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Abstract. This paper introduces two new frameworks, Doubly Supervised La-
tent Dirichlet Allocation (DSLDA) and its non-parametric variation (NP-DSLDA),
that integrate two different types of supervision: topic labels and category labels.
This approach is particularly useful for multitask learning, in which both latent
and supervised topics are shared between multiple categories. Experimental re-
sults on both document and image classification show that both types of supervi-
sion improve the performance of both DSLDA and NP-DSLDA and that sharing
both latent and supervised topics allows for better multitask learning.

1 Introduction

Humans can distinguish as many as 30,000 relevant object classes [7]. Training an iso-
lated object detector for each of these different classes would require millions of train-
ing examples in aggregate. Computer vision researchers have proposed a more efficient
learning mechanism in which object categories are learned via shared attributes, ab-
stract descriptors of object properties such as “striped” or “has four legs” [17,25,24].
The attributes serve as an intermediate layer in a classifier cascade. The classifier in the
first stage is trained to predict the attributes from the raw features and that in the second
stage is trained to predict the categories from the attributes. During testing, only the raw
features are observed and the attributes must be inferred. This approach is inspired by
human perception and learning from high-level object descriptions. For example, from
the phrase “eight-sided red traffic sign with white writing”, humans can detect stop
signs [25]. Similarly, from the description “large gray animals with long trunks”, hu-
man can identify elephants. If the shared attributes transcend object class boundaries,
such a classifier cascade is beneficial for transfer learning [28] where fewer labeled
examples are available for some object categories compared to others [25].

Multitask learning (MTL) is a form of transfer learning in which simultaneously
learning multiple related “tasks” allows each one to benefit from the learning of all of
the others. If the tasks are related, training one task should provide helpful “inductive
bias” for learning the other tasks. To enable the reuse of training information across
multiple related tasks, all tasks might utilize the same latent shared intermediate repre-
sentation – for example, a shared hidden layer in a multi-layer perceptron [11]. In this



2 Acharya et al.

case, the training examples for all tasks provide good estimates of the weights connect-
ing the input layer to the hidden layer, and hence only a small number of examples per
task is sufficient to achieve high accuracy. This approach is in contrast to “isolated”
training of tasks where each task is learned independently using a separate classifier.

In this paper, our objective is to combine these two approaches to build an MTL
framework that can use both attributes and class labels. The multiple tasks here corre-
spond to different object categories (classes), and both observable attributes and latent
properties are shared across the tasks. We want to emphasize that the proposed frame-
works support general MTL; however, the datasets we use happen to be multiclass,
where each class is treated as a separate “task” (as typical in multi-class learning based
on binary classifiers). But, in no way are the frameworks restricted to multiclass MTL.
Since attribute-based learning has been shown to support effective transfer learning in
computer vision, the tasks here naturally correspond to object classes.

The basic building block of the frameworks presented in this paper is Latent Dirich-
let Allocation (LDA) [9]. LDA focuses on unsupervised induction of multiple “topics”
that help characterize a corpus of text documents. LDA has also been applied in com-
puter vision where SIFT features are appropriately quantized to generate a bag of visual
words for representing an image [35]. Since our experiments use both text and image
data, we will overload the word “document” to denote either a text document or an
image represented as a bag of visual words. The LDA approach has also been aug-
mented to include two different types of supervision, document-level labels for either
topics [31] or for an overall category inferred from the topics [43]. This paper intro-
duces two new approaches, Doubly Supervised Latent Dirichlet Allocation (DSLDA)
and its non-parametric variation (NP-DSLDA), that integrate both forms of supervision.
At the topic level, the models assume that supervision is available for some topics dur-
ing training (corresponding to the “attributes” used in computer vision), but that other
topics remain latent (corresponding to the hidden layer in traditional MTL). The ability
to provide supervision for both categories and a subset of topics improves the models’
ability to perform accurate classification. In many applications, a variety of kinds of
supervision may be naturally available from different sources at multiple levels of ab-
straction, such as keywords, topics, and categories for documents, or visual attribute,
object, and scene labels for images. By effectively utilizing such multiple, interacting
levels of supervision, DSLDA is able to learn more accurate predictors. In a supervised
LDA [8,43] setting, forcing multiple tasks to share the same set of latent topics results
in an LDA-based approach to MTL. By allowing supervision to also be provided for a
subset of these shared topics, DSLDA and NP-DSLDA support a particularly effective
form of MTL.

