
Copyright

by

Sowmya Ramachandran

1998

Theory Re�nement of Bayesian Networks with Hidden Variables

by

Sowmya Ramachandran, B.Tech., M.S.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Ful�llment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

May 1998

Theory Re�nement of Bayesian Networks with Hidden Variables

Approved by
Dissertation Committee:

To my grandfather

Acknowledgments

Getting a doctorate is an exciting, challenging, and at times di�cult process. I have been for-

tunate to have an extensive network of family, friends, and professional colleagues to support me

throughout this process. I am grateful to Ray Mooney for supervising my research e�orts, and all

the invaluable advice he has given me through the years on technical matters and on presentation

skills. I am also grateful to him for supporting me through the following grants: NSF grant number

IRI-9704943, and NSF grant number IRI-9310819. My research was also supported by teaching

assistantships in the Department of Computer Sciences. I would also like to thank Ben Kuipers

for �nancial support and advice on what research is all about. I would like to thank Greg Provan,

Risto Miikkulainen, Joydeep Ghosh, and Ben Kuipers for serving on my committee and giving

me insightful feedback on my research. I am also grateful to Haym Hirsh for all the support and

encouragement through the years.

I am very grateful to Bobby Blumofe, Lorenzo Alvisi, Mike Dahlin, Calvin Lin and other

folks at the LESS lab for letting me use their computing facilities for research. The multiprocessor

computing facilities in this lab were made available through a generous equipment donation from

Sun Microsystems. But for these machines, I would still be a graduate student.

My tenure as a graduate student was enlivened and enriched by all my fellow graduate

students, who have shown me that there is more to life than graduate school. I would like to

thank James Lester, Charles Callaway, Tim Collins, and Bradley Richards for all the juggling and

dessert, to Je� Rickel, and Siddarth Subramanian for enlivening our graduate student lives with

pranks and spiders. It has been very nice sharing an o�ce with Cindi Thompson and Mike Hewett,

and knowing that I can always count on them for support, friendship, and proof-reading. Thanks

also to Marty and Coquis Mayberry for Pictionary, Scrabble, and several interesting discussions.

I am also very grateful to Ajita John, Gita Mani, Ashok Balivada, and Tom Lee for being such

good friends. Other students who have supported in my research include Je� Mahoney, John Zelle,

Paul Ba�es, Rich Mallory, Tara Estlin, Dave Moriarty, Mary Elaine Cali�, Shailesh Kumar and

many others. I would also like to take this opportunity to remember Bert Kay, who passed away

recently, and his contributions to my life as a graduate student. Bert was a wonderful role model,

a patient teacher, and a very kind friend. I am very grateful to have had a chance to know him.

I am especially thankful to Rick Froom for standing by me these last few years, for showing me a

lighter and brighter side of life, and for all the support and encouragement.

Finally, I would like to thank my parents and grandparents for their patience and under-

standing, and for providing me with a place to call home. Without their love and support, I would

not be where I am today. Finally, I would like to thank my sister and her two beautiful children

for making me laugh and reminding me that life is delightful.

v

Sowmya Ramachandran

The University of Texas at Austin

May 1998

vi

Theory Re�nement of Bayesian Networks with Hidden Variables

Publication No.

Sowmya Ramachandran, Ph.D.

The University of Texas at Austin, 1998

Supervisor: Raymond J. Mooney

Research in theory re�nement has shown that biasing a learner with initial, approximately correct

knowledge produces more accurate results than learning from data alone. While techniques have

been developed to revise logical and connectionist representations, little has been done to revise

probabilistic representations.

Bayesian networks are well-established as a sound formalism for representing and reasoning

with probabilistic knowledge, and are widely used. There has been a growing interest in the problem

of learning Bayesian networks from data. However, there is no existing technique for learning or

revising Bayesian networks with hidden variables (i.e. variables not represented in the data), that

has been shown to be e�cient, e�ective, and scalable through evaluation on real data. The few

techniques that exist for revising such networks perform a blind search through a large space of

revisions, and are therefore computationally expensive.

This dissertation presents Banner, a technique for using data to revise a given Bayesian

network with Noisy-Or and Noisy-And nodes, to improve its classi�cation accuracy. Additionally,

the initial network can be derived directly from a logical theory expressed as propositional Horn-

clause rules. Banner can revise networks with hidden variables, and add hidden variables when

necessary. Unlike previous approaches to this problem, Banner employs mechanisms similar to

those used in logical theory re�nement techniques for using the data to focus the search for e�ective

modi�cations to the network. It can also be used to learn networks with hidden variables from

data alone. We also introduce Banner-Pr, a technique for revising the parameters of a Bayesian

network with Noisy-Or/And nodes, that directly exploits the computational e�ciency a�orded by

these models.

Experiments on several real-world learning problems in domains such as molecular biology

and intelligent tutoring systems demonstrate that Banner can e�ectively and e�ciently revise

networks to signi�cantly improve their accuracies, and thus learn highly accurate classi�ers. Com-

parisons with the Naive Bayes algorithm show that using the theory re�nement approach gives

Banner a substantial edge over learning from data alone. We also show that Banner-Pr con-

verges faster and produces more accurate classi�ers than an existing algorithm for learning the

parameters of a network.

vii

Contents

Acknowledgments v

Abstract vii

Chapter 1 Introduction 1

Chapter 2 Background 7

2.1 Bayesian Networks: An Overview . 7

2.1.1 Polytree Vs. Loops . 9

2.1.2 Noisy-Or and Noisy-And Models . 9

2.2 Multi-layered Feed-Forward Neural Networks . 13

2.3 Theory Re�nement . 15

2.3.1 Logic-Based Approaches . 16

2.3.2 Hybrid Approaches . 18

2.4 Naive Bayes . 20

2.5 Learning Bayesian Networks . 22

Chapter 3 Banner: An Overview 27

3.1 Overview of the Algorithm . 27

3.2 Limitations of Banner, Banner-Pr and C-APN 28

3.3 Converting from a Logical Theory to a Bayesian Network 31

Chapter 4 Parameter Revision: Learning Conditional Probabilities 33

4.1 Banner-Pr . 33

4.1.1 Overview of Banner-Pr . 33

4.1.2 Backpropagation . 34

4.1.3 Stopping Criteria . 35

4.2 APN and C-APN . 35

4.3 Experimental Evaluation . 38

4.3.1 DNA Promoter Recognition . 38

Chapter 5 Structure Revision 44

5.1 Augmenting the Network with Leak Nodes . 48

5.2 Blame Assignment . 48

5.3 Revision Operators . 51

viii

5.4 Choosing a Parent to Add . 52

5.5 Stopping Criteria . 54

5.6 Variants of the Algorithm . 56

5.6.1 As an Inductive Learner . 56

5.6.2 Learning Networks with Leak Nodes . 56

Chapter 6 Empirical Evaluation 58

6.1 Experimental Methodology . 60

6.2 DNA Promoter Recognition . 61

6.2.1 Experiments with the 106-example Data Set 62

6.2.2 Experiments with the 468-example Data Set 66

6.3 DNA Splice-Junction . 67

6.4 C++ Tutor . 70

6.5 Chess End-games: Induction from Many Examples 75

6.6 Brain Disorders: Revising an Abductive Theory . 78

6.7 Evaluation of the Structure Revision Component . 81

6.7.1 Deleting Intermediate Concept Minus 35 . 82

6.7.2 Deleting Intermediate Concept Contact . 85

6.8 Summary of Results . 86

Chapter 7 Related Work 91

7.1 Learning Bayesian Networks . 91

7.1.1 Parameter Learning . 92

7.1.2 Structure Learning . 93

7.2 Theory Re�nement . 95

7.2.1 Logic-Based Approaches . 95

7.2.2 Hybrid Approaches . 96

Chapter 8 Future Work 97

8.1 Experimental Study . 97

8.2 Extensions to Banner-Pr . 98

8.3 Extension to General Nodes . 99

8.4 Integrating other Bayesian Techniques . 99

8.5 Extension to Multi-valued Variables . 100

Chapter 9 Conclusion 101

Appendix A Derivation of the Gradients for Banner-Pr 105

A.1 Gradient for a Noisy-Or Node . 105

Appendix B Initial Domain Theories 109

B.1 DNA Promoter Recognition . 109

B.1.1 Input Features . 109

B.1.2 Categories . 109

B.1.3 Domain Theory . 109

ix

B.2 Splice Junction Recognition . 110

B.2.1 Input Features . 110

B.2.2 Categories . 110

B.2.3 Domain Theory . 110

B.3 C++ Tutor . 112

B.3.1 Input Features . 112

B.3.2 Categories . 112

B.3.3 Domain Theory . 112

B.4 Brain Disorders . 114

B.4.1 Input Features . 114

B.4.2 Categories . 115

B.4.3 Domain Theory . 115

Bibliography 121

Vita 129

x

Chapter 1

Introduction

Theory re�nement, or theory revision, is an area of research that has grown out of work on inductive

and explanation-based learning. It is based on the idea that, when only limited data is available,

biasing an inductive learner with prior knowledge can improve learning by focusing the search

space of possible hypotheses. The more complex the domain, the more the advantage of such a

bias. Thus, theory re�nement systems assume that the learner has an initial imperfect knowledge

base (usually obtained from a domain expert) which is then inductively revised to �t the data. Many

techniques have been developed for revising knowledge bases represented in various languages such

as propositional Horn-clause logic (Ourston & Mooney, 1994; Koppel, Feldman, & Segre, 1994)

and �rst-order Horn-clause logic (Cohen, 1992; Wogulis & Pazzani, 1993; Wogulis, 1994; Richards

& Mooney, 1995; Brunk, 1996). Even within the connectionist framework there are techniques,

such as Kbann (Towell & Shavlik, 1994; Opitz & Shavlik, 1993), that explicitly bias a neural

network with an initial theory. Experiments on real-world data have demonstrated that revising

an approximate domain theory produces more accurate results than learning from training data

alone (Ourston & Mooney, 1990; Thompson, Langley, & Iba, 1991; Towell, Shavlik, & Noordewier,

1990).

Although existing techniques for revising theories di�er in their approaches, they have many

things in common. One such common feature is that most of them are geared towards learning

theories for the speci�c task of classi�cation. They use the classi�cation accuracy of the theory

as an indication of the correctness of the current theory, and make revisions to a theory only if

it misclassi�es some of the data. A second, very important feature that they share in common

is that, rather than searching blindly through the entire space of possible revisions, they analyse

the classi�cation errors resulting from the theory, and use this information to restrict the space of

possible revisions to be considered. These features combine to make these algorithms directed and,

therefore, e�cient.

Research in theory re�nement has, however, been limited to logical and connectionist rep-

resentations. Little has been done to address the problem of revising probabilistic knowledge.

Intelligent systems need mechanisms to represent and reason with uncertain knowledge. Uncer-

tainty in a domain or a task may arise due to incomplete knowledge about the state of the world

or due to true randomness in the domain. Examples of tasks involving uncertainty include medical

diagnosis, and plan recognition, to name but a few. Thus, we need languages for representing

uncertainty. It is also desirable to have techniques for learning and revising knowledge represented

1

in these languages.

Several approaches have been developed for representing and reasoning with uncertainty.

These include default reasoning (Reiter, 1980), fuzzy logic (Zadeh, 1965, 1981), certainty fac-

tors (Buchanan & Shortli�e, 1984), Bayesian networks (Pearl, 1988), and Dempster-Shafer cal-

culus (Dempster, 1968; Shafer, 1976). Of these, default reasoning uses a symbolic representation

of uncertainty, while the rest use numeric representations. The Bayesian network approach stands

out as the only one that is directly grounded in probability theory, which has long been a widely ac-

cepted formalism for representing uncertainty. The rest of the approaches invent their own calculi,

which makes their semantics less clearly de�ned.

Among the numeric representations, certainty factors have played a signi�cant role in the

history of uncertain reasoning. The use of certainty factors is exempli�ed in MYCIN, an expert

system to recommend treatment for bacterial infection (Shortli�e & Buchanan, 1975; Buchanan

& Shortli�e, 1984). MYCIN is a rule-based system, where the rules are augmented with certainty

factors or numbers that indicate their credibility. The certainty of a conclusion of a rule is computed

as a function of the certainty of the premises and the credibility of the rule. Although they have

been successfully applied in a number of domains, the rules for combining certainty factors are

ad hoc and provide no mathematical guarantees, unless unrealistic independence assumptions are

made (Heckerman, 1986).

Bayesian networks (Pearl, 1988) represent uncertainties as probabilities of events in the

world, and provide ways for representing dependencies between variables explicitly. A Bayesian

network is a directed acyclic graph (DAG), where the nodes are random variables representing

events, and the links represent dependencies between the variables. Associated with the DAG are

numeric parameters that de�ne the dependencies precisely. A variety of techniques for reasoning

with such networks have been developed that use theoretically sound mechanisms for combining

probabilities, and accounting for dependencies. Their strong grounding in probability theory makes

Bayesian networks a particularly attractive formalism for representing knowledge. Many real-

world applications, especially in medical diagnosis, now use this representation (Pradhan, Provan,

Middleton, & Henrion, 1994; Burnell & Horovitz, 1995; Fung & Del Favero, 1995). However,

like all numerical representation schemes, Bayesian networks su�er from the knowledge acquisition

problem. Not only is it di�cult to formulate the underlying structure of the DAG, it is especially

di�cult to specify the dependencies between the variables in precise numeric terms. Therefore, it

would be useful to have e�cient techniques that learn such networks from data. Not surprisingly,

there is now a growing interest in this problem.

The task of learning a Bayesian network can be divided into two subtasks: one of learning

the DAG structure of the network, and the second of determining the parameters. Within the

general framework of inducing Bayesian networks, we can envision the following scenarios.

1. Known structure, complete data: In this scenario, the structure of the network is given and

assumed to be correct and the data includes observations of all the variables in the network.

The task here is to learn the parameters of the network from data.

2. Known structure, incomplete data: Here, the structure of the network is given and assumed to

be correct. The data, however, does not include observations of every variable in the network.

This includes situations where some variables are missing values for part of the data, and

2

situations where the values of some variables are never speci�ed in the data. Variables whose

values are never included in the data are called hidden variables. Again, the task is to induce

the parameters of the network. However, the task is more complicated in this case due to the

presence of hidden variables and variables with missing values.

3. Unknown structure, complete data: In this case, neither the structure, nor the parameters of

the network are known. We can, however, assume that the data is complete, and there are

no hidden variables. The task here is to learn both the structure and the parameters of the

network.

4. Unknown structure, incomplete data: This is the most general learning scenario where the

structure of the network is unknown and there are hidden variables.

The �rst of these is fairly straightforward. A common approach is to use the maximum

likelihood estimates for the parameters, which in the case of complete reduces to a function of the

relative frequencies of occurrences of the values of the variable (Spiegelhalter & Lauritzen, 1990).

The problem of learning the parameters for a network with a known structure, given incom-

plete data, has also received some attention. Many statistical techniques like Gibbs sampling (Ge-

man & Geman, 1984) and EM (Dempster, Laird, & Rubin, 1977; Lauritzen, 1995) can be used in

the context of Bayesian networks. Russell, Binder, Koller, and Kanazawa (1995) have proposed an

approach that attempts to optimize the probability of the data given the network using a gradient

descent algorithm.

The learning problem addressed by Cooper and Herskovits (1992) falls in the third category.

Their technique, implemented in a system called K2, uses a scoring metric to hill climb through

a space of possible Bayesian networks to �nd one that is the most probable given the data. A

number of variations and improvements to this approach have since been proposed (Buntine, 1991;

Heckerman, Geiger, & Chikering, 1994; Provan & Singh, 1994).

The fourth scenario above, namely that of learning a Bayesian network with an unknown

structure, given incomplete data, is by far the most di�cult, especially when there are hidden vari-

ables. Most of the above techniques could be adapted to discover hidden variables, but at a great

cost involving brute force search. Connolly (1993) has proposed using clustering techniques (Fisher,

1987) to discover hidden variables. However, this technique can only learn tree-structured net-

works. Very recently, Friedman (1997) has proposed a technique, called MS-EM, that extends

EM (Dempster et al., 1977; Lauritzen, 1995) to learn the structure of a network with hidden

variables. However, it is not exible because it requires that the number of hidden variables to be

considered by the network be speci�ed ahead of time. BKD (Ramoni & Sebastiani, 1997) is another

recent algorithm, based on K2, for learning Bayesian networks from incomplete data. However, it

cannot discover hidden variables.

Thus, while researchers have a grasp on some aspects of learning Bayesian networks, the

problem of learning Bayesian networks with unknown structures and hidden variables still poses

a tough challenge. However, theory re�nement techniques like those proposed by Ourston and

Mooney (1994), Opitz and Shavlik (1993), Mahoney and Mooney (1993) have been successful in

addressing similar issues. The bias that such techniques provide in the form of prior knowledge,

and their techniques for using the data to focus the search for accurate theories, make them very

3

e�cient. We had mentioned earlier that there has been very little research into using theory re-

�nement techniques to learn Bayesian networks. Lam and Bacchus (1994b) have a technique for

incrementally re�ning a Bayesian network using the Minimum Description Length principle (Ris-

sanen, 1978). Buntine (1991) has proposed a technique for revising a Bayesian network e�ciently,

using scoring metrics similar to that proposed by (Cooper & Herskovits, 1992). However, neither

of these techniques can revise networks with hidden variables. While algorithms like K2 (Cooper

& Herskovits, 1992), BKD (Ramoni & Sebastiani, 1997) and MS-EM (Friedman, 1997), that build

a Bayesian network iteratively, can also be used for theory re�nement, they perform a blind search

through all possible single revisions to the network, and are thus computationally expensive. Ma-

honey and Mooney (1993) have a system for revising uncertain knowledge bases, but expressed in

the form of certainty factors. Their system, Rapture maps the rules of the knowledge base into a

neural network and uses connectionist methods to revise the certainty factors associated with the

rules as well as the rules themselves. Rapture can also discover hidden variables not speci�ed in

the data.

All of the Bayesian network learning techniques described above optimize the probability

assigned by the network to the data as a whole. However, in many learning situations the objective

is to acquire knowledge for a particular task such as classi�cation. In such situations, it is better

to learn theories that are optimized for the particular task that it is meant to perform. Thus, it

is desirable to have a learning algorithm that optimizes the classi�cation accuracy of the network,

when the objective is to build a Bayesian network for the purpose of classi�cation. Friedman

and Goldszmidt (1996) have experimentally demonstrated the advantage of learning to maximize

classi�cation accuracy. Speci�cally, the learning algorithm should try to learn a network that best

estimates the probability distribution of the class variables conditioned on some evidence variables.

Currently, there are very few existing techniques for learning Bayesian networks that optimize for

classi�cation.

The goal of our research is to use a theory re�nement approach to learning Bayesian net-

work classi�ers with hidden variables. From the perspective of the four learning scenarios outlined

earlier, this problem lies somewhere between scenarios 2 and 4. Thus, we assume that the learner is

given a Bayesian network that may be incomplete or incorrect. We also assume that the learner is

provided with data that may not include all of the variables in the network. The task is to use the

data to improve the predictive accuracy of the network, modifying both its parameters and struc-

ture (adding hidden variables when needed). Unlike the previous approaches to revising Bayesian

networks, we are speci�cally interested in developing mechanisms, similar to those employed by

logical theory re�nement techniques (Ourston & Mooney, 1994; Koppel et al., 1994; Cohen, 1992;

Wogulis & Pazzani, 1993; Richards & Mooney, 1995; Brunk, 1996), for using the data to focus the

search for e�ective modi�cations to the network.

Since general Bayesian networks are impractical for many large problems because the size

of the conditional probability tables grows exponentially in the fan-in of a node, we focus on the

problem of learning networks with Noisy-Or and Noisy-And nodes (Pearl, 1988; Pradhan et al.,

1994). These are specialized models for representing dependencies that only require a linear number

of parameters. We speci�cally chose these models because they are semantically close to logical

ors and logical ands, thus making it possible to use knowledge expressed in the form of logical

rules as an initial theory. Using such nodes, a knowledge base originally expressed as rules can

4

be mapped to an analogous Bayesian network and re�ned to improve its accuracy. Many existing

knowledge bases are written in the form of rules, and many experts have become comfortable with

this formalism. However, results in theory re�nement show that the accuracy of such rule bases

can be dramatically improved by mapping them to a representation that employs some form of

uncertain reasoning or numerical summing of evidence (Towell & Shavlik, 1994; Koppel et al.,

1994; Ba�es & Mooney, 1993; Mahoney & Mooney, 1993).

Here, we present a system called Banner that, given a set of data and an initial approximate

domain theory, produces a revised theory in the form of a Bayesian network with Noisy-Or/And

nodes that accurately classi�es the data. The initial theory may be in the form of propositional

Horn-clause rules, or in the form of a Bayesian network with Noisy-Or/And nodes. Rather than

search through the space of all possible revisions, it uses information in the data to select speci�c

nodes and links in the network to be revised, which makes it e�cient. Although designed for theory

re�nement, it can also be used to learn Bayesian networks with hidden variables inductively from

data using a default initial network.

Banner uses a two-tiered approach, similar to that used by Rapture (Mahoney & Mooney,

1993, 1994). Given some data, Banner �rst tries to improve the Bayesian model by revising the

parameters of the network. If the network still does not �t the training data, the structure of the

network is modi�ed to �nd the network with the highest predictive accuracy. Thus, Banner has

two components: one for revising the parameters of the networks, and one to revise the structure.

In the following chapters, we will present the details of our technique, and provide experimen-

tal evaluations of its e�ectiveness. We will evaluate our system on the following real-world learning

problems, some of which are standard benchmark problems used to evaluate theory re�nement and

inductive learning techniques: recognizing DNA promoters (Noordewier, Towell, & Shavlik, 1991),

recognizing DNA splice-junctions (Noordewier et al., 1991), learning student models for a C++

tutor (Ba�es, 1994), diagnosing brain disorders in human patients (Tuhrim, Reggia, & Goodall,

1991), and predicting the outcome of a chess end-game from board con�gurations (Shapiro, 1983,

1987). The �rst four of these problems have associated domain theories, represented as proposi-

tional Horn-clause rules, that do not have good predictive accuracies on the data and, therefore,

need to be revised. The �fth problem does not have an initial domain theory and is intended to

study the e�ectiveness of Banner in learning networks from scratch. In addition, we will evaluate

the structure revision component on Banner by performing experiments on corrupted versions of

the theory for recognizing DNA promoters. Through our experiments, we will demonstrate that our

technique is e�ective in learning fairly large Bayesian networks with high classi�cation accuracy.

We will show that the performance of Banner on these domains is comparable to the best results

obtained with other learning techniques. We will also show that the strategy of starting with an

initial, approximately correct theory gives Banner an edge over systems that learn from scratch.

The experiments with corrupted theories will demonstrate the e�ectiveness of our technique in

revising such theories so as to signi�cantly improve their accuracies.

The research presented here makes contributions to the �eld of Bayesian network learning

as well as the �eld of theory re�nement. From a Bayesian network learning perspective, Banner

is a novel technique for revising a class of Bayesian network classi�ers with hidden variables that

can also add hidden variables when necessary. It can also be used to learn networks with hidden

variables inductively from incomplete data. Our experiments on real-world data sets demonstrate

5

that this approach can e�ciently revise large networks and produce highly accurate classi�ers.

