
Machine Learning, 52, 91–118, 2003
c© 2003 Kluwer Academic Publishers. Manufactured in The Netherlands.

Consensus Clustering: A Resampling-Based Method
for Class Discovery and Visualization of Gene
Expression Microarray Data

STEFANO MONTI smonti@genome.wi.mit.edu
PABLO TAMAYO tamayo@genome.wi.mit.edu
JILL MESIROV mesirov@genome.wi.mit.edu
TODD GOLUB golub@genome.wi.mit.edu
Whitehead Institute/MIT Center for Genome Research, One Kendall Square, Cambridge, MA–02139, USA

Editors: Paola Sebastiani, Isaac S. Kohane and Marco F. Ramoni

Abstract. In this paper we present a new methodology of class discovery and clustering validation tailored to
the task of analyzing gene expression data. The method can best be thought of as an analysis approach, to guide
and assist in the use of any of a wide range of available clustering algorithms. We call the new methodology
consensus clustering, and in conjunction with resampling techniques, it provides for a method to represent the
consensus across multiple runs of a clustering algorithm and to assess the stability of the discovered clusters. The
method can also be used to represent the consensus over multiple runs of a clustering algorithm with random restart
(such as K-means, model-based Bayesian clustering, SOM, etc.), so as to account for its sensitivity to the initial
conditions. Finally, it provides for a visualization tool to inspect cluster number, membership, and boundaries. We
present the results of our experiments on both simulated data and real gene expression data aimed at evaluating
the effectiveness of the methodology in discovering biologically meaningful clusters.
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1. Introduction

The problem of discovering new taxonomies (classifications of objects according to some
natural relationships) from data has received considerable attention in the statistics and
machine learning community. In this paper, we are concerned with a particular type of tax-
onomy discovery, namely, cluster analysis, the discovery of distinct and non-overlapping
sub-populations within a larger population, the member items of each sub-population shar-
ing some common features or properties deemed relevant in the problem domain of study
(Jain & Dubes, 1988). This type of unsupervised analysis is of particular significance in the
emerging field of functional genomics and gene expression data analysis, where the need
for the molecular-based refinement of broadly defined biological classes is an active field of
study, with potentially high payoffs in cancer diagnosis, prognosis, and treatment, among
others.

Fundamental issues to be addressed when clustering data include: (i) how to determine
the number of clusters; and (ii) how to assign confidence to the selected number of clusters,
as well as to the induced cluster assigments. The latter issue is particularly important in gene
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expression data analysis, where the problem of a relatively small sample size is compounded
by the very high dimensionality of the data available, making the clustering results especially
sensitive to noise and susceptible to over-fitting.

Recent proposals exist for the use of resampling and cross validation techniques to
simulate perturbations of the original data set, so as to assess the stability of the clus-
tering results with respect to sampling variability (Ben-Hur, Elisseeff, & Guyon, 2002;
Bhattacharjee et al., 2001; Dudoit & Fridlyand, 2002; Jain & Moreau, 1988; Levine &
Domany, 2001; Tibshirani et al., 2001a). In particular, in Bhattacharjee et al. (2001) the
use of bootstrapping to assess clustering stability and to validate the results output by hi-
erarchical clustering was introduced. In this paper we build upon some of those ideas, and
develop a general, model-independent resampling-based methodology of class discovery
and clustering validation and visualization tailored to the task of analyzing gene expression
data. One of the important features of the proposed methodology is that all of the infor-
mation provided by the analysis of the resampled data can be graphically visualized, and
incorporated in the decisions about clusters’ number and cluster membership. As we will
show, the inspection of the visualized data can often help gain additional insight into the
recommendations returned by the algorithm.

We call the new methodology consensus clustering, as it provides for a method to repre-
sent the consensus across multiple runs of a clustering algorithm, to determine the number
of clusters in the data, and to assess the stability of the discovered clusters. The method can
also be used to represent the consensus over multiple runs of a clustering algorithm with
random restart (such as K-means, model-based Bayesian clustering, SOM, etc.), so as to
account for its sensitivity to the initial conditions. Finally, it provides for a visualization
tool to inspect cluster number, membership, and boundaries.

The remainder of this manuscript is organized as follows. In Section 2, we briefly discuss
some related work and some outstanding issues in cluster analysis. Section 3 describes the
proposed methodology in detail. In particular, we formally define consensus and methods for
its measurement and visualization. In Section 4, we present the results of our experiments on
both simulated data and real gene expression data aimed at evaluating the effectiveness of the
methodology in discovering biologically meaningful clusters. We conclude the manuscript
with a discussion of the results and of possible directions for further research.

2. Background

In this section, we briefly survey some of the more commonly used clustering algorithms.
This is not meant to be a comprehensive review. Rather, it is aimed at emphasizing some
of the outstanding issues in cluster analysis. The interested reader can find a more compre-
hensive survey of the topic in several recent books and papers (e.g., Dudoit & Fridlyand,
2002; Hastie, Tibshirani, & Friedman, 2001; Jain & Dubes, 1988).

In functional genomics, agglomerative hierarchical clustering (HC) has been widely
adopted as the unsupervised analysis tool of choice, mainly because of its intuitive appeal
and its visualization properties (Eisen et al., 1998). By not committing to a specific num-
ber of clusters, HC provides for a multi-resolution view of the data that can be extremely
useful in exploratory data analysis. On the other hand, the method is exposed to the risk
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of incorporating the biases and preconceptions of the analyst because it does not provide
for an “objective” criterion to establish the number of clusters and the clusters’ boundaries.
Furthermore, the resulting trees can lock in accidental features reflecting idiosyncrasies of
the agglomeration rule. This is due to the deterministic nature of the agglomeration rule
and the bottom-up direction of the agglomeration. An interesting recent proposal tries to
circumvent some of HC’s limitations, by providing for a principled model-based agglom-
eration rule that allows for the automatic determination of the number of clusters (Ramoni,
Sebastiani, & Kohane, 2002). However, the proposed rule, which is based on a Bayesian
score, was devised for the clustering of genes only.

Iterative descent clustering methods, such as the self-organizing map (SOM) (Kohonen,
1990, 1997; Tamayo et al., 1999) and K-means clustering (Hastie, Tibshirani, & Friedman,
2001), circumvent some of the shortcomings of HC by providing for univocally defined
clusters and cluster boundaries. However, they lack the intuitive and visual appeal of HC,
and the number of clusters must be chosen a priori. Methods of model-based probabilistic
clustering (Banfield & Raftery, 1993; Cheeseman & Stutz, 1996; Titterington, Smith, &
Makov, 1985; Yeung et al., 2001a) automatically select the number of clusters. These meth-
ods are often based on the Bayesian paradigm, thus allowing for the seamless combination
of prior knowledge and observational data. A possible difficulty in their use is due to the
distributional assumptions on which they are based. In particular, most of these methods
are based on asymptotic approximations of the marginal likelihood, whose accuracy tends
to decrease as the sample size decreases (Chickering & Heckerman, 1997; Kass & Raftery,
1995). This can clearly be a problem in the “large N , small p” paradigm (i.e., high dimension
and small sample size) typical of gene expression data (West, 2002; West et al., 2001). An
additional shortcoming common to all the iterative, greedy search-based clustering methods
is their sensitivity to the search’s starting point. This makes the clustering results harder to
trust, since it may be difficult to reconcile inconsistent results returned by multiple runs of
the algorithm.