The rest of the paper is organized as follows. We present related literature in Section
2, followed by the descriptions of DSLDA and NP-DSLDA in Section 3 and Section 4
respectively. Experimental results on both multi-class image and document categoriza-
tion are presented in Section 5, demonstrating the value of integrating both supervised
and latent shared topics in diverse applications. Finally, future directions and conclu-
sions are presented in Section 6.

Note on Notation: Vectors and matrices are denoted by bold-faced lowercase and
capital letters, respectively. Scalar variables are written in italic font, and sets are de-
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noted by calligraphic uppercase letters. Dir(), Beta() and multinomial() stand for Dirich-
let, Beta and multinomial distribution respectively.

2 Related Work

2.1 Statistical Topic Models

LDA [9] treats documents as a mixture of topics, which in turn are defined by a distribu-
tion over a set of words. The words in a document are assumed to be sampled from mul-
tiple topics. In its original formulation, LDA can be viewed as a purely-unsupervised
form of dimensionality reduction and clustering of documents in the topic space, al-
though several extensions of LDA have subsequently incorporated some sort of super-
vision. Some approaches provide supervision by labeling each document with its set
of topics [31,32]. In particular, in Labeled LDA (LLDA [31]), the primary objective
is to build a model of the words that indicate the presence of certain topic labels. For
example, when a user explores a webpage based on certain tags, LLDA can be used to
highlight interesting portions of the page or build a summary of the text from multiple
webpages that share the same set of tags. The words in a given training document are
assumed to be sampled only from the supervised topics, which the document has been
labeled as covering.

Some other researchers [8,43,12] assume that supervision is provided for a single
response variable to be predicted for a given document. The response variable might
be real-valued or categorical, and modeled by a normal, Poisson, Bernoulli, multino-
mial or other distribution (see [12] for details). Some examples of documents with
response variables are essays with their grades, movie reviews with their numerical
ratings, web pages with their number of hits over a certain period of time, and docu-
ments with category labels. In Maximum Entropy Discriminative LDA (MedLDA) [43],
the objective is to infer some low-dimensional (topic-based) representation of docu-
ments which is predictive of the response variable. Essentially, MedLDA solves two
problems jointly – dimensionality reduction and max-margin classification using the
features in the dimensionally-reduced space. Compared to earlier versions of super-
vised topic models [8,12], MedLDA has simpler update equations and produces supe-
rior experimental results. Therefore, in the frameworks presented in Sections 3.2 and 4,
the max-margin principle adopted in MedLDA is preferred over other supervised topic
models.

2.2 Transfer and Multitask Learning

Transfer learning allows the learning of some tasks to benefit the learning of others
through either simultaneous [11] or sequential [10] training. In multitask learning (MTL
[11]), a single model is simultaneously trained to perform multiple related tasks. MTL
has emerged as a very promising research direction for various applications including
biomedical informatics [6], marketing [15], natural language processing [2], and com-
puter vision [34].

Many different MTL approaches have been proposed over the past 15 years (e.g.,
see [38,28,29] and references therein). These include different learning methods, such
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as empirical risk minimization using group-sparse regularizers [20,23,21], hierarchical
Bayesian models [41,26] and hidden conditional random fields [30]. Evgeniou et al.
[14] proposed the regularized MTL which constrained the models of all tasks to be
close to each other. The task relatedness in MTL has also been modeled by constrain-
ing multiple tasks to share a common underlying structure [5,3,11]. Ando and Zhang
[1] proposed a structural learning formulation, which assumed multiple predictors for
different tasks shared a common structure on the underlying predictor space.

In all of the MTL formulations mentioned above, the basic assumption is that all
tasks are related. In practical applications, these might not be the case and the tasks
might exhibit a more sophisticated group structure. Such structure is handled using
clustered multi-task learning (CMTL). In [4] CMTL is implemented by considering a
mixture of Gaussians instead of single Gaussian priors. Xue et al. [39] introduced the
Dirichlet process prior that automatically identifies subgroups of related tasks. In [19],
a clustered MTL framework was proposed that simultaneously identified clusters and
performed multi-task inference.

In the models presented in the next two sections, an LDA-based approach to MTL
is easily obtained by maintaining a common set of topics to support the prediction
of multiple response variables. This idea is analogous to implementing MTL using a
common shared underlying structure [5,3,11]. We will also explain how NP-DSLDA is
capable of performing CMTL.