Whereas previous techniques for revising Bayesian networks searched through the space of all

possible revisions, our technique uses novel mechanisms for using the information in the data to

guide the search for useful revisions, thus eliminating a large number of irrelevant revisions from

consideration. Since the initial theory given to Banner may be in the form of propositional

Horn-clause rules, it also provides a direct mechanism for incorporating knowledge expressed as

propositional Horn-clause rules into a Bayesian network. We also introduce a new technique for

revising the parameters of a network with Noisy-Or/And nodes that directly exploits the e�ciency

a�orded by these models, and is targeted towards learning classi�ers by trying to optimize the

conditional distribution of the class variables given the evidence. We show that this technique

converges faster and produces more accurate classi�ers than an existing algorithm for learning the

parameters of a network.

From a theory re�nement perspective, this dissertation presents a novel hybrid theory re-

�nement system that combines good performance with comprehensibility. Early research in theory

re�nement focussed on purely symbolic representations, which are very comprehensible, but show

poor accuracies on several real-world learning problems. Techniques that revise rules-bases by map-

ping them into representations that combine logical rules and some form of uncertain reasoning, or

numerical summing of evidence, have been shown to produce signi�cantly improved classi�ers for

many domains. Successful hybrid theory re�nement systems includeKbann, a system for learning a

class of multi-layered feedforward neural networks called Knowledge-Based neural networks, whose

structures are determined by an initial logical theory (Towell & Shavlik, 1994), and Rapture, a

system that revises logical theories by mapping then into certainty factors rule-bases (Mahoney &

Mooney, 1993; Buchanan & Shortli�e, 1984). Although these techniques have been shown to learn

highly accurate classi�ers, such hybrid representations lack well-de�ned semantics and cannot be

easily understood. Bayesian networks, on the other hand, are attractive as hybrid representations

because they combine sound mechanisms for representing probabilities with a well-founded quali-

tative representation of the correlations between variables, and are grounded in probability theory.

Several sound inference mechanisms have been developed to reason with such networks. Thus,

Banner can be viewed as a hybrid theory re�nement system that learns representations with more

clearly de�ned semantics than the representations learned by the other hybrid theory re�nement

systems mentioned above, while maintaining a comparable level of performance in terms of learning

accurate classi�ers, as will be demonstrated by our experiments.

This dissertation is organized as follows: Chapter 2 presents a brief introduction to various

concepts that are central to our research, Chapter 3 presents an overview of Banner, Chapter 3

discusses the parameter revision component, Chapter 4 discusses the structure revision component,

Chapter 6 presents experiments that demonstrate the e�ectiveness of Banner, Chapters 7 and

8 discuss related work and future directions respectively, and �nally Chapter 9 summarizes our

research and its contributions.

6

Chapter 2

Background

Our research builds upon several ideas and techniques. This chapter presents some of this back-

ground knowledge at a level of detail that will contribute to an easier understanding of later

chapters. We will begin with an overview of Bayesian networks. Then we will look at multi-layered

feedforward neural networks, followed by an overview of some techniques for theory re�nement, and

techniques for learning Bayesian networks.

2.1 Bayesian Networks: An Overview

Bayesian networks (Pearl, 1988) provide a formalism for representing probabilistic knowledge. They

provide theoretically sound mechanisms for representing and reasoning with probabilistic depen-

dencies between events. In general, a Bayesian network is a directed acyclic graph, whose nodes

represent to random variables. Here, we use the convention of using upper-case letters to repre-

sent variables and lower-case letters to represent values associated with the variable. The links in

the network represent dependencies between variables, such that two variables are assumed to be

independent of each other if there is no undirected path between them, or if any of their common

ancestors are instantiated. Associated with each node is a conditional probability table (CPT),

which gives the probability of each value of the variable given each possible combination of values

of its parent nodes. The CPTs de�ne how the inuences of the parents of a node interact to produce

a combined inuence on the node. Given a network with n nodes and the associated CPTs, the

probability of a conjunction of a particular assignment of values to the variables, i.e. P (x1; : : : ; xn),

can be calculated using the following formula:

P (x1; : : : ; xn) =
nY
i=1

P (xi j Parents(Xi)) (2.1)

where P (xi j Parents(Xi)) is obtained from the CPT associated with variable X.

Figure 2.1 (Pearl, 1988) shows an example of a Bayesian network. Such a network maybe

used by a person to decide whether or not to respond to an alarm in his house. The nodes in

the network represents the various events that are of relevance to the decision. Node E represents

the occurrence of an earthquake, node R represents the announcement of an earthquake on the

radio, and node D represents the event of the person's daughter calling him about the alarm. The

links between the nodes represent the dependencies between the various events. For instance, the

7

network indicates that A is conditionally dependent on B and E, while G is independent of B given

A. The links can also be seen to indicate causality. Thus, the link from earthquake to alarm can be

interpreted as a statement that earthquake causes the alarm to go o�. The CPT associated with

each variable reects the interaction between the causes directly inuencing a variable, and the

strength of the inuences. For example, the CPT associated with variable A in Figure 2.1 would

specify:

M(A) =

"
P (A j :B;:E) P (A j B;:E) P (A j :B;E) P (A j B;E)
P (:A j :B;:E) P (:A j B;:E) P (:A j :B;E) P (:A j B;E)

#
(2.2)

Given the CPTs, the joint probability distribution of the variables in the network can be computed

as follows:

P (b; e; r; a; d; w; g) = P (b)P (e)P (r j e)P (a j e; b)P (d j a)P (w j a)P (g j a) (2.3)

B

E

R A

W
G

Burglary
Earthquake

Radio

Phone Neighbour

Alarm

Figure 2.1: Bayesian Network - Example

Typically, a Bayesian network is used to infer the probability distribution of a set of variables

T , given the value of another set of variables E (called evidence). This inference is sometimes causal

(i.e. inferring e�ect from causes), as in the case where one uses the network in Figure 2.1 to infer the

probability that his daughter will call, given evidence that a burglary has occurred. Sometimes, the

inference is diagnostic or evidential (i.e. inferring causes from e�ects), as in the case when one uses

the network to infer the probability of a burglary, given the evidence that his daughter called him

to report the alarm. It is also possible to combine causal and diagnostic inferences. For instance,

one might want to infer the probability of the alarm going o�, given the evidence that no burglary

was known to occur, but that the radio announced an earthquake.

8

2.1.1 Polytree Vs. Loops

The structure of a Bayesian network has a signi�cant inuence on the complexity of inference.

Based on their structure, Bayesian networks can be divided into two classes: polytrees, which have

a simple structure where each pair of variables is connected by at most one path, and networks

with loops, which have undirected cycles in the structure. The inference algorithm for polytrees is

polynomial in the size of the network and the propagation rules for beliefs are local (Pearl, 1988).

The derivation of the propagation rules for polytrees exploit the fact that the network

is singly connected and cannot be used in the presence of loops. Several algorithms have been

proposed for handling loops (Pearl, 1988). Clustering is a technique where the variables forming a

loop are clustered into one node, which results in a polytree. Inference is done using the polytree

algorithm on the clustered network. The clustered nodes are then separated into individual nodes

whose beliefs are computed from the belief of the cluster. Conditioning is a technique which uses

case analysis to propagate beliefs. The algorithm picks a variable from each loop and this set

of variables is instantiated to all the possible values that the variables can take. Instantiating a

variable in each loop breaks the loops and the network reduces to a polytree. Beliefs are propagated

for each of these cases using the polytree algorithm. The overall belief of each node is computed

as the weighted average of the belief computed for the node for each of the cases. Stochastic

simulation is an algorithm for simulating the network starting at some random state. The belief

associated with each variable is the frequency of occurrence of each value of the node over a large

number of simulations. It has been shown that, in general, inference in the presence of loops is

NP-hard (Cooper, 1990).

As mentioned earlier, Bayesian networks are used to infer the probabilities of some variable

given the value of some other set of variables as evidence. For a network with loops, if all the

variables that are needed to break the loops are always included in the set of evidence variables,

then the network may be treated as a polytree for purposes of inference. Henceforth, we will refer

to such networks as virtual polytrees. For the loop shown in Figure 2.2, instantiating variables A,

B, or C will break loop, whereas instantiating variable D will not. Figure 2.3 shows a Bayesian

network with three undirected loops. The �rst loop is formed by variables A, C, D, and E, the

second loop is formed by the variables B, C, D and E, and the third loop is formed by the variables

A, B, and C, and D. For this network, instantiating the values of variables A and B breaks all the

loops in the network and makes the network a virtual polytree.

2.1.2 Noisy-Or and Noisy-And Models

The speci�cation of a Bayesian network, in its most general form, is combinatorial in the fan-in

of the nodes. It requires the speci�cation, for each variable, of the conditional probabilities of the

variable given all possible combinations of values of its parents. For a network where all variables are

binary-valued, a variable with n parents would require 2n conditional probabilities to be speci�ed.

This makes inference exponential in the fan-in of the nodes. In addition, learning such a network

requires the estimation of an exponential number of parameters and therefore requires a lot of

data. The need for an exponential number of parameters is a result of allowing for speci�cations

of arbitrary interactions between the inuences due to the parents of a node. Henceforth, we will

refer to nodes modeling such unrestricted interactions as general nodes. The Noisy-Or and the

9

A

B C

D

Figure 2.2: Example of a Loop

A B

D

E

C

Figure 2.3: Example of a Network with Loops

10

Noisy-And nodes (Pearl, 1988) avoid the problem of exponential parameters by de�ning a more

structured model of the interactions between the parents of a node, so that the combined inuence

of the parents can be computed from the inuence of each parent in isolation. As a consequence

of imposing such a structure, the number of parameters associated with networks consisting of

such nodes is linear in the number of links in the network. Using these parameters for inference

signi�cantly reduces storage space and processing time. Learning such networks is also easier

since only a linear number of parameters need to be estimated. Thus, the number of parameters

associated with the network, and hence the numbers of parameters to be estimated while learning

such networks, is linear in the number of links in the network. In the following subsections, we

further elaborate on the speci�c combination rules provided by each of these models.

The Noisy-Or model

A Noisy-Or node in a Bayesian network is a generalization of a logical or. As in the case of the logical

or, an event, represented by a Noisy-Or node Nj is presumed to be false (i.e. P (Nj = true) = 0)

if all the conditions that cause Nj are false. However, unlike a logical or, if one of the causes of

the event Nj is true, it does not necessarily imply that Nj is de�nitely true. Each condition Ni

causing the event Nj can be thought of as having an associated inhibitory inuence which is active

with a probability qij. Thus, if Ni is the only cause of Nj that is true, then Nj is true with a

probability (1 � qij). Moreover, the inhibitory inuences are assume to be mutually independent.

The likelihood of Nj being true is a monotonic function of the number of its causal conditions that

are true. The parameter cij = 1 � qij is the degree to which an isolated cause Ni of an event Nj

can endorse the event. These parameters can be used to construct a conditional probability table

for the node, if needed. Figure 2.4 shows the conceptual view of a Noisy-Or node.

X

A B

OR

AND AND

I a I
b

X

A B

noisy−or

q
a q

b

a a
P(I = False)=q

b b
P(I = False)=q

Figure 2.4: Conceptual View of Noisy-Or Node

Given some evidence, the parameters associated with each link in a network, and the belief

measures of all the parents of a node in the network, there is a simple equation for calculating the

degree of belief that the node is true. Under the assumption that all the evidence in the network is

causally upstream of the node, and that the network is a virtual polytree, the degree of belief in a

11

node Nj is given by

Bel(Nj = x) =

(Q
i(1� cijBel(Ni = True) if x = False

1�Qi(1� cijBel(Ni = True) if x = True
(2.4)

where cij is the parameter on the link from node Ni to node Nj . Note that the above computation

is linear in the fan-in of the node.

The Noisy-And model

A Noisy-And node is the dual of a Noisy-Or node. It is a generalization of a logical and. As in

the case of a logical and, an event represented by a Noisy-And node Nj is presumed to be true if

all the conditions that cause Nj are true (i.e. P (Nj = True) = 1). However, unlike the logical

and, if one of the causes of the event Nj is false, it does not imply that Nj is de�nitely false. Each

condition Ni causing Nj can be thought of as having an associated enabling inuence which is

active with a probability qij. Thus, if Ni is the only cause of Nj that is false, then Nj is false with

a probability (1� qij). Moreover, the enabling inuences are assumed to be mutually independent.

The likelihood of Nj being false is a monotonic function of the number of its causes that are false.

The parameter cij is the degree to which disproving an isolated cause of an event disproves the

event itself. Figure 2.5 shows the conceptual view of a Noisy-And node.

X

A B

OR

AND

I a I
b

P(I = True)=qb b
P(I = True)=qa a

X

A B

q
a q

b

noisy−and

OR

Figure 2.5: Conceptual View of Noisy-And Node

The belief measure of a Noisy-And node Nj, given some evidence, the parameters associated

with each link in the network, and the belief measures of all the parents of the node, is given by

Bel(Nj = x) =

(
1�Qi(1� cij(1�Bel(Ni = True))) if x = FalseQ

i(1� cij(1�Bel(Ni = True))) if x = True
(2.5)

where cij is the parameter on the link from node Ni to node Nj. Here again, the assumption is

that all the evidence in the network is causally upstream of the node, and that the network is a

virtual polytree.

12

Leak Nodes

The Noisy-Or and Noisy-And models described above assume that all the possible causes of a

particular event are known. For example, a Noisy-Or node is speci�ed to be de�nitely false when

all of its parents are false. The reasoning is that, if none of the causes of an event modeled by the

Noisy-Or node are true, then the event itself can not be true. This assumption that all the possible

causes of the event are known and modeled by the parents of the Noisy-Or node may not always

hold. There are domains, such as medicine, where the causes of events are not entirely known.

It is, therefore, desirable to have a mechanism to make such incompleteness explicit. Leak nodes

provide a way to do exactly that.

A leak node is simply an extra node that is added to the parent set of a Noisy-Or or a

Noisy-And node. Figure 2.6 shows an example of a leak node used with a Noisy-Or node. Leak

nodes are assigned prior probabilities that reect the degree of incompleteness of the model. The

probability associated with the link from a leak node to a Noisy-Or/Noisy-And node reects the

degree to which the latter is a�ected by unknown inuences. Once they have been introduced in a

network, leak nodes are treated like any other node for purposes of reasoning and inference.

X

A B

q
a q

b

leak

q

noisy−or

leak

Figure 2.6: Example of a Leak node

2.2 Multi-layered Feed-Forward Neural Networks

Our technique for revising the parameters of a Bayesian network uses a gradient descent, back-

propagation algorithm that is based on the technique used to train multi-layer feedforward neural

networks (McClelland & Rumelhart, 1988). Such networks represent functions that map a set of

input values to a set of output values, and can be trained inductively to learn speci�c functions.

Here, we provide an overview of the backpropagation algorithm used to train such neural networks.

In addition to providing the background for the parameter revision algorithm to be discussed later

on, this will also help in a better understanding of our experimental evaluation, where we compare

our technique to several other inductive learning techniques including backpropagation with neural

networks.

Figure 2.7 shows an example of a multi-layered feed-forward neural network (Hertz, Krogh,

& Palmer, 1991). The output units are denoted by Oi and the input units by Ik. The layer between

the input and the output layers is the hidden layer, whose units are denoted by Hj. The connections

13

between the units in the input and the hidden layers are denoted by wjk and those between the

hidden and output layers are denoted by Wij.

W11 W

O

H H

I I I

w w

W

H

w

I

1

1 2

1 2 3

ij

j

jk

O i

k

11 23

12

Figure 2.7: Multi-layered Feed-Forward Neural Network - Example

When the input units of a network are clamped to particular values, the output of the

network is computed by propagating these values through the hidden layers to the output layer.

The activation of each unit is a function of a weighted combination of the values of all the units

feeding into it. Given a pattern �, each unit computes a function of the weighted sum of all its

inputs, as shown below.

h�j =
X

wjkIk (2.6)

The activation or the output of each hidden unit is given by

V �
j = g(h�j) (2.7)

where g(h) is a thresholding function, or a continuous sigmoid function. The activations of the

output units are computed similarly.

The backpropagation algorithm is often used to train networks, given some data mapping

a set of values for the input variables with a set of values for the output variables. This algorithm

uses a gradient descent approach to modify the weights in the network so as to minimize the mean

squared error of the network with respect to the data, de�ned as:

E[w] = 1=2
X
i�

(��i �O�
i)

2 (2.8)

where ��i is the desired value of the i-th output variable for pattern � of the data and O�
i is the

actual output of the i-th output unit for the same pattern. The backpropagation algorithm then

changes each weight wij by an amount �wij proportional to the gradient of E given by:

�wij = ��@E=@wij (2.9)

where � is a parameter that controls the learning rate. Deriving an accurate gradient of the error

function is, therefore, a crucial aspect of the backpropagation approach.

14

At the start of training, the network is initialized with some (typically random) weights.1

For each pattern in the data, the inputs of the network are clamped with the input values speci�ed

in the pattern. These values are propagated forward to the output units. The error between the

output values predicted by the network and those speci�ed in the data is propagated back through

the hidden layers to the input layer. The error propagated to each unit is used to modify the weights

of the connections feeding into the unit, according to the learning rule given by Equation 2.9. This

process is repeatedly iterated over all the patterns in the data until a desired level of convergence

is reached.

Knowing when to stop is often a critical issue while training neural networks. Too many

iterations of training often results in over�tting, so that the network �ts outliers and noisy data

points that do not reect the true distribution being learned. This hurts the network's ability

to generalize to unseen cases (Holder, 1991). Training for too few iterations, on the other hand,

results in poor convergence on the training data, which also hurts the network's ability to generalize.

Several techniques have been proposed to address this issue (Weigand, Huberman, & Rumelhart,

1990; Holder, 1991). One common approach is to set aside a portion of the training data to serve

as a validation set used to track the generalization performance of the network, train the network

on the reduced training data, and stop training whenever the generalization performance on the

validation set shows no improvement for a certain number of cycles. The network is then re-trained

on the full training set for the same number of cycles as on the reduced training set. Another

approach is to perform k-fold internal cross-validation, where the training data is partitioned into

k equal subsets. k networks are trained, each using k � 1 of the subsets for training and the

remaining one for testing. The generalization performance of each network on the internal test sets

is monitored at the end of each training cycle, and the average generalization error is computed

for each cycle. The number of training epochs that shows the least average generalization error is

picked as the number of epochs needed to train on the full training set.

2.3 Theory Re�nement

Early experience with expert systems and rule-based systems quickly revealed a knowledge-acquisition

bottleneck, i.e. the fact that extracting knowledge from experts to be encoded into these systems

can be very time-consuming, and that such knowledge is often incomplete or not entirely accurate.

One way of addressing this problem is via inductive learning (Quinlan, 1993; Langley & Simon,

1995; Mitchell, 1997), where the idea is to minimize the amount of knowledge to be extracted from

an expert by having the system extract knowledge autonomously from examples. For instance, in

order to encode classi�cation knowledge, the system would be presented with instances of classes,

and it would learn to generalize from these examples to new classi�cation problems. While many

of the techniques developed for this purpose have been fairly successful (Langley & Simon, 1995;

Mitchell, 1997), they typically require large amounts of data to learn accurate classi�ers. There-

fore, several techniques have been developed that take a more collaborative approach to knowledge

acquisition. Commonly known as theory revision or theory re�nement, such an approach assumes

that the learner can be provided with some initial, approximate knowledge, usually acquired from

an expert, and all it has to do is re�ne this knowledge, using the given data, to make it more

1Sometimes the initial weights are determined using domain knowledge.

15

accurate.

Given an initial domain theory which may not be complete or correct, theory re�nement

systems modify the initial theory (minimally) to improve its accuracy on a given data set. Tech-

niques have been developed to revise and improve propositional and �rst-order theories (Ourston

& Mooney, 1994; Cohen, 1992; Wogulis & Pazzani, 1993; Wogulis, 1994; Ba�es & Mooney, 1993;

Ba�es, 1994; Richards & Mooney, 1995), as well as to revise hybrid rule-bases that combine log-

ical and numerical representations (Towell & Shavlik, 1994; Opitz & Shavlik, 1993; Opitz, 1995a;

Mahoney & Mooney, 1993; Mahoney, 1996). Experiments show that theory re�nement systems

can learn accurate theories with less data than purely inductive systems. The idea that similar

techniques can be used to e�ectively learn Bayesian networks is the cornerstone of this research.

Here we briey describe some techniques for revising logical rule-bases, as well as some hybrid tech-

niques that combine logical and numeric representations to learn theories that are more accurate

than logical theories. All of these systems are focused on learning for classi�cation, and assume

that the data is described in terms of a set of input features, and that the goal is to learn to classify

data into a set of output classes.

2.3.1 Logic-Based Approaches

The goal of theory re�nement is to modify an existing imperfect domain theory to make it consistent

with a set of data. For logical theories, this can be more precisely de�ned as follows:

� Given: An initial theory T and a set of positive examples P and a set negative examples N ,

where P and N are restricted to ground formulae.

� Find: A \minimally revised" consistent theory T 0 such that 8p 2 P : T 0 ` p and 8n 2 N :

T 0 6` n.

Generally, examples are ground Horn-clauses of the form C B1; : : : ; Bn, where the body, B,

gives a description of a case and the head, C, gives a conclusion or classi�cation that should

logically follow from this description (or should not follow in the case of a negative example).

Revising a logical theory may require both adding and removing clauses as well as adding or

removing literals from existing clauses. Generally, the ideal goal is to make the minimal syntactic

change to the existing theory (Wogulis & Pazzani, 1993; Mooney, 1995). Unfortunately, this task

is computationally intractable; therefore, in practice, heuristic search methods must be used to

approximate minimal syntactic change.

Several theory re�nement systems use abduction on individual examples to locate faults in

a theory and suggest repairs (Ourston & Mooney, 1990; Ourston, 1991; Ourston & Mooney, 1994;

Wogulis & Pazzani, 1993; Wogulis, 1994; Ba�es & Mooney, 1993; Ba�es, 1994; Ba�es & Mooney,

1996; Brunk, 1996). Abduction is the process of inferring cause from e�ect or constructing a

speci�c set of assumptions that explain observed events. Each of the above systems uses abduction

in a slightly di�erent way, but the following discussion summarizes the basic approach. For each

individual positive example that is not derivable from the current theory, abduction is applied to

determine a set of assumptions that would allow it to be proved. These assumptions can then be

used to make suggestions for modifying the theory. One potential repair is to learn a new rule for

the assumed proposition so that it could be inferred from other known facts about the example.

16

Another potential repair is to remove the assumed proposition from the list of antecedents of the

rule in which it appears in the abductive explanation of the example. For example, consider the

theory:

P(X) R(X), Q(X).

Q(X) S(X), T(X).

and the unprovable positive example:

P(a) R(a), S(a), V(a).

Abduction would �nd that the assumption T(a) makes this positive example provable. Therefore,

two possible re�nements to the theory are to remove the literal T(X) from the second clause in the

theory, or to learn a new clause for T(X), such as

T(X) V(X).

Another possible abductive assumption is Q(a), suggesting the possible revisions of removing Q(X)

from the �rst clause or learning a new clause for Q(X) such as

Q(X) V(X).

or

Q(X) S(X), V(X).

In order to �nd a small set of repairs that allow all of the positive examples to be proved,

a greedy set covering algorithm can be used to select a small subset of the union of repair points

suggested by the abductive explanations of individual positive examples, such that the resulting

subset covers all of the positive examples. If simply deleting literals from a clause causes negative

examples to be covered, inductive methods can be used to learn a new clause that is consistent

with the negative examples. Continuing the example, assume the positive examples are:

P(a) R(a), S(a), V(a), W(a).

P(b) R(b), V(b), W(b).

and the negative examples are:

P(c) R(c), S(c).

P(d) R(d), W(d).