In addition to model-based clustering, several other strategies have been proposed for
automatically selecting the number of clusters (Dudoit & Fridlyand, 2002; Milligan &
Cooper, 1985; Tibshirani, Walther, & Hastie, 2001b; Yeung, Haynor, & Ruzzo, 2001b).
Most of these strategies attempt to minimize some measure of cluster compactness, that
is, of the within-cluster vs. between-cluster variability. Since this measure is bound to
decrease even in the absence of a multi-cluster signature, some form of penalty for “model
complexity” is required. Some of these penalties represent analytically derived measures of
the minimum improvement in cluster compactness that can be expected as the number of
clusters is increased under a null hypothesis encoding for the absence of clusters (Hartigan,
1978; Yeung, Haynor, & Ruzzo, 2001b). In most cases, an appropriate encoding of the null
hypothesis does not allow for the analytical derivation of the corresponding penalty. An
empirical estimate of the penalty can then be computed based on some form of permutation
test, so as to try to capture as much as possible of the idiosyncrasies of the data distribution
of interest (Dudoit & Fridlyand, 2002; Tibshirani, Walther, & Hastie, 2001b).

An extremely important issue in cluster analysis is the validation of the clustering re-
sults, that is, how to gain confidence about the significance of the putative clusters, both in
terms of cluster numbers and in terms of cluster assignments. Lacking an external objective
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criterion—the equivalent of a known class label in supervised learning—this validation
becomes somewhat elusive. While some principled statistical procedures exist for testing
the significance of a clustering result (Bock, 1985), these have only been derived for low-
dimensional data, and it is not clear how well they apply to high-dimensional gene expres-
sion data. Similarly, Bayesian approaches to model-based clustering provide for measures
such as the Bayes factor (Kass & Raftery, 1995) to assign confidence to the attained re-
sults. However, as already pointed out, the computation of the Bayes factor is often based
on asymptotic approximations whose accuracy deteriorates as the sample size decreases
(Chickering & Heckerman, 1997; Kass & Raftery, 1995). This clearly does not detract
from these methods, since virtually every clustering method is based—whether implicitly
or explicitly—on several assumptions about the data-generating process. However, it points
to the fact that the last word on their usefulness must come from an empirical evaluation of
their performance when applied to gene expression data, such as in Yeung et al. (2001a).

An alternative approach to cluster validation is based on resampling (Ben-Hur, Elisseeff,
& Guyon, 2002; Bhattacharjee et al., 2001; Dudoit & Fridlyand, 2002; Jain & Moreau,
1988; Levine & Domany, 2001; Tibshirani et al., 2001a). Methods adopting this approach
use different resampling schemes to simulate perturbations of the original data set, so as
to assess the stability of the clustering results with respect to sampling variability. The
underlying assumption is that the more stable the results are with respect to the simulated
perturbations, the more these results are to be trusted. One of the appeals of some of
these methods is that, by using the data itself to simulate the perturbations, the resulting
perturbed data can incorporate the relevant dependencies among the observed features.
Clearly, whether or not these dependencies are then modeled depends on the clustering
algorithm used. A possible drawback of these methods is in the fact that by not explicitly
modeling the assumptions underlying the data-generating process, it is sometime difficult
to rigorously evaluate the significance of the results produced. The empirical evaluation of
these methods on real data thus becomes all the more important.

The clustering methodology we propose in this paper falls squarely in the category of
resampling-based methods. The extensive experimental evaluation reported in Section 4
tries to address the latter concern.

3. Methodology

The main motivation for the proposed methodology is the need to assess the “stability” of
the discovered clusters, that is, the robustness of the putative clusters to sampling variability.
The basic assumption of this method is intuitively simple: if the data represent a sample of
items drawn from distinct sub-populations, and if we were to observe a different sample
drawn from the same sub-populations, the induced cluster composition and number should
not be radically different. Therefore, the more the attained clusters are robust to sampling
variability, the more we can be confident that these clusters represent real structure.

To this end, perturbations of the original data can be simulated by resampling techniques.
The clustering algorithm of choice can then be applied to each of the perturbed data sets,
and the agreement, or consensus, among the multiple runs can be assessed. Consensus
clustering simply formalizes this procedure, and it is summarized in pseudo-code format
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Figure 1. High level pseudo-code for the consensus clustering procedure.

in figure 1. In the remainder of this section we illustrate in detail each of the procedure’s
steps.

3.1. Notation

Given a data set of interest D = {e1, e2, . . . , eN }, the goal of clustering is to partition the
observed data into a set of exhaustive and non-overlapping clusters. Formally, a K -cluster
partition P of D can be defined as P ≡ {P1, P2, . . . , PK }, such that

⋃K
k=1 Pk = D, and

Pi ∩ Pj = ∅, ∀i, j : i 	= j .
While the proposed methodology is quite general, and can be both applied to the clustering

of genes and samples/experiments, we will mainly focus on the latter task. However, in
order to emphasize the generality of the method, we will mostly refer to the elements being
clustered (the ei ∈ D) as items, and the “coordinates” of the data space as features. When
clustering genes, these will be the items, and the features will be the observations of a gene
across many experiments. When clustering experiments, these will be the items, and the
features are the genes whose expression is measured for each experiment. Table 1 presents
a summary of the symbols used throughout the paper.

3.2. Measuring consensus

Assuming a resampling scheme and a clustering algorithm have been selected, we need
to devise a method for representing and quantifying the agreement among the clustering
runs over the perturbed datasets. To this end, we define a consensus matrix. A consensus
matrix is an (N × N ) matrix that stores, for each pair of items, the proportion of clustering
runs in which two items are clustered together. The consensus matrix is obtained by taking
the average over the connectivity matrices of every perturbed dataset. More specifically, let
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Table 1. Summary of the notation used.

Symbol Description

D = {e1, . . . , eN } Generic dataset (ei ’s are the items to be clustered)

N Number of items in a dataset

P = {P1, . . . , PK } Partition of D into K clusters

K , Kmax Number of clusters, max number of clusters

Nk Number of items in cluster k

H Number of resampling iterations

D(h) Dataset obtained by resampling D (h-th iteration)

M, M (h) Connectivity matrix, corresponding to h-th iteration

M, M(K ) Consensus matrix, corresponding to K clusters

D(1), D(2), . . . , D(H ) be the list of H perturbed datasets obtained by resampling the original
dataset D. Also, let M (h) denote the (N × N ) connectivity matrix corresponding to dataset
D(h) (more precisely, corresponding to the result of applying the clustering algorithm of
choice to dataset D(h)). The entries of this matrix are defined as follows:

M (h)(i, j) =
{

1 if items i and j belong to the same cluster,

0 otherwise .
(1)

Finally, let I (h) be the (N × N ) indicator matrix such that its (i, j)-th entry is equal to 1 if
both items i and j are present in the dataset D(h), and 0 otherwise. The need for the indicator
matrix is due to the use of resampling. Most resampling schemes—such as bootstrapping,
or subsampling—yield datasets that do not include all items from the original dataset. We
thus need to keep track of the number of iterations in which two items are both included in
the resampled dataset.

The consensus matrix M can then be defined as a properly normalized sum of the
connectivity matrices of all the perturbed datasets {D(h) : h = 1, 2, . . . , H}:

M(i, j) =
∑

h M (h)(i, j)∑
h I (h)(i, j)

. (2)

That is, the entry (i, j) in the consensus matrix records the number of times items i and j
are assigned to the same cluster divided by the total number of times both items are selected.
It should be clear that the consensus matrix is symmetric, in that M(i, j) = M( j, i), for
all i and j . We will refer to the entry (i, j) in the consensus matrix as the consensus index
for the corresponding item pair (irrespective of the items’ order).

As defined, each entry in M is a real number between 0 and 1, and perfect consensus
corresponds to a consensus matrixMwith all the entries equal to either 0 or 1. Furthermore,
if the items in the matrix were arranged so that items belonging to the same cluster are
adjacent to each other, perfect consensus would translate into a block-diagonal matrix with
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non-overlapping blocks of 1’s along the diagonal—each block corresponding to a different
cluster—surrounded by 0’s.