3 Doubly Supervised LDA (DSLDA)

3.1 Task Definition

Assume we are given a training corpus consisting of N documents belonging to Y
different classes (where each document belongs to exactly one class and each class cor-
responds to a different task). Further assume that each of these training documents is
also annotated with a set of K2 different topic “tags” (henceforth referred to as “su-
pervised topics”). For computer vision data, the supervised topics correspond to the
attributes provided by human experts. The objective is to train a model using the words
in a data, as well as the associated supervised topic tags and class labels, and then use
this model to classify completely unlabeled test data for which no topic tags nor class
labels are provided. The human-provided supervised topics are presumed to provide
abstract information that is helpful in predicting the class labels of test documents.

3.2 Generative Model

In order to include both types of supervision (class and topic labels), a combination
of the approaches described in Section 2.1 is proposed. Note that LLDA uses only
supervised topics and does not have any mechanism for generating class labels. On
the other hand, MedLDA has only latent topics but learns a discriminative model for
predicting classes from these topics. To the best of our knowledge, ours is the first LDA
approach to integrate both types of supervision in a single framework. The generative
process of DSLDA is described below.
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For the nth document, sample a topic selection probability vector θn ∼ Dir(αn),
where αn = Λnα and α is the parameter of a Dirichlet distribution of dimension K,
which is the total number of topics. The topics are assumed to be of two types – latent
and supervised, and there are K1 latent topics and K2 supervised topics. Therefore,
K = K1 +K2. Latent topics are never observed, while supervised topics are observed
in training but not in test data. Henceforth, in each vector or matrix withK components,
it is assumed that the first K1 components correspond to the latent topics and the next
K2 components to the supervised topics. Λn is a diagonal binary matrix of dimension
K × K. The kth diagonal entry is unity if either 1 ≤ k ≤ K1 or K1 < k ≤ K
and the nth document is tagged with the kth topic. Also, α = (α1,α2) where α1 is
a parameter of a Dirichlet distribution of dimension K1 and α2 is a parameter of a
Dirichlet distribution of dimension K2.

For the mth word in the nth document, sample a topic znm ∼ multinomial(θ′n),
where θ′n = (1 − ε){θnk}k1k=1ε{Λn,kkθnk}Kk=1+k1

. This implies that the supervised
topics are weighted by ε and the latent topics are weighted by (1 − ε). Sample the
word wnm ∼ multinomial(βznm

), where βk is a multinomial distribution over the
vocabulary of words corresponding to the kth topic.

For the nth document, generate Yn = arg maxy r
T
y E(z̄n) where Yn is the class label

associated with the nth document, z̄n =

Mn∑
m=1

znm/Mn. Here, znm is an indicator vector

of dimension K. ry is a K-dimensional real vector corresponding to the yth class, and
it is assumed to have a prior distribution N (0, 1/C). Mn is the number of words in the
nth document. The maximization problem to generate Yn (or the classification problem)
is carried out using a max-margin principle.

Note that predicting each class is effectively treated as a separate task, and that the
shared topics are useful for generalizing the performance of the model across classes.
In particular, when all classes have few training examples, knowledge transfer between
classes can occur through the shared topics. So, the mapping from the original feature
space to the topic space is effectively learned using examples from all classes, and a
few examples from each class are sufficient to learn the mapping from the reduced
topic space to the class labels.

3.3 Inference and Learning

Let us denote the hidden variables by Z = {{znm}, {θn}}, the observed variables by
X = {wnm} and the model parameters by κ0. The joint distribution of the hidden and
observed variables is:

p(X,Z|κ0) =

N∏
n=1

p(θn|αn)

Mn∏
m=1

p(znm|θ′n)p(wnm|βznm
) (1)

To avoid computational intractability, inference and estimation are performed using
Variational EM. The factorized approximation to the posterior distribution on hidden
variables Z is given by:
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q(Z|{κn}Nn=1) =

N∏
n=1

q(θn|γn)

Mn∏
m=1

q(znm|φnm), (2)

where θn ∼ Dir(γn) ∀n ∈ {1, 2, · · · , N}, znm ∼ multinomial(φnm) ∀n ∈ {1, 2, · · · , N}
and ∀m ∈ {1, 2, · · · ,Mn}, and κn = {γn, {φnm}}, which is the set of variational pa-
rameters corresponding to the nth instance. Further, γn = (γnk)Kk=1 ∀n, and φnm =
(φnmk)Kk=1 ∀n,m. With the use of the lower bound obtained by the factorized approx-
imation, followed by Jensen’s inequality, DSLDA reduces to solving the following op-
timization problem1:

min
q,κ0,{ξn}

1

2
||r||2 − L(q(Z)) + C

N∑
n=1

ξn,

s.t. ∀n, y 6= Yn : E[rT∆fn(y)] ≥ 1− ξn; ξn ≥ 0. (3)

