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Abstract.

This article discusses the integration of traditional abductive and inductive rea-
soning methods in the development of machine learning systems. In particular, it
reviews our recent work in two areas: 1) The use of traditional abductive methods
to propose revisions during theory re�nement, where an existing knowledge base
is modi�ed to make it consistent with a set of empirical data; and 2) The use of
inductive learning methods to automatically acquire from examples a diagnostic
knowledge base used for abductive reasoning. Experimental results on real-world
problems are presented to illustrate the capabilities of both of these approaches to
integrating the two forms of reasoning.

1. Introduction

Abduction is the process of inferring cause from e�ect or constructing
explanations for observed events and is central to tasks such as diag-
nosis and plan recognition. Induction is the process of inferring general
rules from speci�c data and is the primary task of machine learning. An
important issue is how these two reasoning processes can be integrated,
or how abduction can aid machine learning and how machine learning
can acquire abductive theories. The machine learning research group at
the University of Texas at Austin has explored these issues in the devel-
opment of several machine learning systems over the last ten years. In
particular, we have developed methods for using abduction to identify
faults and suggest repairs for theory re�nement (the task of revising a
knowledge base to �t empirical data), and for inducing knowledge bases
for abductive diagnosis from a database of expert-diagnosed cases. We
treat induction and abduction as two distinct reasoning tasks, but have
demonstrated that each can be of direct service to the other in devel-
oping AI systems for solving real-world problems. This paper reviews
our work in these areas, focusing on the issue of how abduction and
induction is integrated. 1

1 Additional details are available in our publications listed in the bibliog-
raphy, most of which are available in postscript on the World Wide Web at
http://www.cs.utexas.edu/users/ml.

c
 1998 Kluwer Academic Publishers. Printed in the Netherlands.
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Recent research in machine learning and abductive reasoning have
been characterized by di�erent methodologies. Machine learning re-
search has emphasized experimental evaluation on actual data for re-
alistic problems. Performance is evaluated by training a system on a
set of classi�ed examples and measuring its accuracy at predicting the
classi�cation of novel test examples. For instance, a classi�ed example
can be a set of symptoms paired with a diagnosis provided by an expert.
A variety of data sets on problems ranging from character recognition
and speech synthesis to medical diagnosis and genetic sequence detec-
tion have been assembled and made available in electronic form at the
University of California at Irvine. 2 Experimental comparisons of var-
ious algorithms on these data sets have been used to demonstrate the
advantages of new approaches and analyze the relative performance of
di�erent methods on di�erent kinds of problems.

On the other hand, recent research on abductive reasoning has em-
phasized philosophical discussion on the nature of abduction and the
development and theoretical analysis of various logical and probabilistic
formalisms. The philosophical discussions have focussed on the relation
between deduction, abduction, induction, and probabilistic inference.
Logicists have developed various models of abductive inference based
on reverse deduction, i.e. the formation of assumptions that entail a
set of observations. Probabilists have developed various models based
on Bayesian inference. A number of interesting formalisms have been
proposed and analyzed; however, there has been relatively little exper-
imental evaluation of the methods on real-world problems.

Our research adopts the standard methodology of machine learn-
ing to evaluate techniques for integrating traditional abductive and
inductive methods. We have produced more e�ective machine learning
systems, and the advantages of these systems have been demonstrated
on real applications such as DNA sequence identi�cation and medical
diagnosis. We believe that such experimental evaluation is important
in demonstrating the utility of research in the area and in allowing the
exploration and analysis of the strength and weaknesses of di�erent
approaches.

The remainder of the article is organized as follows. Section 2 presents
de�nitions of abduction and induction that we will assume for most of
the article. Section 3 reviews our work on using abductive inference
to aid theory re�nement. Section 4 reviews our work on the induction
of abductive knowledge bases. Finally, Section 5 presents some overall
conclusions.