Another important property of the consensus matrix is that it provides for a similarity
measure that can be used in conjunction with an agglomerative hierarchical tree construction
algorithm to yield a dendogram of item adjacencies. That is, 1 −M defines a new distance
matrix that can be used in place of the usual measures, such as Euclidean distance, Pearson
correlation, or Kullback-Leibler divergence, among others. This is a point to which we will
return.

3.2.1. Consensus matrix reordering and visualization. The consensus matrix lends itself
naturally to be used as a visualization tool to help assess the clusters’ composition and
number. In particular, if we associate a color gradient to the 0–1 range of real numbers, so
that white corresponds to 0, and dark red corresponds to 1, and if we assume the matrix is
arranged so that items belonging to the same cluster are adjacent to each other (with the same
item order used to index both the rows and the columns of the matrix), a matrix correspond-
ing to perfect consensus will be displayed as a color-coded heat map characterized by red
blocks along the diagonal, on a white background. Figure 2 shows the color-coded heat maps
obtained by applying consensus clustering to two simulated datasets, Uniform1 and Gaus-
sian3. Dataset Uniform1 is generated from a uniform 600-dimensional hypercube. Dataset
Gaussian3 represents the union of three Gaussian distributions in a 600-dimensional space.
The heat maps shown in figure 2 represent the consensus over 500 iterations for K = 3 (de-
tails about the data and the consensus clustering settings needed to produce the matrices of
figure 2 are given in Section 4). It is evident from figure 2 that the heat map corresponding
to Gaussian3 displays a well defined 3-block structure, while the heat map corresponding
to Uniform1 shows no such structure.

In the example of figure 2, since the datasets were artificially created, the items are already
sorted by their known cluster membership (so that items belonging to the same cluster are
displayed next to each other) thus yielding the block-diagonal structure shown. In general,
however, the cluster membership is not known in advance, and an item order needs to be
chosen. We can use the consensus matrix itself to determine the optimal item order. In
particular, if we carry out hierarchical clustering with the consensus matrix as similarity
matrix, the induced dendogram will have its leaves arranged so as to have items with highest
consensus index adjacent to each other, thus maximizing the block-diagonal nature of the
heat map ordered accordingly (it is important to emphasize again that the same item order
is used to index both the rows and the columns of the matrix). For the leaf-ordering task,
we use the optimal leaf-ordering algorithm described in Bar-Joseph et al. (2002).

As we will show, the visualization of a consensus matrix provides for a very powerful
tool to assess the stability of the putative clusters, as well as their optimal number.

3.2.2. Consensus’ summary statistics. Based on the consensus matrix, we can define
summary statistics accounting for the stability of a given cluster as well as of a cluster’s
members. These statistics can be used to establish a ranking of the clusters in terms of their
stability, as well as to identify the more representative items within each clusters. For each
cluster k ∈ K , we define the cluster consensus m(k) and, for each item ei ∈ D and each
cluster k, we define the item consensus mk(i).
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Figure 2. Color-coded heat maps corresponding to the consensus matrices M(3) for Uniform1 and Gaussian3.

Figure 4. Results of consensus clustering applied to the simulated data Gaussian5 with distance λ between
Gaussians’ centers λ = 2 (top) and λ = 3 (bottom): (a) raw data; (b) consensus matrices M(K ) for K = 4, 5; and
(c) CDF plots corresponding to the consensus matrices in the range K = 2, 3, . . . , 9.
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Let us first define Ik as the set of indices of items belonging to cluster k, that is, Ik = { j :
e j ∈ k}. We can then define a cluster’s consensus as follows:

m(k) = 1

Nk(Nk − 1)/2

∑
i, j∈Ik
i< j

M(i, j), (3)

that is, as the average consensus index between all pairs of items belonging to the same
cluster. Furthermore, for each item ei , and each cluster k, the corresponding item consensus
can be defined as

mi (k) = 1

Nk − 1{ei ∈ Ik}
∑
j∈Ik
j 	=i

M(i, j), (4)

where 1{cond} is the indicator function that is equal to 1 when cond is true, and 0 otherwise.
The item consensus mi (k) measures the average consensus index between item ei and all
the (other) items in cluster k. For example, in case of perfect consensus (i.e., of a consensus
matrix containing 0’s and 1’s only), the cluster consensus m(k) would be 1 for all k’s.
Similarly, for a given k the item consensus mi (k) would be 1 for all items ei ∈ k, and 0 for
the others.

These measures can be used to quantify the stability of each cluster, and to rank items
within clusters in terms of how representative of a given cluster they are (e.g., when clustering
experiments, how the expression pattern of the observed genes for a given experiment is
prototypical of the experiments within that cluster).

3.3. Determining the number of clusters

The properties of the consensus matrix illustrated in the previous section also suggest a
method for finding the number of clusters that best fits the data. In particular, given that
perfect consensus translates into a consensus matrix with all the entries set to either 1 or 0,
we should interpret deviation from this optimal scenario as an indication of lack of stability
of the putative clusters. At the most general level, the idea is to construct a consensus
matrix M(K ) for each of a series of cluster numbers (K = 2, 3, . . . , Kmax), to compare
the resulting consensus matrices, and to select the cluster number corresponding to the
“cleanest” matrix (i.e., a matrix containing 0’s and 1’s only). In this section, we introduce
and discuss a measure of consensus based on the matrix M. We refer to this measure as
consensus distribution, as it is based on an assessment of how the entries of the consensus
matrix are distributed within the 0–1 range. The extent to which this distribution is skewed
toward 0 and 1 is taken as an indication of good clustering. The measure we propose is
closely related to the concept of concentration of a distribution (Cowell, 1995). As we will
show in the experimental evaluation of Section 4, this measure works remarkably well when
tested on both simulated and gene-expression datasets.
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3.3.1. Consensus distribution. If we were to plot a histogram of a consensus matrix entries
(i.e., a histogram of the N (N − 1)/2 entries M(i, j)’s for i < j), perfect consensus would
translate into two bins centered at 0 and 1. The histogram corresponding to a noise cloud
devoid of any signal would translate in the limit into a single bin centered at some fractional
value between 0 and 1 (the exact fractional value would depend on the number K of clusters
requested, and it would decrease as K increases, reducing to 0 when K equals the number
of items in the dataset). This is a consequence of the fact that any two items would have an
equal probability of being clustered together.

With these considerations in mind, we return to the two simulated datasets, Uniform1 and
Gaussian3, introduced in the previous section, and whose consensus matrices are shown
in figure 2. Figure 3(a) shows the corresponding histograms of consensus indices. Notice
the bimodal nature of the histogram for Gaussian3 (with modes around 0 and 1), and the
largely unimodal nature of the histogram forUniform1. Few words of explanation regarding
the histogram for Uniform1 are in order. The nature of hierarchical clustering is such that,
even in the absence of a multi-cluster signature, the procedure will still establish a ranking
of items according to their distance from one another. Furthermore, the relative distance
between item pairs remains the same under the resampling scheme adopted (subsampling,

Figure 3. Measuring consensus for different K ’s on the simulated datasets of figure 2: (a) histograms of the
entries of the consensus matrices M(3); (b) empirical CDFs corresponding to the entries of consensus matrices
M(K ) for K = 2, 3, . . . , 6; (c) proportion increase �(K ) in the area under the CDF.
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see Section 3.4). Therefore, when no detectable multi-cluster structure is present in the data,
the procedure will tend to group most of the items in a single cluster (corresponding to the
large mode around 1 in the histogram), with few singleton items to account for the other
clusters (corresponding to the trailing long tail toward 0 in the histogram).