Here, ∆fn(y) = f(Yn, z̄n) − f(y, z̄n) and {ξn}Nn=1 are the slack variables, and
f(y, z̄n) is a feature vector whose components from (y − 1)K + 1 to yK are those
of the vector z̄n and all the others are 0. E[rT∆fn(y)] is the “expected margin” over
which the true label Yn is preferred over a prediction y. From this viewpoint, DSLDA
projects the documents onto a combined topic space and then uses a max-margin ap-
proach to predict the class label. The parameter C penalizes the margin violation of the
training data.

φ∗nmk ∝ Λn,kkexp [ψ(γnk) + log(βkwnm
) + log(ε′) (4)

+1/Mn

∑
y 6=Yn

µn(y)E[rYnk − ryk]

 ∀n,m, k.
γ∗nk = Λn,kk

[
αk +

Mn∑
m=1

φnmk

]
∀n, vk. (5)

β∗kv ∝
N∑
n=1

Mn∑
m=1

φnmkI{wnm=v} ∀k, v. (6)

L[α1/α2] =

[
N∑
n=1

log(Γ (

K∑
k=1

αnk))−
N∑
n=1

K∑
k=1

log(Γ (αnk))

]
(7)

+

N∑
n=1

K∑
k=1

[
ψ(γnk)− ψ(

K∑
k=1

γnk)

]
(αnk − 1).

LetQ be the set of all distributions having a fully factorized form as given in (2). Let
the distribution q∗ from the set Q optimize the objective in Eq. (3). The optimal values
of corresponding variational parameters are given in Eqs. (4) and (5). In Eq. (4), ε′ =
(1 − ε) if k ≤ K1 and ε′ = ε otherwise. Since φnm is a multinomial distribution, the

1 Please see [43] for further details.
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updated values of the K components should be normalized to unity. The optimal values
of φnm depend on γn and vice-versa. Therefore, iterative optimization is adopted to
maximize the lower bound until convergence is achieved.

During testing, one does not observe a document’s supervised topics and, in princi-
ple, has to explore 2K2 possible combinations of supervised tags – an expensive process.
A simple approximate solution, as employed in LLDA [31], is to assume the absence of
the variables {Λn} altogether in the test phase, and just treat the problem as inference
in MedLDA with K latent topics. One can then threshold over the last K2 topics if
the tags of a test document need to be inferred. Equivalently, one can also assume Λn
to be an identity matrix of dimension K ×K ∀n. This representation ensures that the
expressions for update equations (4) and (5) do not change in the test phase.

In the M step, the objective in Eq. (3) is maximized w.r.t κ0. The optimal value of
βkv is given in Eq. (6). Since βk is a multinomial distribution, the updated values of the
V components should be normalized. However, numerical methods for optimization are
required to update α1 or α2. The part of the objective function that depends on α1 and
α2 is given in Eq. (7). The update for the parameter r is carried out using a multi-class
SVM solver [16]. With all other model and variational parameters held fixed (i.e. with
L(q)) held constant), the objective in Eq. (3) is optimized w.r.t. r. A reader familiar
with the updates in unsupervised LDA can see the subtle (but non-trivial) changes in
the update equations for DSLDA.

4 Non-parametric DSLDA

We now propose a non-parametric extension of DSLDA (NP-DSLDA) that solves the
model selection problem and automatically determines the best number of latent topics
for modeling the given data. A modified stick breaking construction of Hierarchical
Dirichlet Process (HDP) [33], recently introduced in [36] is used here which makes
variational inference feasible. The idea in such representation is to share the corpus
level atoms across documents by sampling atoms with replacement for each document
and modifying the weights of these samples according to some other GEM distribution
[33] whose parameter does not depend on the weights of the corpus-level atoms.

