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ABSTRACT
Unsupervised clustering can be significantly improved using su-
pervision in the form of pairwise constraints, i.e., pairs of instances
labeled as belonging to same or different clusters. In recent years,
a number of algorithms have been proposed for enhancing clus-
tering quality by employing such supervision. Such methods use
the constraints to either modify the objective function, or to learn
the distance measure. We propose a probabilistic model for semi-
supervised clustering based on Hidden Markov Random Fields
(HMRFs) that provides a principled framework for incorporating
supervision into prototype-based clustering. The model general-
izes a previous approach that combines constraints and Euclidean
distance learning, and allows the use of a broad range of cluster-
ing distortion measures, including Bregman divergences (e.g., Eu-
clidean distance and I-divergence) and directional similarity mea-
sures (e.g., cosine similarity). We present an algorithm that per-
forms partitional semi-supervised clustering of data by minimiz-
ing an objective function derived from the posterior energy of the
HMRF model. Experimental results on several text data sets demon-
strate the advantages of the proposed framework.

1. INTRODUCTION
Large amounts of unlabeled data are available in many real-life

data-mining tasks, e.g., uncategorized messages in an automatic
email classification system, genes of unknown functions for doing
gene function prediction, etc. Labeled data is often limited and
expensive to generate, since labeling typically requires human ex-
pertise. Consequently, semi-supervised learning, which uses both
labeled and unlabeled data, has become a topic of significant recent
interest [11, 24, 33]. In this paper, we focus on semi-supervised
clustering, where the performance of unsupervised clustering algo-
rithms is improved with limited amounts of supervision in the form
of labels on the data or constraints [38, 6, 27, 39, 7].

Existing methods for semi-supervised clustering fall into two
general categories which we call constraint-based and distance-
based. Constraint-based methods rely on user-provided labels or
constraints to guide the algorithm towards a more appropriate data
partitioning. This is done by modifying the objective function for
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evaluating clusterings so that it includes satisfying constraints [15],
enforcing constraints during the clustering process [38], or initializ-
ing and constraining the clustering based on labeled examples [6].
In distance-based approaches, an existing clustering algorithm that
uses a particular clustering distortion measure is employed; how-
ever, it is trained to satisfy the labels or constraints in the supervised
data. Several adaptive distance measures have been used for semi-
supervised clustering, including string-edit distance trained using
Expectation Maximization (EM) [10], KL divergence trained using
gradient descent [13], Euclidean distance modified by a shortest-
path algorithm [27], or Mahalanobis distances trained using convex
optimization [39].

We propose a principled probabilistic framework based on Hid-
den Markov Random Fields (HMRFs) for semi-supervised clus-
tering that combines the constraint-based and distance-based ap-
proaches in a unified model. We motivate an objective function
for semi-supervised clustering derived from the posterior energy of
the HMRF framework, and propose a EM-based partitional cluster-
ing algorithm HMRF-KMEANS to find a (local) minimum of this
objective function. Previously, we proposed a unified approach to
semi-supervised clustering that was experimentally shown to pro-
duce more accurate clusters than other methods on several data
sets [8]. However, this approach is restricted to using Euclidean
distance as the clustering distortion measure. In this paper, we
show how to generalize that model to handle non-Euclidean mea-
sures. Our generalization can utilize any Bregman divergence [3],
which includes a wide variety of useful distances, e.g., KL diverg-
ence. In a number of applications, such as text-clustering using a
vector-space model, a directional similarity measure based on the
angle between vectors is more appropriate [1]. Consequently, clus-
tering algorithms that utilize distortion measures appropriate for
directional data have recently been developed [18, 2]. Our unified
semi-supervised clustering framework based on HMRFs is also ap-
plicable to such directional similarity measures.

To summarize, the proposed approach aids unsupervised cluster-
ing by incorporating labeled data in the following three ways:

• Improved initialization, where initial cluster centroids are es-
timated from the neighborhoods induced from constraints;

• Constraint-sensitive assignment of instances to clusters, where
points are assigned to clusters so that the overall distortion
of the points from the cluster centroids is minimized, while
a minimum number of must-link and cannot-link constraints
are violated;

• Iterative distance learning, where the distortion measure is
re-estimated during clustering to warp the space to respect
user-specified constraints as well as to incorporate data vari-
ance.

We present experimental results on clustering text documents that
demonstrate the advantages of our approach.



2. BACKGROUND

2.1 Motivation of Framework
In this work, we will focus on partitional prototype-based clus-

tering as our underlying unsupervised clustering model, where a
set of data points is partitioned into a pre-specified number of clus-
ters (each cluster having a representative or prototype) so that a
well-defined cost function, involving a distortion measure between
the points and the cluster representatives, is minimized. A popular
clustering algorithm in this category is K-Means [29].

Earlier research on semi-supervised clustering has considered
supervision in the form of labeled points [6] or constraints [38,
39, 5]. In this paper, we will be considering the model where
supervision is provided in the form of must-link and cannot-link
constraints, indicating respectively that a pair of points should be or
should not be put in the same cluster. For each pairwise constraint,
the model assigns an associated cost of violating that constraint.
Considering supervision in the form of constraints is more realistic
than requiring class labels in many unsupervised-learning applica-
tions, e.g. clustering for speaker identification in a conversation [5],
or clustering GPS data for lane-finding [38]: while class labels may
be unknown, a user can still specify whether pairs of points belong
to same or different clusters. Constraint-based supervision is also
more general than class labels: a set of classified points implies an
equivalent set of pairwise constraints, but not vice versa.

Our semi-supervised clustering model considers a set of data
points X with a specified distortion measure D between the points.
Supervision is provided as a set M of must-link constraints (with
a set of associated violation costs W ) and a set C of cannot-link
constraints (with associated violation costs W ). The task is to par-
tition the data into K clusters so that the total distortion between
the points and the corresponding cluster representatives according
to the given measure D is minimized while a minimum number
of constraints are violated. Since we restrict our attention to hard
clustering, every point is assigned to a single cluster in our model.

