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ABSTRACT
In many classification tasks training data have missing feature val-
ues that can be acquired at a cost. For building accurate predictive
models, acquiring all missing values is often prohibitively expen-
sive or unnecessary, while acquiring a random subset of feature
values may not be most effective. The goal ofactive feature-value
acquisitionis to incrementally select feature values that are most
cost-effective for improving the model’s accuracy. We present two
policies, Sampled Expected Utilityand Expected Utility-ES, that
acquire feature values for inducing a classification model based on
an estimation of the expected improvement in model accuracy per
unit cost. A comparison of the two policies to each other and to
alternative policies demonstrate thatSampled Expected Utilityis
preferable as it effectively reduces the cost of producing a model
of a desired accuracy and exhibits a consistent performance across
domains.

General Terms
Algorithms

Keywords
machine learning, data mining, active learning, cost-sensitive learn-
ing

1. INTRODUCTION
In many predictive modeling problems, feature values for train-

ing data are missing, but can be acquired at a cost. Often the cost
of acquiring the missing information varies according to the nature
of the information or of the particular instance for which informa-
tion is missing. Consider, for example, patient data used to induce
a model to predict whether or not a treatment will be effective for
a given patient. Some patient data may have missing demographic

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UBDM ’05, August 21, 2005, Chicago, Illinois, USA.
Copyright 2005 ACM 1-59593-208-9/05/0008 ...$5.00.

information that can be obtained at a low cost. In contrast, acquir-
ing diagnostic test results from different health-care providers can
be significantly more expensive and time-consuming. Various solu-
tions are available for learning models from incomplete data, such
as imputation methods [8], and learners that ignore missing feature
values such as the Naive Bayes classifier. However, these solu-
tions almost always undermine model performance as compared to
that of a model induced from complete information. Since obtain-
ing all missing values may be prohibitively expensive, it is desir-
able to identify what information would be most cost-effective to
acquire. In this paper we address this generalized version of the
active feature-value acquisition(AFA) task for classifier induction
[10]: given a model built on incomplete training data, select feature
values that would be most cost-effective to acquire for improving
the model’s accuracy. The problem of feature-value acquisition is
different from traditional active learning [2] in which class labels
rather than feature values are missing and are costly to acquire.

Unlike prior work [9], we study AFA in a setting where the to-
tal cost to be spent on acquisitions is not determineda priori, but
rather can be determined on-line based on the model’s performance
as learning progresses. This setting is motivated by the inherent un-
certainty regarding the tradeoff between costs and improvement in
model accuracy. An incremental spending strategy enables a de-
cision maker to re-evaluate the desirability of further expenditures
by incrementally exploring the performance curve resulting from a
series of acquisition decisions. For example, one may choose not
to acquire additional information if the current model accuracy is
satisfactory, or if additional information is unlikely to provide a sig-
nificant improvement in the model. We propose a general setting
for AFA that specifies an incremental acquisition schedule. Given
the current model, an AFA strategy identifies feature-value acqui-
sitions that are estimated to be most cost-effective with respect to
model accuracy.

We present a solution to the AFA task that ranks alternative feature-
value acquisitions based on an estimation of the expected improve-
ment in model performance per unit cost. Our approach is gen-
eral, i.e., it can be applied to select acquisitions for any learner,
and to attempt to improve any performance metric. Experimental
results on decision tree induction to improve classification accu-
racy demonstrate that our method does consistently result in signif-
icantly improved model accuracy per unit cost compared to random
feature-value acquisition. The method is particularly advantageous
in challenging tasks for which there is a significant variance across



potential acquisitions with respect to their contribution to learning
per unit cost.