The combination of an infinite number of latent topics with a finite number of su-
pervised topics in a single framework is not trivial and ours is the first model to ac-
complish this. One simpler solution is to introduce one extra binary hidden variable for
each word in each document which could select either the set of latent topics or the set
of supervised topics. Subsequently, a word in a document can be sampled from either
the supervised or the latent topics based on the value sampled by the hidden “switch-
ing” variable. However, the introduction of such extra hidden variables adversely affects
model performance as explained in [13]. In NP-DSLDA, we are able to avoid such extra
hidden variables by careful modeling of the HDP. This will be evident in the generative
process of NP-DSLDA presented below:

– Sampleφk1 ∼ Dir(η1) ∀k1 ∈ {1, 2, · · · ,∞} andφk2 ∼ Dir(η2) ∀k2 ∈ {1, 2, · · · ,K2}.
η1, η2 are the parameters of Dirichlet distribution of dimension V .

– Sample β′k1 ∼ Beta(1, δ0) ∀k1 ∈ {1, 2, · · · ,∞}.
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– For the nth document, sample π(2)
n ∼ Dir(Λnα2). α2 is the parameter of Dirichlet

of dimension K2. Λn is a diagonal binary matrix of dimension K2 ×K2. The kth

diagonal entry is unity if the nth word is tagged with the kth supervised topic.
– ∀n, ∀t ∈ {1, 2, · · · ,∞}, sample π′nt ∼ Beta(1, α0). Assume π(1)

n = (πnt)t where
πnt = π′nt

∏
l<t(1− π′nl).

– ∀n, ∀t, sample cnt ∼ multinomial(β) where βk1 = β′k1
∏
l<k1

(1 − β′l). π(1)
n rep-

resents the probability of selecting the sampled atoms in cn. Due to sampling with
replacement, cn can contain multiple atoms of the same index from the corpus level
DP.

– For themth word in the nth document, sample znm ∼ multinomial((1−ε)π(1)
n , επ

(2)
n ).

This implies that w.p. ε, a topic is selected from the set of supervised topics and
w.p. (1 − ε), a topic is chosen from the set of (infinite number of) unsupervised
topics. Note that by weighting the π’s appropriately, the need for additional hidden
“switching” variable is avoided.

– Sample wnm from a multinomial given by the following equation:

∞∏
k1=1

V∏
v=1

φ
I{wnm=v}I{cnznm=k1∈{1,··· ,∞}}
k1v

K2∏
k2=1

V∏
v=1

φ
I{wnm=v}I{znm=k2∈{1,··· ,K2}}
k2v

.(8)

The joint distribution of NP-DSLDA is given as follows:

p(X,Z|κ0) =

∞∏
k1=1

p(φk1 |η1)p(β′k1 |δ0)

K2∏
k2=1

p(φk2 |η2)

N∏
n=1

p(π(2)
n |α2) (9)

∞∏
t=1

p(π
′(1)
nt |α0)p(cnt|β′)

Mn∏
m=1

p(znm|π(1)
n ,π(2)

n , ε)p(wnm|φ, cnznm
, znm).

As an approximation to the posterior distribution over the hidden variables, we use the
following factorized distribution:

q(Z|κ) =

K1∏
k1=1

q(φk1 |λk1)

K2∏
k2=1

q(φk2 |λk2)

K1−1∏
k1=1

q(β′k1 |uk1 , vk1) (10)

N∏
n=1

q(π(2)
n |γn)

T−1∏
t=1

q(π
′(1)
nt |ant, bnt)

T∏
t=1

q(cnt|ϕnt)
Mn∏
m=1

q(znm|ζnm).

Here, κ0 and κ denote the sets of model and variational parameters, respectively.K1

is the truncation limit of the corpus-level Dirichlet Process and T is the truncation
limit of the document-level Dirichlet Process. {λk} are the parameters of Dirichlet
each of dimension V . {uk1 , vk1} and {ant, bnt} are the parameters of variational Beta
distribution corresponding to corpus level and document level sticks respectively. {ϕnt}
are multinomial parameters of dimensionK1and {ζnm} are multinomials of dimension
(T +K2). {γn}n are parameters of Dirichlet distribution of dimension K2.