The abductive assumptions Q(a) and Q(b) are generated for the �rst and second positive examples

respectively. Therefore, making a repair to the Q predicate would cover both cases. Note that the

previously mentioned potential repairs to T would not cover the second example since the abductive

assumption T(b) is not su�cient (both T(b) and S(b) must be assumed). Since a repair to the

single predicate Q covers both positive examples, it is chosen. However, deleting the antecedent

Q(x) from the �rst clause of the original theory would allow both of the negative examples to be

proven.

Therefore, a new clause for Q is needed. Positive examples for Q are the required abductive

assumptions Q(a) and Q(b). Negative examples are Q(c) and Q(d) since these assumptions would

allow the negative examples to be derived. Given the descriptions provided for a, b, c and d

in the examples, typical inductive techniques for learning Horn-clause rules would induce the new

clause:

17

Q(X) V(X).

since this is the simplest clause that covers both of the positive examples without covering either

of the negatives. Note that although the alternative, equally-simple clause

Q(X) W(X)

covers both positive examples, it also covers the negative example Q(d).

The Either (Ourston & Mooney, 1990, 1994; Ourston, 1991) and Neither (Ba�es &

Mooney, 1993; Ba�es, 1994) theory re�nement systems allow multiple assumptions in order to

prove an example, preferring more speci�c assumptions, i.e. they employ most-speci�c abduction

(Cox & Pietrzykowski, 1987). Audrey (Wogulis, 1991), Audrey II (Wogulis & Pazzani, 1993),

A3 (Wogulis, 1994), and Clarus (Brunk, 1996) are a series of theory re�nement systems that

make a \single-fault assumption" during abduction. For each positive example, they �nd a single

most-speci�c assumption that makes the example provable. Di�erent constraints on abduction

may result in di�erent repairs being chosen, e�ecting the level of speci�city at which the theory is

re�ned. Either and Neither prefer making changes to the more speci�c aspects of the theory

rather than modifying the top-level rules.

This general approach of using abduction to suggest theory repairs has proven quite success-

ful at revising several real-world knowledge bases. The systems referenced above have signi�cantly

improved the accuracy of knowledge bases for detecting special DNA sequences called promoters

that signal the start of a new gene (Ourston & Mooney, 1994; Ba�es & Mooney, 1993), diagnosing

diseased soybean plants (Ourston & Mooney, 1994), and determining when repayment is due on a

student loan (Brunk, 1996). The approach has also been successfully employed to construct rule-

based models of student knowledge for over 50 students using an intelligent tutoring system for

teaching concepts in C++ programming (Ba�es, 1994; Ba�es & Mooney, 1996). In this application,

theory re�nement was used to modify correct knowledge of the domain to account for errors indi-

vidual students made on a set of sample test questions. The resulting modi�cations to the correct

knowledge base were then used to generate tailored instructional feedback for each student. In all

of these cases, experiments with real training and test data were used to demonstrate that theory

re�nement resulted in improved performance on novel, independent test data and generated more

accurate knowledge than raw induction from the data alone. These results clearly demonstrate the

utility of integrating abduction and induction for theory re�nement.

2.3.2 Hybrid Approaches

Hybrid approaches combine logical and numerical representations in order to learn accurate clas-

si�ers. While the initial theory is still speci�ed using propositional logic, these techniques convert

the theory into a numerical representation such as neural networks, and revise the new form of the

theory. Most of these algorithms follow the high-level strategy of �rst revising the numerical com-

ponent of the representation (called parameters in this discussion) using an iterative algorithm, and

then revising the logical component (called structure) if needed, and repeating this process until

a desired level of convergence is achieved (Figure 2.8). Experiments show that these approaches

produce more accurate theories than the purely logic-based approaches on several real-world prob-

lems.

18

Given: An initial approximate theory in the form of propositional Horn-
clause rules, and a set of training data.
Output: A hybrid representation that accurately classi�es the data.
Algorithm:

1. Convert the theory into the hybrid representation.

2. Repeat until accuracy on training data ceases to improve:

(a) Revise the parameters of the representation.

(b) If not 100% training accuracy, revise the structure of the
representation.

Figure 2.8: High-level strategy used by hybrid approaches

Kbann (Towell & Shavlik, 1994) provides a way of combining symbolic and connectionist

representations. It uses an initial propositional rule-base to determine the structure of a multi-layer

feedforward neural network with units that simulate the conjunctions and disjunctions in the rule-

base. In addition, all the remaining features in the data not included in the initial domain theory

are added to the input layer. Each unit in layer n is connected to each unit in layer n + 1, with

links not justi�ed by the domain theory initialized to low weights, and the network is trained on a

given data set using the backpropagation algorithm described earlier (Section 2.2). This approach

has been shown to be e�ective on a large number of real-world problems such as DNA promoter

recognition (Noordewier et al., 1991) and DNA splice-junction recognition (Noordewier et al., 1991).

Techniques have also been developed to extract a rule-base from the trained network, in order to

make the revised knowledge more comprehensible (Towell & Shavlik, 1993; Craven & Shavlik, 1996;

Craven, 1996).

Kbann relies on weight adjustment to revise the initial theory. This approach was found

to be insu�cient for some problems. Although Kbann could e�ectively revise rules with extra

antecedents (by deleting some links in the network), it was found to be not as e�ective in revising

domain theories with missing rules (Opitz, 1995a). TopGen was developed as a technique to add

new nodes to a network constructed by Kbann (Opitz, 1995a). Following the strategy shown in

Figure 2.8, it �rst uses Kbann to revise an initial theory. If the trained network still misclassi�es

some examples, TopGen repairs the theory by adding a node to the network and passes on the new

network to Kbann for further training. This is repeated until further training does not improve

the generalization of the network. TopGen adds nodes by approximating the trained Kbann

network by a symbolic theory, and propagating the blame for misclassi�ed examples to the internal

nodes. Depending on the type of the node with the highest blame (And/Or) and the nature of

the blame (overly general/overly speci�c), a new node is introduced as a child/sibling of the node,

which is linked to all input features. TopGen has been shown to learn networks that generalize

better than Kbann for several real-world problems including DNA promoter recognition, and DNA

splice-junction recognition.

Many expert systems use certainty factors to represent uncertainty (Buchanan & Short-

li�e, 1984). Certainty factors are numbers associated with the rules in a rule-base that informally

represent the degree to which each antecedent of a rule con�rms the consequent. These certainty

19

factors can be combined to compute the degree of certainty associated with any conclusion derived

from the rule-base. Rapture (Mahoney & Mooney, 1993; Mahoney, 1996) is a system for revising

rule-bases with associated certainty factors. Given an initial rule-base, Rapture maps the rules

into a neural network such that the weights on the links are the certainty factors associated with

the rule-base. Rapture can revise the initial domain theory in three ways to improve its predictive

accuracy. It uses the approach shown in Figure 2.8 and �rst revises the certainty factors associated

with the network, using the gradient descent backpropagation algorithm described earlier (McClel-

land & Rumelhart, 1988). If this does not improve the accuracy of the network su�ciently, it �nds

input features to link to each of the output classes being mis-labeled. These two steps are repeated

until further revision fails to improve the training accuracy of the network. If the network still mis-

classi�es some examples, Rapture uses the Upstart algorithm (Frean, 1990) to add new hidden

units to the network. For each output class, two new units are trained to di�erentiate between

misclassi�ed examples that are speci�ed to be positive examples of the class, and the misclassi�ed

examples that are speci�ed as negative examples of the class. These new units are then linked to

the corresponding output units. This approach to theory re�nement has been successfully applied

to problems such as DNA promoter recognition, soybean disease classi�cation (Michalski & Chi-

lausky, 1980), DNA splice-junction recognition, and the Mycin expert system rule-base (Buchanan

& Shortli�e, 1984).

2.4 Naive Bayes

A Naive Bayes classi�er is a Bayesian network with two layers of nodes.2 The root node represents

the class variable and is fully connected to a second layer of nodes that represent the attributes or

features associated with the classi�cation problem. The attributes are assumed to be independent of

each other, given the value of the class variable. This architecture, combined with the independence

assumption, leads to a very fast and e�cient algorithm for learning the weights on the links of

the network. Many studies have shown that this algorithm is very e�ective in learning accurate

classi�ers. In fact, this algorithm produces the best classi�ers for many of the standard machine

learning benchmark problems (Kohavi, Becker, & Sommer�eld, 1997; Domingos & Pazzani, 1997).

Consider the problem of determining whether or not an object is a cup, given the observation

that it is small and concave, that it is red in color, and that it has a handle. The Naive Bayes

classi�er (Figure 2.9), given these observations, classi�es the object according to the probability

P (Cup = true j Size = small; Shape = concave; Color = red;Has handle = true). For brevity,

we will drop the attribute names in the ensuing discussion, and use the standard representation for

Boolean attributes. By Bayes rule,

P (cup j small; concave; red; has handle) =

P (cup)� P (small; : : : ; has handle j cup)
P (small; : : : ; has handle)

(2.10)

Since,

P (cup j small; : : : ; has handle) + P (:cup j small; : : : ; has handle) = 1 (2.11)

2Although the Naive Bayes classi�er is a Bayesian network, we treat it here in a separate section rather than
include it in the next section, because we want to describe it in greater detail than rest of the Bayesian network
learning algorithms.

20

cup

has_handlecolor shapesize

Figure 2.9: Example of Naive Bayes classi�er

P (small; : : : ; has handle) = P (cup)� P (small; : : : ; has handle j cup) +
P (:cup)� P (small; : : : ; has handle j :cup)

(2.12)

and maybe treated as a normalization factor. Assuming that the observed features of the object, i.e.

color, shape etc., are independent, given that the object is a cup, Equation 2.10 can be re-written

as:

P (cup j small; : : : ; has handle) = P (cup)� P (small j cup)� P (concave j cup)
�P (red j cup)� P (has handle j cup) (2.13)

In order to classify the object, it is su�cient to specify the probabilities of each of the observed

features given that the object is a cup, the probabilities of each of the observed features given that

the object is not a cup, and the prior probability that the object is a cup.

In general, given an example with n attributes to be classi�ed into one of k classes, the

goal of a Naive Bayes classi�er is to determine the class Ci with the highest conditional probability

P (Ci j ^aj), where ^aj stands for the conjunction of the attributes a1 � � � an. Applying Bayes

law, and assuming that the attributes are independent, given the value of the class variable, this

probability is proportional to:

P (^aj j Ci) =
nY

j=1

P (aj jCi)� P (Ci) (2.14)

The problem of learning a Naive Bayes classi�er from examples is simply that of estimating

the conditional probabilities, P (aj j Ci), for each combination of attribute aj and class Ci, and

the prior probabilities of each class. The former can be estimated just by counting the number

times these features take on speci�c values for di�erent values of the class variable, leading to a

learning algorithm that is polynomial in the number of examples. This approach, however, leads

to undesirable outcomes when an attribute value aj does not occur together with a given class

value Ci, resulting in a zero estimate for P (aj j Ci). In such a case, class Ci would be summarily

rejected whenever aj is true, leading to the undesirable situation of the outcome being determined

by a single attribute. One commonly used technique for avoiding this problem is to replace zero

estimates by very small positive values, usually by a factor that is inversely proportional to the

number of training examples. Clark and Niblett (1989) and Domingos and Pazzani (1996) replace

21

a zero estimate for P (aj j Ci) by
P (Ci)
m

, where m is the number of training examples. Recently,

Kohavi et al. (1997) have proposed a technique for smoothing out the estimate of the conditional

probabilities by setting P (aj j Ci) to
(N+f)
(n+kf) , where N is the number of examples of class Ci for

which attribute aj is true, n is the number of examples of class Ci, f is a pre-de�ned constant,

and k is the number of classes in the problem. Experiments show that the Laplace estimate, as

this is called, leads to better results compared to other techniques for handling the problem of zero

estimates (Kohavi et al., 1997).

Experiments on several benchmark learning problems show that the algorithm for learning

Naive Bayes classi�ers, henceforth referred to as the Naive Bayes algorithm, is very e�ective on small

data-sets with a few hundred examples or less, producing accurate classi�ers that are comparable,

and sometimes better than the ones learned using other induction algorithms such as C4.5 (Quinlan,

1993). However, it does not perform as well on large data sets with thousands of examples. This

behaviour can be explained in terms of the bias-variance decomposition of error (Kohavi & Wolpert,

1996; Geman, Bienenstock, & Doursat, 1992), where the error of a learned classi�er is viewed as

the sum of two components: the bias and the variance. Bias measures the degree to which the

learning algorithm can �t the data, with lower values indicating higher bias, and variance measures

the stability of the learning algorithm, i.e. the degree to which the results of the learning algorithm

vary according to the training data, with lower values indicating lower variance. The Naive Bayes

algorithm has strong bias because the space of hypothesis it considers is very limited and low

variance as small changes to the training data rarely cause large changes in the results (Kohavi

et al., 1997). Variance is a more critical issue for smaller training sets, whereas bias is a more

critical issue for larger data sets. Thus, the low variance of the Naive Bayes learning algorithm

explains its e�ectiveness on smaller data sets, and its high bias explains why it is not as e�ective

on larger training sets.

2.5 Learning Bayesian Networks

Recent years has witnessed a surge of interest in the problem of learning Bayesian networks. A com-

mon idea underlying most of the existing approaches is that of learning a network that maximizes

P (B j D), i.e. the likelihood of the network given the data. By Bayes rule:

P (B j D) = P (D j B)� P (B) (2.15)

Assuming that all networks are equally likely a-priori makes P (B) a constant with respect to all

networks, and the problem of learning a network that maximizes P (B j D) becomes equivalent

to that of learning a network that maximizes P (D j B). Most techniques for learning Bayesian

networks introduce a scoring metric, based on the goal of maximizing P (D j B), for evaluating
each network with respect to the data, and search for the best network according to this metric.

Heckerman (1995) provides a detailed discussion of the principles underlying several techniques for

learning Bayesian networks. In this section, we will briey describe some representative techniques.

As discussed in Chapter 1, according to the assumptions that algorithms for learning

Bayesian networks make about prior knowledge of the structure of the network, and the com-

pleteness of data, they can be classi�ed as follows: techniques that assume that they are given a

correct structure and complete data, techniques that assume that they are given the correct structure

22

Prior Knowledge

Unknown Structure Known Structure

K2 and variations.

[Cooper and Herskowits, 1992]

Maximum Likelihood Estimates

Tantra
[Connolly, 1993]

Gibb’s Sampling

EM

Adaptive Probabilistic Networks
[Russell et al., 1995]

[Dempster et al., 1977]

[Geman and Geman, 1984]

APEM
[Thiesson, 1995]

D
at

a

In
co

m
pl

et
e

C
om

pl
et

e

BKD

MS−EM
[Friedman 1997]

[Ramoni 1997]

[Spiegelhalter and Lauritzen, 1990]

Figure 2.10: Techniques for learning Bayesian networks

and possibly incomplete data, techniques that assume that the structure is unknown, but the data

is complete, and techniques that assume that the structure is unknown and the data is possibly

incomplete. Figure 2.10 shows some of the existing Bayesian network learning techniques classi�ed

according to this criteria. We will discuss some of these techniques here, while the rest will be

discussed in the chapter on related work (Chapter 7).

When the structure of a network is known, and there are no missing or hidden variables, the

goal of maximizing P (D j B) can be achieved simply by using the data to calculate the frequencies

of various values of the variables given various values of their parents in the network (Spiegelhalter

& Lauritzen, 1990). These frequencies estimate the conditional probability tables associated with

each node. The Naive Bayes learning algorithm described in the previous section is, in fact, an

example of such an approach.

There are several techniques for estimating the parameters of a network of a known structure

in the presence of hidden variables and missing data. EM (Dempster et al., 1977; Lauritzen, 1995),

or Expectation Minimization, is an iterative technique which starts out with some initial values

for the parameters that may be random or based on some prior knowledge. The data set is then

augmented with the most likely values for the missing data, estimated from the parameters from

the current iteration, and used to estimate the parameters for the next iteration. This process is

repeated until convergence.

Russell et al. (1995) proposed APN as a technique for learning the parameters of a Bayesian

network with hidden variables. It uses gradient descent to optimize lnPw(DjB), i.e. the log of the
probability assigned by the network to the data when the parameters are set to w. The algorithm

iterates over each example in the data set several times until convergence. For each example, it

places the observed values as evidence, and propagates the evidence throughout the network. The

23

parameters of the network are then updated using the following equation to compute the gradients:

@ lnPw(D)

@wijk

=
mX
l=1

Pw(xij ; uik j Dl)

wijk

(2.16)

where m is the number of training instances, xij is the jth possible assignment to variable Xi, uik
is the kth possible value assignment to the parents of Xi, wijk is the probability that variable Xi

takes on its jth possible assignment given that its parents Ui take on their kth possible assignment.

Pw(xij ; uik j Dl) is computed as a by-product of inferring the probabilities of the variables in the

network, given the evidence in Dl. Note that there is no need to back-propagate the gradients. All

the information for computing the gradient of the weight on a link is present in the nodes at the

head of the link and its parents.

K2 (Cooper & Herskovits, 1992) was one of the �rst techniques developed to learn both the

structure and the parameter of a network. It uses the belief scoring function for evaluating Bayesian

networks with respect to the data as a basis for a greedy, hill-climbing search to learn a network

that closely models the probability distribution in the data. Assuming that all the variables in

the data set are discrete, that there are no variables with missing values, that all structures are

equally likely a-priori, and that the examples in the data set are independent of each other, the

belief scoring function is de�ned as:

Score(B;D) = c�
nY
i=1

Y
j

= 1qi
(ri � 1)!

(Nij + ri � 1)!

Y
Nijk! (2.17)

where c is a constant, ri is the number of values associated with variable Xi, qi is the number of

possible instantiations of the parents of the variable Xi, Nijk is the number of cases in D where

Xi takes on its k-th value and its parents take on their j-th instantiation, and Nij is
Pri

k=1Nijk.

To maximize Score(B;D), it is su�cient to �nd a parent set for each variable that maximizes the

inner product.

maxB[Score(B;D)] = c�
nY
i=1

max�i

0
@ qiY
j=1

(ri � 1)!

(Nij + ri � 1)!

riY
k=1

Nijk!

1
A (2.18)

K2 starts with a network where there is one node per variable in the data, and none of the nodes has

any parents. K2 then incrementally adds a link that maximizes the inner product above. It stops

when further addition of a link fails to increase Score(B;D). Several variations and extensions to

K2 have since been proposed (Buntine, 1991; Heckerman et al., 1994; Provan & Singh, 1994).

Learning both the structure and the parameters of a Bayesian network in the presence

of incomplete data is currently a very active area of research. The most recent and general-

purpose approach,MS-EM (Friedman, 1997) combines hill-climbing with an EM-like approach for

estimating missing and hidden values. It uses a scoring metric based on the principle of minimum

description length (MDL) (Rissanen, 1978; Lam & Bacchus, 1994a) as the criteria for searching for

networks that best match the data. This metric is de�ned as:

Score(B;D) = L(B;D)� logN

2
#(B) (2.19)

24

where L(B;D) is the log-likelihood of B given D, and #(B) is the number of parameters in the

network. The log-likelihood of B given D is de�ned as

L(B;D) =
NX
i=1

log(di)

where D = fd1 � � � dng. The minimum description length principle (Rissanen, 1978) provides a way

to balance the trade-o� between learning to �t the data accurately, and over�tting the data by

learning too complex a network. Like the belief scoring metric (Equation 2.17) the above score

can be decomposed into computations that are local to each node and its parents when the data

is complete. However, this is not possible with incomplete data. Therefore, like EM, MS-EM

attempts to maximize the expected score by taking expectations over all the possible values that

the missing values may take. Friedman (1997) show that this expected score is decomposable

in a manner similar to Equation 2.17. The MS-EM algorithm starts out with an initial network

that may be random or based on some prior knowledge. It �rst uses EM for a speci�ed number

of steps to estimate the parameters of the network. It then modi�es the structure of the network

by evaluating alternate modi�cations to pick the one with the best expected score. The parameter

revision and structure modi�cation steps are repeated until convergence.

Both K2 andMS-EM are iterative algorithms that add one link at each iteration to learn the

structure of a network. Selecting a link to be added involves selecting both a node in the network

to be expanded by adding a new parent, and a node to be added as a new parent. At each iteration,

they consider all possible ways of adding a link to a network, evaluate each addition using a scoring

metric, and add the link that best improves the score. Thus, they are based on the generate then

test paradigm where all the possible successors to the current structure are generated, and the data

is only used to select among them (Mitchell, 1997). No e�ort is made to use the information in

the data to restrict the set of possible successors to be evaluated. Since each evaluation requires

considering the entire data set, restricting the number of networks to be evaluated would reduce the

computational e�ort required by the learning algorithm. This would be especially bene�cial when

the data includes missing values and hidden variables, since the evaluation function in such a case

involves marginalizing over these missing values and is hence computationally expensive (Friedman,

1997). Extending these approaches to discover hidden variables to the network would further

increase the search space, and would bene�t greatly from strategies to restrict the number of

candidate networks to be evaluated by the learning algorithm.

Most of the focus of research in this �eld has been on techniques for learning networks that

model the distribution underlying the data, without regard to the speci�c intended task of the

network. Often Bayesian networks are built for a speci�c task such as classi�cation. Only recently

has there been any e�ort to study the advantages of learning networks that are optimized for the

speci�c tasks for which they are intended. Friedman and Goldszmidt (1996) show that, when the

goal is to learn a Bayesian network to be used as a classi�er, it is better to use techniques that

optimize the probability distribution of the class variables conditioned on the attributes. Greiner,

Grove, and Schuurmans (1997) also argue in favor of learning task-speci�c networks, and propose

a technique for learning the parameters of a network that seeks to optimize the network for a given

task.

A standard practice in the �eld of learning Bayesian networks is to evaluate a technique

by comparing the learned network with the original network, called the gold standard (Heckerman,

25

1995). This assumes that the target network is known ahead of time. Given the target network,

the practice is to generate data from the network, learn a Bayesian network from the generated

data, and compare the learned network with the original. One of the data sets that is used as a

standard for such experiments is the ALARM data set, which is a database of cases generated from

a network designed to assist in monitoring the heart rate of a patient (Beinlich, Suermondt, Chavez,

& Cooper, 1989; Cooper & Herskovits, 1992). Techniques such as APN (Russell et al., 1995), and

MS-EM (Friedman, 1997) have been evaluated on data generated from a network for car insurance

risk estimation (Musick, 1994). While evaluating learning algorithms on arti�cially generated data

sets demonstrates the ability of a learning algorithm to re-construct a Bayesian network, it does not

demonstrate its ability to learn in real-world learning situations, and ignores altogether the issue

of the appropriateness of the representation for modeling real-world problems. However, Bayesian

network learning algorithms are increasingly being evaluated on real data sets (Provan & Singh,

1994; Friedman & Goldszmidt, 1996) and with the growing number of applications of Bayesian

networks real-world problems (Burnell & Horovitz, 1995; Fung & Del Favero, 1995), it is hoped

that the trend towards evaluating learning techniques on real data sets will continue to grow as

well.

Many of the above approaches provide a way of specifying prior knowledge about the struc-

ture of the network in the form of prior probabilities of network structures (P (B) in Equation 2.15).

Prior knowledge can be directly introduced into the MS-EM algorithm in the form of an initial

network. Research in the �eld of machine learning has demonstrated that using an approximate do-

main theory as a starting point for learning yields better results than learning from scratch (Ourston

& Mooney, 1990; Towell et al., 1990; Thompson et al., 1991). However, there has been no e�ort to

study the e�ectiveness of using the above techniques for theory re�nement. Most of the research in

learning Bayesian networks is focused on learning from scratch, and barring some exceptions (Bun-

tine, 1991; Lam & Bacchus, 1994b), the issue of theory re�nement has largely been ignored.