2. TASK DEFINITION AND ALGORITHM

2.1 Active Feature-value Acquisition
Assume a classifier induction problem where each instance is

represented withn feature values and a class label. A training set
of m instances can be represented by the matrixF , whereFi,j

corresponds to the value of thej-th feature of thei-th instance. Ini-
tially, the class label,yi, of each instance is known, and the matrix
F is incomplete, i.e., it contains missing values. The learner may
acquire the value ofFi,j at the costCi,j . We useqi,j to refer to
the query for the value ofFi,j . The general task of active feature-
value acquisition is the selection of these instance-feature queries
that will result in building the most accurate model (classifier) at
the lowest cost. The framework for the generalized AFA task is
presented in Algorithm??ach step the learner builds a classifier
trained on the current data, and scores the available queries based
on this classifier. The query with the highest score is selected and
the feature value corresponding to this query is acquired. The train-
ing data is appropriately updated and this process is repeated until
some stopping criterion is met, e.g. a desirable model accuracy has
been obtained. To reduce computation costs in our experiments, we
acquire queries in fixed-size batches at each iteration.

Algorithm 1 General Active Feature-value Acquisition Framework
Given:
F – initial (incomplete) instance-feature matrix
Y = {yi : i = 1, ..., m} – class labels for all instances
T – training set =< F, Y >

L – base learning algorithm
b – size of query batch
C – cost matrix for all instance-feature pairs

1. InitializeTotalCost to cost ofF

2. Initialize set of possible queriesQ to {qi,j : i =
1, ..., m; j = 1, ..., n; such thatFi,j is missing}

3. Repeat until stopping criterion is met

4. Generate a classifier,M = L(T )
5. ∀qi,j ∈ Q computescore(M, qi,j ,L, T )
6. Select a subsetS of b queries with the

highestscore
7. ∀qi,j ∈ S,
8. Acquire values forFi,j

9. TotalCost = TotalCost + Ci,j

10. RemoveS from Q

11. ReturnM = L(T )

Alternate problem settings of feature-value acquisition have been
explored in the literature. In particular, Melville et al. [10] studied
a specialized version of the AFA problem addressed here, where
all the missing feature values for an instance are acquired at once
and an acquisition policy selects the instances for which acquiring
all missing values would result in the most accurate classifier. Li-
zotte et al. [9] studied thebudgeted learningscenario, in which
the total cost (budget) to be spent on feature-value acquisitions is
determineda priori. We discuss these and other related research in
more detail in the related work section.

2.2 Expected Utility Estimation
Specific solutions to the AFA problem differ based on the method

used to score and rank queries. In our approach we provide scores
based on theexpected utilityof each query (defined below). For
now we assume all features are nominal, i.e., they can take on val-
ues from a finite set of values. Assume featurej hasK distinct
valuesV1, ..., VK . The expected utility of the queryqi,j can be
computed as:

E(qi,j) =

K
X

k=1

P (Fi,j = Vk)U(Fi,j = Vk) (1)

whereP (Fi,j = Vk) is the probability thatFi,j has the valueVk,
andU(Fi,j = Vk) is the utility of knowing that the feature value
Fi,j is Vk, given by:

U(Fi,j = Vk) =
A(F, Fi,j = Vk) −A(F )

Ci,j

(2)

whereA(F ) is the accuracy of the current classifier;A(F, Fi,j =
Vk) is the accuracy of the classifier trained onF assumingFi,j =
Vk; andCi,j is the cost of acquiringFi,j . For this paper, we de-
fine the utility of an acquisition in terms of improvement in model
accuracy per unit cost. Depending on the objective of learning a
classifier, alternate utility functions could be used.

If we were to plot a graph of accuracy versus model cost after
every iteration of AFA, ourExpected Utilityapproach would corre-
spond to selecting the query that is expected to result in the largest
slope for the next iteration. If all feature costs are equal, this corre-
sponds to selecting the query that would result in the classifier with
the highest expected accuracy.

Since the true distribution of each missing feature value is un-
known, we estimateP (Fi,j = Vk) in Eq. 1 using a learner that
produces class probability estimates. For each featurej, we train a
classifierMj , using this feature as the target variable and all other
features along with the class as the predictors. When evaluating the
queryqi,j , the classifierMj is applied to instancei to produce the
estimateP̂ (Fi,j = Vk).