2 http://www.ics.uci.edu/~ mlearn/MLRepository.html
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2. Abduction and Induction

Precise de�nitions for abduction and induction are still somewhat con-
troversial. In order to be concrete, I will generally assume that ab-
duction and induction are both de�ned in the following general logical
manner.

� Given: Background knowledge, B, and observations (data), O,
both represented as sets of formulae in �rst-order predicate calcu-
lus where O is restricted to ground formulae.

� Find: An hypothesis H (also a set of logical formulae) such that
B [H 6` ? and B [H ` O.

In abduction, H is generally restricted to a set of atomic ground or ex-
istentially quanti�ed formulae (called assumptions) and B is generally
quite large relative to H. On the other hand, in induction, H gener-
ally consists of universally quanti�ed Horn clauses (called a theory or
knowledge base), and B is relatively small and may even be empty. In
both cases, following Occam's Razor, it is preferred that H be kept as
small and simple as possible.

Despite their limitations, these formal de�nitions encompass a sig-
ni�cant fraction of the existing research on abduction and induction,
and the syntactic constraints on H capture at least some of the in-
tuitive distinctions between the two reasoning methods. In abduction,
the hypothesis is a speci�c set of assumptions that explain the ob-
servations of a particular case; while in induction, the hypothesis is
a general theory that explains the observations across a number of
cases. The body of logical work on abduction, e.g. (Pople, 1973; Poole
et al., 1987; Levesque, 1989; Ng and Mooney, 1991; Ng and Mooney,
1992; Kakas et al., 1993), generally �ts this de�nition of abduction and
several diagnostic models (Reiter, 1987; Peng and Reggia, 1990) can
be shown to be equivalent or a special case of it (Poole, 1989; Ng,
1992). The work on inductive logic programming (ILP) (Muggleton,
1992; Lavra�c and D�zeroski, 1994) employs this de�nition of induction,
and most machine learning work on induction can also be seen as �tting
this paradigm (Michalski, 1983). In addition, most algorithms and im-
plemented systems for logical abduction or induction explicitly assume
a representation of hypotheses that is consistent with these restrictions
and are tailored to be computationally e�cient for problems satisfying
these assumptions.

The intent of the current paper is not to debate the philosophical
advantages and disadvantages of these de�nitions of induction and ab-
duction; I believe this debate eventually becomes just a question of ter-
minology. Given their acceptance by a fairly large body of researchers
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in both areas, a range of speci�c algorithms and systems have been de-
veloped for performing abductive and inductive reasoning as prescribed
by these de�nitions. The claim of the current paper is that these exist-
ing methods can be fruitfully integrated to develop machine learning
systems whose e�ectiveness has been experimentally demonstrated in
several realistic applications.

3. Abduction in Theory Re�nement

3.1. Definition of Theory Refinement

Theory re�nement (theory revision, knowledge-base re�nement) is the
machine learning task of modifying an existing imperfect domain theory
to make it consistent with a set of data. For logical theories, it can be
more precisely de�ned as follows:

� Given: An initial theory, T , a set of positive examples, P , and a
set negative examples, N , where P and N are restricted to ground
formulae.

� Find: A \minimally revised" consistent theory T 0 such that 8p 2
P : T 0 ` p and 8n 2 N : T 0 6` n.

Generally, examples are ground Horn-clauses of the form C :-B1; : : : ; Bn,
where the body, B, gives a description of a case and the head, C, gives
a conclusion or classi�cation that should logically follow from this de-
scription (or should not follow in the case of a negative example). Re-
vising a logical theory may require both adding and removing clauses
as well as adding or removing literals from existing clauses. Generally,
the ideal goal is to make the minimal syntactic change to the exist-
ing theory according to some measure of edit distance between theories
that measures the number literal additions and deletions that are re-
quired to transform one theory into another (Wogulis and Pazzani,
1993; Mooney, 1995b). Unfortunately, this task is computationally in-
tractable; therefore, in practice, heuristic search methods must be used
to approximate minimal syntactic change. Note that compared to the
use of background knowledge in induction, theory re�nement requires
modifying the existing background knowledge rather than just adding
clauses to it. Experimental results in a number of realistic applications
have demonstrated that revising an existing imperfect knowledge base
provided by an expert results in more accurate results than inducing a
knowledge base from scratch (Ourston and Mooney, 1994; Towell and
Shavlik, 1993).
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3.2. Theory Refinement Algorithms and Systems