A word on the notation and terminology used in this paper: bold-
face variables, e.g., x, represent vectors; calligraphic upper-case al-
phabets, e.g., X , refer to sets, whose representatives are enumerated
as {xi}N

i=1 (except J , which always denotes an objective function);
xim represents the mth component of the d-dimensional vector xi.
The term “distance measure” is used synonymously with “distor-
tion measure” throughout the paper.

2.2 Hidden Markov Random Field
To incorporate pairwise constraints along with an underlying dis-

tortion measure between points into a unified probabilistic model,
we consider Hidden Markov Random Fields (HMRFs). An HMRF
has the following components:

• A hidden field L = {li}N
i=1 of random variables, whose val-

ues are unobservable. In the clustering framework, the set
of hidden variables are the unobserved cluster labels on the
points, indicating cluster assignments. Every hidden variable
li takes values from the set {1, . . . ,K}, which are the indices
of the clusters.

• An observable set X = {xi}N
i=1 of random variables, where

every random variable xi is generated from a conditional prob-
ability distribution Pr(xi|li) determined by the corresponding
hidden variable li. The random variables X are conditionally
independent given the hidden variables L , i.e., Pr(X |L) =
∏xi∈X Pr(xi|li). In our framework, the set of observable vari-
ables for the HMRF corresponds to the given data points.

MustLink
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Figure 1: A Hidden Markov Random Field

Fig. 1 shows a simple example of an HMRF. The observed dataset
X consists of six points {x1 . . . x6}, which have corresponding
cluster labels {l1 . . . l6}. Two must-link constraints are provided
between (l1,l3) and (l1,l4), while one cannot-link constraint is pro-
vided between (l3,l6). The task is to partition the six points into
three clusters. One clustering configuration is shown in Fig. 1. The
must-linked points x1,x3 and x4 are put in cluster 1; the point x6,
which is cannot-linked to x3, is assigned to cluster 2; x2 and x5,
which are not involved in any constraints, are put in clusters 1 and
3 respectively.

Each hidden random variable li has an associated set of neigh-
bors N i. The must-link constraints M and cannot-link constraints
C define the neighborhood over the hidden labels, such that the
neighbors of a point xi are all points that are must-linked or cannot-
linked to it. The random field defined over the hidden variables is
a Markov Random Field, where the probability distribution of the
hidden variables obeys the following Markov property:

∀i,Pr(li|L −{li}) = Pr(li|{l j : l j ∈ N i}) (1)

So, the probability distribution of the value of li for the data point xi
depends only on the cluster labels of the points that are must-linked
or cannot-linked to xi.

Let us consider a particular cluster label configuration L to be the
joint event L = {li}N

i=1. By the Hammersley-Clifford theorem [22],
the probability of a label configuration can be expressed as a Gibbs
distribution [21], so that

Pr(L) =
1

Z1
exp

(

−V (L)
)

=
1

Z1
exp

(

− ∑
N i∈N

VN i
(L)

)

(2)

where N is the set of all neighborhoods, Z1 is a normalizing con-
stant, and V (L) is the overall label configuration potential function,
which can be decomposed into the functions VN i

(L) denoting the
potential for every neighborhood N i in the label configuration L .

Since we are provided with pairwise constraints over the class
labels, we restrict the MRFs over the hidden variable to have pair-
wise potentials. The prior probability of a configuration of cluster



labels L then becomes Pr(L) = 1
Z1

exp(−∑i ∑ j V (i, j)), where

V (i, j) =







fM(xi,x j) if (xi,x j) ∈ M
fC(xi,x j) if (xi,x j) ∈ C

0 otherwise
(3)

Here, fM(xi,x j) is a non-negative function that penalizes the vio-
lation of a must-link constraint, and fC(xi,x j) is the corresponding
penalty function for cannot-links. Note that the third condition in
the definition of V (i, j) is necessary since not all points are involved
in the constraints. Intuitively, this form of Pr(L) gives higher prob-
abilities to label configurations that satisfy most of the must-link
constraints M and cannot-link constraints C , thereby discouraging
the violation of the user-specified constraints.

2.3 MAP Estimation in HMRFs
Given a particular configuration of the hidden variables (unknown

cluster labels), the variables in the observable field of the HMRF
(the data points) are generated using specified conditional proba-
bility distributions. The conditional probability of the observation
set X = {xi}N

i=1 for a given configuration L = {li}N
i=1 is given by

Pr(X |L), which in the clustering framework is of the form:

Pr(X |L) = p(X ,{µµµh}K
h=1) (4)

where p(X ,{µµµh}K
h=1) is a probability density function parameter-

ized by the cluster representatives {µµµh}K
h=1. This function is re-

lated to the clustering distortion measure D, as we will show in
Section 2.4.

The overall posterior probability of a cluster label configuration
L is Pr(L |X ) ∝ Pr(L)Pr(X |L), considering Pr(X ) to be a con-
stant C. Hence, finding the maximum a-posteriori (MAP) configu-
ration of the HMRF becomes equivalent to maximizing the poste-
rior probability:

Pr(L |X ) =

(

1
Z2

exp
(

−∑
i

∑
j

V (i, j)
)

)

· p(X ,{µµµh}K
h=1) (5)

where Z2 = CZ1. The negative logarithm of Pr(L |X ) is known as
posterior energy. Note that MAP estimation would reduce to max-
imum likelihood (ML) estimation of Pr(X |L) if Pr(L) is constant.
However, because our model accounts for dependencies between
the cluster labels and Pr(L) is not constant, full MAP estimation
of Pr(L |X ) is required.

Since the cluster representatives as well as the cluster labels for
the points are unknown in a clustering setting, maximizing Eqn.(5)
is an “incomplete-data problem”, for which a popular solution method
is Expectation Maximization (EM) [16]. It is well-known that K-
Means is equivalent to an EM algorithm with hard clustering as-
signments [26, 6, 3]. Section 3.2 describes a K-Means-type hard
partitional clustering algorithm, HMRF-KMEANS, that finds a (lo-
cal) maximum of the above function.