For a given histogram, we can define and plot the corresponding empirical cumulative
distribution (CDF) defined over the range [0, 1] as follows:

CDF(c) =
∑

i< j 1{M(i, j) ≤ c}
N (N − 1)/2

, (5)

where 1{. . .} denotes the indicator function, M(i, j) denotes entry (i, j) of the consensus
matrix M, and N is the number of rows (and columns) of M.

Figure 3(b) shows plots of the CDFs for the histograms of figure 3(a). The plots also in-
clude the CDFs corresponding to consensus matrices obtained for K ’s other than 3 (namely,
K = 2, 3, . . . , 6). For Gaussian3, it is clear how the predominance of 0’s and 1’s affects
the shape of the corresponding CDFs, with a step around 0 (the magnitude of which is
equivalent to the proportion of 0’s in the matrix), a flat line reaching across the 0–1 range,
and a second step around 1. Notice how for K = 3 and higher, the shape of the curve ap-
proaches the ideal step function, and how this shape hardly changes as we increase K past 3.
The CDF for Uniform1, on the other hand, displays quite a different shape, with a gradual
climb of values between 0 and 1, reflecting the lack of stability in cluster membership. The
difference between the two CDFs can be partially summarized by measuring the area under
the two curves. The area under the CDF corresponding to M(K ) is computed based on the
following formula:

A(K ) =
m∑

i=2

[xi − xi−1] CDF(xi ) , (6)

where the set {x1, x2, . . . , xm} is the sorted set of entries of the consensus matrix M(K )

(with m = N (N − 1)/2).
Notice that the area for Gaussian3 is considerably greater than the area for Uni-

form1. However, the important comparison is not between CDFs corresponding to different
datasets, but between CDFs for different K ’s computed over the same dataset. The plot of
the CDFs for Gaussian3, shown in figure 3(b), illustrates the typical bimodal shape and
the progression of curves to be observed when the analyzed dataset contains actual clusters.
As K is increased, the area under the CDF markedly increases as long as K is less than
or equal to Ktrue (as a consequence of the increase in the number of 0’s in the consensus
matrix). However, when Ktrue is reached, any further increase in the number of clusters does
not lead to a corresponding marked increase in the CDF area. This is because as we start
introducing spurious clusters, these are inherently unstable, thus leading to an increase in
the number of fractional entries in the consensus matrix (hence, away from 0). Conversely,
for Uniform1 the bimodal shape of the CDFs is clearly absent, and the area under the CDF
keeps increasing in a stable manner.
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This behavior can be summarized by plotting the proportion increase in the CDF area as
K increases, computed as follows:

�(K ) =



A(K ) if K = 2
A(K + 1) − A(K )

A(K )
if K > 2,

(7)

where A(K ) denotes the area under the CDF for the consensus matrix corresponding to K
clusters. The special treatment of K = 2 is due to the fact that A(1) = 0 (the consensus
matrix for K = 1 contains only 1’s), thus not allowing for the standard computation of
relative increase in the area for K = 2. This “impropriety” of �(K ) also points to the fact
that it cannot be sensibly used to choose between 1 and 2 clusters, and that inspection of
the corresponding CDF curves will be needed for this purpose.

Figure 3(c) plots the value of �(K ) for different numbers of clusters K ’s. As shown,
for Gaussian3 the �(K ) is significantly larger than 0 only up to K = 3, at which point it
levels off (with values close to 0%). Conversely, for Uniform1, as K increases, the corre-
sponding �(K )’s remain large (well above a 30% increase, with a maximum of >100% at
K = 3).

It should be pointed out that while the area under the CDF is guaranteed to increase when
consensus clustering uses hierarchical clustering in the inner loop, this is not true in general.
When using hierarchical clustering, an increase from K to K + 1 clusters is obtained by
splitting one of the available K clusters. The clusters’ boundaries are thus in agreement, and
the consensus matrix M(K+1) is guaranteed to have a number of 0’s greater than or equal to
the number of 0’s in M(K ). Consequently, the area under the CDF is bound not to decrease
as K increases. This is not true of other clustering algorithms. For example, if we use
SOM in the inner-loop, when searching for K + 1 clusters, these do not necessarily follow
the boundaries of the clusters obtained when searching for K clusters. Consequently, the
number of 0’s in M(K ) is not a monotonic function of K . In this case, we redefine �(K ) to
measure the relative area increase with respect to the largest area observed for any K ′ < K .
That is, we replace A(K ) with Â(K ) in Eq. (7), where Â(K ) = maxK ′∈{2,...,K } A(K ′). In
so doing, we assess the relative improvement with respect to the best result (the best K )
obtained thus far.

To summarize, the CDFs and the corresponding �(K )’s try to quantify the concentration
(Cowell, 1995) of the consensus distribution. The goal is to find the K that maximizes this
concentration. The selection of the appropriate number of clusters proceeds by inspection
of the CDFs’ shape and progression as K increases. The inspection of a CDF shape is to
assess its bimodality, which suggests the presence of clusters. The inspection of the CDF
progression is to select the largest K that induces a large enough increase in the area under
the corresponding CDF.

3.4. Resampling schemes

In this section, we briefly discuss some of the possible resampling schemes that can be used
within the consensus clustering procedure illustrated in figure 1.
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A well established resampling scheme is bootstrapping (Efron & Tibshirani, 1994),
whereby items are sampled with replacement from the original dataset. One of the desirable
features of this resampling scheme is in its producing perturbed datasets that have the
same size (i.e., the same number of items) as the original one. This is particularly relevant
when trying to determine the number of clusters present in the data, an assessment that can
be highly dependent on the sample size. However, bootstrapping produces datasets with
identical replicate items, thus artificially inflating the compactness of the resulting dataset
(e.g., if a given item is selected n times in a bootstrap dataset, the clustering algorithm might
deem those n items—which are actually n replicates of the same item—worth a cluster by
themselves). In light of this shortcoming, we will mainly focus on subsampling techniques,
whereby a subset of items is sampled without replacement from the original dataset. While
subsampling produces datasets smaller than the original one, our experimental evaluation
shows that this does not have an adverse effect on the successful estimate of the “correct”
number of clusters.

Given the very high dimensionality of the gene expression data, when clustering samples
it is possible to adopt gene resampling schemes, where the perturbations of the original
dataset are obtained by selecting different subsets of genes, with or without replacement,
at each iteration. That is, at each iteration clustering is performed based on the projection
of the original dataset onto the subspace of selected genes.

Variations of this basic scheme can be obtained by associating non-uniform weights to the
candidate genes, so that different genes will be sampled with different frequency. With this
approach, we can incorporate prior information in the clustering process by assigning higher
weight to genes considered more informative by some external criterion. For example, we
might want to favor genes associated to biological pathways deemed particularly relevant
to the phenotype of interest.

Feature selection for clustering purposes is a particularly difficult task, since a class label
to guide this selection is not available. A welcome benefit of using gene resampling is that
it allows us to evaluate how sensitive the clustering results are to the particular choice of
genes included in the dataset used for analysis.

4. Experimental evaluation

We tested our clustering methodology on several simulated and real datasets. In this section,
we first summarize the evaluation methodology and the evaluation metrics used. We then
briefly describe the simulated and real datasets used for the evaluation. Finally, we report
and discuss the results of the evaluation.

4.1. Evaluation methodology

The evaluation we carry out is aimed at assessing how good the proposed clustering method
is at recovering known clusters from both simulated and gene-expression microarray data.
To this end, we consider several datasets for which a multi-class distinction (a phenotype)
is available. Each of this data sets constitutes the gold standard against which we evaluate
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the clustering results. We refer to the gold standard partition as classes, while we reserve
the word clusters for the partition returned by the clustering algorithm.