Several theory re�nement systems use abduction on individual exam-
ples to locate faults in a theory and suggest repairs (Ourston and
Mooney, 1990; Ourston, 1991; Ourston and Mooney, 1994; Wogulis
and Pazzani, 1993; Wogulis, 1994; Ba�es and Mooney, 1993; Ba�es,
1994; Ba�es and Mooney, 1996; Brunk, 1996). The ways in which var-
ious forms of logical abduction can be used in revising theories is also
discussed and reviewed by Dimopoulos and Kakas (1996); however, they
do not discuss using abduction to generalize existing clauses by delet-
ing literals (removing antecedents). Di�erent theory-re�nement systems
use abduction in slightly di�erent ways, but the following discussion
summarizes the basic approach. For each individual positive example
that is not derivable from the current theory, abduction is applied to
determine a set of assumptions that would allow it to be proven. These
assumptions can then be used to make suggestions for modifying the
theory. One potential repair is to learn a new rule for the assumed
proposition so that it could be inferred from other known facts about
the example. Another potential repair is to remove the assumed propo-
sition from the list of antecedents of the rule in which it appears in
the abductive explanation of the example. For example, consider the
theory

P(X) :- R(X), Q(X).

Q(X) :- S(X), T(X).

and the unprovable positive example

P(a) :- R(a), S(a), V(a).

Abduction would �nd that the assumption T(a) makes this positive
example provable. Therefore, two possible revisions to the theory are
to remove the literal T(X) from the second clause in the theory, or to
learn a new clause for T(X), such as

T(X) :- V(X).

Another possible abductive assumption is Q(a), suggesting the possible
revisions of removing Q(X) from the �rst clause or learning a new clause
for Q(X) such as

Q(X) :- V(X).

or

Q(X) :- S(X), V(X).
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In order to �nd a small set of repairs that allow all of the positive
examples to be proven, a greedy set-covering algorithm can be used
to select a small subset of the union of repair points suggested by the
abductive explanations of individual positive examples, such that the
resulting subset covers all of the positive examples. If simply deleting
literals from a clause causes negative examples to be covered, inductive
methods (e.g. ILP techniques like Foil (Quinlan, 1990)) can be used
to learn a new clause that is consistent with the negative examples.
Continuing the example, assume the positive examples are

P(a) :- R(a), S(a), V(a), W(a).

P(b) :- R(b), V(b), W(b).

and the negative examples are

P(c) :- R(c), S(c).

P(d) :- R(d), W(d).

The abductive assumptions Q(a) and Q(b) are generated for the �rst
and second positive examples respectively. Therefore, making a repair
to the Q predicate would cover both cases. Note that the previously
mentioned potential repairs to T would not cover the second example
since the abductive assumption T(b) is not su�cient (both T(b) and
S(b) must be assumed). Since a repair to the single predicate Q covers
both positive examples, it is chosen. However, deleting the antecedent
Q(x) from the �rst clause of the original theory would allow both of
the negative examples to be proven.

Therefore, a new clause for Q is needed. Positive examples for Q are
the required abductive assumptions Q(a) and Q(b). Negative examples
are Q(c) and Q(d) since these assumptions would allow the negative
examples to be derived. Given the descriptions provided for a, b, c

and d in the examples, an ILP system such as Foil would induce the
new clause

Q(X) :- V(X).

since this is the simplest clause that covers both of the positive exam-
ples without covering either of the negatives. Note that although the
alternative, equally-simple clause

Q(X) :- W(X)

covers both positive examples, it also covers the negative example Q(d).
A general outline of the basic procedure for using abduction for the-

ory re�nement is given in Figure 1. The selection of an appropriate
subset of assumption sets (repair points) is generally performed using



7

For each unprovable positive example, i, do
Abduce alternative sets of assumptions Ai1; Ai2; : : : ; Aini

that
allow example i to be proven.