The underlying optimization problem takes the same form as in Eq. (3). The only
difference lies in the calculation of ∆fn(y) = f(Yn, s̄n)− f(y, s̄n). The first set of di-
mensions of s̄n (corresponding to the unsupervised topics) is given by 1/Mn

∑Mn

m=1 cnznm ,
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where cnt is an indicator vector over the set of unsupervised topics. The following K2

dimensions (corresponding to the supervised topics) are given by 1/Mn

∑Mn

m=1 znm.
After the variational approximation withK1number of corpus level sticks, s̄n turns out
to be of dimension (K1+K2) and the feature vector f(y, s̄n) constitutes Y (K1+K2) el-
ements. The components of f(y, s̄n) from (y−1)(K1+K2)+1 to y(K1+K2) are those
of the vector s̄n and all the others are 0. Essentially, due to the variational approxima-
tion, NP-DSLDA projects each document on to a combined topic space of dimension
(K1+K2) and learns the mapping from this space to the classes.

ζ∗nmt ∝ exp

[
[ψ(ant)− ψ(ant + bnt)]I{t<T} +

t−1∑
t′=1

[ψ(bnt′)− ψ(ant′ + bnt′)](11)

+

K1∑
k1=1

ϕntk1

[
ψ(λk1wnm)− ψ(

V∑
v=1

λk1v)

]

+
∑
y 6=Yn

µn(y)

K1∑
k1=1

E[rYnk1 − ryk1 ]ϕntk1

 ∀n,m, t.

ζ∗nm(T+k2)
∝ Λnk2k2exp

[
ψ(γnk2)− ψ(

K2∑
k2=1

γnk2) + ψ(λ
(K1+k2)wnm

) (12)

−ψ(

V∑
v=1

λ
(K1+k2)v

) + 1/Mn

∑
y 6=Yn

µn(y)E[r
Yn(K1+k2)

− r
y(K1+k2)

]

 ∀n,m, k2.
ϕ∗ntk1 ∝ exp

[
[ψ(uk1)− ψ(uk1 + vk1)] I{k1<K1} (13)

+

k1−1∑
k′=1

[ψ(vk′)− ψ(uk′ + vk′)] +

Mn∑
m=1

ζnmt

[
ψ(λk1wnm)− ψ(

V∑
v=1

λk1v)

]

+1/Mn

∑
y 6=Yn

µn(y)E[rYnk1 − ryk1 ]

(
Mn∑
m=1

ζnmt

) ∀n, t, k1.
Some of the update equations of NP-DSLDA are given in the above equations,

where {ϕntk1} are the set of variational parameters that characterize the assignment
of the documents to the global set of (K1+ K2) topics. One can see how the effect of
the class labels is included in the update equation of {ϕntk1} via the average value of
the parameters {ζnmt}. This follows intuitively from the generative assumption. update
exists for the model parameters and hence numerical optimization has to be used. Other
updates are either similar to DSLDA or the model in [36] and are omitted due to space
constraints. {ζnm}, corresponding to supervised and unsupervised topics, should be
individually normalized and then scaled by ε and (1 − ε) respectively. Otherwise, the
effect of the Dirichlet prior on supervised topics will get compared to that of the GEM



10 Acharya et al.

prior on the unsupervised topics which does not follow the generative assumptions. The
variational parameters {λk} and {ϕnt} are also normalized.

Note that NP-DSLDA offers some flexibility with respect to the latent topics that
could be dominant for a specific task. One could therefore postulate that NP-DSLDA
can learn the clustering of tasks from the data itself by making a subset of latent topics
to be dominant for a set of tasks. Although do not have supporting experiments, NP-
DSLDA is capable in principle of performing clustered multi-task learning without any
prior assumption on the relatedness of the tasks.

5 Experimental Evaluation

5.1 Data Description

Our evaluation used two datasets, a text corpus and a multi-class image database, as
described below.

aYahoo Data The first set of experiments was conducted with the aYahoo image
dataset from [17] which has 12 classes – carriage, centaur, bag, building, donkey, goat,
jetski, monkey, mug, statue, wolf, and zebra.2 Each image is annotated with relevant vi-
sual attributes such as “has head”, “has wheel”, “has torso” and 61 others, which we use
as the supervised topics. Using such intermediate “attributes” to aid visual classifica-
tion has become a popular approach in computer vision [25,24]. After extracting SIFT
features [27] from the raw images, quantization into 250 clusters is performed, defining
the vocabulary for the bag of visual words. Images with less than two attributes were
discarded. The resulting dataset of size 2,275 was equally split into training and test
data.