4.1.1. Evaluation metrics. The cluster composition can be evaluated by measuring the
agreement of the cluster partition with the known phenotype. If the number of clusters were
always correct (i.e., equal to the known number of classes), we could use the classification
error rate as the measure of agreement. That is, once we establish a mapping between
cluster labels and known class labels, we can interpret cluster assignment as a conventional
classification task, and measure its error rate. However, the error rate is harder to interpret
when the number of clusters is incorrect. To this end, we use the adjusted Rand index (Hubert
& Arabie, 1985), a measure of agreement between alternative data partitions that can be used
even when considering partitions with different numbers of clusters (Milligan & Cooper,
1986). The adjusted Rand index ranges between 0 and 1, with 1 corresponding to perfect
agreement, and 0 corresponding to the expected value of the index for two random partitions
under the assumption of a hypergeometric distribution for the model of randomness (see
Appendix for details about its computation).

4.1.2. Experimental design. The details of the experimental design are as follows:

– We apply consensus clustering to the dataset of choice. The output will include an estimate
of the number of clusters K and, for a given K , a cluster assignment, both of which can
be evaluated against the gold standard. When the estimated number of clusters K is
different from the known number Ktrue, we report the value of the Rand index for both
K and Ktrue. The latter provides additional information about how well the clustering
procedure respects the known class boundaries.

– As a term of comparison, we also apply the Gap statistic proposed in Tibshirani, Walther,
and Hastie (2001b). Following Tibshirani, Walther, and Hastie (2001b), let WK denote
the within-cluster sum of squares, and let W ∗

K b denote the same quantity obtained af-
ter randomly permuting the genes/features within each item/experiment. Then the Gap
statistic for K clusters, computed based on B permutation iterations, yields:

Gap(K ) = 1

B

[
B∑

b=1

log(W ∗
K b)

]
− log(WK ) . (8)

The quantity sK = sd(K )
√

1 + 1/B denotes the corresponding standard deviation
corrected for the simulation error. Given a set of cluster numbers K = {1, 2, . . . , Kmax},
the selection criterion proposed in Tibshirani, Walther, and Hastie (2001b) returns the
first K ∈ K such that Gap(K ) ≥ Gap(K + 1) − sK+1. This is also the selection criterion
we will use.

– We compare the cluster assignment produced based on the application of HC to the
consensus matrix, with the cluster assignment produced by application of HC to the
raw data. This comparison is to evaluate whether we can obtain more accurate cluster
assignments if we use the consensus matrix as a similarity measure in place of the usual
Euclidean distance.
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– Since different datasets are inherently more or less difficult to cluster, in order to eval-
uate the partition induced by the clustering algorithm, we compare it to the baseline
Rand index produced by a naı̈ve-Bayes (NB) classifier (Duda & Hart, 1973) trained
on the same dataset by leave-one-out cross-validation. It is important to emphasize that
the training of the NB is based on the supervised samples (i.e., the samples including
the class labels), thus making the learning task considerably simpler. The NB’s error rate
gives an indication of the clustering accuracy we may hope to achieve under much more
favorable conditions.

As noted, we have included in the evaluation the results of the application of the Gap statistics
for the estimation of the number of clusters. We use the Gap statistic because, similar to
our method, it is model-independent, thus allowing for its adoption in conjunction with
different clustering algorithms. However, we want to emphasize that the comparison of our
method with another model-independent method is somewhat beside the point. In fact, our
proposed methodology is meant to go beyond the estimation of the number of clusters, by
also providing for a resampling-based method of cluster assignment and visualization. In
other words, the goal of our evaluation, is not to carry out an exhaustive comparison of
methods for estimating the number of clusters, nor to prove the superiority of our method in
this regard. The main purpose of the inclusion of the Gap statistic is as a term of reference,
so as to be able to relate our results to those obtained based on a well accepted metric
that has been shown to perform reasonably well in several studies (Ben-Hur, Elisseeff, &
Guyon, 2002; Dudoit & Fridlyand, 2002; Tibshirani, Walther, & Hastie, 2001b).

4.1.3. Consensus clustering settings. We apply consensus clustering to a given data set as
outlined in figure 1. Consensus clustering requires the specification of a clustering algorithm
(the algorithm Cluster in figure 1). For this purpose, we explore the use of two algorithms:
(i) hierarchical clustering with average linkage; and (ii) the self organizing map (SOM).
For each K we run H = 500 resampling iterations (H = 200 with SOM, since it takes
much longer to run). At each iteration, the perturbed data set is obtained by sampling,
without replacement, 80% of the items from the original data. The results produced by
consensus clustering include: (i) a set of ordered consensus matrices, one for each of the
K ’s considered; (ii) an estimate of the number of clusters; and (iii) the corresponding cluster
assignment. Cluster number and assignment can be evaluated against the gold standard.

To determine the number of clusters based on consensus clustering, we use the con-
sensus distribution, and the proportion change in the area under the consensus CDF (see
Section 3.3.1). The selected K̂ will correspond to the number of clusters where the CDF
levels off and the corresponding �(K̂ ) gets close to zero. Often, this selection criterion
identifies a range of K ’s, rather than a single one. However, in combination with the in-
spection of the consensus matrix progression, it is usually possible to unambiguously select
a single best K̂ . When ambiguities remain, these will be duly reported in the text and the
corresponding tables.

In most cases we tried up to Kmax = 9 clusters. In some of the larger datasets (Novartis,
St. Jude, and Normal tissues) we set Kmax = 15. Once the optimal number of clusters
K̂ is chosen, we establish the clusters’ boundaries by using the corresponding consensus
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matrix M(K̂ ) as a similarity measure to feed to a hierarchical clustering algorithm with
average linkage, and by stopping the agglomeration procedure when K̂ branches are left.
The resulting subtrees determine the cluster members.

The data used were row- and column-normalized (so that both rows and columns sum to
0 and have a standard deviation of 1). This is necessary when using consensus clustering
with HC, because it yields well-balanced hierarchical trees, which can in turn be split into
non-trivial (i.e., non-singleton) clusters. Although this data-normalization is not necessary
when using SOM, for comparative purposes we use the normalized data in all cases.

4.2. Datasets

In this section, we only describe the datasets used, which are listed in Table 2, together with
some of their relevant characteristics, such as number of classes, number of features/genes,
and number of items/samples. The first six datasets represent simulated data, while the last
six represent gene-expression microarray data.

4.2.1. Simulated data. Uniform1 and Gaussian1 are two datasets generated in order
to evaluate the behavior of the clustering methodology when applied to data known not
to contain distinct sub-populations. We considered both the uniform and the Gaussian
distributions, as they represent rather different generating processes, and we were interested
in examining how the corresponding consensus matrices and CDFs would look.
Gaussian3 is the 3-cluster, 60-sample dataset introduced in the example of Section 3,

figure 2. It is generated by having 200 distinct features out of the 600 assigned to each
cluster. The data simulates a pattern whereby a distinct set of 200 genes is up-regulated in
one of three clusters, and down-regulated in the remaining two clusters.
Gaussian4 and Gaussian5 represent standard mixtures of Gaussians models. In par-

ticular, Gaussian4 represents the union of observations from four bivariate Gaussians,

Table 2. Description of the simulated and real dataset used in the experimental evaluation.