The posterior probability Pr(L |X ) in Eqn.(5) has 2 components:
the first factor evaluates each label configuration, corresponding to
cluster assignments of every point, and gives a higher probabil-
ity to a configuration that satisfies more of the given must-link and
cannot-link constraints. A particular label configuration determines
the cluster assignments and hence the cluster representatives. The
second factor estimates the probability of generating the observed
data points using the conditional distributions, which are parame-
terized by the cluster representatives and depend on the distortion
measure. The overall posterior probability of the cluster label con-
figuration of all the points therefore takes into account both the
cluster distortion measure and the constraints in a principled uni-
fied framework.

2.4 Clustering Objective Function
Eqn.(5) suggests a general framework for incorporating const-

raints into clustering. Particular choices of the constraint penalty
functions fM and fC, and the conditional probabilities p(X ,{µµµh}K

i=1)
would be motivated by the distortion measure appropriate for the
clustering task.

When considering the second term in Eqn.(5), we restrict our
attention to probability densities of the exponential form:

p(X ,{µµµh}K
h=1) =

1
Z3

exp
(

− ∑
xi∈X

D(xi,µµµli)
)

(6)

where D(xi,µµµli) is the distortion between xi and µµµli , and Z3 is a
normalization constant. Different clustering models fall into this
exponential form:

• xi and µµµli are vectors and D is the square of the L2 norm:
the cluster conditional probability is a unit variance Gaus-
sian [26];

• xi and µµµli are probability distributions and D is the KL-diver-
gence: the cluster conditional probability is a multinomial
distribution [17];

• xi and µµµli are vectors of unit length (according to the L2
norm) and D is one minus the dot-product: the cluster con-
ditional probability is a von-Mises Fisher (vMF) distribution
with unit concentration parameter [2], which is essentially
the spherical analog of a unit variance Gaussian.

We will discuss the connection between specific distortion mea-
sures that we will study in this paper and their corresponding clus-
ter conditional probabilities in more detail in Section 3.1.

Let us now examine the potential function V in the first term
of Eqn.(5). In previous work, only must-linked points were con-
sidered in the neighborhood of a Markov Random Field with the
generalized Potts potential function [12, 28]. In this potential func-
tion, the must-link penalty is fM(xi,x j) = wi j

�
[li 6= l j], where wi j

is the cost for violating the must-link constraint (i, j), and
�

is the
indicator function (

�
[true] = 1,

�
[false] = 0). This function spec-

ifies that the cost of violating a must-link constraint (xi,x j) is wi j
irrespective of the distance between xi and x j .

In a semi-supervised clustering framework where we want to
use the constraint violations to learn the underlying distance mea-
sure, the penalty for violating a must-link constraint between dis-
tant points should be higher than that between nearby points. This
would reflect the fact that if two must-linked points are far apart
according to the current distortion measure and are hence put in
different clusters, the measure is inadequate and needs to be modi-
fied to bring those points closer together. So, the must-link penalty
function is chosen to be

fM(xi,x j) = wi jϕD(xi,x j)
�
[li 6= l j] (7)

where ϕD is the penalty scaling function, which we choose to be a
monotonically increasing function of the distance between xi and
x j according to the current distortion measure. Specific penalty
functions ϕD for different distortion measures D are described in
Section 3.1.

Analogously, the penalty for violating a cannot-link constraint
between two points that are nearby according to the current dis-
tance measure should be higher than for two distant points. This
would encourage the distance learning step to put cannot-linked
points farther apart. The cannot-link penalty function can be ac-
cordingly chosen to be

fC(xi,x j) = wi j
(

ϕDmax −ϕD(xi,x j)
) �

[li = l j] (8)



where ϕDmax is the maximum value of the scaling function ϕD for
the dataset. This form of fC ensures that the penalty for violating a
cannot-link constraint remains non-negative, since the second term
is never greater than the first. Note that these fM and fC penalty
functions make the MRF over the hidden variables non-isotropic
(i.e., the values of the potential between pairs of random variables
in the field are non-uniform), but the overall model is still a valid
HMRF.

Putting this into Eqn.(5) and taking logarithms gives the follow-
ing cluster objective function, minimizing which is equivalent to
maximizing the MAP probability in Eqn.(5), or equivalently, mini-
mizing the posterior energy of the HMRF:

Jobj= ∑xi∈X D(xi,µµµli)+∑(xi,x j)∈M wi jϕD(xi,x j)
�
[li 6= l j]

+∑(xi,x j)∈C wi j
(

ϕDmax −ϕD(xi,x j)
) �

[li = l j]+ logZ (9)

where Z = Z2Z3. Thus, the task is to minimize Jobj over {µµµh}K
h=1,

L , and D (if the latter is parameterized).

3. ALGORITHM

3.1 Adaptive Distortion Measures
The choice of a distortion measure D for a particular cluster-

ing problem depends on the properties of the domain under con-
sideration. A number of popular distortion measures, including
Euclidean distance and Kullback-Leibler divergence, belong to a
general family of functions known as Bregman divergences [3].
Another popular class of distortion measures includes directional
similarity functions such as normalized dot product (cosine sim-
ilarity) and Pearson’s correlation [31]. Selection of the most ap-
propriate distortion measure for a clustering task should take into
account intrinsic properties of the dataset. For example, Euclidean
distance is most appropriate for low-dimensional data with distri-
bution close to the normal distribution, while normalized dot prod-
uct best captures similarity of directional data where differences
in angles between vectors are important, while vector lengths are
not. For Bregman divergences and directional similarity measures
like cosine similarity, it has been shown that there exist efficient K-
Means-type iterative relocation algorithms that minimize the corre-
sponding clustering cost functions [2, 3].