In Eq. 2, the true values ofA(.) are also unknown. However,
since the class labels for the training data are available at selection
time we can estimateA(F ) andA(F, Fi,j = Vk) based on the
training set accuracy. In our experiments, we used 0-1 loss to mea-
sure the accuracy of the classifiers. However, other measures such
as class entropy or GINI index could also be used [9]. In our pre-
liminary studies we did not observe a consistent advantage to using
entropy.

When theExpected Utilitymethod described here is applied to
learn a Naive Bayes classifier and feature costs are assumed to be
equal, it is similar to thegreedy loss reductionapproach presented
in [9]. Similar approaches to expected utility estimation have also
been used in the related task of traditional active learning [12, 7,
14].

Computing the estimated expectationÊ(.) for queryqi,j requires
training one classifier for each possible value of featurej. Se-
lecting the best fromall available queries would require explor-
ing, in the worst case,mn queries. So exhaustively selecting a
query that maximizes the expected utility is computationally very
intensive and is infeasible for most interesting problems. We make
this exploration tractable by reducing the search space to a ran-
dom sub-sample of the available queries. We refer to this approach
as Sampled Expected Utility. This method takes a parameterα

(1 ≤ α ≤ mn
b

) which controls the complexity of the search. To
select a batch ofb queries, first a random sub-sample ofαb queries



is selected from the available pool, and then the expected utility of
each query in this sub-sample is evaluated. The value ofα can be
set depending on the amount of time the user is willing to spend on
this process. One can expect a tradeoff between the amount of time
spent and the effectiveness of the selection scheme.

2.3 Instance-based Active Feature-value Ac-
quisition

In Sampled Expected Utilitywe use a random sample of the pool
of available queries to make theExpected Utilityestimation feasi-
ble. However, it may be possible to improve performance by apply-
ing Expected Utilityestimation to a sample of queries that is better
than a random sample. One approach could be to first identify po-
tentially informativeinstances, and then select candidate queries
only from these instances. In previous work we studied a special-
ized version of AFA, whereall the missing feature values for an
instance are acquired at once and an acquisition policy selects the
instances for which acquiring all missing values would result in the
most accurate classifier[10]. The method proposed in this work,
Error Sampling(ES), can be readily used to identify informative
instances from which we can then choose candidate queries.Error
Samplingorders incomplete instances in terms of potential infor-
mativeness in the following way. It ranks instances that have been
misclassified by the current model as the most informative. Next,
it ranks correctly classified instances in order of decreasing uncer-
tainty in the model’s prediction.Error Samplingrequires building
only one model at each step of AFA, and hence is not too com-
putationally intensive to use in place of random sampling in our
Sampled Expected Utilityapproach. We call this new approach
Expected Utility-ES, in which Error Samplingis used to rank in-
stances from which the firstαb missing instance-feature pairs are
selected as candidate queries. Whereb is the desired batch size and
α is the exploration parameter.

ThoughError Samplingwas designed for selecting instances, it
can also be modified to acquire single feature values in our general
AFA setting. The method ranks instances for acquisition, but does
not provide a mechanism for selecting the most informative fea-
tures for a given instance. We therefore examine a version ofError
Samplingin which instances are ordered using theError Sampling
ranking, and the firstb missing feature values are selected for ac-
quisition.

3. EXPERIMENTAL EVALUATION

3.1 Methodology
We begin by evaluating our proposed approaches on four datasets

from the UCI repository [1], the details of which are presented in
Table 1. For the sake of simplicity, we selected datasets that have
only nominal features. In the future work section, we describe how
we can extend our approach to handle numeric features. None of
the UCI datasets provide feature acquisition costs – in our initial ex-
periments we simply assume all costs are equal. Later, we present
additional experiments with different cost structures.

Table 1: Summary of Data Sets
Name Instances Features Classes
vote 435 16 2
car 1727 6 4
lymph 148 18 4
audio 226 69 24

We compare all the proposed methods torandom feature acqui-
sition, which selects queries uniformly at random to provide a rep-
resentative sample of missing values. For theSampled Expected
Utility and Expected Utility-ESwe set the exploration parameter
α to 10. Given the computational complexity ofExpected Utility
it is not feasible to run the exhaustiveExpected Utilityapproach
on all datasets. However, we did runExpected Utilityon thevote
dataset. For all methods, as a base learner we used J48 decision-
tree induction, which is the Weka [16] implementation of C4.5 [11].
Laplace smoothing was used with J48 to improve class probability
estimates.