Dataset No. of classes No. of samples No. of features Chip type

Uniform1 1 60 600

Gaussian1 1 60 600

Gaussian3 3 60 600

Gaussian4 4 400 2

Gaussian5 5 500 2

Simulated6 6 60 600

Leukemia (Golub et al., 1999) 3 38 999 HU6800

Novartis multi-tissue (Su et al., 2002) 4 103 1000 U95

St. Jude leukemia (Yeoh et al., 2002) 6 248 985 U95

Lung cancer (Bhattacharjee et al., 2001) 4+ 197 1000 U95

CNS tumors (Pomeroy et al., 2002) 5 48 1000 U95

Normal tissues (Ramaswamy et al., 2001) 13 99 1277 U95
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with the same diagonal covariance matrix Σ = 0.25I, and centered at the four corners
of a square with side length λ = 2. A total of 200 samples, 50 per class, were generated.
Similarly, Gaussian5 represents the union of observations from 5 bivariate Gaussians, 4
of which are centered at the corners of the square of side length λ, with the 5th Gaussian
centered at (λ/2, λ/2). A total of 250 samples, 50 per class, were generated. We used two
values of λ, namely, λ = 2 and λ = 3, to investigate different levels of overlapping between
clusters.

Finally, we considered a dataset with unequal-size clusters and “gene” markers of different
strength. Simulated6 consists of a 600-gene by 60-sample dataset. It can be partitioned
into 6 classes with 8, 12, 10, 15, 5, and 10 samples respectively, each marked by 50 distinct
genes uniquely up-regulated for that class. Additionally, 300 noise genes (i.e., genes having
the same distribution within all clusters) are included. The genes for the different clusters
are of varying “sharpness”. That is, the 50 genes marking the first class are the sharpest—
whith highest differential expression and lowest variation—followed by the 50 genes for
the second cluster, etc. Figure 5(a) depicts the expression profile of the 600 genes within
each cluster. Simulated4 is simply a subset of Simulated6, obtained by removing the
two sharpest clusters (clusters 1 and 2).

4.2.2. Gene-expression microarray data. The gene-expression datasets used are listed in
Table 2, and a very short description of their content is given in Table 3. Further biological
details about these data sets can be found in the referenced papers. Most data were processed
on the Human Genome U95 Affymetrix c© microarrays. The leukemia dataset is from the
previous-generation Human Genome HU6800 Affymetrix c© microarray.

To make sure that the known phenotype for a given data set is the dominant signature
in the data, we project the dataset on the space of gene markers for that phenotype. This is
necessary, since we are using the given phenotype’s information (i.e., its number of classes
and its label assignments) as the gold standard against which to test the clustering method.1

We use a simple signal-to-noise ratio (SNR) to rank genes (Slonim et al., 2000), and the
final gene pool is obtained by selecting the most up-regulated genes for each class, where
the exact number depends on the dataset. In particular for a K -class dataset, we select the
top n up-regulated genes for each class by considering the K one-vs-all binary distinctions.
The number n of gene markers depends on how many genes are differentially expressed
with a sufficiently high significance level (0.05) as determined by permutation test (Slonim
et al., 2000).

4.3. Results

Tables 4 and 5 summarize the results of the evaluation on simulated data. Tables 6 and 7
summarize the results on real gene-expression data.

4.3.1. Simulated data. We used several simple simulated datasets in order to better un-
derstand the proposed methodology, and to answer some basic questions. What would
the clustering methodology find in a dataset with no clusters (the datasets Uniform1 and
Gaussian1)? How would the proposed methodology behave in the optimal scenario where
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Table 3. Description of the class types included in the gene-expression data sets.

Dataset Description

Leukemia (Golub et al., 1999) Bone marrow samples obtained from acute leukemia patients at the
time of diagnosis: 11 acute myeloid leukemia (AML) samples; 8
T-lineage acute lymphoblastic leukemia (ALL) samples; and 19
B-lineage ALL samples.

Novartis multi-tissue (Su et al., 2002) Tissue samples from four distinct cancer types: 26 breast, 26
prostate, 28 lung, and 23 colon samples.

St. Jude leukemia (Yeoh et al., 2002) Diagnostic bone marrow samples from pediatric acute leukemia pa-
tients corresponding to 6 prognostically important leukemia sub-
types: 43 T-lineage ALL; 27 E2A-PBX1, 15 BCR-ABL, 79 TEL-
AML1, and 20 MLL rearrangements; and 64 “hyperdiploid>50”
chromosomes.

Lung cancer (Bhattacharjee et al., 2001) Includes 4 known classes: 139 adenocarcinomas (AD), 21 squamous
cell carcinomas (SQ), 20 carcinoids (COID), and 17 normal lung
(NL). The AD class is highly heterogeneous, and substructure is
known to exist, although not well understood (Bhattacharjee et
al., 2001).

CNS tumors (Pomeroy et al., 2002) Embryonal tumors of the central nervous system (CNS): 10
medulloblastomas (MD); 8 primitive neuroectodermal tumors
(PNET); 10 atypical teratoid/rhabdoid tumors (Rhab); 10 malig-
nant gliomas (Glio); and 4 normal cerebellum (Ncer).

Normal tissues (Ramaswamy et al., 2001) Includes 13 distinct tissue types: breast (5), prostate (9), lung (7),
colon (11), germinal center cells (6), bladder (7), uterus (6), pe-
ripheral blood monocytes (5), kidney (12), pancreas (10), ovary
(4), whole brain (5), cerebellum (3).

all features are unambiguously informative about the given cluster distinction (the datasets
Gaussian4 and Gaussian5)? Would the presence of non-discriminant features—features
whose distribution of values does not change among clusters—worsen the performance of
the method, and would the presence of clusters with feature markers of different strength
make some cluster harder to find than others (datasets Simulated4 and Simulated6)?

The general answer is that the simulated data we used do not present a real challenge
for the proposed methodology. In most cases we are able to recover the correct number
of clusters and to correctly classify most items (those items wrongly classified are items
falling in the overlapping region between clusters). A summary of the clustering results is
given in Tables 4 and 5. A few comments on some of the datasets follow.

As expected, for the dataset Gaussian5 with λ = 3 (where λ is the distance between
Gaussian centers, see the dataset description in Section 4.2.1), the clustering procedure is
able to easily recover the correct cluster structure, and to make very few errors when drawing
the cluster boundaries. On the other hand, for λ = 2, the identification of the 5 clusters
becomes harder. In this case, 33% of the items generated from the (λ/2, λ/2) cluster lie
closer to the center of some other cluster, thus making the 5-cluster structure harder to detect.
Figure 4 shows the plots of the data for λ = 2 and λ = 3, the corresponding consensus
matrices for K = 4 and K = 5, and the corresponding CDF plots for the consensus matrices
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Table 4. Estimated number of clusters by consensus clustering (CC) and by the Gap statistic, in combination
with hierarchical clustering (HC) and self-organizing map (SOM). Application to simulated data. The numbers
between parentheses represent local maxima of the Gap statistic (see text).

Dataset Ktrue CCHC CCSOM GapHC GapSOM

Uniform1 1 1 1 1 1

Gaussian1 1 1 1 3 1

Gaussian3 3 3 3 3 3

Gaussian4 4 4 4 1 1 (4)

Gaussian5 (λ = 3) 5 5 5 1 (5) 1 (5)

Gaussian5 (λ = 2) 5 4–5 4 1 1

Simulated6 6–7 7 6 7 3

Simulated4 4 4 4 4 2

Table 5. Adjusted Rand index for naı̈ve-Bayes (NB), hierarchical clustering (HC), consensus clustering with
hierarchical clustering (CCHC), and consensus clustering with SOM (CCSOM).

