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ABSTRACT information that can be obtained at a low cost. In contrast, acquir-

In many classification tasks training data have missing feature val- ing Qiagr_wstic test results fr(_)m difrer_ent health-cz_are prov_iders can
ues that can be acquired at a cost. For building accurate predictiveb_e 5|gn|f|cant_ly MOre Expensive and tlme-cor!sumlng. Various solu-
models, acquiring all missing values is often prohibitively expen- tlor)s are ayallable for learning models from |.ncomplete (.1ata, such
sive or unnecessary, while acquiring a random subset of feature s imputation methods [8], and Iearners_t_hat ignore missing feature
values may not be most effective. The goabofive feature-value values such as the Naive Bayes classifier. However, these solu-

acquisitionis to incrementally select feature values that are most 110ns almostalways undermine model performance as compared to

cost-effective for improving the model's accuracy. We present two _that of a model induced from complete information. Since obtain-

policies, Sampled Expected Utilitand Expected Utility-ESthat ing all missing valueg may bg prohibitively expensive, it is Qesir-
acquire feature values for inducing a classification model based on able to 'de”t'fY what information woul_d be most cost-effe_ctlve o
an estimation of the expected improvement in model accuracy peracqwre. In this paper we address this generalized version of the
unit cost. A comparison of the two policies to each other and to active feature-value acquisitiqAFA) task for classifier induction
alternative policies demonstrate tiaampled Expected Utilitis [10]: given a model built on incomplete_ training da_ta, Se'?Ct feat_ure
preferable as it effectively reduces the cost of producing a model Values that would be most cost-effective to acquire for improving

of a desired accuracy and exhibits a consistent performance acroséhe model's accuracy. The problem 9f featu_re-va_lue acquisition is
domains. different from traditional active learning [2] in which class labels

rather than feature values are missing and are costly to acquire.
Unlike prior work [9], we study AFA in a setting where the to-

General Terms tal cost to be spent on acquisitions is not determiagxfiori, but

Algorithms rather can be determined on-line based on the model’s performance
as learning progresses. This setting is motivated by the inherent un-
Keywords certainty regarding the tradeoff between costs and improvement in

) ) - . . . model accuracy. An incremental spending strategy enables a de-
machine learning, data mining, active learning, cost-sensitive leam- ¢ision maker to re-evaluate the desirability of further expenditures

ing by incrementally exploring the performance curve resulting from a
series of acquisition decisions. For example, one may choose not
1. INTRODUCTION to acquire additional information if the current model accuracy is

In many predictive modeling problems, feature values for train- satisfactory, or if additional information is unlikely to provide a sig-

ing data are missing, but can be acquired at a cost. Often the costificant improvement in the model. We propose a general setting

of acquiring the missing information varies according to the nature for AFA that specifies an incremental acquisition schedule. Given

of the information or of the particular instance for which informa- the current model, an AFA strategy identifies feature-value acqui-
tion is missing. Consider, for example, patient data used to induce sitions that are estimated to be most cost-effective with respect to

a model to predict whether or not a treatment will be effective for model accuracy.

a given patient. Some patient data may have missing demographic We present a solution to the AFA task that ranks alternative feature-
value acquisitions based on an estimation of the expected improve-
ment in model performance per unit cost. Our approach is gen-
eral, i.e., it can be applied to select acquisitions for any learner,
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potential acquisitions with respect to their contribution to learning 2.2 Expected Utility Estimation

per unit cost. Specific solutions to the AFA problem differ based on the method
used to score and rank queries. In our approach we provide scores
2 TASK DEFINITION AND ALGORITHM based on thexpected utilityof each query (defined below). For

now we assume all features are nominal, i.e., they can take on val-
. s ues from a finite set of values. Assume featyreas K distinct
2.1 Active Feature-value Acquisition valuesVi, ..., V. The expected utility of the queny; ; can be
Assume a classifier induction problem where each instance is computed as:
represented with feature values and a class label. A training set
of m instances can be represented by the mafitjxwhere F; ; K
corresponds to the value of thieh feature of the-th instance. Ini- E(qi;) = Z P(Fi; = Vi)U(Fij = Vi) (Y
tially, the class labely;, of each instance is known, and the matrix k=1