26

Chapter 3

Banner: An Overview

In this chapter, we introduce Banner, which is a technique for revising Bayesian networks with

Noisy-Or and Noisy-And nodes. Given an initial theory and some data, Banner produces a

Bayesian network with improved classi�cation accuracy. The initial theory could either be a

Bayesian network with Noisy-Or and Noisy-And nodes, or a set of propositional rules. In the

latter case, the propositional rules are converted into a Bayesian network with Noisy-Or and Noisy-

And nodes. Banner is geared to learn networks for classi�cation, where, given the value of a set

of observations, called input features, the network is used to predict whether or not it belongs to a

certain class. The training data is assumed to consist of a set of labeled examples, each specifying

a set of values for the input features and its classi�cation. Classi�cation accuracy is de�ned as the

number of examples that are correctly classi�ed. An example is considered to belong to a certain

class, when the probability of the node corresponding to the class, given the input features, is

greater than 0.5.

The following section will present an overview of the algorithm used by Banner. This will

be followed by a discussion of the applicability and the limitations of Banner. Section 3.3 will

discuss the procedure for converting a logical propositional Horn-clause rule-base into a Bayesian

network with Noisy-Or/And nodes.

3.1 Overview of the Algorithm

Like Rapture (Mahoney & Mooney, 1993, 1994), Banner uses a two-tiered approach to the

problem of learning a Bayesian network from partial speci�cation. Given some data, Banner

�rst tries to improve the network by revising the parameters of the network. If the network still

does not �t the training data, the structure of the network is modi�ed to �nd the network with

the highest predictive accuracy. These steps are repeated until further revision does not lead

to an improvement in accuracy. The structure of a Bayesian network represents correlations or

dependencies between the variables in the domain, and the parameters represent the degree of

dependency between variables. Thus, modifying the structure of network is a more fundamental

change to the model of the domain than modifying just the parameters. Since one of the goals of

theory re�nement is to modify the initial theory minimally, Banner �rst tries to �t the data with

parameter revision before considering structure revision. The two main components of Banner

are:

27

1. The parameter revision component, which assumes that the structure of the network is correct,

and is concerned with modifying the parameters of the network to improve predictive accuracy.

Banner is designed so that this component is quite separate from the structure revision

component. Thus, it is possible to plug-in one's favorite parameter revision algorithm without

having to change the rest of the system. For our experiments, we have used two di�erent

parameter revision techniques: Banner-Pr, and a variant of APN calledC-APN. Banner-

Pr (Ramachandran & Mooney, 1996b) uses a gradient descent backpropagation algorithm

similar to that used in multi-layered feedforward networks. It has been designed speci�cally

to take advantage of the computational e�ciency o�ered by Noisy-Or and Noisy-And nodes.

However, as we discussed later in the chapter, it is restricted in its applicability. C-APN,

based on APN (Russell et al., 1995) (Section 2.5), is a more general technique for revising

the parameters of a Bayesian network which also uses gradient descent. Whereas APN learns

to optimize the likelihood of the entire data being generated by the network, C-APN learns

a network that is optimized to estimate the probability of certain class variables given some

evidence. It does not, however, exploit the linearity of speci�cation resulting from the use

of Noisy-Or and Noisy-And nodes and hence is much slower to converge. We will elaborate

these techniques further in Chapter 4.

2. The second component, Banner-Sr is concerned with minimally modifying the structure of

the network in order to improve its classi�cation accuracy. Much like logical theory re�nement

techniques such as Either (Ourston & Mooney, 1994), the algorithm for this component uses

abductive inference to attribute failures in classi�cation to speci�c portions of the network,

and to �nd appropriate revisions to correct these failures. It is based on the idea of augmenting

the Noisy-Or/And nodes in the network with leak nodes (Section 2.1.2) to serve as indicators

of possible faults in the network. Once the network is so augmented, the algorithm performs

abductive inference on each misclassi�ed example to select a subset of leak nodes that explain

the error. Such information, gathered for each misclassi�ed example, is used to select a

minimal set of nodes and links in the network to be modi�ed. We will discuss this algorithm

further in Chapter 5.

Figure 3.1 shows the overall architecture of our system. As mentioned earlier, the modu-

larity of the design, and the separation between the components allow us to replace the algorithm

implementing each component without a�ecting the entire system.

3.2 Limitations of Banner, Banner-Pr and C-APN

Bayesian networks o�er various choices in terms of the kinds of local distributions that can be mod-

eled, the architecture of the networks, and the kind of reasoning that can be performed. Depending

on the problem, one may wish to model it as a Bayesian network with unrestricted interactions of

inuences, or as a network with Noisy-Or and Noisy-And nodes (or other special restricted models).

Although, the former is more general, restrictive models like the Noisy-Or model are considerably

more e�cient and require fewer parameters. Similarly, a problem may require networks with loops.

In such a case, inference would be computationally more expensive than for problems that can

be modeled by networks without loops. Finally, one may wish to build a network to be used for

28

Initial Network Data

Final network

revised
network

BANNER−SR

revised
network

Structure

Parameter

BANNER−PR

 or

C−APN

Figure 3.1: Overview of our system

29

some speci�c task such causal inference or abductive inference, or one may wish to build a general

network that will perform well for any inference task.

Tables 3.1, 3.2, and 3.3 shows the applicability of Banner-Pr, and C-APN and Banner-

Sr to various node types, network architectures, and inference types. A check mark (
p
) indicates

that the algorithm is applicable to that case. We have introduced the new term, virtual polytrees,

to describe networks that have loops such that each loop can be broken by an instantiated evidence

variable. Such a network can be treated as a polytree for the purpose of inference.

Another factor that a�ects the applicability of these systems is the completeness of data.

Data is said to be incomplete when there are hidden variables or when some of the examples

in the data are missing values for some observed variables. Both C-APN and Banner-Sr can

be used with incomplete data, as will be demonstrated in Chapter 6. Banner-Pr can handle

incompleteness only under certain conditions. Recall that Banner-Pr can be used to revise

the parameters of a network with loops only as long as all the loops in the network are broken

by instantiated evidence variables. Thus, Banner-Pr can be applied to networks with hidden

variables either when the hidden variables do not participate in any loop, or when they participate

in loops that can be broken by other instantiated variables. Similarly, Banner-Pr can be applied

to problems where some of the examples are missing values for some observed variables, as long as

these variables are not required to break loops.

In summary, although Banner-Pr is the most restrictive algorithm, it is more e�cient than

C-APN and should be used whenever possible, i.e. in all cases where the network is a polytree or

a virtual polytree, where the network is being trained for causal prediction, and where the data is

either complete or satis�es the restrictions described above. We use C-APN for problems that do

not �t these criteria.

Algorithm Node Type

Unrestricted Models Noisy-Or/And Models

Banner-Pr
p

APN
p p

Banner-Sr
p

Table 3.1: Applicability of the algorithms to various node types

Algorithm Architecture

Loops Virtual Polytrees Polytrees

Banner-Pr
p p

APN
p p p

Banner-Sr
p p p

Table 3.2: Applicability of the algorithms to various network architectures

30

Algorithm Type Of Inference

Causal Abductive combination no particular task

Banner-Pr
p

APN
p p p p

Banner-Sr
p p p p

Table 3.3: Applicability of the algorithms to various types of inference tasks

3.3 Converting from a Logical Theory to a Bayesian Network

The initial theory given to Banner may be in the form of a Bayesian network with Noisy-Or and

Noisy-And nodes, or in the form of propositional Horn-clause rules, in which case the Horn-clause

rules are converted into a Bayesian network with Noisy-Or and Noisy-And nodes.

The conversion is very straightforward. A consequent of a rule in the theory is converted

into a Noisy-And node whose parents are the antecedents of the rule. When there are multiple rules

with the same consequent, each rule is converted into a Noisy-And node, and then all of these Noisy-

And nodes are, in turn, connected to a Noisy-Or node that maps the disjunction denoted by the

multiple rules. A negation is handled by introducing a negation node, with the node corresponding

to the proposition being negated as its parent. A negation node is a regular probabilistic node,

whose conditional probability table is set so that it reverses the value of its parent. Since such a

node is introduced for the speci�c purpose of negating the value of a variable, the parameters on

the link between a negation node and its parent are never revised. Nor is the parent set of such a

node, which includes just the node that is being negated, revised during structure revision.

Figure 3.3 shows the Bayesian network corresponding to the portion of a logical theory

shown in Figure 3.2. Here, Rule1 has been converted into a Noisy-And node G1 that represents

the consequent of the rule, graspable. The antecedents of the rule are the parents of this node.

Rule2 is similarly represented by the Noisy-And node G2. The Noisy-Or node, graspable, maps the

disjunction denoted by Rule1 and Rule2. The negation node not-fragile represents the negated

antecedent in Rule1, and is a regular, probabilistic node whose conditional probability table is

pre-set to reverse the value of its parent, and is never revised. The sources of the DAG representing

the Bayesian network, i.e. nodes width-small, has-handle, and insulating are regular probabilistic

nodes. Finally, the probabilities on the links are all set to random values close to 1:0 to mimic the

logical theory. It is necessary to perturb the weights around the value 1.0 to break the symmetry

for better convergence while revising the parameters of the network.

Rule 1: graspable has−handle

Rule 2: graspable width−small, insulating , not fragile

Figure 3.2: Propositional Horn-clause theory

31

width−small insulating

has−handleG1

graspable noisy−or

noisy−and

fragile

fragile
not− negation node

Figure 3.3: Bayesian network derived from a Horn-clause theory

32

Chapter 4

Parameter Revision: Learning

Conditional Probabilities

As discussed earlier, the goal of this research is to design an e�cient and e�ective algorithm for

revising Bayesian networks composed of Noisy-Or/And nodes, in the presence of hidden variables.

An essential component of such an approach is an e�cient technique for revising the parameters of

the network. In this chapter, we present Banner-Pr, a technique that revises the parameters of a

network by using gradient descent to minimize the mean squared-error between the measured and

the computed values of certain target variables.1 In addition to being restricted to Noisy-Or/And

nodes, it only works on problems where the inference is causal (i.e. from cause to e�ect). Thus, it

can only learn networks whose sources are speci�ed as evidence, and whose sinks are speci�ed as

target classes. Furthermore, it can only be applied to polytrees and virtual polytrees. The reason

for these restrictions will become clear when we present the details of the algorithm.

As discussed in section 3.2, the structure revision algorithm is more general in its applica-

bility than Banner-Pr. In order to evaluate our technique on more general learning scenarios,

we have also implemented a variant of the APN algorithm (Russell et al., 1995) (Section 2.5) for

revising parameters. This chapter will also discuss our extension to APN, called C-APN and

present an experimental comparison of Banner-Pr, APN, and C-APN.

4.1 Banner-Pr

4.1.1 Overview of Banner-Pr

The learning algorithm used by Banner-Pr is analogous to the standard backpropagation algo-

rithm used to train a multi-layered feedforward network (McClelland & Rumelhart, 1988). It uses

gradient descent to minimize the mean-squared error between the measured and the computed

values of certain target variables. The algorithm is as follows:

1. Initialize the parameters of the network either randomly or based on some prior knowledge.

2. For every example in the training data

1By adopting the standard technique of initially setting the parameters to random values, the technique can also
learn parameter values from scratch.

33

(a) Place the evidence on the network and propagate beliefs through the network.

(b) Compute the mean squared-error at the target class nodes.

(c) Back-propagate the errors from the target nodes to the evidence nodes.

(d) Compute the gradient of the parameter at each link, based on the error associated with

the node at the head of the link, and modify the parameter accordingly.

3. Repeat Step 2 for several cycles until a desired level of training performance is reached. Each

cycle through the entire data set is called an epoch.

Section 3.3 discussed how the parameters of the network are initialized in Step 1 of the

algorithm. Step 2a instantiates the network with the given evidence and propagates beliefs as

discussed in Section 2.1.2. The following subsections will present the details of the backpropagation

phase (steps 2c and 2d), followed by a discussion of the criteria used to decide when to stop training

(step 3).

4.1.2 Backpropagation

Once the mean-squared error is computed for the nodes corresponding to the target class variables

(henceforth called output nodes), it is propagated back through the network. The gradient to be

applied to each of the parameters is computed based on these errors. The mean squared-error

function is de�ned as:

E[w] = 1=2
X
i�

(��(Ni = True)�Bel�(Ni = True))2 (4.1)

where ��(Ni = True) is the actual belief that the i-th target variable Ni is true for pattern � of

the data, and Bel�(Ni = True) is the predicted value of the belief that the i-th target variable is

true for this same pattern.

The gradient is computed by incorporating the belief functions for Noisy-Or/And nodes

(Equations 2.4 and 2.5) into the error function above and taking its partial derivative with respect

to the parameters. This results in the following gradients for Noisy-Or and Noisy-And nodes

respectively:

��cij =

(
���j Bel

�(Ni = True)
Q

k 6=i(1� ckjBel
�(Nk = True))

����j (1�Bel�(Ni = True)
Q
k 6=i(1� ckj(1�Bel�(Nk = True))

(4.2)

where cij is the parameter on the link from node Ni to node Nj , � is the learning rate, and ��j is

the error associated with node Nj for pattern �, which, for output nodes, is de�ned as

��j = ��(Nj = True)�Bel�(Nj = True):

The error associated with an interior node is the sum of the errors propagated back from its children.

The error propagated to Ni from its child Nj is:

�ji =

(
��jcij

Q
k 6=i(1� ckjBel(Nk = True)) (for Noisy-Or)

�jcij
Q
k 6=i(1� ckj(1�Bel(Nk = True)) (for Noisy-And)

(4.3)

34

where �j is the error at node Nj.

In addition to Noisy-Or/And nodes, the networks generated by Banner could also have

negation nodes, that model logical negations (see Section 3.3). These are regular, probabilistic

nodes, with a single parent corresponding to the variable being negated. Banner-Pr computes

the belief of a negated node according to:

Bel(Nj = True) = 1�Bel(Ni = True);

where Nj is a negation node, and Ni is its sole parent. The error propagated from a negation node

Nj to its parent Ni for pattern � is given by

��ji = ���j :

The computations presented here and in Section 2.1.2 lead us to the reason why Banner-

Pr is limited to causal inference and allows for only certain kinds of loops. Since the gradients are

based on Equations 2.4 and 2.5, which were derived based on the assumption that the inference

is causal, they would not be appropriate for non-causal inference. Moreover, the functions for

forward propagation shown above are no longer applicable in the presence of loops, unless the

evidence renders the network to be a virtual polytree. Removing these restrictions is an important

direction for future research and is discussed in Chapter 8.

4.1.3 Stopping Criteria

Knowing when to stop training is one of the crucial aspects of a gradient descent training algorithm.

If the network is not trained enough, then it will not learn the training data e�ectively and hence

may not be able to generalize well to unseen cases. If it is trained for too long, it may over�t the

training data and therefore lose out on generalization. In order to avoid over�tting, we use 10-fold

internal cross-validation to determine when to stop training. Thus, each set of training data is

partitioned into 10 equal subsets. Ten networks are trained for a pre-speci�ed number of cycles,

each using 9 of the subsets for training and one for testing. The generalization performance of each

network on the internal test sets is monitored at the end of each training cycle, and the average

generalization error is computed for each cycle. To avoid over�tting, the number of training epochs

that shows the least average generalization error is picked as the number of epochs needed to train

the network on the full training set. In addition, when this number is less than the pre-speci�ed

number of training cycles, and when Banner-Pr determines that training the network on the full

training set for the pre-speci�ed number of cycles would lead to 100% training accuracy, it sends

signal to the overall Banner algorithm that the current structure over�ts the training data.

4.2 APN and C-APN

Section 2.5 describes APN (Russell et al., 1995), a technique for revising the parameters of a

network of a given structure using gradient descent search. This technique is more general in its

applicability than Banner-Pr in that it is not restricted to Noisy-Or/And distributions and can

be applied to networks with loops. Recall that APN uses gradient descent to optimize lnPw(DjB),
i.e. the log of the probability assigned by network B to data D when the parameters are set to

35

w. The algorithm iterates over each example in the data set several times until convergence. For

each example, it instantiates the network with the observed values which serve as evidence, and

propagates the evidence throughout the network. It then updates the parameters of the network,

using the following equation to compute the gradients:

@ lnPw(D)

@wijk

=
mX
l=1

Pw(xij ; uik j Dl)

wijk

(4.4)

where m is the number of training instances, xij is the jth possible assignment to variable Xi, uik
is the kth possible value assignment to the parents of Xi, wijk is the probability that variable Xi

takes on its jth possible assignment given that its parents Ui take on their kth possible assignment.

Pw(xij ; uik j Dl) is computed as a by-product of inferring the probabilities of the variables in

the network, given the evidence in Dl. Note that there is no backpropagation of errors. All the

information for computing the gradient of the parameter at a link is available at the node at the

head of the link and the parents of that node.

Although the authors do not report any results on Noisy-Or models, they point out how

their technique can be extended to compute gradients for Noisy-Or parameters. Applying the chain

rule to Equation 4.4, and noting that all Noisy-Or/And variables are binary-valued, we get

@ lnPw(D)

@qji
=
Pm

l=1

P
k

Pw(xi = false; uik j Dl)

wi0k
� @wi0k

@qji
+ (4.5)

Pw(xi = true; uik j Dl)

wi1k
� @wi1k

@qji
(4.6)

where qji is the parameter on the link from node Xj to node Xi, wi0k is the probability that

variable Xi is false given that its parents Ui take on their kth possible assignment, and wi1k is the

probability that variable Xi is true given that its parents Ui take on their kth possible assignment.

The interior sum ranges over all possible instantiations of the parents of variable Xi. Further

derivation leads to the following gradient for Noisy-Or nodes:

@ lnPw(D)

@qij
=

Pm
l=1

P
ki=kj=true

Q
i=Tk�j

qil � Pw(xi = false; uiki j Dl)

wi0ki

�

qil � Pw(xi = true; uiki j Dl)

wi1ki

(4.7)

where kj=true is an instantiation of the parents of variable Xi where Xj is true, and Tk is the set

of parents of Xi that are true, The equation for the gradient for a Noisy-And node is

@ lnPw(D)

@qij
=

Pm
l=1

P
ki=kj=false

Q
i=Fk�j

qil � (
Pw(xi = true; uiki j Dl)

wi1ki

�

qil � Pw(xi = false; uiki j Dl)

wi0ki

(4.8)

where kj=false is an instantiation of the parents of variable Xi where Xj is false, Fk is the set of

parents of Xi that are false, wi0k is the probability that variable Xi is false given that its parents

Ui take on their kth possible assignment, and wi1k is the probability that variable Xi is true given

that its parents Ui take on their kth possible assignment.

36

While APN optimizes the probability assigned by the network to the data as a whole,

sometimes it may be desirable to learn a network that is optimal for its intended task. Speci�cally,

when the Bayesian network is being trained to be a classi�er, it is desirable to attempt to optimize

its classi�cation accuracy. Friedman and Goldszmidt (1996) have argued in favor of learning a

network that best estimates the probability distribution of the class variables conditioned on the

evidence or attributes. Therefore, the function to be optimized is lnPw(C j E), which is the log of

the conditional distribution of certain class variables C, conditioned on some evidence E. In order

to see how APN can be used to optimize this metric, note that by applying Bayes law we get

lnPw(C j E) =
mX
l=1

lnPw(Cl j El) (4.9)

=
mX
l=1

(lnPw(Cl; El)� lnPw(El)) (4.10)

where m is the number of training instances. Therefore,

@ lnPw(C j E)
@wijk

=
mX
l=1

(
@ lnPw(Cl)

@wijk

� @ lnPw(El)

@wijk

) (4.11)

Thus, the gradient to optimize lnPw(C j E) can be computed as the di�erence between the gradient
computed wrt. lnPw(C;E) using APN (as discussed in section 2.5) and the gradient computed

wrt. lnPw(E) using APN. This is the procedure adopted by C-APN, and since it is based on

APN, it can handle Noisy-Or, Noisy-And, as well as more general models of interactions.

The techniques described above are similar to Banner-Pr in that they use gradient descent

to learn the parameters of a network. In fact, it has been shown that the criterion of minimizing

the mean-squared error between the observed values of the target variables and their predicted

values, as used by Banner-Pr, is equivalent to the criterion, as used by C-APN, of �nding a

network that best explains the conditional distribution of the target variables (Rumelhart, Durbin,

Golden, & Chauvin, 1995; Opitz, 1995a). However, the computation of gradients for APN and

C-APN involves explicit computation of the conditional probabilities tables for the nodes in the

network. As discussed earlier, the size of the conditional probability table associated with a node

is exponential in its fan-in, and one of the prime reasons for using Noisy-Or/And nodes is to

circumvent the need for such tables. Using APN and C-APN, thus, nulli�es the computational

advantages of using Noisy-OR/And models. On the other hand, by restricting itself to certain

kinds of network structures, Banner-Pr is able to directly exploit the computations involved

in the Bayesian inference process, which in turn exploit the fact that Noisy-Or/And parameters

combine linearly. The number of computations required by Banner-Pr for each training cycle is

polynomial in the fan-in of the nodes, whereas the number of computations required by APN and

C-APN for each training cycle is exponential in the fan-in of the nodes. Thus, although Banner-

Pr and C-APN perform equivalent searches, the computational e�ciency of the former far exceeds

that of the latter.

Due to their ability to handle a wider range of network architectures and distributions,

we have included APN and C-APN in the suite of parameter revision techniques that can used

by Banner. Our implementation of APN and C-APN is built on top of a system for building

37

and reasoning with Bayesian networks called IDEAL (Srinivas & Breese, 1993), and can handle

Noisy-Or and Noisy-And nodes in addition to unrestricted models of interaction of inuences.2

4.3 Experimental Evaluation

The experiment described in this section was performed to compare the e�ectiveness of APN, C-

APN, and Banner-Pr in revising the parameters of a given network. Chapter 6 presents a more

detailed evaluation of Banner as a whole, which integrates both the structure revision component

and the parameter revision component. The data set used in the experiment described here has

also been used to evaluate the full system, and will be described again in detail in Chapter 6. Here,

we give a brief description of the data set and discuss the performances of the three parameter

revision techniques.

The standard practice in the �eld of learning Bayesian networks is to generate data from a

pre-speci�ed network and then try to use the data to re-learn the original network. The performance

of the learning technique is evaluated by directly comparing the learned network to the original.

However, in real-world applications the \correct" network is not known. Recently, there has been

growing interest in using evaluation functions such as classi�cation accuracy to demonstrate the

e�ectiveness of techniques for learning Bayesian networks (Friedman & Goldszmidt, 1996; Russell

et al., 1995). We use a real-world classi�cation problem of DNA promoter recognition (Towell et al.,

1990) to evaluate the learning algorithms. In our experiment, we follow the standard methodol-

ogy used to evaluate machine learning methods, i.e. that of studying the e�ect of training by

determining the classi�cation accuracy of the trained network on a separate test set.

4.3.1 DNA Promoter Recognition

Given a strand of DNA, geneticists are interested in identifying those sequences of nucleotides

that form a gene. This task is complicated by the fact that gene sequences are separated by

sequences of nucleotides that do not encode any useful information. Thus, it is important to have

techniques for identifying those portions of the DNA strand that encode genetic material. It has

been observed that gene sequences are always immediately preceded by particular sequences of

nucleotides called promoters. Thus, identifying promoter sequences would help identify the start

of gene sequences. This can be viewed as a classi�cation problem, where the task is to classify

a sequence of nucleotides according to whether or not it is a promoter. Since geneticists have

not yet formulated the rules classifying promoters accurately, there has been a lot of interest in

learning such classi�ers from data. Through analysis of biological literature of O'Neill and Chiafari

(1989), Noordewier et al. (1991) have proposed a set of rules for recognizing promoters given a

sequence of nucleotides. However, this theory is overly speci�c and classi�es all promoter sequences

as non-promoters, making it an ideal candidate for theory re�nement.