Dataset NB HC CCHC CCSOM

Uniform1 – – – –

Gaussian1 – – – –

Gaussian3 1.000 1.000 1.000 1.000

Gaussian4 0.896 0.768 0.915 0.908

Gaussian5 (λ = 3) 0.951 0.932 0.932 0.941

Gaussian5 (λ = 2) 0.667 0.522 0.589 0.592

Simulated6 0.906 0.986 0.986 0.986

Simulated4 1.000 1.000 1.000 1.000

Table 6. Estimated number of clusters by consensus clustering (CC) and by the Gap statistic, in combination with
hierarchical clustering (HC) and self-organizing map (SOM). Application to gene-expression data. In parentheses
is the estimated number of clusters based on visual inspection of the consensus matrices (when this differ from
the one based on the consensus distribution).

Dataset Ktrue CCHC CCSOM GapHC GapSOM

Leukemia 3 5 4 5 4

Novartis 4 4 4 4 4

St. Jude 6 5 (6) 5/7 (6) 5 11

Lung cancer 4+ 5 5 (7) 5 7

CNS tumors 5 5 5/6 6 4

Normal tissues 13 7 4/5 12 7
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Table 7. RAND index for naı̈ve-Bayes (NB), hierarchical clustering (HC), consensus clustering with hierarchical
clustering (CCHC), and consensus clustering with SOM (CCSOM). In parentheses is the Rand index corresponding
to the partition into Ktrue classes (when this differ from the estimated K ).

Dataset NB HC CCHC CCSOM

Leukemia 1.00 0.648 (0.46) 0.648 (1.0) 0.721 (0.6)

Novartis-tissue 0.946 0.83 0.921 0.897

St. Jude 0.971 0.949 0.948 0.825

Lung cancer 0.904 0.307 (0.28) 0.310 (0.28) 0.233 (0.22)

CNS tumors 0.632 0.628 0.549 0.429

Normal tissues 0.655 0.457 (0.572) 0.457 (0.572) 0.214 (0.487)

in the range K = 2, . . . , 9. The increased difficulty of the clustering task, resulting from
the increased overlapping among clusters, is reflected in the corresponding Rand indices,
shown in Table 5. They correspond to an error rate of about 2% for λ = 3, increasing to
about 20% for λ = 2.

Application of the Gap statistic to the datasets Gaussian4 and Gaussian5 yields puz-
zling results. In all cases, if we accept the proposed selection criterion, we should select 1 as
the correct number of clusters. If we look at the plot of the Gap statistic values for different
values of K (not shown), a local maximum at the correct K is present (with the exception of
the Gap statistic for HC applied to Gaussian4). However, the proposed selection procedure
would not allow us to reach that maximum.

Finally, we come to the dataset Simulated6. When we created this dataset, we uninten-
tionally introduced an additional complication: the 8th sample is claimed by both the first
and the second cluster (that is, in sample 8 both the genes associated with cluster 1 and
cluster 2 are up-regulated). As a result, this sample cannot be exclusively claimed by either
clusters. This is manifested in the consensus matrices shown in figure 5(b); sample 8 claims
a cluster for itself. As a consequence, the cleanest consensus matrix is obtained for K = 7
rather than 6, which is confirmed by looking at the plot of the corresponding CDFs, and the
corresponding �(K )’s, which level off at K = 7 (not shown). With the exception of sample
8, all other samples are correctly classified, thus yielding a very high value of the Rand
index. We described this case in some detail because a very similar pattern of behavior is
observed in the analysis of the St. Jude leukemia data described in the next section.

4.3.2. Gene-expression data. In general, when applied to gene-expression data, consensus
clustering with HC outperformed consensus clustering with SOM, and both methods out-
performed the Gap statistic as a method to estimate the number of clusters. In most datasets,
consensus clustering was able to select the correct number of clusters, and to establish the
cluster membership with a high level of accuracy (as measured by the adjusted Rand index).
Predictably, the estimation of the number of clusters and cluster assignment was most dif-
ficult in the CNS tumors and the Normal tissues datasets, given the relatively small sample
size for the given number of classes. A few comments on some of the datasets follow.

When applied to the leukemia dataset (Golub et al., 1999), consensus clustering with
HC selects 5 clusters as its optimal number, with two of the clusters corresponding exactly
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Figure 5. Application of consensus clustering to the simulated data Simulated6: (a) expression profiles for each
gene within each cluster; and (b) consensus matrices M(K ) for K = 4, 5, 6, 7. Notice the presence of a singleton
cluster, corresponding to sample 8, in all four matrices (see text).

to AML and T-lineage ALL, and with the three remaining clusters further partitioning the
B-lineage ALL (with 4, 4, and 11 items respectively). It is interesting to note that the
Gap statistic also selects 5 as the optimal number of clusters. Consensus clustering with
SOM selects 4 clusters, with two clusters splitting the B-lineage type. It is widely accepted
that the class of acute lymphoblastic leukemia can be farther partitioned into biologically
meaningful sub-classes (see, for example, the St. Jude leukemia data, discussed later in this
section), although the composition and nature of these sub-classes is not as well accepted.
Therefore, it is possible that the subclass structure we discover within the B-lineage ALLs
reflects a biologically meaningful distinction.

When applying consensus clustering with HC to the St. Jude leukemia dataset (Yeoh et al.,
2002), if we only take into account the consensus distribution (and the proportion increase
in the area under the CDF), the suggested number of clusters is 5. This is also the number
suggested by the Gap statistic. However, if we look at the consensus matrices M(K ) for K
between 5 and 9, shown in figure 6, a 6-cluster structure clearly emerges, and with cleaner
boundaries than for K = 5. The best separation is obtained at K = 7, where 6 of the clusters
correspond almost perfectly to the 6 known sub-types, and the remaining cluster contains a
single sample (a “hyperdiploid>50” sample, see Table 3). This one-sample cluster is also
the reason why the consensus matrix for K = 6 fails to perfectly separate two of the six
known subtypes, as one of the six clusters is “sacrificed” to this single outlier sample. This
pattern of behavior is very similar to the one encountered when analyzing the simulated
dataset Simulated6. These two datasets allow us to illustrate the advantage of being able
to visually inspect the cluster structure and stability by looking at the consensus matrices,
which in turn allows us to correct the cluster number estimates based exclusively on the
consensus distribution.

Application of consensus clustering with HC to the lung cancer tissues dataset
(Bhattacharjee et al., 2001) yields an estimated number of clusters of 5. Three of the five
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Figure 6. Consensus clustering applied to the St. Jude leukemia data: consensus matricesM(K ) for K = 5, 6, 7, 9.

clusters correspond rather cleanly to the non-AD types, namely, COID, SQ, and NL, while
the additional two classes correspond to ADs. All the errors in cluster assignment (29/197)
involve AD samples.2 Application of consensus clustering with SOM also yields an esti-
mated number of clusters of 5 based on the consensus distribution. However, if we inspect
the consensus matrices (not shown), we clearly see that the matrices between 5 and 7 all
have a very clean profile, with cleanly demarcated diagonal red blocks on a perfectly white
background. The 7-cluster partition is also in better agreement with the known 4 types.
In fact, this partition identifies the three non-AD types rather cleanly, while allocating the
remaining 4 clusters to the AD samples.

Application of consensus clustering to the normal tissues dataset (Ramaswamy et al.,
2001) did not return the correct number of clusters. However, it should be clear that given
the large number of classes (13), and the small number of samples per class (for a total of
90 samples), the hope of recovering a 13-class distinction was rather slim. Figure 7 shows
the consensus distributions and the corresponding consensus matrices for this dataset. By
looking at the consensus distribution (by both considering the proportion increase of the
area under the CDF, and by visual inspection of the CDFs and the heat maps), K = 7 is
the largest number of clusters that we can reasonably consider. If we follow the algorithm
recommendation, and stop the partitioning of the data at 7 clusters, it is worth pointing
out that most of the discovered clusters correspond to fairly clean unions of known types.
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Figure 7. Consensus clustering applied to the normal tissues data.