The performance of each acquisition scheme was averaged over
10 runs of 10-fold cross-validation. In each fold of cross-validation,
we generated learning curves in the following fashion. Initially,
the learner is given a random sample of feature values, i.e. the
instance-feature matrix is partially filled. The remaining instance-
feature pairs are used to initialize the pool of available queries. At
each iteration, the system selects a batch of queries, and the val-
ues for these features are acquired. This process is repeated until a
desired number of feature values is acquired. Classification accu-
racy is measured after each batch acquisition in order to generate
a learning curve. One system (A) is considered to besignificantly
better than another system (B) if the average accuracy across the
points on the learning curve ofA is higher than that ofB according
to a paired t-test (p < 0.05). As in [10], the test data contains only
complete instances, since we want to approximate the true general-
ization accuracy of the constructed model given complete data for a
test instance. For each dataset, we selected the initial random sam-
ple size to be such that the induced model performed at least better
than majority class prediction. The batch size for the queries was
selected based on the difficulty of the dataset. For problems that
were harder to learn, we acquired a larger number of feature-values
and consequently used larger batch sizes.

3.2 Results
Our results are presented in Figure 1. For all datasets,Sampled

Expected Utilitybuilds more accurate models than random sam-
pling for any given number of feature acquisitions. These results
demonstrate that the estimation of the expected improvement in
the current model’s accuracy enables effective ranking of potential
queries. Consequently,Sampled Expected Utilityselects queries
that on average are more informative for the learner than an av-
erage query selected at random. The differences in performance
between these two systems on all datasets is significant, as defined
above. SinceSampled Expected Utilitywas proposed in order to
reduce the computational costs of our originalExpected Utilityap-
proach, we also examined the performance and computational time
of the exhaustiveExpected Utilityalgorithm forvote. We computed
the average time it took to select queries in each iteration for each
of the methods. These timing results are summarized in Table 2.
The results show that constraining the search inExpected Utility
by random sampling (orError Sampling) can significantly reduce
the selection time (by two orders of magnitude in this case) without
a significant loss in accuracy.

WhileError Samplingcan rank acquisitions of complete instances
effectively, it does not consider the value of individual feature val-
ues. Despite this, we observed thatError Samplingperforms quite
well. In particular, it often performs significantly better than ran-
dom sampling and it sometimes performs better thanSampled Ex-
pected Utility. However, the performance ofError Samplingin this
general setting of AFA is inconsistent, as it may perform signifi-
cantly worse than random selection, as is seen on thelymphdataset.

The performance ofExpected Utility-ESshows that the method
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Figure 1: Comparing alternative active feature-value acquisitionapproaches.

Table 2: Average selection times onvote.
AFA Method Selection time (msec)
Random 3.8
Expected Utility 3.77 × 105

Sampled Expected Utility 6.64 × 103

Error Sampling 8.04
Expected Utility-ES 7.44 × 103

can effectively benefit from each of its components. WhenError
Samplingperforms better than random sampling, the acquisitions
made byExpected Utility-ESresult in better models than those in-
duced withSampled Expected Utility. The votedataset seems to
be an exception, in whichError Samplingcan at times perform
even better thanExpected Utility, so the combinedExpected Utility-
ESmethod does not outperformError Samplinghere.Error Sam-
pling’s inconsistent performance can also undermine theExpected
Utility-ES acquisition policy, so that whenError Samplingfails to
improve upon random acquisitions,Expected Utility-ESproduces
inferior models than those induced withSampled Expected Utility.
These results suggest that the use ofError Samplingin our current
AFA setting is a promising direction for future work, but is de-

pendent on improving theError Samplingstrategy such thatError
Samplingconsistently performs better than random selection. Note
that, in theinstance-completionsetting of AFA for whichError
Samplingwas originally designed, it always performs better than
random [10].