The data set used for this evaluation consists of 106 examples, of which 53 are positive

examples of a promoter, and 53 are negative examples. Each example has 57 input features, which

represent nucleotides, each of which can take on one of four values, A, G, T or C. The input features

represent a window over a DNA strand. The information in this window is used to determine the

2When contacted, the authors of APN were unable to release their implementation.

38

presence of a promoter. Each example is labeled according to whether or not it is a promoter.

Figure 4.1 shows the initial logical theory for recognizing a DNA promoter sequence. Since APN

and C-APN cannot handle networks with large large fan-ins, we used a slightly modi�ed version

of this theory for these experiments, where the last eight antecedents of the �rst rule for the

conformation were deleted. Figure 4.2 shows a portion of the Bayesian network derived from this

theory, using the procedure described in Section 3.3.

promoter � contact, conformation
contact � minus 35, minus 10
minus 35 � (p-37 c) (p-36 t) (p-35 t) (p-34 g) (p-33 a) (p-32 c)
minus 35 � (p-36 t) (p-35 t) (p-34 g) (p-32 c) (p-31 a)
minus 35 � (p-36 t) (p-35 t) (p-34 g) (p-33 a) (p-32 c) (p-31 a)
minus 35 � (p-36 t) (p-35 t) (p-34 g) (p-33 a) (p-32 c)
minus 10 � (p-14 t) (p-13 a) (p-12 t) (p-11 a) (p-10 a) (p-9 t)
minus 10 � (p-13 t) (p-12 a) (p-10 a) (p-8 t)
minus 10 � (p-13 t) (p-12 a) (p-11 t) (p-10 a) (p-9 a) (p-8 t)
minus 10 � (p-12 t) (p-11 a) (p-7 t)
conformation � (p-18 t) (p-5 c) (p-2 c) (p-4 c) (p-40 a) (p-47 c) (p-42 t) (p-43 t)

(p-39 c) (p-22 g) (p-16 c) (p-8 g) (p-7 c)
(p-6 g) (p-1 c) (p-46 a) (p-45 a)

conformation � (p-45 a) (p-44 a) (p-41 a)
conformation � (p-49 a) (p-44 t) (p-27 t) (p-22 a) (p-18 t) (p-16 t)

(p-15 g) (p-1 a)
conformation � (p-45 a) (p-41 a) (p-28 t) (p-27 t) (p-23 t) (p-21 a)

(p-20 a) (p-17 t) (p-15 t) (p-4 t)

Figure 4.1: DNA Promoter Recognition - Initial Domain Theory

The experiments were performed using the re-sampling methodology, where we conducted a

series of 10 trials for each training set size. During each trial, the data set was randomly partitioned

into a training set of a particular size, and a test set which consisted of the remaining examples

in the data set. Each learning algorithm was trained on the training set and evaluated on the test

set, and the results averaged over the 10 trials. As mentioned earlier, Banner-Pr used 10-fold

internal cross-validation on the training set to determine the stopping point for each train-test split.

However, the long training times required by APN and C-APN on this problem made it infeasible

to use this approach to determine the stopping point for these techniques. For instance, it took 15

hours (real-time) for C-APN to train a network for 300 epochs on 90 examples on an UltraSparc

I. Therefore, for these two techniques, all networks were trained to 300 epochs or until the error

showed no improvement over 25 consecutive iterations, which ever was sooner.

There are two issues that we hoped to address with our experiment. The �rst issue is: given

a problem to be solved using a Bayesian network, which of the three techniques produces better

generalization results? Since the three algorithms search through equivalent search spaces, it is to

be expected that they will perform comparably. However, we would expect that Banner-Pr would

converge faster than the other algorithms because it learns the Noisy-Or/And parameters directly

whereas the other algorithms learn the Noisy-Or/And parameters indirectly via the exponentially

large conditional probability tables associated with each node. Figure 4.3 shows that Banner is

39

CONTACT

MINUS_35

Noisy−And

Noisy−And

PROMOTER

MINUS_35_1MINUS_35_2

(P−36 T)

MINUS_10CONFORM

MINUS_10_3

Noisy−Or

Noisy−And

Noisy−Or

Noisy−Or

Noisy−And
Noisy−And

(P−35 T)

(P−34 G)

(P−33 A)

(P−32 C)

MINUS_10_4

(P−11 A) (P−7 T) (P−12 T)

Noisy−And

Figure 4.2: DNA Promoter Recognition - Bayesian Network

successful in learning networks with high classi�cation accuracy, and performs better than APN

or C-APN by large margins, except for very small training sets. The di�erences between the

performances of Banner and C-APN are statistically signi�cant at the 0.001 level for training set

sizes 20 and 60, and at the 0.01 level for training sets of size 40. The di�erences in performance

between Banner and APN is statistically signi�cant at the 0.01 level for training set sizes of 40

and 60, and at the 0.001 level when the size of the training set is 20. The di�erences between APN

and C-APN are not statistically signi�cant.

It is clear from �gure 4.4, which shows the accuracies of the three systems on the training

set, that the poor performance of APN and C-APN on the test data is largely due to the fact

that APN and C-APN haven't converged on the training data. An obvious solution is to let the

networks train longer until they converge on the training data. However, both APN and C-APN

were found to be very slow, which made it infeasible to train the networks longer. As mentioned

earlier, it took 15 hours (real-time) for C-APN to train a network for 300 epochs on 90 examples

on an UltraSparc I, whereas it only took 90 seconds for Banner-Pr to do the same. Of course,

these algorithms are slowed down to some extent by the underlying Bayesian network simulator

used by our implementation. However, real time aside, Banner-Pr was also found to converge

with many fewer epochs than APN or C-APN. For instance, Banner-Pr needed an average of

60 training cycles to converge on 90 examples, whereas APN and C-APN could achieve less than

90% training accuracy even when trained up to an average of 200 cycles.

The second issue is whether or not it is better to train a network speci�cally for classi�cation

in order to get better classi�cation performance. The graph indicates that C-APN is better than

APN for most points in the learning curve. Although the di�erences in their performances are

not statistically signi�cant, they are encouraging enough to warrant further exploration of this

issue by comparing the performances of these two techniques on more data sets. It would also be

40

interesting to study the relative performances of these techniques when used to train networks for

tasks involving diagnostic prediction or some combination of causal and diagnostic prediction.

41

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90

%
C

or
re

ct

Number of training examples

BANNER-PR
C-APN

APN

Figure 4.3: DNA Promoter Recognition: Performance of various parameter revision algorithms

42

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90

%
C

or
re

ct

Number of training examples

BANNER-PR
C-APN

APN

Figure 4.4: DNA Promoter Recognition: Accuracy on the training data

43

Chapter 5

Structure Revision

In designing an algorithm for revising the structure of a Bayesian network, we are faced with the

following issues: when, where and how should a network be revised, and when to stop revising the

network. The answer to the question of when the network should be revised is simple. Since the

goal of re�nement is to improve classi�cation accuracy, a network should be revised when it fails to

classify some data accurately. Our techniques for addressing the issues of where and how to revise

the network form the backbone of our structure revision algorithm, and will be the main focus of

this chapter. The success of a theory re�nement algorithm depends on its ability to stop revising

the theory before it over�ts the training data. Section 5.5 will discuss this issue further.

Figure 5.1 shows a high-level outline of the algorithm. Given a set of examples consisting

of observations of the evidence and the target variables, and an initial network, Banner �rst uses

the parameter revision module to revise the parameters of the network and �t the data. If the

network still misclassi�es some examples, Banner invokes the structure revision module, which

uses the examples to determine the portions of the network to be revised in order to correct

the misclassi�cations. Some of these revisions are implemented and the network is retrained to

re-calibrate the parameters. These steps are repeated until further revision fails to improve the

classi�cation accuracy of the network on the data.

Given: An initial approximate theory in the form of a Bayesian network with Noisy-Or/And nodes, and a set of
training data.
Output: A revised network that classi�es the data accurately.
Algorithm:

1. Initialize the parameters of the network either randomly or based on some prior knowledge.

2. Repeat steps a and b until a desired level of performance is reached.

(a) Train the network to revise the parameters.

(b) If any of the examples are misclassi�ed

i. Identify portions of the network to be revised.

ii. Revise the network structure at these points so as to cover the misclassi�ed examples.

Figure 5.1: Outline of the Algorithm

The purpose of the structure revision module is to repair a theory when it fails to classify

examples accurately. One approach to repairing a theory, employed by most existing techniques

44

for learning Bayesian networks (Friedman, 1997; Singh, 1997; Kwoh & Gillies, 1996; Cooper &

Herskovits, 1992; Ramoni & Sebastiani, 1997), is to consider all possible single revisions and select

the one that leads to the greatest improvement in accuracy. Since there are usually several possible

single revisions to a network, and only a small fraction of these are needed to �t the training data,

such generate then test approaches (Mitchell, 1997) spend considerable computational e�ort in

exploring unproductive paths in the search space. An alternative is the example-driven approach,

often used by logical theory re�nement algorithms (Richards & Mooney, 1995; Ourston & Mooney,

1994; Opitz & Shavlik, 1993), where the data is used to attribute failures in prediction to speci�c

portions of the network. This restricts the search space considerably by focusing attention on a

subset of variables that can be held responsible for an erroneous prediction by the network. Banner

is based on the idea that, since we are considering networks with Noisy-Or and Noisy-And nodes

which are analogous to logical disjunction and conjunction, techniques similar to those used for

revising logical theories can be applied to revise these networks.

Consider the reasoning used in diagnosing the cause of misclassi�cations arising from a

logical theory. Figure 5.2 shows a logical theory in the form of Horn-clauses, and a couple of

examples that are misclassi�ed by this theory. The theory classi�es the �rst example, labeled a

positive example of H, as a negative example, indicating that the theory is too speci�c. This could

be because

1. there should be more rules for concluding H, or

2. one or more of the rules for concluding H have more antecedents than necessary, or

3. the rules for X or Y are too speci�c, i.e. they have more antecedents than necessary, or

4. there should be more rules for concluding X or Y .

Theory:

Examples:

X, F.

X A, B.

Y C, D.

G = True, A = False, B = False, C = False, D = False, E = True1.

2. G = False,

, F = False

A = True, B = True, C = False, D = True, E = False, F = True

H

Y, G.H

, H=True

, H=False

Figure 5.2: Example of an incorrect logical theory

The second example, labeled a negative example of H, is classi�ed as a positive example by

the theory. This means that the theory is too general, which could be because

1. there are too many ways of concluding H, i.e. one of the rules for concluding H should be

deleted, or

2. the rules for concluding H are too general and need additional antecedents, or

45

3. there are more rules than necessary for concluding X or Y , or

4. the rules for concluding either of X or Y are too general and need additional antecedents.

These observations not only diagnose the errors in the theory, they also suggest ways in

which the theory could be revised to correct these errors. Most theory re�nement systems use a

combination of abduction and induction to e�ect such reasoning as described above (Mooney, 1997).

For each positive example not provable by the theory, these systems use abduction to generate a

small set of assumptions that would allow the example to be proved. These assumptions are then

used to suggest modi�cations to the theory. For negative examples proved by the theory, these

techniques use induction to learn new antecedents for one or more rules that render these examples

unprovable. For example, given the �rst failing example shown in �gure 5.2, these techniques would

generate Y = True as a minimal assumption that proves the example. Thus, possible repairs to

the theory would be to delete Y from the second rule, or to learn a new rule for proving Y . This is

similar to the reasoning outlined above to explain this misclassi�cation, with the added constraint

of generating a minimal fault hypothesis. Given the second failing example, these techniques would

learn new antecedents for the �rst or the third rule in the theory. Note that, since in general,

the problem of generating a minimal fault hypothesis is intractable, these techniques use a greedy

algorithm to generate an approximately minimal fault hypothesis.

Our goal is to develop similar insights into diagnosing faults in Bayesian networks. Figure 5.3

shows a Bayesian network with Noisy-Or and Noisy-And nodes, and an example that it misclassi�es.

Assume that the parameters of the network have been set so that the behavior of the nodes is similar

to that of their logical counterparts. Since the degree of belief in G, given the input features in the

example, is less than 0:5, this example is misclassi�ed as a negative example of G. This could be

because

1. the Noisy-Or node G is missing a parent which would provide the necessary positive evidence,

or

2. the Noisy-And nodes E and F have unnecessary parents that are providing too much negative

evidence, or

3. some of the parents of E and F are themselves too speci�c, and should be made more general

by interspersing the respective links with a Noisy-Or node with attached enabling inuences.

Notice that this reasoning is analogous to the reasoning used to propagate blame for mis-

classi�cation through a logical theory. The main di�erence here is that the degree of blame passed

from a node to its neighbors should now be proportional to the parameters associated with the links

between the nodes. Moreover, the weights on the links reect, to some extent, the over-generality

or over-speci�city of the theory and have to be taken into account while assigning blame. Finally,

the blame factor itself is di�erent for the two cases. For logical theories, blame simplify reects

misclassi�cation, whereas for Bayesian networks, blame also reects the amount by which the belief

in the truth of any particular node should change in order to correct the misclassi�cation.

So now, we need to design an algorithm for diagnosing the cause of failures in a Bayesian

network that incorporates the reasoning outlined above, while taking into account quantitative

46

G

EF

ABCD

noisy−or

noisy−andnoisy−and

Network:

Example:

G = True, A = False, B = True, C = False, D = True.

Figure 5.3: Example of an incorrect Bayesian network

information such as the network parameters and the belief associated with each node. Consider

the following observations:

1. Typically a Bayesian network is used to infer the probability of some variables given some

evidence. Thus, we already have algorithms that propagate beliefs through networks, taking

into account all the quantitative information. Our algorithm is designed to use these inference

mechanisms to assign blame to di�erent parts of the network.

2. Leak nodes, as described in Section 2.1.2, provide a way to incorporate the kind of reasoning

outlined above into the Bayesian network. For example, adding a leak node to a Noisy-Or

node provides a way of encoding incompleteness in the knowledge of all the causes of the

node. This leak node could be used to signal a situation where none of the current causes

of the node can explain its target outcome. This is described in greater detail in the next

section.

These observations lie at the heart of our structure revision algorithm which diagnoses faults

in a Bayesian network by temporarily instrumenting the network at each node with leak nodes which

serve as indicators of possible repairs to the theory. Individual examples are then used to select a

small set of these repairs to be implemented. In the following two sections we present the details

of how the network is augmented with leak nodes, and then discuss the procedure for using these

leak nodes to select revision points.

47

5.1 Augmenting the Network with Leak Nodes

The procedure for augmenting a network with leak nodes is best illustrated with an example.

Figure 5.4 shows the network from �gure 5.3 augmented as follows:

� Each Noisy-Or and Noisy-And node in the network has an additional node added to its set

of parents. We will refer to these nodes as node-leak nodes. The parameter on the link

between the node and its new parent is set to be very low (0.01), in order to simulate a

logical disjunction. The augmentation is not complete until the prior probabilities of the

newly introduced node-leak nodes are set. Since these leak nodes represent possible repairs

to the theory, which is assumed to be correct unless there are indications to the contrary,

they are initially set to have a low prior probability. However, when the algorithm detects

misclassi�cations, it estimates these prior probabilities by training a copy of the network,

augmented with node-leak nodes, using the parameter revision module. Figure 5.5 illustrates

this in greater detail.

� The Noisy-Or nodes have each of their parents routed through an intervening Noisy-And node,

and the Noisy-And nodes have each of their parents routed through an intervening Noisy-Or

node. The intervening nodes themselves have attached leak nodes, henceforth referred to as

a link-leak nodes. The intervening nodes and the link-leak nodes together augments the links

in the network. For example, the connections to the Noisy-Or node G have been modi�ed

so that its parent E is now connected to an intervening Noisy-And node G-E, which is then

connected to G. The parents of node G-E are the nodes E, and the link-leak node G-E-

leak. Notice that this transformation is similar to the conceptual view of a Noisy-Or node as

described in Section 2.1.2. In fact, the two would be equivalent if the weights on the links are

set to simulate logical conjunctions and disjunctions and the prior probability of the link-leak

node is set to the weight on the link between nodes E and G in the unaugmented network.

Setting the weights in this manner completes the augmentation of node G. Other Noisy-Or

and Noisy-And nodes in the network are similarly transformed.

Once a network has been augmented in this manner, the stage is set for blame assignment,

i.e. the process of determining the contribution of each node and link in the network to the failures

in prediction.

5.2 Blame Assignment

The leak nodes introduced into the network, as described above, represent possible faults in the

theory. Once these nodes are in place, Banner performs abduction on each misclassi�ed example

to generate a set of repairs that would lead to the example being classi�ed correctly. Note that this

use of abduction is very similar to the way that several logical theory re�nement algorithms use

abduction to generate revision points in the theory (Ourston & Mooney, 1990, 1991, 1994; Wogulis

& Pazzani, 1993; Wogulis, 1994; Ba�es, 1994; Ba�es & Mooney, 1996; Brunk, 1996). However,

logical theories require special algorithms for abduction, whereas for Bayesian networks, this process

simply involves instantiating both the evidence and the target variables to their observed values and

inferring the beliefs associated with the leak nodes using standard Bayesian inference algorithms.

48

F noisy−and

AB

E noisy−and

G noisy−or

noisy−and G−EG−leakG−F noisy−and

E−B noisy−or E−A noisy−or

CD

F−Cnoisy−orF−Dnoisy−orF−leak E−leak

G−E−
leak

E−A−
leak

E−B−
leak

F−C−
leak

F−D−
leak

G−F−
leak

intervening node

node−leak node

link−leak node

Figure 5.4: Augmenting a network with leak nodes

1. set leak-net = train-net augmented with node-leak nodes, where
train-net is the current version of the network being trained.

2. Train network train-net to revise parameters.

3. If there are some misclassi�ed examples

(a) Train network leak-net to estimate prior probabilities of the
leak nodes.

(b) Set augmented-net = train-net augmented with node-leak

and link-leak nodes.

(c) Copy priors of node-leak nodes from leak-net to augmented-
net.

Figure 5.5: Procedure for estimating prior probabilities of node-leak nodes

49

Another di�erence is that Banner uses abduction to generate repairs for all the misclassi�ed

examples, while the other algorithms do so only for failing positive examples. Finally, whereas

other techniques can narrow down the blame to particular rules, the leak nodes used here enable

Banner to narrow down blame further to speci�c links in the network, which for logical theories,

is equivalent to blaming particular antecedents of a rule.

Thus, for each misclassi�ed example, Banner performs inference on the network augmented

with leak nodes to collect a set of node-leak nodes and link-leak nodes, whose beliefs deviate from

their prior probability by more than a certain amount1. Such leak nodes are said to cover the

example, and indicate potential revision points in the theory. When the belief in the truth of a leak

node decreases from its prior, the node is said to act as an inhibitor. Similarly, when the belief in

the truth of a leak node increases from its prior, then the node is said to act as an enabler. The

purpose of this distinction will be explained in Section 5.4. Each leak node covering an example

is associated with the degree to which its belief deviated from its prior belief. This indicates the

extent to which each of the leak nodes is to be blamed for the misclassi�cation. Once leak nodes

are collected for all of the misclassi�ed examples, Banner uses a greedy set covering algorithm,

where the contribution of each leak node is weighted by its degree, to generate a small set of leak

nodes that cover all of the misclassi�ed examples. Figure 5.6 gives the details of this algorithm,

which takes as input a set of misclassi�ed examples, ME, and a set of leak nodes, LN , and returns

revision-points, a small set of leak nodes that covers all the misclassi�ed examples. The function

degree(L;E) returns the degree of deviation in belief exhibited by the leak node L for example E,

and argmax f(x) returns the value of x for which the function f(x) is maximized.

greedy-set-cover(ME;LN)

1. Set revision-points = empty

2. Repeat until ME is empty:

(a) For each leak-node L 2 LN , set blame(L) =
P

j2MEL
degree(L; j), where

MEL = set of misclassi�ed examples covered by L.

(b) Set Lmax = argmaxl2LN blame(l).

(c) Add Lmax to revision-points.

(d) Remove the set of misclassi�ed examples covered by Lmax from ME.

3. Return revision-points.

Figure 5.6: Greedy Set Cover Algorithm

While Banner uses only the misclassi�ed examples to generate a set of revision points, it

performs inference on the augmented network for all the examples in the training data, including

the ones that were classi�ed correctly. Thus, it generates a list of node-leak nodes and link-leak

nodes that are enabled or inhibited for each example in the training data. The purpose of this will

become clearer in the next section which discusses the operators used by Banner to repair the

theory.

1This threshold amount was set to be equal 10% of the prior probability, a criterion that was heuristically
determined.

50

5.3 Revision Operators

Having addressed the issue of deciding where the network should be revised, we now turn our

attention to the issue of how it should be revised. Recall that Banner uses the augmented network

to pick node-leak and link-leak nodes that form the set of revision points. Depending on whether

a revision point is a node-leak node, or a link-leak node, Banner implements one of the following

three revision operators:

1. Adding a new parent: When a candidate revision point is a node-leak node, Banner adds

a new parent to the node in the original network corresponding to the node in the augmented

network to which the leak node is attached. This new parent may be any node in the network

that is not already a parent or a descendant of the node being revised (in order to prevent

directed cycles). For instance, suppose that the node-leak node, G-leak, in the augmented

network shown in �gure 5.4 is the revision point under consideration. Banner adds a new

node to the parent set of node G in the original network, as shown in Figure 5.7. The heuristic

for choosing the new parent is discussed in the next section.

G

EF

ABCD

noisy−or

noisy−andnoisy−and

new
parent

Figure 5.7: Revision operator: Adding a new parent

2. Adding a new hidden node: When a candidate revision point is a link-leak node, Banner

modi�es the link associated with that node. One of the ways that Banner revises a link is by

introducing a new hidden variable between the two nodes of the link, and using the heuristic

described in the next section to �nd a new node to be added to the parent set of the newly

introduced hidden node. For example, when the revision point under consideration is the

link-leak node, E-A-leak, from the augmented network shown in �gure 5.4, Banner revises

the original network by introducing a new hidden node between nodes E and A, which is of

the same type as the intervening node, E-A-e, used to augment the link between E and A in

the augmented network (Figure 5.8). The parents of the new hidden node are nodes A and

a new parent picked by Banner using the criteria discussed in the next section.

3. Deleting a link: When the candidate revision point is a link-leak node, Banner can also

decide to delete the link corresponding to the link-leak node. Consider again the example

where the link-leak node E-A-leak of the augmented network is the candidate revision point.

51

G

EF

A

BCD

noisy−or

noisy−andnoisy−and

new
parent

E−A noisy−or

Figure 5.8: Revision operator: Adding a hidden node

Suppose that it is observed that node E-A-leak does not need to be false for any of the

examples, but needs to be true for some examples. This means that the link between nodes

E and A in the original network may be deleted in order to correct the misclassi�ed examples

without a�ecting any of the other examples. An analogous argument can be made for Noisy-

Or nodes. This is only one of the conditions under which Banner deletes a link.

A second condition for deleting for a link arises out of the case where Banner considers

adding a hidden variable as described above. Let us consider the augmented network shown

in �gure 5.4, where the candidate revision point is the node E-A-leak. Suppose that Banner

picks the negation of A to be the new parent of the intervening node E-A (Figure 5.8). Such

an addition is equivalent to deleting the link between E and A, and hence, Banner deletes

the link between E and A instead of adding a hidden node as described above.