For many realistic datasets, off-the-shelf distortion measures may
fail to capture the correct notion of similarity in a clustering set-
ting. Unsupervised measures like Mahalanobis distance and Pear-
son correlation attempt to correct similarity estimates using the
global mean and variance of the dataset. However, these mea-
sures may still fail to estimate distances accurately if the attributes’
true contribution to similarity is not correlated with their variance.
Recently, several semi-supervised clustering approaches have been
proposed that incorporate adaptive similarity functions, including
parameterization of Jensen-Shannon divergence [13] and Euclidean
distance [5, 39]. In initial work [8], we have shown how Euclidean
distance can be parameterized and learned in a principled man-
ner in a semi-supervised clustering setting. We now turn to two
other popular distortion measures, cosine similarity and Kullback-
Leibler divergence, and describe how their adaptive versions can be
used as distortion measures in our HMRF-based framework.

3.1.1 Parameterized Cosine Similarity
Cosine similarity can be parameterized using a symmetric positive-

definite matrix A, which leads to the following distortion measure:

DcosA(xi,x j) = 1− xT
i Ax j

‖xi‖A‖x j‖A
(10)

where ‖x‖A is the weighted L2 norm: ‖x‖A =
√

xT Ax. Such pa-
rameterization is equivalent to projecting every instance x onto a
space spanned by A1/2: x→A1/2x. Since unparameterized cosine
similarity is a natural measure for prototype-based clustering under
the assumption that the data is generated by a mixture of von Mises-
Fisher (vMF) distributions [2], DcosA(xi,x j) can be thought of as a
distortion measure for data generated by a mixture of vMF distribu-
tions in the projected space. Because for realistic high-dimensional
domains computing the full matrix A would be extremely expen-
sive computationally, we focus our attention on diagonal A, which
is equivalent to using a vector of weights a = diag(A). Therefore,
from now on we will be referring to the cosine measure in Eqn.(10)
as Dcosa(xi,x j).

To use Dcosa(xi,x j) as the distortion measure in the clustering
framework described in Section 2.4, we also use it as the penalty
scaling function ϕD(xi,x j) = Dcosa(xi,x j), which leads to the fol-
lowing objective function:

Jcosa = ∑
xi∈X

Dcosa(xi,µµµli)

+ ∑
(xi,x j)∈M

wi jDcosa(xi,x j)
�
[li 6= l j] (11)

+ ∑
(xi,x j)∈C

wi j
(

Dcosa max −Dcosa(xi,x j)
) �

[li = l j]+ logZ

where Dcosa max = 1.

3.1.2 Parameterized I-Divergence
In certain domains, data is described by probability distributions,

e.g. text documents can be represented as probability distributions
over words generated by a multinomial model [35]. KL-divergence
is a widely used distance measure for such data: DKL(xi,x j) =

∑d
m=1 xim log xim

x jm
, where xi and x j are probability distributions over

d events: ∑d
m=1 xim = ∑d

m=1 x jm = 1. In previous work, Cohn et al.
parameterized KL-divergence multiplying m-th component by a
weight γm: D′

KL(xi,x j) = ∑d
m=1 γmxim log xim

x jm
. It can be shown that

after such parameterization D′
KL is no longer a Bregman divergence

over probability distributions, which is undesirable since conver-
gence is no longer guaranteed for the algorithm described in [13].

Instead of KL-divergence, we employ a related measure, I-diver-
gence, which also belongs to the class of Bregman divergences [3].
I-divergence has the following form: DI(xi,x j) = ∑d

m=1 xim log xim
x jm

−
∑d

m=1(xim − x jm); xi and x j no longer need to be probability distri-
butions but can be any non-negative vectors. For probability dis-
tributions, I-divergence and KL-divergence are equivalent. We pa-
rameterize I-divergence by a vector of non-negative weights a:

DIa(xi,x j) =
d

∑
m=1

amxim log
xim

x jm
−

d

∑
m=1

am(xim − x jm) (12)

Such parameterization can be thought of as scaling every at-
tribute in the original space by a weight contained in the corre-
sponding component of a, and then taking I-divergence in the trans-
formed space. This implies that DIa is a Bregman divergence with
respect to the transformed space.

The clustering framework described in Section 2.4 requires us to
define an appropriate penalty scaling function ϕD(xi,x j) to be used
in the HMRF potential functions as described in Eqns.(3) and (7-
8). Since we consider unordered constraint pairs, ϕD(xi,x j) must
be symmetric to penalize constraints appropriately. To meet this re-
quirement, we will use a sum of weighted I-divergences from xi and
x j to the mean vector xi+x j

2 . This “I-divergence to the mean”, DIMa ,



is analogous to Jensen-Shannon divergence, which is the symmet-
ric “KL-divergence to the mean” [14], and is defined as follows:

ϕD(xi,x j) = DIMa(xi,x j)

=
d

∑
m=1

am
(

xim log
2xim

xim + x jm
+ x jm log

2x jm

xim + x jm

)

(13)

This formulation leads to the following objective function:

JIa = ∑
xi∈X

DIa(xi,µµµli)+ ∑
(xi,x j)∈M

wi jDIMa(xi,x j)
�
[li 6= l j] (14)

+ ∑
(xi,x j)∈C

wi j
(

DIMa max −DIMa(xi,x j)
) �

[li = l j]+ logZ

The two parameterized distortion measures Dcosa and DIMa have
underlying generative models: weighted cosine corresponds to a
von-Mises Fisher (vMF) distribution in the projected space, while
I-divergence corresponds to multinomial distributions with rescaled
probabilities. Thus, Pr(X |L) in Eqn.(4) is well-defined for the un-
derlying HMRF model in both these cases, and minimizing objec-
tive functions Jcosa and JIa leads to maximizing Pr(L |X ) for the
corresponding underlying models.

3.2 EM Framework
As discussed in Section 2.2, Jobj can be minimized by a K-

Means-type iterative algorithm HMRF-KMEANS. The outline of
the algorithm is presented in Fig. 2. The basic idea of HMRF-
KMEANS is as follows: in the E-step, given the current cluster
representatives, every data point is re-assigned to the cluster which
minimizes its contribution to Jobj. In the M-step, the cluster repre-
sentatives {µµµh}K

h=1 are re-estimated from the cluster assignments to
minimize Jobj for the current assignment. The clustering distortion
measure D is updated in the M-step to reduce the objective function
simultaneously by transforming the space in which data lies. Note
that this corresponds to the generalized EM algorithm [32, 16],
where the objective function is reduced but not necessarily mini-
mized in the M-step. Effectively, the E-step minimizes Jobj over
cluster assignments L , the M-step (A) minimizes Jobj over cluster
representatives {µµµh}K

h=1, and the M-step (B) minimizes Jobj over
the parameters of the distortion measure D. The E-step and the M-
step are repeated till a specified convergence criterion is reached.
The specific details of the E-step and M-step are discussed in the
following sections.

