BLAST (Position-Specific 



Iterated BLAST) (Altschul et al, 1997) search on the target against the NCBI non-redundant 
sequence database, nr3, with 5 iterations, using the default e-value threshold of 10. Once the 
nearest neighbors have been identified, we collect GO nodes associated with these sequences 
utilizing the UniProt Swiss-Prot to GO mappings. Finally, we build a weighted collection of GO 
nodes, where each node in the collection is weighted according to the PSI-BLAST e-value. 
Several near neighbors of the original target sequence may map to the same nodes, in which case 
each occurrence will be weighted individually according to its source. 
This collection of weighted GO nodes becomes the input query to POSOC (Joslyn et al, 2004), 
which returns a ranked list of nodes which best "summarize" or "categorize" that collection. Note 
that in one extreme, returning only the top-most node of the GO branch in question is certainly 
an accurate categorization, covering the entire input query, but hardly precise enough to be 
useful. Conversely, just returning all the particular nodes in the query again is certainly as 
precise as is possible, but hardly does any work towards summarizing or grouping the nodes 
together. POSOC balances these conflicting tendencies of "specificity" and "coverage" by 
providing a tunable parameter "specificity" s, which for low values (s ~ 1) returns fewer, more 
general categories, and for high values (s > 4) a larger collection of deep nodes. 

Data Sets 
We evaluate our AFP performance on a “gold standard” test set of proteins comprised of a subset 
of Swiss-Prot proteins with both known GO mappings and PDB structures4. This test set was 
selected to enable us to compare our results with algorithms integrating structural data. Other 
groups have used a variety of test sets, for example Pal and Eisenberg (2005) use a set of protein 
sequences from the FSSP structure library5 to evaluate their ProKnow system, and Martin et al 
(2004) use sequence data from seven complete genomes to test GOtcha.  
The value of any gold standard depends on the accuracy of its known annotations. We use the 
GOA6 UniProt7 annotation set augmented with a ranking for the evidence codes included in GO 
annotation files (e.g. IC = inferred by curator, IEA = inferred from electronic annotation), 
following Pal and Eisenberg (2005). For testing, we use a “Non-IEA” subset of the annotations 
excluding all annotations of rank 4 or below, i.e. evidence codes NAS (nontraceable author 
statement), IEA, and NR (no record). The purpose of this subset is to avoid the circularity of 
making an automated prediction using sequence similarity based on other automated predictions 
derived from sequence similarity, as these annotations are more likely to contain errors than the 
curated annotations (Gilks et al, 2002) and already incorporate the assumption we test. We then 
filter our gold standard set of proteins to exclude any proteins without annotations in the Non-
IEA set. 1282 proteins remain for testing in a leave-one-out strategy in which the protein itself is 
excluded from the PSI-BLAST matches. 

                                                 
3 http://www.ncbi.nlm.nih.gov/BLAST/blastcgihelp.shtml#protein_databases 
4 http://www.rcsb.org/pdb 
5 http://www.chem.admu.edu.ph/~nina/rosby/fssp.htm 
6 http://www.ebi.ac.uk/GOA  
7 http://www.ebi.ac.uk/uniprot/index.html  



Evaluation Scenarios 
We compare the behavior of our POSOC-based function prediction with two baseline scenarios. 
In the BaselineBestBLAST scenario, we identify the protein with the highest PSI-BLAST match 
value to our input protein (the “BestBLAST” protein), and simply return the annotations 
associated with that protein, assigning them all a rank of 1. This corresponds to the standard 
strategy that a biologist would use, following the assumption that two proteins close in sequence 
(BLAST) space will share the same functions. In the BaselineFullNeighborhood scenario, we 
return all annotations associated with any protein matched by PSI-BLAST within the e-value 
threshold, ranked by match probability e-(e-value). Due to a loss of numerical precision in the 
conversion to probability, we find many neighbors matching at rank 1 and see correspondingly 
lower (hierarchical) precision and higher (hierarchical) recall with respect to the desired answers, 
even at the top ranks. 
POSOC itself is run in two parallel scenarios. PosocFullNeighborhood is the standard way it 
would be utilized for AFP: the annotations of each PSI-BLAST, weighted according to match 
probability, are submitted to POSOC for categorization. In PosocBestBLAST, only the 
annotations of the “BestBLAST” protein are categorized by POSOC. In each case we expect 
POSOC to filter out any noise in the annotation sets to arrive at the nodes most representative of 
the inputs. 