Application of consensus clustering with SOM estimates an even lower number of clusters.
Inspection of the consensus distributions and of the consensus matrices suggests not going
above 5 clusters. The low Rand index confirms the fact that most clusters are a mixture of
several tissue types, with several tissue types distributed across more than one cluster.

4.4. Discussion

The results of the application of consensus clustering to both simulated and real data are
encouraging. In most cases the methodology is capable of recovering the correct number of
clusters, and assigning most items to the correct clusters. Furthermore, when partitioning
the data using the consensus matrix as the similarity measure rather than the usual Euclidean
distance, the cluster assignments tend to be more accurate. This can be seen by comparing
the Rand indices for the two methods (the columns HC and CCHC in Tables 5 and 7).

As expected, the data set where the method performed worse was the normal tissue data
(given the small sample size relative to the number of classes). We believe the main lesson
to be learned from the analysis of this data set is that cluster analysis can only go as far,
and that an effort should be made to collect fairly homogeneous data sets where we can
expect the number of clusters to be reasonably small and commensurate to the sample
size available. In other words, this is an example of what a poorly designed experimental
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design for cluster analysis might look like, rather than evidence for or against the proposed
clustering methodology.

It is important to notice that the results are dependent on the inner-loop clustering of
choice (HC and SOM in the experiments), with consensus clustering based on HC producing
slightly better results than consensus clustering based on SOM. This points to the fact that
every clustering method has its own idiosyncrasies, related to the (implicit or explicit)
measure of similarity it uses to compare and group data items.

A related issue is data normalization, and how the choice of normalization can affect the
clustering results. As previously pointed out, the data used with HC were of necessity row-
and column-normalized, so as to produce fairly balanced hierarchical trees. The reported
SOM results were also based on the same normalized data. Although not reported, we also
applied SOM to non-normalized data, and the results did not always agree with those based
on normalized data. Therefore, the selection of the inner-loop clustering algorithm, as well
as the choice of the data normalization methodology to be used, are both sensitive issues
that need to be taken into account when performing clustering analysis.

Finally, the experimental evaluation shows that the consensus distribution described in
Section 3.3.1 is a useful criterion to select the number of clusters, but we do not advocate
its use in isolation. Often, the visual inspection of the ordered consensus matrices can be as
informative, and help disambiguate the information provided by the consensus distribution.
Ultimately, in the experiments we carried out, what seemed to work best was a model
selection process based on a combination of the information coming from the consensus
distribution and from the visual inspection of the ordered consensus matrices.

5. Conclusions

In this paper we introduced a clustering methodology based on resampling that allows for
the estimation of the number of clusters in a dataset, the assessment of the stability of
the putative clusters found, and the visualization of the clustering results. The method, by
capturing the consensus among several clustering runs, attempts to produce data partitions
that are more robust than the ones we may expect to obtain by application of a single
clustering algorithm to the observed data.

A natural extension of the method is to use it to represent the “meta-consensus” across
clustering algorithms. For example, with regard to the experiments described in the previous
section, we could combine the consensus matrices corresponding to HC and SOM.

Another extension, partially explored in Bhattacharjee et al. (2001), is to use consen-
sus clustering with probabilistic model-based clustering in the inner-loop (e.g., AutoClass
(Cheeseman & Stutz, 1996)). Since methods of model-based clustering usually provide their
own estimate of the number of clusters, the consensus matrix in this case would represent
the consensus across multiple runs with each run returning a partition into a possibly dif-
ferent number of clusters. In other words, rather than having several consensus matrices for
different K ’s, we would have a single consensus matrix. This would preclude us from using
the consensus distribution to estimate the number of clusters. However, the visualization
of the sorted consensus matrix could still be used to validate the recommended number of
clusters, as well as to determine the cluster assignments.
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On a related subject, it should be noted that the consensus matrix can easily accommodate
the fractional cluster assignments usually output by probabilistic clustering algorithms. The
entries of the connectivity matrix of Eq. (1) will need to be properly modified so as to reflect
the uncertainty in cluster membership. In particular, let P(i ∈ Ck | D) denote the probability
output by the clustering algorithm that item i belongs to cluster Ck , and let K be the number
of clusters. Then, the connectivity matrix entries will be computed as follows:

M (h)(i, j) =
K∑

k=1

P(i ∈ Ck | D)P( j ∈ Ck | D) . (9)

with Eq. (9) reducing to Eq. (1) when all probabilities output by the clustering algorithms
are either 0 or 1.

Finally, in this paper we have described the consensus distribution as summarized in
the CDFs and the �(K )’s as the measure of consensus we use to estimate the number of
clusters. However, once we abstract the problem into one of finding the number of clusters
that yield the “cleanest” consensus matrix, it may be possible to devise other measures that
try to quantify this cleanliness. We are in the process of evaluating some of these alternative
measures.

The methodology for consensus clustering described here, with HC and SOM as choices,
was implemented in Java, and will be made part of the next release of GeneCluster (Golub
et al., 2002).

Appendix: The adjusted Rand index

The adjusted Rand index is a measure of agreement between alternative data partitions that
can be used even when considering partitions with different numbers of clusters (Hubert
& Arabie, 1985; Milligan & Cooper, 1986). In this appendix, we only give the formula for
its computation. For examples and a more detailed explanation of its derivation, see, e.g.
Yeung et al. (2001a).

Let Pa = {Pa1, Pa2, . . . , PaKa } and Pb = {Pb1, Pb2, . . . , PbKb} be two partitions of the
dataset D, with Ka and Kb not necessarily equal. The adjusted Rand index assumes the
generalized hypergeometric distribution as the model of randomness, i.e., the Pa and Pb

partitions are picked at random but with the constraint that the number of objects in the
classes and the numbers of clusters are fixed.

Let Ni j be the number of items of D that are both members of cluster Pai and of cluster
Pbj . These Ni j entries basically define a confusion matrix (with rows indexed by Pa , and
columns indexed by Pb) relating the cluster assignments in Pa with the cluster assignments
in Pb. Accordingly, let Ni. denote column sums (i.e., the number of items members of
cluster Pai irrespective of their membership in Pb), and let N. j denote row sums (i.e., the
number of items members of cluster Pbj irrespective of their membership in Pa).

Then the adjusted Rand index r is computed as follows:

r =
∑

i j

(Ni j

2

) −
[ ∑

i

(Ni.

2

) ∑
j

(N. j

2

)]/(N
2

)
1
2

[∑
i

(Ni.

2

) + ∑
j

(N. j

2

)] −
[∑

i

(Ni.

2

) ∑
j

(N. j

2

)] /(N
2

) . (10)
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The measure thus defined ranges between 0 and 1, with 1 corresponding to perfect agreement
between the two partitions. It can be shown that the adjusted Rand index has an expected
value of 0 for two random partitions.
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Notes

1. This necessity is best explained by considering a simple, although admittedly extreme, example. Assume
that the dataset of interest consists of breast, prostate, and lung cancer tissues for which long term survival
information is available. Assume also that this tissue-type phenotype were unknown to us, and that we were to
use, e.g., the 5-year survival as the phenotype against which to test our clustering algorithm. It is clear that the
survival signature, if it exists at all, would be overwhelmed by, among others, the much stronger (but unknown)
tissue-type signature. Therefore, using the 2-class survival distinction as our gold standard would be totally
inappropriate since clearly it is not the dominant signature in the data.

2. The class of adenocarcinomas is highly heterogeneous, and it is widely accepted that clinically relevant AD
subtypes exist, although their molecular and clinical profile is not well established or understood (Bhattacharjee
et al., 2001).
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