Algorithm: HMRF-KMeans

Input: Set of data points X = {xi}
N
i=1, number of clusters K,

set of must-link constraints M = {(xi,xj)},
set of cannot-link constraints C = {(xi,xj)},
distance measure D, constraint violation costs W and W .

Output: Disjoint K-partitioning {Xh}
K
h=1 of X such that

objective function Jobj in Eqn.(9) is (locally) minimized.
Method:

1. Initialize the K clusters centroids {µµµ
(0)
h }

K
h=1, set t ← 0

2. Repeat until convergence

2a. E-step: Given {µµµ
(t)
h }

K
h=1, re-assign cluster labels

{l
(t+1)
i }Ni=1 on the points {xi}

N
i=1 to minimize Jobj.

2b. M-step(A): Given cluster labels {l
(t+1)
i }Ni=1, re-calculate

cluster centroids {µµµ
(t+1)
h }Kh=1 to minimize Jobj.

2c. M-step(B): Re-estimate distance measure D to reduce Jobj.
2d. t ← t+1

Figure 2: HMRF-KMEANS algorithm

Note that calculating the normalizing constant Z in Eqn.(9) is
computationally intensive for most distortion measures, e.g. for co-
sine similarity, this corresponds to computing a Bessel function [2].
So, we make an approximation by considering logZ to be constant
throughout the clustering iterations, and hence drop that term from
Eqn.(9).

3.3 Initialization
Good initial centroids are essential for the success of partitional

clustering algorithms such as K-Means. In previous work, it was
shown that using limited supervision in the form of labeled points
results in good initial centroids for partitional clustering [6]. In our
case, supervision is provided as pairwise constraints instead of la-
beled points. However, we follow the same motivation of inferring
good initial centroids from the constraints.

We try to utilize both the constraints and unlabeled data during
initialization. For this, we follow a two stage initialization process.

Neighborhood inference: We begin by taking the transitive clo-
sure of the must-link constraints to get connected components con-
sisting of points connected by must-links. Let there be λ connected
components, which are used to create λ neighborhoods {N p}λ

p=1.
These define the must-link neighborhoods in the MRF over the hid-
den cluster variables.

Assuming consistency of the constraints, we then infer additional
constraints from the neighborhoods. We augment the set M with
the must-link constraints inferred from the transitive closure that
were not in the initial set. For each pair of neighborhoods N p
and N p′ that have at least one cannot-link between them, we add
cannot-link constraints between every pair of points in N p and N p′

and augment the cannot-link set C with these entailed constraints.
This step corresponds to inferring as much information as possi-
ble about the neighborhood structure of the hidden MRF, under the
assumption of consistency of the constraints.

From this point onwards in the paper, we will overload nota-
tion and refer to the augmented must-link and cannot-link sets as
M and C respectively. Note that if we know that the given set of
constraints are noisy, implying that the constraints are not consis-
tent, we will not add these additional inferred constraints to M and
C and only work with the constraints provided initially.

Cluster selection: The first stage produces λ neighborhood sets
{N p}λ

p=1. These neighborhoods are used as initial clusters for the
HMRF-MEANS algorithm. If λ = K, λ cluster centers are initial-
ized with the centroids of all the λ neighborhood sets. If λ < K,
λ clusters are initialized from the neighborhoods, and the remain-
ing K − λ clusters are initialized with points obtained by random
perturbations of the global centroid of X .

If λ > K, K neighborhoods are selected as initial clusters us-
ing the clustering distortion measure. Farthest-first traversal is a
good heuristic for initialization in prototype-based partitional clus-
tering algorithms [23]. The goal in farthest-first traversal is to find
K points that are maximally separated from each other in terms of
a given distance function. In our case, we apply a weighted variant
of farthest-first traversal to the centroids of the λ neighborhoods,
where the weight of each centroid is proportional to the size of the
corresponding neighborhood. We consider the weighted distance
between two centroids to be the distance between them according
to the distortion measure multiplied by the weights of the two cen-
troids. Thus, weighted farthest-first is biased to select centroids that
are relatively far apart as well as large in size.

During weighted farthest first selection, the algorithm maintains
a set of centroids that have been visited so far. The centroid of the



largest neighborhood is selected as the starting point and added to
the visited set. At every point in the algorithm, the unvisited cen-
troid with the farthest weighted distance (smallest weighted simi-
larity) from the visited set is chosen. If there is a tie, it is resolved by
selecting the centroid farthest from the global centroid of the data.
This point is added to the visited set, and the process is continued
till K centroids are visited. Finally, the K neighborhood centroids
chosen by weighted farthest-first traversal are set as the K initial
cluster centroids for HMRF-KMEANS.

Overall, this two-stage initialization procedure is able to take into
account both unlabeled and labeled data to obtain cluster represen-
tatives that provide a good initial partitioning of the dataset.

3.4 E-step
In the E-step, assignments of data points to clusters are updated

using the current estimates of the cluster representatives. In simple
K-Means there is no interaction between the cluster labels, and the
E-step is a simple assignment of every point to the cluster repre-
sentative that is nearest to it according to the clustering distortion
measure. In contrast, the HMRF model incorporates interaction be-
tween the cluster labels defined by the random field over the hidden
variables. As a result, computing the assignment of data points to
cluster representatives to minimize the objective function is com-
putationally intractable in any non-trivial HMRF model [36].

There exist several techniques for computing cluster assignments
that approximate the optimal solution in this framework, e.g., iter-
ated conditional modes (ICM) [9, 40], belief propagation [34, 36],
and linear programming relaxation [28]. We follow the ICM ap-
proach, which is a greedy strategy to sequentially update the clus-
ter assignment of each point, keeping the assignments for the other
points fixed.