Evaluation Measures 
Let N be the set of GO nodes, either as a whole or in any particular branch or portion. Then for a 
given target protein x, POSOC will return a ranked list of cluster heads NxG ⊆)(  indicative of 
the function of the query sequence, which thereby must be compared against the set of known 
annotations NxF ⊆)( . Standard evaluation measures are provided from information retrieval, 
including precision P, measuring the percentage of predictions which are correct; recall R, 
measuring the portion of annotations which we have predicted; and F-score F, combining both 
and reflecting their tradeoff: 
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Each number varies between 0 and 1, where 000 =↔=↔= FRP , but P=1 only when all 
predictions are correct, and R=1 only when all correct annotations are predicted. 
However, the results G(x) produced by POSOC do not form a simple set, but rather a ranked list 
of effectively indefinite length. Alternative measures to handle ranked lists are available 
(Voorhees and Tice, 2000), but the measures must apply in the context where near misses are 
accounted for, and annotations occur into a hierarchically structured ontology. We introduce 
Hierarchical Precision (HP), Hierarchical Recall (HR), and Hierarchical F-score (HF) as: 
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where p↑  indicates the set of ancestors of the GO node Pp∈ . Figure 3 shows an illustration of 
a situation with GO nodes GO:1-GO:7, where a single annotation F(x) = { GO:4 } is compared 
against a single prediction G(x) = { GO:6 }, so that }4,2,1{=↑ p  (using just the node numbers 
here) and }6,5,3,2,1{=↑ q , yielding HP = 2/5 and HR = 2/3.  



Ranked Evaluation Results 
For each test protein, we must compare an unranked set of correct annotations to the ranked list 
returned by POSOC. We therefore calculated HP and HR separately, although cumulatively, at 
each rank, considering only the predictions up to a given rank against the full set of correct 
annotations. This allows us to assess the impact of rank on our predictions: how steeply does 
hierarchical precision drop off and hierarchical recall increase as we move down the ranks? To 
assess this across the full set of test proteins, we average HP and HR at each rank.  
Space limitations preclude showing results for all ranks. Moreover, the number of test proteins 
that have predictions drops sharply and unevenly at lower ranks, and so these averaged values 
become less reliable as we move down to ranks generally > 4. Thus results for rank = 1 only are 
provided in Figure 1, but this allows us to most directly compare BaselineBestBLAST with the 
other scenarios, since that baseline only has predictions at rank 1.  

4. DISCUSSION 
There are a number of methodological limitations of current AFP methods which our 
hierarchical evaluations measures are trying to address. First, AFP should deal fundamentally 
with the need to accommodate and measure not just “exact matches”, but also “near misses” of 
different sorts. If a particular annotation is wrong, can we say more about how far off it is? Thus 
there’s a first need to generalize classical precision and recall measures to accommodate a sense 
of distance among annotations. 
In the particular context of the GO, errors are introduced if it is considered to be a simple list of 
functional categories. The hierarchical structure of the GO represents the interaction between 
specific and general categories which are either low or high in the structure respectively. 
Moreover, annotations to low nodes are considered as annotations to high nodes as well, what 
Eisner et al. (2005) describe as the “true path rule”. This results in a mathematical structure of an 
ordered set (Joslyn et al, 2004), which must be taken into account when measuring how well an 
AFP method performs. In particular, an annotation to a parent, grandparent, or other ancestor of 
a true annotation must also be considered as a true, albeit less than ideally specific, annotation.  
Moreover, in many cases predicting a parent, grandparent, or sibling of a correct annotation may 
be acceptable, or even preferable to an exact match. In the example in Figure 3, if exact matches 
were required, traditional precision and recall from Equation (1) would both be 0, despite the fact 
that GO:1 and GO:2 are both correct, albeit more general, annotations which both GO:6 and 
GO:4 agree on.  
This issue has been attended to only very little in the literature. Kiritchenko et al (2005) and 
Eisner et a.l (2005) have proposed an explicitly hierarchical extension of precision and recall 
with respect to the subgraph containing the predicted node and all of its ancestors (the “node 
subgraph”) and the node subgraph of the correct node. Pal and Eisenberg (2005) consider 
precision at various ontology depths, hierarchically matching nodes in the node subgraph of the 
predicted node and nodes in the node subgraph of the correct node. Both solutions, however, 
require methodological completion, and neither explicitly addresses the primary case of 
comparing a set of node predictions with a set of answers. 
In prior work (Joslyn et al. 2004, Verspoor et al. 2005), we have measured performance with 
respect to direct hits, “nuclear family” (parent, child, sibling) and “extended family” 
(grandparent, uncle, cousin, etc.) relations between nodes. Our approach now aims to extend 
these ideas by placing precision and recall in a metric space context to generally account for near 