In summary,Expected Utility-ESoften exhibits superior perfor-
mance with respect toSampled Expected Utilityand random se-
lection. However, it is susceptible to the inconsistent performance
of Error Samplingand thus may potentially perform worse than
random sampling. On the other hand,Sampled Expected Utilityex-
hibits consistent improvements over random sampling on all datasets.

3.3 Artificial Data and Feature Costs
As no feature-acquisition costs are provided for the domains we

employ here, we initially assumed uniform feature costs. In ad-
dition, some of the features in the data are equally discriminative
so that there may be little value in selecting between them. In the
extreme case, where feature costs are uniform and all features pro-
vide equal information about the target concept, random sampling
is likely to be a very effective strategy. In order to make the prob-
lem setting more challenging, we constructed artificial data in the
following way. We took thelymphdataset, which is composed of
18 features, and added an equal number of binary features with
randomly-selected values, so as to provide no information about
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Figure 2: Comparing different algorithms on artificial data under dif ferent cost structures

the class variable. In addition, we experimented with different cost
structures. For the sake of simplicity, instead of having a cost as-
sociated with each instance-feature pair, we assume that the cost
of acquiring a particular feature is the same irrespective of the in-
stance. With each feature, we associate a cost selected uniformly
at random from 1 to 100. Experiments were run as before for 5
different assignments of feature costs. Along with recording the
accuracy after each batch acquisition of queries, we also record
the current model cost based on the cost of the features acquired.
Since random sampling does not take feature costs into account,
we also compareSampled Expected Utilitywith a simple baseline
strategy that incorporates feature costs. This approach, which we
call Cheapest-first, selects feature values for acquisition in order
of increasing costs. Given the inconsistent performance ofError
SamplingandExpected Utility-ES, we do not apply them to these
datasets.

Figure 2 presents plots of accuracy versus model cost for two
representative cost structures. The results for all randomly assigned
costs structures show that for the same cost,Sampled Expected
Utility consistently builds more accurate models than random sam-
pling. The differences in performance between these two systems is
more substantial than those observed for the UCI datasets with uni-
form costs. In contrast, the performance forCheapest-firstis quite
varied for different cost assignments. When highly informative fea-
tures are assigned low costs,Cheapest-firstcan perform quite well
(Figure 2(a)). Since the underlying assumption of theCheapest-
first strategy, that the cheapest features are also informative, often
holds in this case, it sometime performs better thanSampled Ex-
pected Utility, which imperfectly estimates the expected improve-
ment in accuracy from each acquisition. However, when many in-
expensive features are also uninformative,Cheapest-firstperforms
worse than a random acquisition policy (Figure 2(b)).Sampled Ex-
pected Utility, however, estimates the tradeoff between cost and
expected improvement in accuracy, and although the estimation is
clearly imperfect, it consistently selects better queries than random
acquisitions for all cost structures.

4. RELATED WORK
To the best of our knowledge, the methods we propose here are

the first approaches designed for the general problem of incremen-
tally ranking and selecting feature values for inducing any classifier
under a general acquisition cost structure. In this section, we dis-
cuss alternate settings for the AFA task.

Lizotte et al. [9] study AFA in thebudgeted learningscenario, in
which the total cost to be spent towards acquisitions is determined
a priori and the task is to identify the best set of acquisitions for this
cost. In contrast, our setting aims to enable the user to stop the ac-
quisition process at any time, and as such theorder in which acqui-
sitions are made is important. Given this criterion, we attempt to se-
lect the next acquisition that will result in the most accurate model
per unit cost. Lizotte et al. also assume that feature values are in-
dependent given the class, and as such consider queries of the form
“Give me the value of featurej for any instance in classk.” How-
ever, our approach evaluates feature-value acquisitions of specific
instances, which allows us to 1) incorporate feature-value costs that
vary per instance; and 2) to better estimate the expected value of
an acquisition by capturing improvements from better modeling of
feature interactions. Note that a set of features may exhibit dif-
ferent interactions for different instances, in which case evaluating
potential acquisitions for individual instances is critical.