The algorithm performs cluster assignments in random order for
all points. Each point xi is assigned to the cluster representative
µµµh that minimizes the point’s contribution to the objective function
Job j(xi,µµµh):

Jobj(xi,µµµh) = D(xi,µµµh)+ ∑
(xi,x j)∈M

wi jϕD(xi,x j)
�
[h 6= l j]

+ ∑
(xi,x j)∈C

wi j
(

ϕDmax −ϕD(xi,x j)
) �

[h = l j] (15)

Optimal assignment for every point is that which minimizes the
distortion between the point and its cluster representative (first term
of Jobj) along with incurring a minimal penalty for constraint vio-
lations caused by this assignment (second and third terms of Jobj).
After all points are assigned, they are randomly re-ordered, and
the assignment process is repeated. This process proceeds until no
point changes its cluster assignment between two successive iter-
ations. ICM is guaranteed to reduce Jobj or keep it unchanged (if
Jobj is already at a local minimum) in the E-step [9].

Overall, the assignment of points to clusters incorporates pair-
wise supervision by discouraging constraint violations proportion-
ally to their severity, which guides the algorithm towards a desir-
able partitioning of the data.

3.5 M-step
The M-step of the algorithm consists of two parts. First, cluster

representatives {µµµh}K
h=1 are re-estimated from points currently as-

signed to them to decrease the objective function Jobj in Eqn.(9). It
has recently been shown that for Bregman divergences each clus-
ter representative calculated in the M-step of the EM algorithm is
equivalent to the expectation value over the points in that clus-
ter, which is essentially their arithmetic mean [3]. Additionally,

it has been experimentally demonstrated that for distribution-based
clustering, smoothing cluster representatives by a prior using a de-
terministic annealing schedule leads to considerable improvements
[17]. With smoothing controlled by a parameter α, each cluster
representative µµµh is estimated as follows when DIa is the distortion
measure:

µµµ(Ia)
h =

1
1+α

(

∑xi∈Xh
xi

|Xh|
+α

1
n

)

(16)

For directional measures, each cluster representative is the arith-
metic mean projected onto unit sphere [2]. Taking the weighting
into account, centroids are estimated as follows when Dcosa is the
distortion measure:

µµµ(cosa)
h =

∑xi∈Xh
xi

‖∑xi∈Xh
xi‖A

(17)

Since constraints do not take part in cluster representative re-
estimation, this step remains the same as in K-Means for Bregman
divergences, and the same as in SPKMEANS for weighted cosine
similarity [18].

Second, if a parameterized variant of a distortion measure is
used, e.g. Dcosa or DIa shown above, the distortion measure pa-
rameters must be updated to decrease the objective function. For
certain distance measure parameterizations, minimization via tak-
ing partial derivatives and solving for the parameter values may be
feasible, e.g. for Euclidean distance [8]. In general, however, a
closed-form solution may be unattainable. In such cases, gradi-
ent descent provides an alternative avenue for learning distortion
measure weights. For the two distortion measures described above,
Dcosa and DIa , every weight am would be updated using the update

rule am = am +η ∂Jobj

∂am
, where:

∂Jobj

∂am
= ∑

xi∈X

∂D(xi,µµµli)

∂am

+ ∑
(xi,x j)∈M

wi j
∂D(xi,x j)

∂am

�
[li 6= l j] (18)

+ ∑
(xi,x j)∈C

wi j

[

∂Dmax

∂am
− ∂D(xi,x j)

∂am

]

�
[li = l j]

For the two particular distortion measures that we are consider-

ing, Dcosa and DIa , gradients ∂D(xi,x j)
∂am

are the following:

∂Dcosa(xi,x j)

∂am
=

ximx jm‖xi‖A‖x j‖A −xT
i Ax j

x2
im‖x j‖2

A+x2
jm‖xi‖2

A
2‖xi‖A‖x j‖A

‖xi‖2
A‖x j‖2

A
(19)

∂DIa(xi,x j)

∂am
= xim log

xim

x jm
− (xim − x jm) (20)

Intuitively, the distance learning step results in modifying the
distortion measure so that similar data points are brought closer to-
gether, while dissimilar points are pulled apart. This process leads
to a transformed data space, which facilitates partitioning of the
unlabeled data that respects supervised constraints provided by the
user and reflects natural variance in the data.

4. EXPERIMENTS

4.1 Datasets
When clustering sparse high-dimensional data, e.g. text docu-

ments represented using the vector space model, it is particularly
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Figure 3: Clustering results for Dcosa on News-Different-3 dataset
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Figure 4: Clustering results for DIa on News-Different-3 dataset

difficult to cluster small datasets. This is due to the fact that cluster-
ing algorithms can easily get stuck in local optima on such datasets,
which leads to poor clustering quality. In previous studies with SP-
KMEANS algorithm applied to document collections whose size is
small compared to the dimensionality of the word space, it has been
observed that there is little relocation of documents between clus-
ters for most initializations, which leads to poor clustering quality
after convergence of the algorithm [17].

This scenario is likely in many realistic applications. For exam-
ple, when clustering the search results in a web-search engine like
Vivı́simo1, typically the number of webpages that are being clus-
tered is in the order of hundreds. However the dimensionality of
the feature space, corresponding to the number of unique words in
all the webpages, is in the order of thousands. Moreover, each web-
page is sparse, since it contains only a small number of all the pos-
sible words. Supervision in the form of pairwise constraints can be
beneficial in such cases and may significantly improve clustering
quality. To demonstrate the effectiveness of our semi-supervised
clustering framework, we consider 3 data sets that have the char-
acteristics of being sparse, high-dimensional, and having a small
number of points compared to the dimensionality of the space.