ACM Conference Data The text corpus consists of conference paper abstracts from
two groups of conferences. The first group has four conferences related to data mining
– WWW, SIGIR, KDD, and ICML, and the second group consists of two VLSI confer-
ences – ISPD and DAC. The classification task is to determine the conference at which
the abstract was published. As supervised topics, we use keywords provided by the au-
thors, which are presumably useful in determining the conference venue. Since authors
usually take great care in choosing keywords so that their paper is retrieved by relevant
searches, we believed that such keywords made a good choice of supervised topics. Part
of the data, crawled from ACM’s website, was used in [37]. A total of 2,300 abstracts
were collected each of which had at least three keywords and an average of 78 (±33.5)
words. After stop-word removal, the vocabulary size for the assembled data is 13,412
words. The final number of supervised topics, after some standard pre-processing of
keywords, is 55. The resulting dataset was equally split into training and test data.

5.2 Methodology

In order to demonstrate the contribution of each aspect of the overall model, DSLDA
and NP-DSLDA are compared against the following simplified models:

2 http://vision.cs.uiuc.edu/attributes/

http://vision.cs.uiuc.edu/attributes/
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– MedLDA with one-vs-all classification (MedLDA-OVA): A separate model is trained
for each class using a one-vs-all approach leaving no possibility of transfer across
classes.

– MedLDA with multitask learning (MedLDA-MTL): A single model is learned for
all classes where the latent topics are shared across classes.

– DSLDA with only shared supervised topics (DSLDA-OSST): A model in which
supervised topics are used and shared across classes but there are no latent topics.

– DSLDA with no shared latent topics (DSLDA-NSLT): A model in which only su-
pervised topics are shared across classes and a separate set of latent topics is main-
tained for each class.

– Majority class method (MCM): A simple baseline which always picks the most
common class in the training data.

These baselines are useful for demonstrating the utility of both supervised and la-
tent shared topics for multitask learning in DSLDA. MedLDA-OVA is a non-transfer
method, where a separate model is learned for each of the classes, i.e. one of the many
classes is considered as the positive class and the union of the remaining ones is treated
as the negative class. Since the models for each class are trained separately, there is
no possibility of sharing inductive information across classes. MedLDA-MTL trains
on examples from all classes simultaneously, and thus allows for sharing of inductive
information only through a common set of latent topics. In DSLDA-OSST, only su-
pervised topics are maintained and knowledge transfer can only take place via these
supervised topics. DSLDA-NSLT uses shared supervised topics but also includes latent
topics which are not shared across classes. This model provides for transfer only through
shared supervised topics but provides extra modeling capacity compared to DSLDA-
OSST through the use of latent topics that are not shared. DSLDA and NP-DSLDA are
MTL frameworks where both supervised and latent topics are shared across all classes.
Note that, all of the baselines can be implemented using DSLDA with a proper choice
of Λ and ε. For example, DSLDA-OSST is just a special case of DSLDA with ε fixed
at 1.

Fig. 1. p1 = 0.5 (aYahoo) Fig. 2. p1 = 0.7 (aYahoo)
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LT1 function, label, graph, classification, database, propagation, algorithm, accuracy, minimization, transduction
LT2 performance, design, processor, layer, technology, device, bandwidth, architecture, stack, system
CAD design, optimization, mapping, pin, simulation, cache, programming, routing, biochip, electrode
VLSI design, physical, lithography, optimization, interdependence, global, robust, cells, layout, growth

IR algorithm, web, linear, query, precision, document, repair, site, search, semantics
Ranking integration, catalog, hierarchical, dragpushing, structure, source, sequence, alignment, transfer, flattened, speedup
Learning model, information, trajectory, bandit, mixture, autonomous, hierarchical, feedback, supervised, task

Table 1. Illustration of Latent and Supervised Topics

In order to explore the effect of different amounts of both types of supervision, we
varied the amount of both topic-level and class-level supervision. Specifically, we pro-
vided topic supervision for a fraction, p1, of the overall training set, and then provided
class supervision for only a further fraction p2 of this data. Therefore, only p1 ∗ p2 of
the overall training data has class supervision. By varying the number of latent topics
from 20 to 200 in steps of 10, we found that K1 = 100 generally worked the best for
all the parametric models. Therefore, we show parametric results for 100 latent topics.
For each combination of (p1, p2), 50 random trials were performed with C = 10. To
maintain equal representational capacity, the total number of topics K is held the same
across all parametric models (except for DSLDA-OSST where the total number of top-
ics is K2). For NP-DSLDA, following the suggestion of [36], we setK1 = 150 and
T = 40, which produced uniformly good results. When required, ε was chosen using
5-fold internal cross-validation using the training data.