In this paper, we explored the use of theError Samplingpolicy
designed for theinstance-completionsetting, in which all missing
feature values are acquired for a selected training instance [17, 10].
Sampled Expected Utilityselects individual features, and hence can
be also employed in the instance-completion setting, e.g., by se-
lecting the instance with the highest sum of utilities of individual
feature-value acquisitions.

Some work oncost sensitivelearning [15] has addressed the is-
sue of inducing economical classifiers when there are costs asso-
ciated with obtaining feature values. However, most of this work
assumes that thetraining data are complete and focuses on learning
classifiers that minimize the cost of classifying incompletetest in-
stances. An exception, CS-ID3 [13], also attempts to minimize the
cost of acquiring features during training; however, it processes ex-
amples incrementally and can only request additional information
for the current training instance. CS-ID3 uses a simple greedy strat-
egy that requests the value of the cheapest unknown feature when
the existing hypothesis is unable to correctly classify the current



instance. It does not actively select the most useful information to
acquire from a pool of incomplete training examples. The LAC*
algorithm [5] also addresses the issue of economical feature acqui-
sition during both training and testing; however, it also adopts a
strategy that does not actively select the most informative data to
collect during training. Rather, LAC* simply requests complete in-
formation on a random sample of instances in repeatedexploration
phases that are intermixed withexploitationphases that use the cur-
rent learned classifier to economically classify instances.

Traditional active learning[2, 4] assumes access to unlabeled
instances with complete feature data and attempts to select the most
useful examples for which to acquire class labels. Active feature-
value acquisition is a complementary problem that assumes labeled
data with incomplete feature data and attempts to select the most
useful additional feature values to acquire.

5. LIMITATIONS AND FUTURE WORK
In Sampled Expected Utilitywe used a random sample of the

pool of available queries to make theExpected Utilityestimation
feasible; and inExpected Utility-ES, we explored the possibility of
limiting the set of candidate queries to only potentially informa-
tive instances. Alternatively, we can restrict the set of candidate
queries to only the most informative features. A subset of such fea-
tures could be picked using afeature selectiontechnique that can
capture the interactions among feature values, such as the wrapper
approach of John et al. [6].

The performance ofExpected Utilityrelies on having good esti-
mates of the feature-value distributions and of the improvement in
model accuracy for each potential acquisition. ThusExpected Util-
ity is likely to benefit from improving upon the methods we applied
to perform these estimations. For example, we could use proba-
bility estimation methods that better approximate the feature-value
distributions, specifically when there are many missing values.

TheExpected Utilityframework allows us to consider model per-
formance objectives other than accuracy. For example, when the
benefits from making different accurate predictions and the error
costs are specified,Expected Utilitycan be applied to identify ac-
quisitions that result in the highest growth in benefits per unit cost.
Experimenting with such alternate measures of model performance
is an avenue for future work.

Our current study was restricted to datasets that are composed
of only nominal features. Since many interesting domains include
both numeric and nominal features, we would like to extend this
study to datasets which also have numeric features. We could apply
our currentExpected Utilitymethod after converting the numeric
features to nominal features using a discretization technique, as in
[3].

6. CONCLUSION
In this paper, we propose an expected utility approach to active

feature-value acquisition, that obtains feature values based on the
estimated expected improvement in model accuracy per unit cost.
We demonstrate how this computationally intensive method can be
made significantly faster, without much loss in performance, by
constraining the search to a sub-sample of potential feature-value
acquisitions. Experiments with uniform feature costs show that this
Sampled Expected Utilityapproach consistently builds more accu-
rate models than random sampling for the same number of feature-
value acquisitions, and exhibits consistent performances across do-
mains as compared to policies employing an instance-based rank-
ing of features. Additional experiments on artificial datasets with
different cost structures demonstrate that for the same cost,Sam-

pled Expected Utilitybuilds more accurate classifiers than the cost-
agnostic random feature acquisition approach. Its performance is
also more consistent than that of a simple cost-sensitive method
which acquires feature values in order of increasing cost.
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