We derived 3 datasets from the 20-Newsgroups collection.2 This
collection has messages harvested from 20 different Usenet news-
groups, 1000 messages from each newsgroup. From the original
dataset, a reduced dataset was created by taking a random sub-
sample of 100 documents from each of the 20 newsgroups. Three
datasets were created by selecting 3 categories from the reduced
collection. News-Similar-3 consists of 3 newsgroups on similar
topics (comp.graphics, comp.os.ms-windows, comp.windows.x)
with significant overlap between clusters due to cross-posting. News-
Related-3 consists of 3 newsgroups on related topics (talk.poli-
tics.misc, talk.politics.guns, and talk.politics.mideast).
News-Different-3 consists of articles posted in 3 newsgroups that
cover different topics (alt.atheism, rec.sport.baseball, sci.
space) with well-separated clusters. The vector-space model of
News-Similar-3 has 300 points in 1864 dimensions, News-Related-
3 has 300 points in 3225 dimensions, and News-Different-3 had
300 points in 3251 dimensions. Since the overlap between topics
in News-Similar-3 and News-Related-3 is significant, they are more
challenging datasets than News-Different-3.

All the datasets were pre-processed by stop-word removal, TF-

1http://www.vivisimo.com
2http://www.ai.mit.edu/people/jrennie/20Newsgroups

IDF weighting, removal of very high-frequency and low-frequency
words, etc., following the methodology of Dhillon et al. [18].

4.2 Clustering Evaluation
We used normalized mutual information (NMI) as our clustering

evaluation measure. NMI is an external clustering validation metric
that estimates the quality of the clustering with respect to a given
underlying class labeling of the data: it measures how closely the
clustering algorithm could reconstruct the underlying label distri-
bution in the data [37, 19]. If C is the random variable denoting
the cluster assignments of the points and K is the random variable
denoting the underlying class labels on the points [2], then the NMI
measure is defined as:

NMI =
I(C;K)

(H(C)+H(K))/2
(21)

where I(X ;Y ) = H(X)− H(X |Y ) is the mutual information be-
tween the random variables X and Y , H(X) is the Shannon entropy
of X , and H(X |Y ) is the conditional entropy of X given Y [14]. NMI
effectively measures the amount of statistical information shared by
the random variables representing the cluster assignments and the
user-labeled class assignments of the data points.

4.3 Methodology
We generated learning curves using 20 runs of 2-fold cross-vali-

dation for each dataset. For studying the effect of constraints in
clustering, 50% of the dataset is set aside as the test set at any par-
ticular fold. The different points along the learning curve corre-
spond to constraints that are given as input to the semi-supervised
clustering algorithm. These constraints are obtained from the train-
ing set corresponding to the remaining 50% of the data by ran-
domly selecting pairs of points from the training set, and creating
must-link or cannot-link constraints depending on whether the un-
derlying classes of the two points are same or different. Unit con-
straint costs W and W were used for all constraints, original and
inferred, since the datasets did not provide individual weights for
the constraints. Based on a few pilot studies, gradient step size η
was chosen to have values η = 1.75 for clustering with Dcosa and
η = 1.0−8 for clustering with DIa ; weights were restricted to be
non-negative. In a realistic setting, these parameters could be tuned
using cross-validation with a hold-out set. The clustering algorithm
was run on the whole dataset, but NMI was calculated only on the
test set. The learning curve results were averaged over the 20 runs.
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Figure 5: Clustering results for Dcosa on News-Related-3 dataset
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Figure 6: Clustering results for DIa on News-Related-3 dataset
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Figure 7: Clustering results for Dcosa on News-Similar-3 dataset
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Figure 8: Clustering results for DIa on News-Similar-3 dataset

4.4 Results and Discussion
We compared the proposed HMRF-KMEANS algorithm with

two ablations as well as unsupervised K-Means clustering. The
following variants were compared for distortion measures Dcosa

and DIa as representatives for Bregman divergences and directional
measures respectively:

• KMEANS-I-C-D is the complete HMRF-KMEANS algo-
rithm that includes use of supervised data in initialization (I)
as described in Section 3.3, incorporates constraints in clus-
ter assignments (C) as described in Section 3.4, and performs
distance learning (D) as described in Section 3.5;

• KMEANS-I-C is an ablation of HMRF-KMEANS that uses
pairwise supervision for initialization and cluster assignments,
but does not perform distance learning;

• KMEANS-I is a further ablation that only uses the constraints
to initialize cluster representatives;

• KMEANS is the unsupervised K-Means algorithm.

Figs. 3, 5, and 7 demonstrate the results for experiments where
weighted cosine similarity Dcosa was used as the distortion mea-
sure, while Figs. 4, 6, and 8 summarize experiments where weighted
I-divergence DIa was used.

As the results demonstrate, the full HMRF-KMEANS algorithm
outperforms the unsupervised K-Means baseline as well as the ab-
lated versions of HMRF-KMEANS for both Dcosa and DIa . Rela-
tive performance of KMEANS-I-C and KMEANS-I indicates that
using supervision for initializing cluster representatives is highly
beneficial, while the constraint-sensitive cluster assignment step
does not lead to significant additional improvements for Dcosa . For
DIa , KMEANS-I-C outperforms KMEANS-I on News-Different-3
(Fig. 4) and News-Similar-3 (Fig. 8) which indicates that incorpo-
rating constraints in the cluster assignment process is useful for
these datasets. This result is reversed for News-Related-3 (Fig. 6),
implying that in some cases using constraints in the E-step may be
unnecessary, which agrees with previous results on other domains
[6]. However, incorporating supervised data in all the 3 stages of
the algorithm in KMEANS-I-C-D, namely initialization, cluster as-
signment, and distance update, always leads to substantial perfor-
mance improvement.

As can be seen from results for 0 pairwise constraints in Figs. 3-
8, distance learning is beneficial even in the absence of any pair-
wise constraints, since it is able to capture the relative importance
of the different attributes in the unsupervised data. In the absence of
supervised data or when no constraints are violated, distance learn-
ing attempts to minimize the objective function by adjusting the
weights given the distortion between the unsupervised datapoints
and their corresponding cluster representatives.

In realistic application domains, supervision in the form of const-



raints would be in most cases provided by human experts, in which
case it is important that any semi-supervised clustering algorithm
performs well with a small number of constrains. KMEANS-I-C-
D starts outperforming its variants and the unsupervised clustering
baseline early on in the learning curve, and is therefore a very ap-
propriate algorithm to use in actual semi-supervised data clustering
systems.