5.4 Choosing a Parent to Add

The �rst two revision operators discussed above require the selection of a new parent to be added

to a node, which would act as an inhibitor in some cases, and as an enabler in others. Here, we

will describe the procedure for selecting a new enabling parent. The procedure for selecting a

new inhibitory parent is identical, except that the information gain metric, discussed below, would

have to be slightly modi�ed. We will point out the necessary changes to this metric once we have

presented its details.

The problem of �nding a node to be added to the parent set of another node may be viewed

as that of �nding a feature that best discriminates between two classes, given a set of examples. As

mentioned earlier, in addition to a list of misclassi�ed examples which need the enabling inuence,

Banner also maintains a list examples (not necessarily all misclassi�ed), for which the new parent

should be not be enabled. Thus, there are two sets of examples, one for which the new parent

52

should be true, and one for which the new parent should be false. Banner uses the information

gain (Gain) (Mitchell, 1997; Quinlan, 1993, 1990, 1986; Mingers, 1989) metric to choose a parent,

from among a set of candidates, that best reects this distribution.

The Gain metric, commonly used in inductive learning algorithms (Mahoney & Mooney,

1994; Quinlan, 1990, 1986), estimates the information gained about a target function value from

knowing the value of an attribute. For example, given a single-class problem, a set of binary-valued

attributes, and a set of examples consisting of attribute vectors labeled with class membership,

the Gain metric can be used to pick a feature that best predicts the classi�cation of the examples.

There are two versions of this metric that are commonly used. One version, used in decision tree

learning algorithms such as ID3 and C4.5 (Quinlan, 1986, 1993), is used in situations where it is

su�cient to select a feature that best discriminates between sets of examples, with no constraints

on what the value of the feature should be for each set of examples. A second version, used by

Quinlan (1990) to learn propositional Horn-clause theories, is used in situations where it is not only

necessary to pick a feature that best discriminates between sets of examples, it is also required that

the feature have speci�c values (e.g. true or false) for each set of examples. In our case, we need to

select a new parent that discriminates between the examples that need an enabling inuence, and

the examples that need an inhibitory inuence, with the additional constraint that the new parent

be true for the former set of examples and false for the latter set of examples. Therefore, we have

used the second version of the information gain metric, as described below.

Suppose that we are given a set of examples, S, of size N , of which N+ are positive examples

of a given class C, and N� are negative examples of C. Also assume that all the features in the

examples are boolean-valued. Then, according to information theory, the number of bits needed to

encode the classi�cation of a positive member of the class is given by:

I(S) = � log2

N+

N� +N+

!

For any given feature F , let Nf be the number of examples for which F is true; of these

let, N+
f be the number of examples which are positive examples of C, and N�

f be the number of

examples which are negative examples of C. Then, the number of bits required to encode the set

of examples for which both F and C are true is given by:

I(Nf) = � log2

N+
f

N�
f +N+

f

!

Thus, the reduction due to F in the total number of bits required to encode the positive members

of C is given by

Gain(C;F) = N+
f � (I(S)� I(Nf))

The higher the value of this function, the greater the correlation between the examples for which

F is true and the positive examples of C. Note that this computation can be easily generalized

to hidden variables and variables with missing values. Information gain for such nodes can be

obtained by weighting the frequency measures N+
f and N�

f by the degree of belief associated with

these nodes for each example.

So far, we have described this metric with a view to selecting an enabling parent. The same

metric is used to select an inhibitory parent, except that in this case, Nf is de�ned as the number

53

of examples for which F is false. Every other term in the computation of the metric is de�ned as

before.

Figure 5.9 shows how Banner uses the information gain metric to select an enabling parent.

The inputs to this algorithm are: the node N whose parent set is being augmented, a set of nodes,

CF that are candidates for being selected as a new parent, and E, the union of the set of examples

for which the new parent should be true and the set of examples for which it should be false. Note

that the algorithm assumes that CF does not contain any parents or descendents of node N , since

it is unproductive to consider an existing parent to be added as a new parent, and adding a link

to the node from one of its descendents would lead to a directed cycle. The algorithm returns an

enabling node, unless none of the nodes in CF leads to positive information gain. The algorithm

for selecting an inhibitory parent is identical, except that the Gain metric is modi�ed as described

above.

get-enabler(N;CF;E)

1. For each F 2 CF , compute Gain(E;F)

2. Set Fmax = argmaxf2CF Gain(E; f).

3. If Gain(E;Fmax) � 0,

(a) Return NO-ENABLER-FOUND

4. Else

(a) return Fmax

Figure 5.9: Algorithm for Selecting a New Enabling Parent

In the most general case, all the nodes in the network, observed and hidden, and their

negations are candidates for the new parent. However, since adding links from hidden variables may

violate the constraint imposed by Banner-Pr that the network be a virtual polytree, we restrict the

set of candidate parents to just the observed variables for problems where Banner-Pr is used as

the parameter revision module. In addition, we do not consider negations of those variables that are

multi-valued variables converted into binary-valued variables to �t the representation. Figure 5.10

shows the summary of the theory revision algorithm.

5.5 Stopping Criteria

Deciding when to stop training, so that the network learns the training data e�ectively without

over�tting, is crucial. Each of the revision components, namely the parameter revision and the

structure revision components, could lead to over�tting. Section 4.1.3 discusses the details of

our technique for deciding when to stop parameter revision. Banner uses information from the

parameter revision module as a part of its criteria for deciding when to stop revising the network.

Thus, Banner stops training when the parameter revision module reports over�tting (Section 4.1.3

or reports one hundred percent accuracy on the training set. In addition, Banner also stops

training when it observes that the training accuracy of the network has not improved for a certain

54

Given: An initial network, and a set of training data.
Output: A revised network.
Algorithm:

1. Initialize the parameters of the network either randomly or based on some prior
knowledge.

2. Repeat steps a-e until further training does not improve accuracy on the training
data.

(a) set train-net = initial network.

(b) set leak-net = train-net augmented with node-leak nodes.

(c) Train network train-net to revise parameters.

(d) If the previous step indicates over�tting, or all examples are correctly classi-
�ed, return train-net.

(e) else

i. Train network leak-net to estimate prior probabilities of the node-leak

nodes.

ii. Set augmented-net = train-net augmented with node-leak and link-leak

nodes.

iii. Copy priors of leak nodes from leak-net to augmented-net.

iv. For each example,

A. Instantiate input and target nodes of augmented-net with values
from the example.

B. Infer beliefs of all the nodes in augmented-net.

C. Collect all enabled and inhibited node-leak and link-leak nodes.

v. Set revision-points =small set of node-leak and link-leak nodes that cover
all the misclassi�ed examples found using the greedy set cover algorithm.

vi. For each revision point in revision-points, revise train-net at the revision
point using one of the revision operators.

Figure 5.10: Detailed outline of the algorithm used by Banner

55

number of iterations.2

5.6 Variants of the Algorithm

The previous sections described the theory re�nement algorithm used by Banner. In this section,

we describe some variations of the algorithm that may be useful in some learning scenarios.

5.6.1 As an Inductive Learner

Banner has been designed for the purpose of using examples to revise a given theory using ex-

amples, in order to improve its classi�cation accuracy on those examples. However, Banner can

learn networks even when such a theory is not available, by constructing a default network, and

performing theory re�nement using this as the initial network. There are several ways to construct

an initial default network. One is to build a two-layered network by connecting each target variable

to each input feature. Figure 5.11 shows one such network where variables A, B, C, D, G and E

are the variables observed in the data. Here, nodes G and E could either be Noisy-Or or Noisy-And

nodes. Given this network, Banner would have to prune away unnecessary links and introduce

hidden variables if necessary. Another possibility is to construct a network that is completely dis-

connected, i.e. none of the nodes in the network are connected. In this case it would be necessary

to provide some ordering on the variables by specifying some to be the sources of the network, and

some to be the sinks. In our experiments, we decided to use the latter approach, since the former

approach results in very large initial networks. We will discuss the e�ectiveness of Banner for

inductive learning in the next chapter.

A B C D

E G

Figure 5.11: An initial network for inductive learning

5.6.2 Learning Networks with Leak Nodes

The previous sections described how Banner uses leak nodes to localize portions of the network

to be revised. However, it may be desirable to learn networks with leak nodes when it is suspected

or known that the data may not contain all the information necessary to model the domain.

An example of this would be a scenario where the goal is to learn a network that models data

describing set of symptoms and set a diseases, but it is known that not all causes of the symptoms

2This number was set to 3 for all our experiments.

56

are represented in the data. In fact, learning networks with leak nodes in such situations provides

another way of introducing hidden variables into the network. Banner can be used in these

situations with only a slight modi�cation to the algorithm. Since now the goal is to learn networks

that include leak nodes, the two parameter revision steps in each iteration (steps 2c and 2ei in

Figure 5.5), namely one to learn the parameters and one to estimate the prior probabilities of

the network, can be replaced by one parameter revision step that estimates the parameters of

the network that includes leak nodes. The rest of the algorithm remains unchanged. Section 6.6

describes an experiment in which we used Banner to learn a network with leak nodes and discusses

its performance.

57

Chapter 6

Empirical Evaluation

In this chapter, we will to show through experiments on realistic problems and data, that our

technique is e�ective in revising networks to signi�cantly improve their accuracies on a given

classi�cation task. We will also compare the performance of Banner with some other learning

algorithms. Finally, we will study the contribution of the di�erent components of Banner to its

overall e�ectiveness.

One way to determine if our theory re�nement algorithm achieves its purpose is to use it

to revise some theories that are known to be approximate and measure the accuracy of the revised

Bayesian network on independent test data. An improvement in accuracy would provide evidence

that the algorithm has indeed achieved its purpose.

While it is important to study an algorithm's e�ectiveness in achieving its goal, it is also

important to evaluate its performance against other algorithms designed for the same purpose.

Banner is a theory re�nement algorithm based on the hypothesis that it is more e�ective to learn

from an initial approximate theory than to learn from scratch. In order to test this hypothesis,

we will compare the performance of Banner with some inductive learning algorithms such as

C4.5 (Quinlan, 1986), which is a well-known technique for learning decision trees, the Naive Bayes

algorithm, Backprop, which is the neural network backpropagation algorithm described in Sec-

tion 2.2, as well as an inductive version of Banner. The Naive Bayes algorithm learns a special

class of Bayesian net classi�ers (Section 2.4), and has been shown to produce highly accurate clas-

si�ers, and in many cases, is hard to beat. Therefore, comparisons with the Naive Bayes algorithm

will also serve to illustrate the usefulness of Banner speci�cally as a tool for learning Bayesian

network classi�ers.

Banner can also be used as a hybrid learning algorithm that combines symbolic and prob-

abilistic representations. Therefore, we compare its performance with other hybrid learning al-

gorithms such as Kbann (Towell & Shavlik, 1994) and Rapture (Mahoney, 1996; Mahoney &

Mooney, 1993), and with Either (Ourston & Mooney, 1994) which is a technique for revising

logical theories. Since Banner, unlike other hybrid learning systems, is capable of revising theo-

ries even when the intended prediction task is diagnostic as opposed to causal, we will evaluate it

performance on one such problem.

Finally, not only are we interested in overall performance of Banner, we would like to

evaluate the contribution of each individual component to the overall algorithm. In particular, we

would like to study the extent to which structure revision contributes to the overall performance

58

of Banner, and the bene�ts of starting out with an initial theory. For this, we perform ablation

studies, where we disable certain components of the algorithm, and compare the performance of

the ablated system with that of the full system. We will study the following ablated versions of

our system: Banner-Ind, an inductive version of Banner which incorporates both the parameter

revision and structure revision component but uses a default initial theory, as discussed in Sec-

tion 5.6.1 , and Banner-Pr (parameter revision), which uses a given initial theory but does not

perform any structure revision. We will compare the performances of these ablated systems with

that of Banner on each of the experimental domains.

The standard practice in evaluating algorithms that learn Bayesian networks is to assume

that the target network, commonly called the gold standard, is known ahead of time (Cooper

& Herskovits, 1992; Aliferis & Cooper, 1994; Russell et al., 1995). Given the target network,

the practice is to generate data from the network, learn a Bayesian network from the generated

data, and compare the learned network with the original. Such evaluations assess the ability of

an algorithm to learn a Bayesian network from data, when it is known that there is a Bayesian

network that models the data. In real-world learning situations, the target concept is not known

in advance, nor is it known what the most suitable representation for the target concept would

be. The success of a technique on real-world learning problems is determined not only by its

ability to learn e�ectively, but also on the suitability of the representation, and its underlying

assumptions, for the domain. While experiments with arti�cial data demonstrate the e�ectiveness

of the learning algorithm, they do not say anything about the usefulness of the representation for

modeling real domains. By evaluating techniques on real data sets, we not only demonstrate the

e�ectiveness of the learning algorithm, but also provide evidence that the underlying representation

and assumptions are realistic in that they model the real world e�ectively. With this in mind, we

we will study the performance of Banner on some real-world data sets for which we not know

the target theories, but do have some initial approximations of the theories. These data sets also

demonstrate that our technique can be e�ectively applied to fairly complex domains involving

hundreds of variables.

In the following sections, we will evaluate Banner on �ve classi�cation problems: recogniz-

ing DNA promoters (Noordewier et al., 1991), recognizing DNA splice-junctions (Noordewier et al.,

1991), learning student models for a C++ tutor (Ba�es, 1994), diagnosing brain disorders in human

patients (Tuhrim et al., 1991), and classifying chess end-games (Shapiro, 1983, 1987). The �rst

four of these problems have associated domain theories, represented as propositional Horn-clause

rules, that do not have good predictive accuracies on the data and therefore need to be revised.

The �fth problem does not have an initial domain theory and is intended to study the e�ectiveness

of Banner in learning networks from scratch. We will also evaluate the structure revision compo-

nent of Banner more directly by performing experiments on corrupted versions of the theory for

recognizing DNA promoters. The data sets and domain theories for all these problems, except the

student modeling problem, can be obtained from the University of California, Irvine repository of

machine learning databases (Merz, Murphy, & Aha, 1996).

The results reported here for all techniques, other than Banner and the Naive Bayes algo-

rithm, were obtained from other sources. The results for Rapture, Either, C4.5, and Backprop

were obtained from Mahoney (1996), and those for Kbann were obtained from Towell (1991). The

results on the C++ tutoring domain, for systems other than Banner, Banner-Ind, and Naive

59

Bayes, were obtained from Ba�es (1994). The results reported for the Naive Bayes algorithm were

generated using an implementation of the algorithm that uses the Laplace estimation strategy, as

discussed in section 2.4, to avoid the problem of zero estimates. Henceforth, we will refer to this

particular implementation as Naive Bayes.

6.1 Experimental Methodology

The purpose of learning is to acquire knowledge that can be applied to novel situations. Thus, all

learning techniques should be evaluated and compared on the basis of their ability to generalize

to new situations. This means that techniques that learn from examples should be evaluated on

how well they can generalize to examples that are not among the ones used to train the system.

A standard methodology for evaluating such a learning technique, is to partition the given set of

examples into a training set and a test set, present the learning algorithm with examples from the

training set, and measure the accuracy of the learned theory on the test set, where accuracy is

de�ned as the percentage of examples that are classify correctly.

It is also common to evaluate learning algorithms on training sets of di�erent sizes, and

generate learning curves that chart the performance of the algorithm on training sets of increasing

sizes. The slope of a learning curve is an indicator of how much performance can be gained by

increasing the number of training examples. Learning curves also provide an insight into the limit

beyond which increasing the number of training examples will not result in signi�cantly improved

performance. Studying the performance of di�erent learning algorithms on data sets of varying

sizes helps in the selection of a learning algorithm that will lead to the best performance for the

amount of data available.

While comparing learning algorithms, it important to not judge their performances on a

single trial, but rather on their performances averaged over many trials on di�erent training and

test sets. There are several methodologies for doing this. The re-sampling methodology conducts a

series of about 20 to 30 trials, where during each trial, the given data set is randomly partitioned

into a training set and a test set, which are then used to evaluate each learning algorithm, and the

results are averaged over the trials. The k-fold cross-validation methodology randomly partitions

the given data set into k sets, T1; � � � ; Tk. The results are averaged over k trials, where each trial i

uses Ti as the test set, and the union of all the remaining sets Tj; j 6= i, as the training set. The

latter approach has been shown to be more indicative of the true di�erences between performances

of learning algorithms than the former (Dietterich, 1998). However, the former methodology has

been very commonly used in the literature, and many of the learning techniques such as Either,

Rapture, and Kbann have been evaluated using this methodology. We use the re-sampling

methodology whenever the training/test splits used to evaluate these techniques were available to

us, so as to compare their performances with that of Banner when trained on the same set of

training examples. Otherwise, we use the cross-validation methodology.

The learning curves for Rapture, Kbann, Either, C4.5 and Backprop were generated

using the re-sampling methodology, where during each trial, starting from an empty set, the size

of the training set was increased successively, while the test set was held constant. As mentioned

earlier, we used the re-sampling methodology to evaluate Banner whenever the training/test set

splits were available. However, instead of holding the test set constant during each trial, while

60

adding to the training set, we used the approach of including in the test set, all the data not

included in the training set. This means that the size of the test set decreased as the size of the

training set increased. Thus, while all the systems were trained on identical training sets, Banner

and Naive Bayes were evaluated on test sets not identical to those used to test the other systems.

This mainly a�ects the choice of the procedure to be used to test the statistical signi�cance of the

di�erences in performances between these systems. Tests for statistical signi�cance are necessary

to determine whether the di�erences in the results obtained for various techniques are merely due

to statistical variations, or due to the inherent di�erences between the techniques. It is necessary to

the use the unpaired t-test (Siegel, 1988) to test for statistical signi�cance of the di�erences in the

results obtained for systems that were not evaluated on identical test sets, since the results for each

trial are no longer completely paired. The signi�cance of the di�erences in the results obtained for

Banner and Naive Bayes, which were evaluated on identical test data, can be tested with paired

t-test (Siegel, 1988). The unpaired t-test is the more conservative test of the two.

6.2 DNA Promoter Recognition

DNA is the basis of genetic information in all living creatures. A DNA molecule consists of two

strands of nucleotides, where some sequences of nucleotides contain information for the synthesis

of important proteins, and are called genes. Given a strand of DNA, geneticists are interested in

identifying those sequences of nucleotides that form a gene. This is complicated by the fact that

gene sequences are separated by sequences of nucleotides that do not encode any useful information.

Thus, it is important to have techniques for identifying those portions of the DNA strand that

encode genetic material. It has been observed that gene sequences are always immediately preceded

by particular sequences of nucleotides called promoters, so that identifying promoter sequences

would help identify the start of gene sequences. This can be viewed as a classi�cation problem,

where the task is to classify a sequence of nucleotides according to whether or not it is a promoters.

Since geneticists have not yet formulated the rules for classifying promoters accurately, there has

been signi�cant interest in learning such classi�ers from data. Based on an analysis of biological

literature found in O'Neill and Chiafari (1989), Noordewier et al. (1991) have developed a set of

rules for recognizing promoters. However, this theory is overly speci�c, which makes it an ideal

candidate for theory re�nement.

There are two sets of data associated with this domain. The �rst set, consisting of 106

examples (53 positive examples, and 53 negative examples), has been widely used to evaluate

several inductive and theory re�nement systems. The second data set has 468 examples, 234 of

which are positive examples of the class. Each example has 57 input features, which represent

nucleotides, each of which can take on one of four values, A, G, T or C. Each example is also

labeled according to whether or not it is a promoter. The input features represent a window over

a DNA strand. The information in this window is used to determine the presence of a promoter.

Figure 6.1 (Mahoney, 1996) shows a sequence of nucleotides that form the input features. The

nucleotide labeled P1 marks the beginning of a potential gene sequence. The task is to determine

whether the nucleotides labeled P -50 to P -1, immediately preceding the potential gene, form a

promoter.

Figure 6.2 shows the initial logical theory for recognizing a DNA promoter sequence. Fig-

61

Potential PROMOTER site Beginning of Gene

P−50 P−1 P1

T C A G A A A T A T T A T G G T G A T G A C T G T T T T T T T A T C C A G T A T A A T T T G T T G G C A T A A T

Figure 6.1: Example of a DNA string

ure 6.3 shows a portion of the Bayesian network derived from this theory, as discussed in Section 3.3.

We will �rst discuss experiments with the data set with 106 examples, followed by a discussion of

the experiments with the larger data set.

promoter � contact, conformation
contact � minus 35, minus 10
minus 35 � (p-37 c) (p-36 t) (p-35 t) (p-34 g) (p-33 a) (p-32 c)
minus 35 � (p-36 t) (p-35 t) (p-34 g) (p-32 c) (p-31 a)
minus 35 � (p-36 t) (p-35 t) (p-34 g) (p-33 a) (p-32 c) (p-31 a)
minus 35 � (p-36 t) (p-35 t) (p-34 g) (p-33 a) (p-32 c)
minus 10 � (p-14 t) (p-13 a) (p-12 t) (p-11 a) (p-10 a) (p-9 t)
minus 10 � (p-13 t) (p-12 a) (p-10 a) (p-8 t)
minus 10 � (p-13 t) (p-12 a) (p-11 t) (p-10 a) (p-9 a) (p-8 t)
minus 10 � (p-12 t) (p-11 a) (p-7 t)
conformation � (p-47 c) (p-46 a) (p-45 a) (p-43 t) (p-42 t) (p-40 a)

(p-39 c) (p-22 g) (p-18 t) (p-16 c) (p-8 g) (p-7 c)
(p-6 g) (p-5 c) (p-4 c) (p-2 c) (p-1 c)

conformation � (p-45 a) (p-44 a) (p-41 a)
conformation � (p-49 a) (p-44 t) (p-27 t) (p-22 a) (p-18 t) (p-16 t)

(p-15 g) (p-1 a)
conformation � (p-45 a) (p-41 a) (p-28 t) (p-27 t) (p-23 t) (p-21 a)

(p-20 a) (p-17 t) (p-15 t) (p-4 t)

Figure 6.2: DNA Promoter Recognition - Initial Domain Theory

6.2.1 Experiments with the 106-example Data Set

This data set consists of 106 examples, of which 53 are positive and 53 are negative. None of the

examples has any missing values for any of the input features. Since this problem satis�es all the

constraints on the applicability of Banner-Pr, namely that the data has no missing values, the

evidence renders the initial network to be a virtual polytree, and the classi�cation task involves

causal prediction, these experiments were performed using Banner-Pr for parameter revision.

The learning curves for Banner and Naive Bayes were generated using the re-sampling

methodology involving 25 trials with training sets of increasing size. The results reported for the

other systems, excludingKbann, were obtained from Mahoney (1996), and were also generated us-

ing the re-sampling methodology over 25 trials, each using the same training sets as the experiments

with Banner and Naive Bayes. The results for Kbann were obtained from Towell (1991), and

were generated using training sets di�erent from those used with the rest of the systems. Figure 6.4

62

CONTACT

MINUS_35

Noisy−And

Noisy−And

PROMOTER

MINUS_35_1MINUS_35_2

(P−36 T)

MINUS_10CONFORM

MINUS_10_3

Noisy−Or

Noisy−And

Noisy−Or

Noisy−Or

Noisy−And
Noisy−And

(P−35 T)

(P−34 G)

(P−33 A)

(P−32 C)

MINUS_10_4

(P−11 A) (P−7 T) (P−12 T)

Noisy−And

Figure 6.3: DNA Promoter Recognition - Bayesian Network

shows the learning curves for these techniques on this problem. Figure 6.5 shows the performances

of the ablated versions of Banner.

Before any revision takes place, the network derived from the initial theory has an accuracy

of 50%. The learning curve for Banner clearly demonstrates that it is successful in improving the

accuracy of the initial theory substantially (by about 40 percentage points) with only 40 examples.