misses (Pekalska 2005), and adopting metrics specifically appropriate for hierarchical structures 
cast as partially ordered sets (Monjardet 1981). While this work is ongoing, we have 
immediately here extended Kiritchenko et al’s (2005) approach from single node comparisons to 
sets of nodes, producing Equation (2), an approach which is similar to Eisner et al. (2005).  
HP captures the property that errors at higher levels of the hierarchy are punished more severely, 
and more distant errors are punished more heavily than a near miss. The use of the sum of 
maxima in Equation (2) captures the intuition that for each prediction, we must find the closest 
match to any of the possible answers as defined by the gold standard. This is easiest to 
understand by considering the most extreme case of exact matches: if all predictions exactly 
match an element of the expected answer set, this results in HP=1. These predictions are no less 
correct simply because there are other possible answers (which would be the case, for instance, if 
hierarchical precision was averaged across the elements of the set). 
In combination with ranked assessments, it is possible for hierarchical precision to increase as 
we go down the ranks. In particular, a new prediction at a lower rank might be closer to one of 
the correct answers than any prediction up to that point. In this case, when we use the sum of 
maxima in Equation (2), we will find that hierarchical precision increases. 
The need for an evaluation measure including some form of “partial credit” for near misses is 
demonstrated by Table 1, which shows the case when the BestBLAST neighborhood of non-IEA 
annotations is used, without POSOC, to induce predictions which are then compared to exact 
matches into GO using the standard precision and recall measures. This is the most 
straightforward AFP process, and shows very poor performance because of the lack of 
consideration of near neighbors in the evaluation. Note that the inclusion of near misses in the 
measure means that HP and HR will always be higher than the corresponding P and R values for 
a given test set (cf. Table (1) and Figure (1), BaselineBestBLAST results), so they are not 
directly comparable measures. 
The hierarchical measures are able to give credit for predicted answers even when they are not 
exact. In the case of considering a single prediction against a single correct answer, when the 
prediction is a successor of the actual answer, then HR = 1, while HP < 1, with HP larger in 
deeper parts of the ontology, and decreasing with distance between the two nodes. When a 
prediction is an ancestor of the actual answer, then HP = 1, while HR < 1, with HR larger for 
more specific nodes, and again decreasing with distance between the two nodes. An overall high 
hierarchical precision is indicative of most predictions being ancestors of the actual answers and 
more general. Higher hierarchical recall indicates more predictions are successors of the actual 
and are more specific. We note that similar observations have been advanced by Eisner et al. 
(2005). 
Given that hierarchical precision is enhanced for matches higher in the hierarchy, our increased 
hierarchical precision could indicate that the gold standard answers are actually distributed at a 
moderately high level in GO. Similarly, the relatively low precision value s=2 used here will 
tend to produce higher predictions, thus explaining part of the HP/HR tradeoff shown in Figure 
1. Deeper consideration of these issues, including independent measurement of the depth of sets 
of predictions and correct answers, awaits future work. 
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TABLES 
 

 P R F
BP 0.20 0.14 0.16
CC 0.36 0.25 0.29
MF 0.39 0.28 0.33

Table 1: Regular (non-hierarchical) average Precision (P), Recall (R), and F-score (F) for the 
BaselineBestBLAST neighborhood using the Non-IEA annotation set calculated only for exact 
matches to GO annotations in the gold standard data set (also only considering Non-IEA 
annotations). 



FIGURE LEGENDS 
Figure 1: Accuracy of the top-ranked annotation predictions on the test data using only Non-IEA 
annotations across the three GO branches, comparing the POSOC method with specificity 
parameter s=2 against the baseline. BaseBB = BestBLAST neighborhood without POSOC, 
BaseFN = full neighborhood without POSOC; PosocBB = BestBLAST neighborhood with 
POSOC, PosocFN = full neighborhood with POSOC. HP = average hierarchical precision, HR = 
average hierarchical recall, HF = average hierarchical F-score. 
 
Figure 2: Architecture of the POSOC automated ontological annotation method within the 
POSOLE environment. 
 
Figure 3: Illustration of hierarchical precision and recall calculations. 
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