F'is incomplete, i.e., it contains missing values. The learner may whereP(F,; = V) is the probability that; ; has the valud/,

acquire the value of’;; at the costC; ;. We usey; ; to refer to andi/(F; ; = Vi) is the utility of knowing that the feature value
the query for the value of; ;. The general task of active feature- F; j is Vi, given by:

value acquisition is the selection of these instance-feature queries

that will result in building the most accurate model (classifier) at A(F, Foy = Vi) — A(F)

the lowest cost. The framework for the generalized AFA task is U(F;; = Vi) = b — Tk (2

presented in Algorithn??ach step the learner builds a classifier Cij

trained on the current data, and scores the available queries basedhere A(F) is the accuracy of the current classifigt{ F, F; ; =

on this classifier. The query with the highest score is selected andV/},) is the accuracy of the classifier trained BrassumingF; ; =

the feature value corresponding to this query is acquired. The train- V;; andC; ; is the cost of acquiring”; ;. For this paper, we de-

ing data is appropriately updated and this process is repeated untilfine the utility of an acquisition in terms of improvement in model

some stopping criterion is met, e.g. a desirable model accuracy hasaccuracy per unit cost. Depending on the objective of learning a

been obtained. To reduce computation costs in our experiments, weclassifier, alternate utility functions could be used.

acquire queries in fixed-size batches at each iteration. If we were to plot a graph of accuracy versus model cost after
every iteration of AFA, ouExpected Utilityapproach would corre-

Algorithm 1 General Active Feature-value Acquisition Framework SPond to selecting the query that is expected to result in the largest

slope for the next iteration. If all feature costs are equal, this corre-

sponds to selecting the query that would result in the classifier with

the highest expected accuracy.

Since the true distribution of each missing feature value is un-
known, we estimaté”(F; ; = Vi) in Eq. 1 using a learner that
produces class probability estimates. For each fegtuse train a
classifier)M;, using this feature as the target variable and all other
features along with the class as the predictors. When evaluating the
1. Initialize TotalCost to cost of F queryg;,;, the classifiedV/; is applied to instancéto produce the
2. Initialize set of possible querie® to {¢;; : i = estimateP’(F7,; = Vi).

1,....m:j = 1,...,n; such thatf,; is missing _ In Eq. 2, the true values oll(._) are also unknov_vn. However, _

since the class labels for the training data are available at selection

Given:

F —initial (incomplete) instance-feature matrix

Y ={y; : ¢ =1,...,m} —class labels for all instances
T —training set=< F,Y >

L — base learning algorithm

b — size of query batch

C — cost matrix for all instance-feature pairs

3. Repeat until stopping criterion is met time we can estimatel(F) and A(F, F;; = Vi) based on the
4, Generate a classifieV/ = L(T) training set accuracy. In our experiments, we used 0-1 loss to mea-
5 Vgi,; € Q computescore(M, ¢, ;, L, T) sure the accuracy of the classifiers. However, other measures such
6 Select a subsét of b queries with the as class entropy or GINI index could also be used [9]. In our pre-
highestscore liminary studies we did not observe a consistent advantage to using
7. Vgi; €S, entropy.
8. Acquire values fof; ; When theExpected Utilitymethod described here is applied to
9. TotalCost = TotalCost + Ci learn a Naive Bayes classifier and feature costs are assumed to be
equal, it is similar to thgreedy loss reductioapproach presented
10. Removes from Q in [9]. Similar approaches to expected utility estimation have also
11. ReturnM = £L(T) been used in the related task of traditional active learning [12, 7,

14].
Computing the estimated expectatiE(L) for queryg;,; requires
Alternate problem settings of feature-value acquisition have been training one classifier for each possible value of featureSe-
explored in the literature. In particular, Melville et al. [10] studied lecting the best fromall available queries would require explor-
a specialized version of the AFA problem addressed here, whereing, in the worst casemn queries. So exhaustively selecting a
all the missing feature values for an instance are acquired at oncequery that maximizes the expected utility is computationally very
and an acquisition policy selects the instances for which acquiring intensive and is infeasible for most interesting problems. We make
all missing values would result in the most accurate classifier. Li- this exploration tractable by reducing the search space to a ran-
zotte et al. [9] studied thbudgeted learningcenario, in which dom sub-sample of the available queries. We refer to this approach
the total cost (budget) to be spent on feature-value acquisitions isas Sampled Expected Utility This method takes a parameter
determinedh priori. We discuss these and other related researchin (1 < o < %) which controls the complexity of the search. To
more detail in the related work section. select a batch df queries, first a random sub-samplendfqueries