While its learning curve is not as steep as those for Rapture or Kbann, Banner catches up with

these systems at 40 examples, and performs comparably thereafter. The di�erences between the

learning curves of Banner and Rapture are statistically signi�cant at the 0.02 level or less for

10 and 20 examples, and are not signi�cant for the rest of the points on the learning curve. In

contrast, Banner performs better than the theory re�nement algorithm, Either, by large margins

throughout. This is not surprising because this domain is known to require evidence-summing, a

facility that logical theories lack, in order to perform well. We were unable to test the statistical

signi�cance of the di�erences between the learning curves of Banner, Kbann, and Either since

we did not have the results from each of the trials for the latter systems.

The advantage of leveraging o� of an initial theory is brought out by the fact Banner

outperforms the inductive learning systems, Naive Bayes, Backprop and C4.5 by large margins,

on every point in the learning curve. This is also illustrated in Figure 6.5, where the learning curve

of Banner is steeper, and higher than that of Banner-Ind, the inductive version of Banner.

Banner-Ind performs comparably with Naive Bayes (the di�erences in performances are not

statistically signi�cant), which lends evidence to its e�ectiveness as an inductive learner. The

di�erence in performance between Banner and Naive Bayes is statistically signi�cant for all

points in the learning curve at the 0.05 level or less, and the di�erence in performance between

Banner and Banner-Ind is statistically signi�cant at all points in the learning curve, except at

90 examples, at the 0.05 level or less.

63

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90

%
C

or
re

ct

Number of training examples

KBANN
RAPTURE

BANNER
BACKPROP

NAIVE BAYES
EITHER

C4.5

Figure 6.4: DNA Promoter Recognition: Performance of various systems on the smaller data set

64

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90

%
C

or
re

ct

Number of training examples

BANNER
BANNER-PR

BANNER-IND

Figure 6.5: DNA Promoter Recognition: Banner ablations on the smaller data set

65

Finally, the di�erences in performances of Banner and Banner-Pr are not statistically

signi�cant, showing that just revising the parameters is su�cient to produce a highly accurate

classi�er for this problem. In fact, the structure revision component was never invoked for this

data set, since parameter revision alone was su�cient to �t the data. The observation that just

enhancing the domain theory with appropriate numeric parameters, without any modi�cations to

the structure of the theory, is su�cient to produce highly accurate classi�ers for this domain is

corroborated by previous studies of this domain (Mahoney, 1996; Koppel et al., 1994).

6.2.2 Experiments with the 468-example Data Set

This larger set of examples comes from the Human Genome Project (Alberts, 1988). This data set

consists of 234 positive examples and 234 negative examples. The main di�erence between this and

the smaller data set is that about 15% of the examples have missing values for one or more of the

input features and violate the conditions, described in Section 3.2, under which Banner-Pr may

be used to learn from data with missing observations. Speci�cally, some of the examples are missing

values for evidence variables that are required to break loops. However, as discussed in Section 4.3,

the long training time required by C-APN on this domain precludes its use for parameter revision.

For this reason, and because the number of examples that violate the assumptions of Banner-Pr

is very small, the following experiments used Banner-Pr to revise the parameters, discarding the

inappropriate examples from the training set. However, none of the examples in the tests sets used

to evaluate the �nal networks were discarded.

These experiments were performed using the re-sampling methodology with 20 trials, with

the same training splits used by Mahoney (1996) to evaluate Rapture, Backprop and C4.5. The

results reported for these systems were obtained from Mahoney (1996). The results for Kbann

were obtained from Towell (1991), and were generated using a di�erent set of training/test splits.

Figures 6.6 shows the learning curves for the di�erent learning algorithms on this problem,

and Figure 6.7 shows the performances of the ablated versions of Banner. The results on this data

set are similar to those obtained with the smaller data set, discussed in the previous subsection.

Before any revision, the accuracy of the network derived from the initial theory is only 50%. The

learning curve for Banner clearly demonstrates that it is highly e�ective in improving the accuracy

of the initial theory, with improvements of as much as 38% percentage points obtained with only

50 training examples.

The decision tree learning algorithm, C4.5, performs substantially worse than the rest of

the techniques, all which learn representations with numeric parameters. The graph shows that

Banner starts out performing signi�cantly worse (at the 0.01 level) than Rapture on training

sets with 50 examples or less, catches up with it at 200 examples, and performs signi�cantly

better (at the 0.01 level) on training sets with 400 examples. Kbann performs slightly better than

Banner on training sets with 300 examples and less, although we were unable to test the statistical

signi�cance of these di�erences because we do not have access of the results obtained with Kbann

on each individual trail. The theory re�nement techniques perform considerably better than the

inductive learners, Naive Bayes, Backprop, and Banner-Ind on smaller training sets, once

again illustrating the advantage of starting with an initial, approximately correct theory. The

learning curve of Banner is considerably higher than that of Naive Bayes for training sets with

less than 100 examples and for training sets with 400 examples (signi�cant at the 0.01 level), while it

66

is signi�cantly lower for 200 examples (signi�cant at the 0.05) level. Banner performs substantially

better than Backprop throughout, although we could not test the statistical signi�cance of these

di�erences.

Similar to the results observed for the smaller data set, both Banner and Banner-Pr

perform almost identically on this data, except with training sets with 200 examples whereBanner-

Pr performs slightly better. This di�erence is statistically signi�cant at the 0.05 level, while the

di�erences for the rest of the points on the learning curve are not signi�cant. Although the structure

revision component was invoked for some of the trials with larger number of examples, it did not

lead to any signi�cant improvement in performance. This is because just revising the parameters

resulted in networks with high accuracy on the training set, and the structure revision algorithm

was invoked only to �t a few outliers, and therefore did not result in improved generalization. The

networks produced by Banner are signi�cantly and substantially more accurate than those learned

by Banner-Ind (signi�cant at the 0.05 level or less for all points in the learning curve), illustrating

the contribution of the initial theory to learning accurate networks. The observation that Naive

Bayes outperformsBanner-Ind signi�cantly on training sets with 50 or more examples (signi�cant

at the 0.001 level) is not surprising, since previous studies have shown that the the Naive Bayes

algorithm is very e�ective on this domain, often outperforming competing techniques (Kohavi et al.,

1997).

6.3 DNA Splice-Junction

It has been determined that only about 10% of the nucleotides in human DNA encode information

useful for protein synthesis. About 90% of the nucleotides do not encode any useful information and

are unutilized. During protein synthesis, sequences of unutilized nucleotides are spliced out, and

the remaining nucleotides are used to build proteins. The regions of DNA encoding information are

called Exons, and the unutilized regions are called Introns. The junctions between these regions are

called splice-junctions, of which there are two kinds: IE sites which are at Intron-Exon boundaries,

and EI sites which are at Exon-Intron boundaries. The classi�cation task is that of identifying

whether a sequence of nucleotides constitutes an IE or IE boundary.

The data set for this domain, consisting of 3190 examples, was gathered by M. Noordewier (No-

ordewier et al., 1991). Of these 3190 examples, 768 (24%) are classi�ed as examples of IE borders,

767 (24%) are examples of EI borders, and 1655 (52%) examples contain neither IE nor EI bor-

ders. Each example is a string of 60 nucleotides, composed of 30 nucleotides on either side of the

hypothesized boundary. These nucleotides form the input features and take on the values A, C, G,

or T. The domain theory rules for recognizing these sites from patterns of nucleotides around them

(Section B.2) were derived by M. Noordewier from information found in Watson, Roberts, Steitz,

and Weiner (1987). The initial logical domain theory was converted into a Bayesian network as

discussed in Section 3.3.

Mahoney (1996) evaluated Rapture, Backprop and C4.5 on this problem, using the

re-sampling methodology to run 20 trials with di�erent sets of training and test splits. Rather than

use the entire set of 3190 examples, he selected a random subset of 900 examples, which were then

randomly partitioned into 20 sets of training/test splits, and used to generate the results reported

here.

67

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400

%
C

or
re

ct

Number of training examples

BANNER
NAIVE BAYES

KBANN
RAPTURE

BACKPROP
C4.5

Figure 6.6: DNA Promoter Recognition: Performance of various systems on the larger data set

68

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400

%
C

or
re

ct

Number of training examples

BANNER
BANNER-PR

BANNER-IND

Figure 6.7: DNA Promoter Recognition: Banner ablations on the larger data set

69

Since the data used in each of the trials used to evaluate the above systems were available

to us, we used the same methodology and data to evaluate Banner and Naive Bayes. The

results for Kbann were obtained from Towell (1991), and were generated using a di�erent set of

training/test splits.

Figures 6.8 shows the performance of these systems on this problem, and Figure 6.9 shows

the performance of Banner ablations. This experiment provides more evidence that Banner is

successful in improving the accuracy of the initial theory signi�cantly with just a small number

of examples. The accuracy of the initial theory has risen from 55%, before revision, to 80% when

trained on just 20 examples, and to about 94% when trained on 400 examples.

Figure 6.8 shows that the performances of the three hybrid learning algorithms Rapture,

Banner, and Kbann are similar, although Rapture performs slightly better throughout. The

di�erences between Rapture and Banner are statistically signi�cant for all points in the learning

curve at the 0.001 level. As expected, theory re�nement algorithms outperform inductive algo-

rithms, Backprop, Naive Bayes, and C4.5 and Banner-Ind, by a large margins, although

Naive Bayes catches up with Rapture at 200 examples. The di�erences between the learning

curves of Banner and Naive Bayes are signi�cant at the 0.001 level for 20, 50, 100, where the

former performs considerably better, at the 0.001 level for 400 examples where it performs slightly

worse. We were unable to determine the statistical signi�cance of the di�erences between Banner

and the rest of the systems for which we did not have the results from each individual trial.

Figure 6.9 demonstrates that the structure revision component of Banner contributes sig-

ni�cantly to its performance on smaller training sets. Structure revision has contributed to an

improvement in accuracy of about 14% over Banner-Pr for 20 examples (signi�cant at 0.001

level), and an improvement of about 2.5% for 50 examples (signi�cant at the 0.01 level). The

revisions that contributed the most to this improvement were deletions of the links between nodes

IE and PR, and nodes EI and P5G. As expected, starting out with an initial theory gives Ban-

ner a signi�cant edge over Banner-Ind. The di�erence in performance between these systems is

statistically signi�cant for all points on the learning curves at levels of at least 0.01.

6.4 C++ Tutor

This data set is taken from Ba�es (1994), which discusses an intelligent tutoring System (ITS)

based on the idea of theory re�nement. The purpose of this tutoring system is to present students

with exercises on some speci�c topic, and provide explanations of any mistakes they -make. The

tutor customizes its explanation to each student based on a model of the student's knowledge of the

domain. This student model is also used to generate further exercises. The tutor is initially given

knowledge about the domain in the form of propositional Horn-clause rules. Given a student's

response to a set of questions, the tutor revises the initial domain theory to model of the student's

knowledge of the domain. This is an interesting twist on the traditional use of theory re�nement,

where it is assumed that the data reects the true domain model, and any discrepancy between the

initial domain theory and the data is attributed to a aw in the theory. In contrast, the tutoring

application regards the initial theory as the true model of the domain, and uses the responses from

students as data to learn how the student's understanding of the domain di�ers from the true

model. The rationale for such an approach is that many students at least understand the domain

70

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400

%
C

or
re

ct

Number of training examples

RAPTURE
NAIVE BAYES

BANNER
BACKPROP

KBANN
C4.5

Figure 6.8: Splice-Junction: Performance of Various Systems

71

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400

%
C

or
re

ct

Number of training examples

BANNER
BANNER-PR

BANNER-IND

Figure 6.9: Splice-Junction: Banner Ablations

72

partially, and therefore their model of the domain must be close to the true model. Thus, it is

expected that a theory re�nement approach, starting with the true model of the domain, would

lead to more accurate student models with fewer observations than learning these models from data

alone.

Ba�es (1994) originally evaluated this technique by performing controlled experiments on

100 students taking a C++ class. The students were divided into 4 groups of 25 students each.

The students in each group were asked to take a pre-test and a post-test, each comprised of 10

questions. The groups di�ered in the technique used to generate feedback based on their responses

to the pre-test questions. One group of students was given no feedback at all. The second group of

students was given randomly generated explanations. The third and the fourth groups of students

were given explanations using the student model learned by the tutor from their responses to the

pre-test questions. These studies showed that the improvement in performance on the post-test

was signi�cantly higher for the students who were given feedback based on a student model. Thus,

the ability to learn an accurate model of the students knowledge can have signi�cant impact on the

e�ectiveness of such a tutor. The tutor described in Ba�es (1994) uses Neither (Ba�es & Mooney,

1993), a logical theory re�nement algorithm based on Either (Ourston & Mooney, 1994), to learn

student models. Experiments were also performed to study the importance of the initial domain

theory by comparing the student models learned by Neither with those learned by Pfoil, which

is an inductive algorithm for learning propositional Horn-clause rules, based on Foil (Quinlan,

1990).

The C++ tutor was intended to cover the following two concepts: the ambiguity involving

statements with lazy operators, and the proper declaration and use of constants. The exercises

presented to the students were multiple-choice questions, such that, given a short piece of C++

code, the students had to classify the code as one that would result in a compile-error, or one

that is ambiguous, or one that is correct, or free of errors. Each pre-test and post-test consisted of

10 questions of which three were of type compile-errors, four were of type ambiguous and 3 were

correct. The same pre-test and post-test were given to each student, although the order of the

questions was randomized. Appendix B.3 shows the set of classi�cation rules for this domain. The

theory uses 14 input features that describe various aspects of C++ code. The value of some of

these input features may be missing depending on the code. Figure 6.10 (Ba�es, 1994) shows a

short piece of correct C++ code, and its translation into a feature vector.

Ba�es (1994) used data from the group of 25 students who received no feedback between

pre-test and post-test to evaluate the e�ectiveness of Neither in learning accurate student models.

In order to generate training and testing data splits that would be representative of the distribution

of the classes in the pre-test and the post-test, 10 pairs of examples were generated by pairing up

the examples in these tests that belonged to the same class. One example of each pair was randomly

chosen to be included in the training set and the other was included in the test set. This gives

rise to 210 possible training splits for each student, of which 25 were randomly generated to be

used in the evaluation. Thus, there were 25 training splits for each student, which resulted in 625

trials of the experiment. Each learning algorithm was run on each of the splits and the results were

averaged over the 625 trials.

Our rationale for choosing this domain for evaluating Banner is that, while the rules gov-

erning the correctness of C++ programs may be logical and deterministic, students may not have

73

CODE:

void main()

{

const int j = 3, *h;

int i,k;

h = &j;

cin>>k>>i;

cout<<(k%j); cout<<(i%=j);

}

FEATURE VECTOR:

(pointer non-constant) (integer constant) (pointer-init false)

(integer-init true) (integer-set no) (multiple-operands false)

(position-a normal) (operator-a-lazy ?) (left-a-value ?)

(on-operator-a-side right) (on-operator-b-side right)

(operator-a-modify-assign) (operator-b mathematical)

Figure 6.10: Example C++ code and corresponding feature vector

such a clear cut understanding of the rules. Thus, the probabilistic aspects of Bayesian networks

may help in modeling a student's confusion or lack of complete knowledge of the domain. We eval-

uated the performance of Banner on this data set by running 625 trials, using the training/test

splits used to evaluate Neither and Pfoil. Due to the presence of missing values, these experi-

ments used C-APN for parameter revision. This was a viable option for this problem because the

initial network was smaller, involving fewer variables, than the networks for the previous domains,

and the number of training examples in each trial was very small. Tables 6.1 and 6.2 summarize

the results. We did not generate learning curves for this domain because the size of the data per

student is very small (20 examples).

System Average Accuracy

Neither 62.0
Banner 61.7
Correct Theory 55.8
Naive Bayes 46.6
Pfoil 49.4

Table 6.1: C++ Student Modeling: Performance of Various Systems

The use of C-APN for parameter revision, and the large number of examples with missing

data makes this experiment di�erent from the previous experiments. The results demonstrate the

feasibility of using C-APN with Banner. They also show that Banner is successful in revising

a theory, as well as learning inductively, in the presence of missing data. It is interesting to note

that its performance is very close to, but not better than that of Neither. Our conjecture is

74

System Average Accuracy

Banner 61.71
Banner-Pr 62.2
Banner-Ind 44.2

Table 6.2: C++ Student Modeling: Banner Ablations

that the student models learned by Banner would be more useful for purposes of remediation,

since they provide a more quantitative model of the relative strengths and weakness in a student's

understanding of the domain. Whether or not this conjecture is valid is an open question.

The di�erence in performance between Banner and Banner-Pr is not statistically signif-

icant. Thus, Banner-Pr performs comparably with Banner, which indicates that, for this data

set, one can get as much mileage by adding a probabilistic component to the initial logical theory

as by modifying it symbolically. However, combining structure revision with parameter revision

does not seem to buy improved accuracy. One explanation for this is that, in many of the trials,

revising the structure to �t the training data resulted in over�tting. Table 6.3 shows the accuracies

of the three versions of Banner on the training data. The di�erences in the training accuracies of

these systems are all statistically signi�cant. The results indicate that Banner was able to learn

the training data almost perfectly, but it did this at the cost of generalization. This is not very

surprising in this domain, since failure to understand a concept can lead to inconsistent responses

from students. The fact that this data set is impoverished in terms of the number of training ex-

amples available for each student model precluded the possibility of applying any of the techniques

used to avoid over�tting, many of which require that some of the training data be held back.

System Training Accuracy

Banner 99.95
Banner-Pr 90.50
Banner-Ind 93.21

Table 6.3: C++ Student Modeling: Training Accuracies

Finally, it should be noted from the tables above that, because Banner starts with an

initial approximate theory, it is able to produce signi�cantly more accurate models (signi�cant at

the 0.001 level) than Naive Bayes or Pfoil.

6.5 Chess End-games: Induction from Many Examples

An end-game is a situation in a game of chess where very few pieces remain on the board and

only a short sequence of moves are needed to end the game in a win, a loss, or draw. Here, we

are concerned particularly with King+Rook (White) versus King+Pawn on a7 (Black) end-games.

The task is to learn to recognise whether a given board position can lead to a victory for White,

assuming that it is White's turn to move. First used by (Shapiro, 1983, 1987), this data set consists

75

of 3196 examples, where each example encodes various features of a board position, and is tagged

with a label that indicates whether or not that position can lead to a win for White. Of these 3196

examples, 1669 (52%) are classi�ed as win, and 1527 (48%) are classi�ed as no win. Each example

uses 36 discrete-valued features to describe board positions, of which 35 features have two values,

and one has three. The data set is complete and has no missing values.

Although there are several problems that are suitable for studying the performance of

Banner-Ind, we chose this problem for the following reason. Recent experimental analysis on

various data sets (Kohavi et al., 1997), including the one under consideration, shows that the Naive

Bayes algorithm performs signi�cantly poorer than C4.5 (Quinlan, 1993) when the data consists

of a large number of examples, and that this di�erence is particularly pronounced on the chess

end-games data set. The purpose of this experiment is to study the behaviour of Banner in a

situation where the Naive Bayes algorithm has been shown to perform poorly.

Since there is no initial theory associated with this domain, Banner has to be provided

with a default initial theory, as discussed in section 5.6.1. Here, we present the results from two

experiments: one where the initial network given to Banner was completely disconnected i.e.

none of the nodes representing the input features and the target class are connected (Figure 6.11),

and one where the initial network had all the features nodes connected to the target class node

(Figure 6.12). We will refer to the former initial theory as the disconnected theory and the latter as

the connected theory. Each of these experiments used a 3-fold cross-validation methodology, where

the data set was partitioned into three equal subsets with 1066 examples each, and the results were

averaged over three trials, each using two of the above subsets of training and the remaining one

for testing.

. . .

Win

bkblk bknwy wkpos wtoeg

noisy−or

Figure 6.11: Disconnected initial network for the chess domain. Nodes bkblk, bknwy, wkpos, and
wtoeg represent input features, and node win represents the class variable.

Table 6.4 compares the performances of Banner-Ind with that of Naive-Bayes on this

data set. Kohavi et al. (1997) report that C4.5, when trained with 2130 examples, achieves

an accuracy of 99.5%. The results show that Banner-Ind learns signi�cantly more accurate

classi�ers for this domain than Naive-Bayes. The di�erences in accuracies, as shown in the table,

are statistically signi�cant at the 0.05 level or less.

Size is one of the main di�erences between this data set and the ones discussed earlier.

Experiments on the DNA promoter recognition problem, DNA splice-junction recognition problem,

and the student modeling problem involved less than 500 training examples, considerably less than

76

. . .

Win

bkblk bknwy wkpos wtoeg

noisy−or

Figure 6.12: Connected initial network for the chess domain. Nodes bkblk, bknwy, wkpos, and wtoeg

represent input features, and node win represents the class variable.

the number of training examples used here. Studies have shown that the Naive Bayes algorithm,

with its high bias, and low variance, is more e�ective on smaller data sets with a few hundred

examples, than on larger data sets with thousands of examples (Kohavi et al., 1997). Banner-

Ind, on the other hand, explores a larger space of network structures than Naive Bayes, and

therefore has a lower bias and higher variance. Based on the bias-variance di�erence between the

two algorithms, it is expected that Banner-Ind will perform better than Naive Bayes on larger

data sets. This is veri�ed by our experiments, whereNaive Bayes learned classi�ers comparable to

or better than those learned by Banner-Ind on problems with a few hundred training examples,

such as the problems discussed previously, but was overtaken by Banner-Ind on this problem

involving a substantially larger amount of training data.

It is interesting that using a fully connected network as the initial theory allows Banner to

learn networks that are more accurate than those learned using an entirely disconnected network.

This indicates that Banner is better at revising networks with extra links, than it is at revising

networks with fewer links than necessary. In the former case, the parameter revision component is

very e�ective in reducing the inuence of the extra links to insigni�cance. However, the contribution

of the structure revision component is still signi�cant, since without it, Banner-Pr could only

achieve an accuracy of 79%. The relatively poor performances of Naive Bayes, and Banner-

Pr with the fully connected network, indicate that this problem requires a deeper structure than

provided by these networks. In the experiments with the disconnected theory, Banner seemed to

get stuck in local minima from which it could not recover.

System Average Accuracy

Banner using the connected theory 95.31
Banner-Pr using the connected theory 79.02
Banner using the disconnected theory 90.43
Naive Bayes 87.32

Table 6.4: Chess End-Game: Comparison of Various Systems

It is also interesting to note that the performance of our technique falls between that of

77

C4.5 and the Naive Bayes algorithm, with the C4.5 showing the best performance. Recall that

C4.5 performed worse than Naive Bayes on the DNA promoter recognition and the DNA splice-

junction recognition problems, while the performances of both Banner and Banner-Ind fell in

between. In fact, Banner resulted in classi�ers that were more accurate than those learned by the

Naive Bayes algorithm most of the time. These observations indicate that Banner, by combining

the ability to learn structured networks in a manner similar to logic-based learning algorithms, and

the ability to learn a probabilistic representation, much like the Naive Bayes algorithm, forms a

good compromise between the two approaches.

6.6 Brain Disorders: Revising an Abductive Theory

All the domains used for evaluating Banner so far have involved causal prediction tasks. How-

ever, Bayesian networks are used extensively in domains, such as medical diagnosis, that involve

abductive or diagnostic predictions. For example, in the domain of medical diagnosis, Bayesian

networks are used to represent causal models relating medical disorders to observable symptoms,

and it is often necessary to predict disorders based on observations of symptoms, which involves

abductive reasoning. Recall that Banner, when used with C-APN can be applied to such tasks.