Select a subset, S, of the resulting assumption sets (Aij 's) such that
their union allows all of the positive examples to be proven.

For each assumption set Aij 2 S do

If deleting the literals in the theory indicated by Aij cause
negative examples to be proven
then Induce a new consistent clause to cover the

examples made provable by Aij .
else Delete the literals indicated by Aij .

Figure 1. General Theory Re�nement Algorithm with Abduction

some form of greedy set-covering algorithm in order to limit search. Se-
lection of an appropriate assumption set may be based on an estimate
of the complexity of the resulting repair as well as the number of posi-
tive examples that it covers. For example, the more negative examples
that are generated when the literals corresponding to an assumption
set are deleted, the more complex the resulting repair is likely to be.

The Either (Ourston and Mooney, 1990; Ourston and Mooney,
1994; Ourston, 1991) and Neither (Ba�es and Mooney, 1993; Ba�es,
1994) theory re�nement systems allow multiple assumptions in order
to prove an example, preferring more speci�c assumptions, i.e. they
employ most-speci�c abduction (Cox and Pietrzykowski, 1987). Au-
drey (Wogulis, 1991), Audrey II (Wogulis and Pazzani, 1993), A3
(Wogulis, 1994), and Clarus (Brunk, 1996) are a series of theory re-
�nement systems that make a single-fault assumption during abduc-
tion. For each positive example, they �nd a single most-speci�c as-
sumption that makes the example provable. Di�erent constraints on
abduction may result in di�erent repairs being chosen, a�ecting the
level of speci�city at which the theory is re�ned. Either and Nei-

ther strongly prefer making changes to the more speci�c aspects of
the theory rather than modifying the top-level rules.

It should be noted that abduction is primarily useful in generalizing
a theory to cover more positive examples rather than specializing it to
uncover negative examples. A separate procedure is generally needed to
determine how to appropriately specialize a theory. However, if a theory
employs negation as failure, abduction can also be used to determine
appropriate specializations (Wogulis, 1993; Wogulis, 1994).

It should also be noted that a related approach to combining abduc-
tion and induction is useful in learning de�nitions of newly invented
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predicates. In particular, several ILP methods for inventing predicates
use abduction to infer training sets for an invented predicate and then
invoke induction recursively on the abduced data to learn a de�ni-
tion for the new predicate (Wirth and O'Rorke, 1991; Kijsirikul et al.,
1992; Zelle and Mooney, 1994; Stahl, 1996; Flener, 1997). This tech-
nique is basically the same as using abduced data to learn new rules
for existing predicates in theory re�nement as described above.

A �nal interesting point is that the same approach to using abduc-
tion to guide re�nement can also be applied to probabilistic domain
theories. We have developed a system, Banner (Ramachandran and
Mooney, 1998; Ramachandran, 1998) for revising Bayesian networks
that uses probabilistic abductive reasoning to isolate faults and sug-
gest repairs. Bayesian networks are particularly appropriate for this
approach since the standard inference procedures support both causal
(predictive) and abductive (evidential) inference (Pearl, 1988). Our
technique focuses on revising a Bayesian network intended for causal
inference by adapting it to �t a set of training examples of correct
causal inference. Analogous to the logical approach outlined above,
Bayesian abductive inference on each positive example is used to com-
pute assumptions that would explain the correct inference and thereby
suggest potential modi�cations to the existing network. The ability of
this general approach to theory revision to employ probabilistic as well
as logical methods of abduction is an interesting indication of its gen-
erality and strength.