5.3 Results

Figs. 1 and 2 present representative learning curves for the image data, showing how
classification accuracy improves as the amount of class supervision (p2) is increased.
Results are shown for two different amounts of topic supervision (p1 = 0.5 and p1 =
0.7). Figs. 3 and 4 present similar learning curves for the text data. The error bars in the
curves show standard deviations across the 50 trials.

Fig. 3. p1 = 0.5 (Conference) Fig. 4. p1 = 0.7 (Conference)
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The results demonstrate that DSLDA and NP-DSLDA quite consistently outper-
form all of the baselines, clearly demonstrating the advantage of combining both types
of topics. NP-DSLDA performs about as well as DSLDA, for which the optimal num-
ber of latent topics has been chosen using an expensive model-selection search. This
demonstrates that NP-DSLDA is doing a good job of automatically selecting an appro-
priate number of latent topics.

Overall, DSLDA-OSST and MedLDA-MTL perform about the same, showing that,
individually, both latent and supervised shared topics each support multitask learning
about equally well when used alone. However, combining both types of topics provides
a clear improvement.

MedLDA-OVA performs quite poorly when there is only a small amount of class
supervision (note that this baseline uses only class labels). However, the performance
approaches the others as the amount of class supervision increases. This is consistent
with the intuition that multitask learning is most beneficial when each task has limited
supervision and therefore has more to gain by sharing information with other tasks.

Shared supervised topics clearly increase classification accuracy when class super-
vision is limited (i.e. small values of p2), as shown by the performance of both DSLDA-
NSLT and DSLDA-OSST. When p2 = 1 (equal amounts of topic and class supervision),
DSLDA-OSST, MedLDA-MTL and MedLDA-OVA all perform similarly; however, by
exploiting both types of supervision, DSLDA and NP-DSLDA still maintain a perfor-
mance advantage.

5.4 Topic Illustration

In Table 1, we show the most indicative words for several topics discovered by DSLDA
from the text data (with p1 = 0.8 and p2 = 1). LT1 and LT2 correspond to the most
frequent latent topics assigned to documents in the two broad categories of conferences
(data mining and VLSI, respectively). The other five topics are supervised ones. CAD
and IR stand for Computer Aided Design and Information Retrieval respectively. The
illustrated topics are particularly discriminative when classifying documents.

5.5 Discussion

DSLDA-NSLT only allows sharing of supervised topics and its implementation is not
straightforward. Since MedLDA-OVA, MedLDA-MTL and DSLDA use K topics (la-
tent or a combination of supervised and latent), to make the comparison fair, it is nec-
essary to maintain the same number of topics for DSLDA-NSLT. This ensures that the
models compared have the same representational capacity. Therefore, for each class in
DSLDA-NSLT, k2/Y latent topics are maintained. While training DSLDA-NSLT with
examples from the yth class, only a subset of the first k1 topics (or a subset of the super-
vised ones based on which of them are present in the training documents) and the next( (y−1)k2

Y + 1
)th

to
(
yk2
Y

)th
topics are considered to be “active” among the latent topics.

The other latent topics are assumed to have zero contribution, implying that the param-
eters associated with these topics are not updated based on observations of documents
belonging to class y. During testing, however, one needs to project a document onto the
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entireK-dimensional space, and the class label is predicted based on this representation
and the parameters r.

Overall, the results support the hypothesis that DSLDA’s ability to incorporate both
supervised and latent topics allow it to achieve better predictive performance compared
to baselines that exploit only one, the other, or neither. Furthermore, NP-DSLDA is
able to automate model-selection, performing nearly as well as DSLDA with optimally
chosen parameters.

6 Future Work and Conclusion

This paper has introduced Doubly Supervised LDA (DSLDA) and non-parametric DSLDA
(NP-DSLDA), novel approaches that combine the following – generative and discrim-
inative models, latent and supervised topics, and class and topic level supervision, in a
principled probabilistic manner. Four ablations of this model are also evaluated in order
to understand the individual effects of latent/supervised topics and multitask learning
on the overall model performance. The general idea of “double supervision” could be
applied to many other models, for example, in multi-layer perceptrons, latent SVMs
[40] or in deep belief networks [18]. In MTL, sharing tasks blindly is not always a good
approach and further extension with clustered MTL [42] is possible. Based on a very
recent study [22], a sampling based algorithm could also be developed for NP-DSLDA,
possibly leading to even better performance.
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