is selected from the available pool, and then the expected utility of We compare all the proposed methodsandom feature acqui-
each query in this sub-sample is evaluated. The value adn be sition, which selects queries uniformly at random to provide a rep-
set depending on the amount of time the user is willing to spend on resentative sample of missing values. For Ssmnpled Expected
this process. One can expect a tradeoff between the amount of timeUtility and Expected Utility-ESve set the exploration parameter
spent and the effectiveness of the selection scheme. « to 10. Given the computational complexity Bkpected Utility

. it is not feasible to run the exhausti#xpected Utilityapproach
2.3 Instance-based Active Feature-value Ac- on all datasets. However, we did r@xpected Utilityon thevote

quisition dataset. For all methods, as a base learner we used J48 decision-
In Sampled Expected Utilitye use a random sample of the pool ~ tree induction, which is the Weka [16] implementation of C4.5 [11].
of available queries to make ttxpected Utilityestimation feasi-  Laplace smoothing was used with J48 to improve class probability

ble. However, it may be possible to improve performance by apply- estimates.
ing Expected Utilityestimation to a sample of queries that is better ~ The performance of each acquisition scheme was averaged over
than a random samp|e. One approach could be to first |dent|fy po- 10 runs of 10-fold cross-validation. In each fold of cross-validation,
tentially informativeinstances and then select candidate queries We generated learning curves in the following fashion. Initially,
only from these instances. In previous work we studied a special- the learner is given a random sample of feature values, i.e. the
ized version of AFA, wherall the missing feature values for an  instance-feature matrix is partially filled. The remaining instance-
instance are acquired at once and an acquisition policy selects thefeature pairs are used to initialize the pool of available queries. At
instances for which acquiring all missing values would resultin the €ach iteration, the system selects a batch of queries, and the val-
most accurate classifier[10]. The method proposed in this work, Ues for these features are acquired. This process is repeated until a
Error Sampling(ES), can be readily used to identify informative ~ desired number of feature values is acquired. Classification accu-
instances from which we can then choose candidate quéhies. racy is measured after each batch acquisition in order to generate
Samplingorders incomplete instances in terms of potential infor- @ learning curve. One syster)(is considered to bsignificantly
mativeness in the following way. It ranks instances that have been better than another systens) if the average accuracy across the
misclassified by the current model as the most informative. Next, Points on the learning curve ofis higher than that oB according
it ranks correctly classified instances in order of decreasing uncer-t0 a paired t-testy( < 0.05). As in [10], the test data contains only
tainty in the model's predictionError Samplingrequires building ~ complete instances, since we want to approximate the true general-
only one model at each step of AFA, and hence is not too com- ization accuracy of the constructed model given complete data for a
putationally intensive to use in place of random sampling in our testinstance. For each dataset, we selected the initial random sam-
Sampled Expected Utilitgpproach. We call this new approach Ple size to be such that the induced model performed at least better
Expected Utility-ESin which Error Samplingis used to rank in- than majority class prediction. The batch size for the queries was
stances from which the firstb missing instance-feature pairs are  Selected based on the difficulty of the dataset. For problems that
selected as candidate queries. Whgiethe desired batch size and ~ were harder to learn, we acquired a larger number of feature-values
« is the exploration parameter. and consequently used larger batch sizes.

ThoughError Samplingwas designed for selecting instances, it
can also be modified to acquire single feature values in our general3.2 Results
AFA setting. The method ranks instances for acquisition, but does ;s results are presented in Figure 1. For all dataSampled

not provide a mechanism for selecting the most informative fea- Expected Utilitybuilds more accurate models than random sam-

tures for a given instance. We therefore examine a versiérof pling for any given number of feature acquisitions. These results
Samplingn which instances are ordered using Ereor Sampling demonstrate that the estimation of the expected improvement in
ranking, and the first missing feature values are selected for ac- {he current model's accuracy enables effective ranking of potential
quisition. queries. Consequentlfampled Expected Utilitgelects queries
that on average are more informative for the learner than an av-
3. EXPERIMENTAL EVALUATION erage query selected at random. The diffe_ren'ceg_in performa_nce
between these two systems on all datasets is significant, as defined
31 Methodology above. Since&sampled Expected Utilitwas proposed in order to