3.3. Experimental Results on Theory Refinement

The general approach of using abduction to suggest theory repairs has
proven quite successful at revising several real-world knowledge bases.
The systems referenced above have signi�cantly improved the accuracy
of knowledge bases for detecting special DNA sequences called promot-
ers (Ourston and Mooney, 1994; Ba�es and Mooney, 1993), diagnosing
diseased soybean plants (Ourston and Mooney, 1994), and determining
when repayment is due on a student loan (Brunk, 1996). The approach
has also been successfully employed to construct rule-based models of
student knowledge for over 50 students using an intelligent tutoring sys-
tem for teaching concepts in C++ programming (Ba�es, 1994; Ba�es
and Mooney, 1996). In this application, theory re�nement was used
to modify correct knowledge of the domain to account for errors indi-
vidual students made on a set of sample test questions. The resulting
modi�cations to the correct knowledge base were then used to generate
tailored instructional feedback for each student. In all of these cases,
experiments with real training and test data were used to demonstrate
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Figure 2. Learning Curves for DNA Promoter Recognition

that theory revision resulted in improved performance on novel, inde-
pendent test data and generated more accurate knowledge than raw
induction from the data alone. These results clearly demonstrate the
utility of integrating abduction and induction for theory re�nement.

As an example of the sort of experimental results that have been re-
ported, consider some results obtained on the popular DNA promoter
problem. The standard data set consists of 106 DNA strings with 57
features called nucleotides, each of which can take on one of four val-
ues, A, G, T or C. The target class, promoter, predicts whether or
not the input DNA sequence indicates the start of a new gene. The
data is evenly split between promoters and non-promoters. The initial
domain theory was assembled from information in the biological litera-
ture (O'Neill and Chiafari, 1989). Figure 2 presents learning curves for
this data for several systems. All results are averaged over 25 separate
trials with di�erent disjoint training and test sets. Notice that all of
the abduction-based re�nement systems improved the accuracy of the
initial theory substantially and outperform a standard decision-tree in-
duction method, C4.5 (Quinlan, 1993), that does not utilize an initial
theory.
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4. Induction of Abductive Knowledge Bases

4.1. Learning for Abduction

Another important aspect of integrating abduction and induction is
the learning of abductive theories. Induction of abductive theories can
be viewed as a variant of induction where the provability relation (`) is
itself interpreted abductively. In other words, given the learned theory
it must be possible to abductively infer the correct conclusion for each
of the training examples.

We have previously developed a learning system, Lab (Thompson
and Mooney, 1994; Thompson, 1993), for inducing an abductive knowl-
edge base appropriate for the diagnostic reasoning model of parsimo-

nious set covering (PCT) (Peng and Reggia, 1990). In PCT, a knowl-
edge base consists of a set of disorder ! symptom rules that demon-
strate how individual disorders cause individual symptoms. Such an ab-
ductive knowledge base stands in contrast to the deductive symptoms

! disorder rules used in standard expert systems and learned by
traditional machine-learning methods. Given a set of symptoms for a
particular case, the task of abductive diagnosis is to �nd a minimum set
of disorders that explains all of the symptoms, i.e. a minimum covering
set.

4.2. Lab Algorithm

Given a set of training cases each consisting of a set of symptoms to-
gether with their correct diagnosis (set of disorders), Lab attempts to
construct an abductive knowledge base such that the correct diagno-
sis for each training example is a minimum cover. The system uses a
fairly straightforward hill-climbing induction algorithm. At each itera-
tion, it adds to the developing knowledge base the individual disorder
! symptom rule that maximally increases accuracy of abductive diag-
nosis over the complete set of training cases. The knowledge base is
considered complete when the addition of any new rule fails to increase
accuracy on the training data.