Overall, our results show that the HMRF-KMEANS algorithm
effectively incorporates labeled and unlabeled data in three stages,
each of which improves the clustering quality.

5. RELATED WORK
A related unified model for semi-supervised clustering with const-

raints was recently proposed by Segal et al. [36]. Their model is a
unified Markov network that combines a binary Markov network
derived from pairwise protein interaction data and a Naive Bayes
Markov network modeling gene expression data. Our proposed
HMRF framework is more general than this formulation, since it
works with a broad class of clustering distortion measures, includ-
ing Bregman divergences and directional similarity measures. In
contrast, the formulation of Segal et al. considers only a Gaussian
cluster conditional probability distribution, which corresponds to
having Mahalanobis distance as the underlying clustering distance
measure. Additionally, the HMRF-KMEANS algorithm performs
distance learning in the unified framework, which is not done in the
Markov Network model.

The HMRF-KMEANS algorithm proposed in this paper is re-
lated to the EM algorithm for HMRF model-fitting proposed by
Zhang et al. [40]. However, HMRF-KMEANS performs an addi-
tional step of distance learning in the M-step, which is not consid-
ered in the HMRF-EM algorithm. The discussion of the HMRF-
EM algorithm was also restricted only to Gaussian conditional dis-
tributions, which has been generalized in our formulation.

There has been other research in semi-supervised clustering fo-
cusing individually on either constraint-based or distance-based semi-
supervised clustering. COP-KMEANS is a constraint-based clus-
tering algorithm that has a heuristically motivated objective func-
tion [38]. Our method, on the other hand, has an underlying prob-
abilistic model based on Hidden Markov Random Fields. Bansal
et al. [4] also proposed a framework for pairwise constrained clus-
tering, but their model performs clustering using only the const-
raints, whereas our formulation uses both constraints and an under-
lying distortion measure between the points.

In recent work on distance-based semi-supervised clustering with
pairwise constraints, Cohn et al. [13] used gradient descent for
weighted Jensen-Shannon divergence in the context of EM cluster-
ing. Xing et al. [39] utilized a combination of gradient descent and
iterative projections to learn a Mahalanobis distance for K-Means
clustering. The Redundant Component Analysis (RCA) algorithm
used only must-link constraints to learn a Mahalanobis distance us-
ing convex optimization [5]. Spectral learning is another recent
method that utilizes supervision to transform the clustering distance
measure using spectral methods [25]. All these distance learning
techniques for clustering train the distance measure first using only
supervised data, and then perform clustering on the unsupervised
data. In contrast, our method integrates distance learning with the
clustering process and utilizes both supervised and unsupervised
data to learn the distortion measure.

6. FUTURE WORK
We have presented the general probabilistic framework for incor-

porating pairwise supervision into a prototype-based clustering al-

gorithm, as well as two instantiations of that framework for partic-
ular distortion measures. There are several open issues that would
be interesting to explore in future work.

Investigating alternative approaches to training distortion mea-
sures in the M-step of our algorithm may lead to improved perfor-
mance of the algorithm. Our initial results as well as other recent
work on distance learning for clustering [27, 8, 5, 39] suggest that
transforming the data space can be highly beneficial for cluster-
ing quality. Therefore, we conjecture that developing alternative
feature selection or feature extraction approaches, which perform
other types of data space transformation using supervised data, is a
promising direction for future work.

The weighted farthest-first algorithm for cluster initialization that
we have described in Section 3.3 has proven itself very useful. We
intend to explore theoretical implications of this initialization algo-
rithm in the HMRF model, as well as develop alternative techniques
that utilize both labeled and unlabeled data for initializing cluster
representatives.

While we have used the ICM algorithm for constraint-sensitive
cluster assignment in the HMRF model, other methods have also
been proposed for this task, e.g. loopy belief propagation [36]. Ex-
tensive experimental comparison of these strategies would be in-
formative for future work on iterative reassignment algorithms like
HMRF-KMEANS in the HMRF framework. We also want to run
experiments to study the sensitivity of the HMRF-KMEANS algo-
rithm to the constraint violation parameters W and W , as done in
Segal et al. [36].

Finally, we want to apply our algorithm to other application do-
mains. One interesting problem in bioinformatics is to improve
the quality of clustering genes with unknown functions by utilizing
constraints between the genes derived from domain knowledge. Se-
gal et al. [36] used constraints derived from protein-protein interac-
tions while clustering gene expression data using Mahalanobis dis-
tance as the underlying distortion measure. We want to apply our
HMRF-KMEANS algorithm to different kinds of gene represen-
tations, for which different clustering distance measures would be
appropriate, e.g., Pearson’s correlation would be an appropriate dis-
tortion measure for gene microarray data [20], I-divergence would
be useful for the phylogenetic profile representation of genes [30],
etc. We plan to run experiments for clustering these datasets using
the HMRF-KMEANS algorithm, where the constraints will be in-
ferred from protein interaction databases as well as from function
pathway labels that are known for a subset of the genes.

7. CONCLUSIONS
We have introduced a theoretically motivated framework for semi-

supervised clustering that employs Hidden Random Markov Fields
(HMRFs) to utilize both labeled and unlabeled data in the cluster-
ing process. The framework can be used with a number of dis-
tortion measures, including Bregman divergences and directional
measures, and it accommodates trainable measures that can be ada-
pted to specific datasets. We introduced the HMRF-KMEANS al-
gorithm that performs clustering in this framework and incorpo-
rates supervision in the form of pairwise constraints in all stages
of the clustering algorithm: initialization, cluster assignment, and
parameter estimation. We presented two instantiations of the al-
gorithm based on two particular distortion measures that are popu-
lar for high-dimensional data: KL divergence and cosine similarity.
Experimental evaluation has shown that the algorithm derived from
the HMRF framework leads to improved cluster quality on realistic
textual datasets over unsupervised clustering and ablations of the
proposed approach.
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