) - reduce the computational costs of our origiBapected Utilityap-

We begin by evaluating our proposed approaches on four datasetgyroach, we also examined the performance and computational time
from the UCI repository [1], the details of which are presented in of the exhaustiv&xpected Utilityalgorithm forvote We computed
Table 1. For the sake of simplicity, we selected datasets that havethe average time it took to select queries in each iteration for each
Only nominal features. In the future work SeCthn, we describe how of the methods. These t|m|ng results are summarized in Table 2.
we can extend our approach to handle numeric features. None ofThe results show that constraining the searcEipected Utility
the UCI datasets provide feature acquisition costs —in our initial ex- by random sampling (cError Sampling can significantly reduce
periments we simply assume all costs are equal. Later, we presenthe selection time (by two orders of magnitude in this case) without
additional experiments with different cost structures. a significant loss in accuracy.

While Error Samplingcan rank acquisitions of complete instances
effectively, it does not consider the value of individual feature val-

Table 1: Summary of Data Sets ues. Despite this, we observed tBator Samplingperforms quite
Name | Instances| Features Classes| well. In particular, it often performs significantly better than ran-
vote 435 16 2 dom sampling and it sometimes performs better tRampled Ex-
car 1727 6 4 pected Utility However, the performance Bfror Samplingin this
lymph 148 18 4 general setting of AFA is inconsistent, as it may perform signifi-
audio 226 69 24 cantly worse than random selection, as is seen olythghdataset.

The performance dExpected Utility-EShows that the method
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Figure 1: Comparing alternative active feature-value acquisitionapproaches.
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Table 2: Average selection times orote.
AFA Method Selection time (msec
Random 3.8
Expected Utility 3.77 x 10°
Sampled Expected Utility 6.64 x 10°
Error Sampling 8.04
Expected Utility-ES 7.44 x 103

can effectively benefit from each of its components. WEemor
Samplingperforms better than random sampling, the acquisitions
made byExpected Utility-ESesult in better models than those in-
duced withSampled Expected UtilityThe vote dataset seems to
be an exception, in whicError Samplingcan at times perform
even better thaBxpected Utility so the combineBxpected Utility-
ESmethod does not outperforBrror Samplinghere. Error Sam-
pling’s inconsistent performance can also undermineBkgected
Utility-ES acquisition policy, so that whelarror Samplingfails to
improve upon random acquisitionExpected Utility-ESroduces
inferior models than those induced wilampled Expected Utility
These results suggest that the us&wbr Samplingin our current
AFA setting is a promising direction for future work, but is de-

pendent on improving thError Samplingstrategy such thdrror
Samplingconsistently performs better than random selection. Note
that, in theinstance-completiosetting of AFA for whichError
Samplingwas originally designed, it always performs better than
random [10].

In summaryExpected Utility-E®ften exhibits superior perfor-
mance with respect t&ampled Expected Utilitgnd random se-
lection. However, it is susceptible to the inconsistent performance
of Error Samplingand thus may potentially perform worse than
random sampling. On the other haisampled Expected Utiliggx-
hibits consistent improvements over random sampling on all datasets.

3.3 Artificial Data and Feature Costs

As no feature-acquisition costs are provided for the domains we
employ here, we initially assumed uniform feature costs. In ad-
dition, some of the features in the data are equally discriminative
so that there may be little value in selecting between them. In the
extreme case, where feature costs are uniform and all features pro-
vide equal information about the target concept, random sampling
is likely to be a very effective strategy. In order to make the prob-
lem setting more challenging, we constructed artificial data in the
following way. We took thdymphdataset, which is composed of
18 features, and added an equal number of binary features with
randomly-selected values, so as to provide no information about
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Figure 2: Comparing different algorithms on artificial data under dif ferent cost structures

the class variable. In addition, we experimented with different cost the first approaches designed for the general problem of incremen-
structures. For the sake of simplicity, instead of having a cost as- tally ranking and selecting feature values for inducing any classifier
sociated with each instance-feature pair, we assume that the costinder a general acquisition cost structure. In this section, we dis-
of acquiring a particular feature is the same irrespective of the in- cuss alternate settings for the AFA task.