An outline of the learning algorithm is given in Figure 3. It assumes
E is the set of training examples, fE1 : : : Eng, where each Ei consists of
a set of disordersDi and a set of symptoms Si. An example is diagnosed
by �nding the minimum covering set of disorders given the current rule-
base, R, using the Bipartite algorithm of Peng and Reggia (1990). If
there are multiple minimum covering sets, one is chosen at random as
the system diagnosis. To account for the fact that both the correct
and system diagnoses may contain multiple disorders, performance is
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Let R = ; finitialize rule-baseg
Let P be the set of potential rules fd! s j d 2 Di; s 2 Sig
Until the accuracy of R on E ceases to improve do

Let A = 0 finitialize best accuracyg
For each rule r 2 P do

Let R0 = R [ frg
Compute the accuracy, a, of R0 on E
If a > A then let A = a; b = r fupdate best ruleg

Let R = R [ fbg fadd best rule to KBg
Return R

Figure 3. General Lab Algorithm

measured by intersection accuracy. If S is the system diagnosis and C
the correct diagnosis, the intersection accuracy is:

(jS \ Cj=jSj+ jS \ Cj=jCj)=2:

The average intersection accuracy across a set of examples is used to
evaluate a knowledge base.

Lab employs a fairly simple, restricted, propositional model of ab-
duction and a simple, hill-climbing inductive algorithm. However, us-
ing techniques from inductive logic programming (ILP), the basic idea
of using induction to acquire abductive knowledge bases from exam-
ples can be generalized to more expressive �rst-order representations.
Both Dimopoulos and Kakas (1996) and Lamma et al. (this volume)
present interesting ideas and algorithms on using ILP to learn abduc-
tive theories; however, this approach has yet to be tested on a realistic
application. Finally, on-going research on the induction of Bayesian
networks from data (Cooper and Herskovits, 1992; Heckerman, 1995)
can be viewed as an alternative approach to learning knowledge that
supports abductive inference.

4.3. Experimental Evaluation of Lab

Using real data for diagnosing brain damage due to stroke originally
assembled by Tuhrim et al. (1991), Lab was shown to produce ab-
ductive knowledge bases that were more accurate than an expert-built
abductive rule base, deductive knowledge bases learned by several stan-
dard machine-learning methods, and trained neural networks. The data
consists of 50 patients described by 155 possible symptoms. The pos-
sible disorders consist of 25 di�erent areas of the brain that could be
damaged. The �fty cases have an average of 8.56 symptoms and 1.96
disorders each. In addition, we obtained the accompanying abductive
knowledge base generated by an expert, which consists of 648 rules.
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Lab was compared with a decision-tree learner, ID3 (Quinlan, 1986),
a propositional rule learner, PFoil (Mooney, 1995a), and a neural net-
work trained using standard backpropagation (Rumelhart et al., 1986).
The neural network had one output bit per disorder and the number
of hidden units was 10% of the number of disorders plus the number
of symptoms. Since ID3 and Pfoil are typically used for predicting a
single category, an interface was built to allow them to handle multiple-
disorder diagnosis by learning a separate decision tree or rule-base for
predicting each disorder. An example Ei 2 E is given to the learner as
a positive example if the given disorder is present in Di, otherwise it is
given as a negative example.

The resulting learning curves are shown in Figure 4. All results are
averaged over 20 separate trials with di�erent disjoint training and test
sets. The results demonstrate that abductive knowledge bases can be
induced that are more accurate than manually constructed abductive
rules. In addition, for limited number of training examples, induced
abductive rules are also more accurate than the knowledge induced by
competing machine learning methods.
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5. Conclusions

In conclusion, we believe our previous and on-going work on integrating
abduction and induction has e�ectively demonstrated two important
points: 1) Abductive reasoning is useful in inductively revising existing
knowledge bases to improve their accuracy; and 2) Inductive learning
can be used to acquire accurate abductive theories. We have devel-
oped several machine-learning systems that integrate abduction and
induction in both of these ways and experimentally demonstrated their
ability to successfully aid the construction of AI systems for complex
problems in medicine, molecular biology, and intelligent tutoring. How-
ever, our work has only begun to explore the potential bene�ts of in-
tegrating abductive and inductive reasoning. Further explorations into
both of these general areas of integration will likely result in additional
important discoveries and successful applications.
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