stance. With each feature, we associate a cost selected uniformly Lizotte et al. [9] study AFA in théudgeted learningcenario, in

at random from 1 to 100. Experiments were run as before for 5 which the total cost to be spent towards acquisitions is determined
different assignments of feature costs. Along with recording the a priori and the task is to identify the best set of acquisitions for this
accuracy after each batch acquisition of queries, we also recordcost. In contrast, our setting aims to enable the user to stop the ac-
the current model cost based on the cost of the features acquiredquisition process at any time, and as suchdiwer in which acqui-
Since random sampling does not take feature costs into account,sitions are made is important. Given this criterion, we attempt to se-
we also compar&ampled Expected Utilitwith a simple baseline lect the next acquisition that will result in the most accurate model
strategy that incorporates feature costs. This approach, which weper unit cost. Lizotte et al. also assume that feature values are in-
call Cheapest-firstselects feature values for acquisition in order dependent given the class, and as such consider queries of the form

of increasing costs. Given the inconsistent performancderafr “Give me the value of featurg for any instance in clags.” How-
Samplingand Expected Utility-ESwe do not apply them to these  ever, our approach evaluates feature-value acquisitions of specific
datasets. instances, which allows us to 1) incorporate feature-value costs that

Figure 2 presents plots of accuracy versus model cost for two vary per instance; and 2) to better estimate the expected value of
representative cost structures. The results for all randomly askigne an acquisition by capturing improvements from better modeling of
costs structures show that for the same c8stmpled Expected  feature interactions. Note that a set of features may exhibit dif-
Utility consistently builds more accurate models than random sam- ferent interactions for different instances, in which case evaluating
pling. The differences in performance between these two systems ispotential acquisitions for individual instances is critical.
more substantial than those observed for the UCI datasets with uni- In this paper, we explored the use of tBgor Samplingpolicy

form costs. In contrast, the performance @iveapest-firsis quite designed for thénstance-completiosetting, in which all missing
varied for different cost assignments. When highly informative fea- feature values are acquired for a selected training instance [17, 10].
tures are assigned low cos@heapest-firstan perform quite well Sampled Expected Utiliselects individual features, and hence can
(Figure 2(a)). Since the underlying assumption of @teeapest- be also employed in the instance-completion setting, e.g., by se-
first strategy, that the cheapest features are also informative, oftenlecting the instance with the highest sum of utilities of individual
holds in this case, it sometime performs better tSampled Ex- feature-value acquisitions.

pected Utility which imperfectly estimates the expected improve- Some work orcost sensitivéearning [15] has addressed the is-
ment in accuracy from each acquisition. However, when many in- sue of inducing economical classifiers when there are costs asso-
expensive features are also uninformati@eeapest-firsperforms ciated with obtaining feature values. However, most of this work
worse than a random acquisition policy (Figure 2(I8dmpled Ex- assumes that thteaining data are complete and focuses on learning
pected Utility however, estimates the tradeoff between cost and classifiers that minimize the cost of classifying incompletin-
expected improvement in accuracy, and although the estimation isstances. An exception, CS-ID3 [13], also attempts to minimize the
clearly imperfect, it consistently selects better queries than random cost of acquiring features during training; however, it processes ex

acquisitions for all cost structures. amples incrementally and can only request additional information
for the current training instance. CS-ID3 uses a simple greedy strat-
4. RELATED WORK egy that requests the value of the cheapest unknown feature when

To the best of our knowledge, the methods we propose here arethe existing hypothesis is unable to correctly classify the current



instance. It does not actively select the most useful information to pled Expected Utilityouilds more accurate classifiers than the cost-
acquire from a pool of incomplete training examples. The LAC* agnostic random feature acquisition approach. Its performance is
algorithm [5] also addresses the issue of economical feature acqui-also more consistent than that of a simple cost-sensitive method
sition during both training and testing; however, it also adopts a which acquires feature values in order of increasing cost.
strategy that does not actively select the most informative data to
collect during training. Rather, LAC* simply requests complete in-
formation on a random sample of instances in repeatptbration ACknOWIedgments
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