Here, we evaluate Banner on one such task of diagnosing brain damage due to a stroke (Tuhrim

et al., 1991; Thompson, 1993; Thompson & Mooney, 1994). This task involves twenty-�ve di�erent

disorders, each representing an area of the brain areas that can be damaged (e.g. left frontal lobe,

right temporal lobe), and thirty-seven observable symptoms (e.g. gait type), each with an average

of four values. The data set consists of �fty examples, with an average of 8.56 symptoms and 1.96

disorders per example. This domain di�ers from the other domains examined so far in that the

target classes are not mutually exclusive. Thus, it is possible for multiple disorders to be present

simultaneously. This data set is accompanied by an abductive domain theory with 648 rules.

The given domain theory results in a very large Bayesian network where some nodes have

as many as twenty parents. Recall that C-APN uses the conditional probability tables to revise

the parameters of the networks. The sizes of the conditional probability tables (� 220) in such a

large network makes it infeasible to use C-APN to revise this theory. Therefore, we have used a

subset of this data set that includes only four of the twenty-�ve disorders, namely left-frontal-lobe,

left-temporal-lobe, left-parietal-lobe, and left-internal-capsule. The reduced data set has an average

of 1.04 disorders per example.

So far, we have only been examining domains where the target classes were mutually exclu-

sive. For such domains, each example can belong to only one class, and classi�cation accuracy is

be measured by simply computing the percentage of examples that are correctly classi�ed. When

target classes are not mutually exclusive, i.e. when examples can belong to more than one class,

the accuracy measure would have to be modi�ed to account for partial correctness with respect

to each example. Several accuracy measures have been proposed for such problems (Kulikowski &

Weiss, 1991; Thompson, 1993; Thompson & Mooney, 1994), of which we will describe the following:

standard accuracy, intersection accuracy, speci�city, and sensitivity. Here, we will describe these

measures in terms of the diagnosis domain, although they are equally applicable to any multi-class

domain. Let C+ be the number of disorders in the correct diagnosis of an example, C� be the

number of disorders not present in the correct diagnosis of the example, and S+ be the number

78

of disorders in the diagnosis generated by the classi�er. Similarly, let T+ (True Positives) be the

number of disorders in the correct diagnosis of the example that are also in the diagnosis generated

by the classi�er, and let T� (True Negatives) be the number of disorders that are excluded from

both correct diagnosis and the diagnosis generated by the classi�er. The standard accuracy for the

example, de�ned as (T++T�)
(C++C�) , is the total set of disorders that are correctly predicted as present or

absent. Intersection accuracy is de�ned as
(T

+

C+
+T+

S+
)

2 and measures the percentage of disorders in the

correct diagnosis that are correctly predicted, averaged with the percentage of the disorders gener-

ated by the classi�er that are correct. Sensitivity, de�ned as T+

C+
, measures accuracy at predicting

the disorders actually present, while speci�city, de�ned as T�

C�
, measures the accuracy at excluding

disorders not actually present. Of these, standard accuracy is the measure that is the closest to the

accuracy measure used for domains with mutually exclusive classes. However, for problems where

the number of possible disorders is much greater than the number of disorders actually present in

an example, it is possible to get very high standard accuracy and speci�city just by predicting that

none of the examples have any disorders. Thus, these measures do not reect the e�ectiveness of

the classi�er in identifying disorders. Similarly, it is possible to get perfect sensitivity by predicting

that all the examples have all the disorders. Intersection accuracy avoids these extremes and is a

good measure of the true e�ectiveness of the classi�er in predicting disorders. This is the measure

we use in our evaluation of various techniques on this domain.

The naive Bayes algorithm assumes that the target classes are mutually exclusive. In order

to evaluate it on this domain, we constructed four independent naive Bayes classi�ers, one for each

disease, and each test example was classi�ed by all the four classi�ers to produce a diagnosis. Such

a representation assumes that the probability of each symptom given a disorder is independent of

its probability given any of the other disorders.

Reducing the number of disorders speci�ed in the data without modifying the list of symp-

toms associated with the examples leads to a situation where several of the symptoms can no

longer be explained by any of the disorders speci�ed. This makes the data incomplete in the sense

that causes for several of the input features are unknown. Note that this incompleteness is quite

extreme since 21 of the 25 disorders have been removed from the data set. In order to model this

incompleteness, Banner, and all its ablated versions, were instructed to learn networks with leak

nodes (as discussed in Section 5.6.2), thus allowing for the possibility of modeling unseen causes of

symptoms.

All our experiments used the 10-fold cross-validation methodology described in Section 6.1.

Figure 6.13 shows the performances of Banner, Banner-Pr, Banner-Ind and Naive Bayes

when trained with increasing numbers of examples.

The accuracy of the network derived from the initial theory, enhanced with leak nodes, is

74%. Without such enhancement, the network derived from the initial theory, since it is missing

several important disorders, was found to be inconsistent with the data. The learning curves

show that Banner is successful in improving the accuracy of the initial theory by 8 percentage

points. This experiment demonstrates that Banner can be successfully applied to tasks involving

diagnostic reasoning. In addition, it shows that Banner can be used e�ectively even when the

data is incomplete to a high degree.

Interestingly, the initial network used by Banner, and the default initial theory used by

Banner-Ind have identical accuracies. Both these theories predict that none of the examples

79

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45

%
C

or
re

ct

Number of training examples

NAIVE BAYES
BANNER

BANNER-IND
BANNER-PR

Figure 6.13: Diagnosing Brain Disorders: Performances of Various Systems

80

exhibits any of the four disorders. Training these networks with only 5 examples results in reduced

accuracy, although this e�ect is not as pronounced for Banner and Banner-Pr. An examination

of the training/test splits showed that, for such small training sets, the distribution of the training

examples is often very di�erent from that of the test examples, so that an improved accuracy on

the former results in reduced accuracy on the latter. However, the accuracy of the network starts

to improve with increasing numbers of training examples (except at 35 examples). Note that,

although Banner-Ind does worse than Banner-Pr and Banner initially, it catches up with

them when trained on as few as 35 examples. In addition, its learning curve is steadier than those

of Banner and Banner-Pr, and doesn't dip at 35 examples. None of the di�erences between

Banner, Banner-Pr, and Banner-Ind is statistically signi�cant.

Naive Bayes outperforms Banner on training sets with more than 5 examples, although

the di�erences are statistically signi�cant only at 35 examples (at the 0.02 level). A most likely

explanation concerns the di�erences in the representations learned by these two techniques. Naive

Bayes learns four independent classi�ers, with the result that the diagnosis of the disorders are

independent of each other. Bannermodels the symptoms as Noisy-Or nodes, so that the inuences

of the disorders on the symptoms interact with each other, and hence their diagnoses are no longer

independent. Such a representation is much richer because it models interactions, not only between

each disorder and symptom, but also among the disorders and the symptoms themselves. It is

expected that Banner would need more examples than Naive Bayes since it learns a richer

representation. The amount of data available for this problem is too limited to capture all these

interactions accurately. Another consequence of this di�erence in the representations is that the

high degree of incompleteness in the data, resulting from the removal of 21 of the 25 disorders

speci�ed in the original data, a�ects Banner more than it a�ects Naive Bayes.

6.7 Evaluation of the Structure Revision Component

The experiments described in this sections were designed as controlled studies of the behaviour

of the structure revision component. The idea is to corrupt known domain theories, and observe

the ability of the structure revision algorithm to recover from these corruptions. We would expect

that corrupting the domain theory would degrade the accuracy of the theory and that revising the

structure of the theory would help recover from this degradation. Such experiments are commonly

used to evaluate theory re�nement algorithms (Pazzani & Brunk, 1993). We chose the DNA

promoter recognition problem for these experiments because our earlier experiments indicated that

the structure of the network, as speci�ed in the initial domain theory, is more or less accurate. For

each of these experiments, we corrupted the initial logical domain theory and used it to initialize

Banner NA Banner-Pr, which were then trained on the data set with 468 examples.

Although, it is common practice to corrupt theories randomly (Pazzani & Brunk, 1993),

we found that the redundancy in the domain theory for DNA promoter recognition makes it very

robust with respect to small corruptions. In order to study the behaviour of the structure revision

component, we had to ensure that the corruptions to the theory degraded it to the extent that

parameter revision alone would not be su�cient to recover from the damage. Therefore, we gener-

ated two corrupt theories by deleting portions of the original theory we knew to be critical. The

two corruptions are progressively severe, and span the spectrum between the original theory and

81

the empty theory (as used by Banner-Ind), and so allow us to study the performance of Banner

when given initial theories with increasingly inaccurate structure. The following subsections discuss

these experiments further.

6.7.1 Deleting Intermediate Concept Minus 35

The �rst experiment studies the e�ect of deleting the intermediate concept minus 35 from the orig-

inal theory for recognizing promoters, which results in the theory shown in Figure 6.14. Figure 6.15

shows the Bayesian network derived from this theory, henceforth called the corrupt1 theory.

promoter � minus 10, conformation
minus 10 � (p-14 t) (p-13 a) (p-12 t) (p-11 a) (p-10 a) (p-9 t)
minus 10 � (p-13 t) (p-12 a) (p-10 a) (p-8 t)
minus 10 � (p-13 t) (p-12 a) (p-11 t) (p-10 a) (p-9 a) (p-8 t)
minus 10 � (p-12 t) (p-11 a) (p-7 t)
conformation � (p-47 c) (p-46 a) (p-45 a) (p-43 t) (p-42 t) (p-40 a)

(p-39 c) (p-22 g) (p-18 t) (p-16 c) (p-8 g) (p-7 c)
(p-6 g) (p-5 c) (p-4 c) (p-2 c) (p-1 c)

conformation � (p-45 a) (p-44 a) (p-41 a)
conformation � (p-49 a) (p-44 t) (p-27 t) (p-22 a) (p-18 t) (p-16 t)

(p-15 g) (p-1 a)
conformation � (p-45 a) (p-41 a) (p-28 t) (p-27 t) (p-23 t) (p-21 a)

(p-20 a) (p-17 t) (p-15 t) (p-4 t)

Figure 6.14: Domain theory corruption: The corrupt1 theory

CONFORM

Noisy−And

PROMOTER

MINUS_10

MINUS_10_3

Noisy−Or

Noisy−And

MINUS_10_1MINUS_10_2MINUS_10_4

(P−11 A) (P−7 T) (P−12 T)

Noisy−Or

Figure 6.15: Bayesian network derived from corrupt1

Figure 6.16 shows the performances of Banner-Pr and Banner with the corrupt1 theory

82

compared against the accuracy achieved by Banner with the uncorrupted theory. The learn-

ing curves were generated using the re-sampling methodology with 20 trials, each with the same

train/test splits used to evaluate Banner on the original theory (Section 6.2.2). The graph shows

that removing the intermediate concept minus 35 degrades the theory to the extent that, for most

points in the learning curve, parameter revision alone cannot recover the accuracy attained by the

original theory. Surprisingly, however, the corrupted theory results in better classi�ers than the

uncorrupted theory for very small training sets, indicating that the uncorrupted theory over�ts

these training sets. The learning curve for Banner on the corrupted theory shows that, for larger

training sets, the structure revision component is e�ective in recovering much of the accuracy lost

due to the corruption, although this e�ect is statistically signi�cant (at the 0.05 level) only for

training sets with 400 examples.

The fact that Banner and Banner-Pr result in comparable accuracies for smaller training

sets can be partially explained by the fact that none of the trials with 10 and 20 training examples,

and less than half the trials with 50 examples required structure revision. Notice that the cor-

rupted theory results to better networks than the original, uncorrupted theory when trained on 10

examples. With 20 and 50 examples, the corrupted theory is still able to �t the training examples

most of the time, without any need for structure revision, but results in poorer generalization.

This leads to the hypothesis that, for smaller training sets, there are several theories that are as

good as the original theory in �tting the training set, but are worse in terms of generalization,

which would partially explain the observation that structure revision leads to improved training

accuracies without any improvements in generalization, when trained on 50 and 100 examples.

Figure 6.17 shows an example of a revised network, with a view to highlight the modi�ca-

tions made by Banner. The nodes and links added by Banner are indicated as shaded ellipses,

and thicker lines respectively. The numbers beside the new links indicate their weights. Note that,

although some nodes have been replicated in the �gure for clarity, there is no replication of nodes

in the actual network. We see that Banner has identi�ed the following features to be added to

the network: P-35=T, P-36=T, P-34=G, P-33=A and P-3=A. It has also added new links from

the following features that are already a part of the network: P-11=A, and P-10=A. In addition,

it has added three hidden variables, I-1 through I-3. A comparison with the original theory indi-

cates that, by adding features P-35=A, P-36=T, P-33=A, and P-34=G to the network, Banner

has successfully recovered some parts of the original theory that were left out. Furthermore, the

logical relationship between these features has been preserved. However, in the original theory,

these features combine conjunctively with the intermediate concept minus 10, whereas, here they

combine disjunctively. That could explain why Banner has added some of these features to the

sub-network above minus 10 4. It has also identi�ed some features not present in the original

theory (P-3=A, P-10=A), although the links connecting these features to the network have low

weights. Finally, note that the modi�cations to the network are spread out and not con�ned to any

particular level. An examination of the revised networks from several trials revealed that the most

common revisions are the addition of P-35=T and P-36=T to the network, and the modi�cation

of the links from P-11=A and P-12=T to minus 10 4.

83

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400

%
C

or
re

ct

Number of training examples

BANNER Original
BANNER

BANNER-PR

Figure 6.16: E�ect of structure revision on corrupt1

84

CONFORM

Noisy−And

PROMOTER

MINUS_10 Noisy−Or

Noisy−AndMINUS_10_4

(P−11 A)

(P−7 T)

(P−12 T)

Noisy−Or

(P−35 T) (P−36 T) (P−34 G)

I−1Noisy−And

I−2I−3 Noisy−OrNoisy−Or

(P−3 A) (P−11 A) (P−36 T)(P−35 T)

(P−10 A)

(P−3 A)

Noisy−And

CONFORM_3

0.03 0.88 0.96 0.600.11 0.07

(P−33 A)

0.01
0.450.020.73

0.94

0.70

Figure 6.17: An example of a revised network derived from corrupt1

6.7.2 Deleting Intermediate Concept Contact

The theory shown in Figure 6.18, and henceforth referred to as the corrupt2 theory, is derived

by removing the intermediate concept contact from the original theory. This corruption is more

severe than the one discussed in the previous subsection, and these two theories span the spectrum

between that of not providing any initial theory, and that of providing the uncorrupted theory.

Figure 6.19 shows the initial Bayesian network derived from this theory.

promoter � (p-47 c) (p-46 a) (p-45 a) (p-43 t) (p-42 t) (p-40 a)
(p-39 c) (p-22 g) (p-18 t) (p-16 c) (p-8 g) (p-7 c)
(p-6 g) (p-5 c) (p-4 c) (p-2 c) (p-1 c)

promoter � (p-45 a) (p-44 a) (p-41 a)
promoter � (p-49 a) (p-44 t) (p-27 t) (p-22 a) (p-18 t) (p-16 t)

(p-15 g) (p-1 a)
promoter � (p-45 a) (p-41 a) (p-28 t) (p-27 t) (p-23 t) (p-21 a)

(p-20 a) (p-17 t) (p-15 t) (p-4 t)

Figure 6.18: Domain theory corruption: The corrupt2 theory

Figure 6.20 shows the accuracies of the �nal networks learned by Banner-Pr and Banner

using corrupt2 as the initial theory compared with the accuracy attained by using the uncorrected

theory as a starting point. That the deletion of the intermediate concept contact is a very severe

corruption to the theory is brought out by the large gap between the accuracies of networks learned

from the corrupt2 theory and those learned from the uncorrupted theory (signi�cant at the 0.001

level throughout). The graph shows that structure revision is e�ective in recovering more than 50%

of the accuracy lost due to the corruption (signi�cant at the 0.01 level throughout).

85

Noisy−And

Noisy−Or

Noisy−And

CN1CN2CN3CN4

Noisy−And Noisy−And

(P−18 T)(P−49 A) (P−1 A)

PROMOTER

Figure 6.19: Bayesian network derived from corrupt2

Figure 6.21 shows an example of a revised network, where the nodes and links added by

Banner are indicated as shaded ellipses, and thicker lines respectively. The numbers beside the

new links indicate their weights. Thus, we see that Banner has identi�ed that the input features

P-35=T, P-36=T, P-33=A, P-14=T, P-9=C are necessary for classifying promoters. Referring

to Figure 6.2, we see that all these features, except P-9=C, are indeed included in the original

theory, and that several of the other deleted features have not been identi�ed. Banner has also

added three hidden nodes, I-1 through I-3. Considering the sub-network above node I-1, the logical

relationships between the variables are similar to those de�ned in the original theory. Note that,

while the modi�cations to the corrupt1 theory were spread out, the new nodes and links have

been added as separate branch in this case. An examination of the revised networks generated by

Banner on all the trials revealed that it almost always added the features P-35=T, and P-36=T

to the network. In fact, adding a link from promoter to P-35=T was, most often, the �rst revision

to the initial network, resulting in a dramatic improvement in accuracy.

Finally, the graph in Figure 6.22 summarises the above results by comparing the perfor-

mances of Banner, given theories of varying degrees of corruption. At one end of the scale of

corruption is the original uncorrupted theory, and at the other end is the empty theory, with the

theories corrupt1 and corrupt2 falling in between. Note the revising corrupt2 results in networks

comparable in accuracy to learning from scratch. This indicates that corrupt2 does not provide

useful information about recognizing promoters, and in fact, many studies have noted that the in-

termediate concept, conformation, does not contribute signi�cantly to this task (Ourston, 1991).

6.8 Summary of Results

In this chapter, we have presented the results of evaluating Banner on the following real-world

learning problems: recognizing DNA promoters (Noordewier et al., 1991), recognizing DNA splice-

junctions (Noordewier et al., 1991), learning student models for a C++ tutor (Ba�es, 1994),

86

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400

%
C

or
re

ct

Number of training examples

BANNER Original
BANNER

BANNER-PR

Figure 6.20: E�ect of structure revision on corrupt2

87

Noisy−Or

Noisy−And

CN4 CN1

Noisy−And

I−1

Noisy−And

I−2I−3

Noisy−Or

Noisy−Or

PROMOTER

(P−33 A) (P−14 T) (P−36 T) (P−9 C)

(P−35 T)

0.08

0.010.12 0.18

0.030.090.010.11

Figure 6.21: An example of a revised network derived from corrupt2

diagnosing brain disorders in human patients (Tuhrim et al., 1991), and classifying chess end-

games (Shapiro, 1983, 1987). These problems present are diverse, and test di�erent aspects of our

technique. The �rst four of these problems, with their associated domain theories, test its ability

to revise networks with hidden variables. The �fth problem evaluates how well it can learn in the

absence of an initial domain theory.

The DNA promoter recognition problem, with the smaller data set, tests the e�ectiveness of

our technique in using complete data to revise a given network intended for causal prediction. The

larger data set of the same problem, and the splice-junction recognition problem present a slightly

di�erent learning scenario, where the data is incomplete. All of these problems, as well the chess

end-games problem, provide a test-bed for evaluating Banner-Pr.

The problem of learning student models for a C++ tutor also tests the e�ectiveness of

Banner in revising networks for causal prediction, in the presence of hidden variables, and from

incomplete data. However, since the data is incomplete in a way that violates the conditions of

applicability of Banner-Pr, it acts as a test-bed for evaluating the e�ectiveness of using C-APN

for parameter revision, and for demonstrating the generality of the structure revision algorithm.

The domain of diagnosing brain disorders provides further opportunities to study the generality of

Banner by applying it to learn networks for non-causal (abductive) prediction.

These problems also provide variety in terms of the sizes of the data sets. The data sets

associated with the chess end-games problem, and the C++ tutor problem are very small, with

50 and 20 examples respectively. The DNA promoter recognition problem, and the DNA splice-

junction recognition problem form the middle-ground, with data sets of sizes ranging from 100

88

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400

%
C

or
re

ct

Number of training examples

BANNER Original
BANNER Corrupt1
BANNER Corrupt2

BANNER-IND

Figure 6.22: E�ect of structure revision on theories of varying degrees of corruption

89

to 500 examples. Finally, the chess end-games problem provides a data set with more than 3000

examples.

The results of our experiments on all these domains demonstrate that Banner is indeed

e�ective in revising networks with hidden variables, resulting in improvements in accuracies ranging

from 6% points on the C++ tutor domain, to about 40% on the DNA promoter recognition domain.

They also show that Banner can be usefully applied to a wide range of learning scenarios. Results

on the problem of diagnosing brain disorders show that Banner can, in principle, be used to

e�ectively revise networks intended for diagnostic classi�cation, although this issue needs to be

explored further.

Many of the improvements in accuracies resulted from parameter revision, although the

DNA splice-junction recognition problem clearly bene�ted substantially from structure revision for

smaller training sets. Experiments on the C++ tutor domain indicate that over�tting is an issue in

situations where only a limited amount data is available. Thus, on this domain, structure revision

resulted in signi�cant improvement in training accuracy as compared to parameter revision alone,

without a corresponding improvement in generalization. That structure revision can contribute

signi�cantly towards improving the accuracies of network is demonstrated by the experiments on

the DNA promoter recognition problem using corrupted versions of the initial domain theory.

In addition, since the performance of Banner-Ind when given an initial empty theory is crucially

dependent on the structure revision algorithm, the results obtained for the former on these problems,

also reect upon the latter. The fact that Banner-Ind can learn good classi�ers for most problems,

especially the chess end-games problem, where it learns highly accurate network starting from an

empty theory, shows that the structure revision algorithm is e�ective. Finally, a comparison of the

performances of Banner and Banner-Ind shows that, for most domains, starting out with an

initial, approximate network results in better classi�ers than learning from scratch.

Comparing Banner and the Naive Bayes algorithm on these problems, we see that starting

with an initial, approximate theory gives Banner a signi�cant edge over Naive Bayes on smaller

data sets. This e�ect is apparent on all problems, except on the problem of diagnosing brain

disorders. Without an initial theory, Banner-Ind performs comparably with the Naive Bayes

algorithm on the smaller data set of the DNA promoter recognition problem, but is worse on the

rest of the problems, except on the chess end-games problem, where it performs substantially better.

Our evaluations show that Banner performs comparably with the other hybrid theory re-

�nement algorithms, Rapture and Kbann, on all problems. While it performs signi�cantly better

then the logical theory re�nement algorithm Either on the DNA promoter recognition problem,

it can only match the performance of Neither, a variant of Either, on the C++ tutor domain.

Both Banner and Banner-Ind signi�cantly outperform logical inductive learning techniques on

most problems, except the C++ tutor domain, where Banner-Ind results in poorer classi�ers than

Pfoil.

Finally, the experiments on the DNA promoter recognition problem, the DNA splice-junction

problem, and the chess end-games problem demonstrate that, although restricted in its applicability,

Banner-Pr is very fast, e�cient and e�ective when applicable. None of these experiments would

have been possible without it.

90

Chapter 7

Related Work

The research presented here is related to several recent advancements in the areas of theory re�ne-

ment and learning Bayesian networks. In the following sections, we will place our research in the

context of the existing body of research in these areas and highlight its contributions.

7.1 Learning Bayesian Networks

Research in the �eld of learning Bayesian networks has made rapid progress in recent years, and

many di�cult problems, such as learning from incomplete data, have been addressed. However,

there have been few techniques, until now, for learning or revising Bayesian networks with hidden

variables, and none of them have been shown to be e�cient, e�ective, and scalable through eval-

uation on real problems. In this dissertation, we have presented one such technique for revising a

class of Bayesian networks, namely those with Noisy-Or and Noisy-And nodes, which can revise

networks with hidden variables as well as discover hidden variables when necessary. Rather than

search through the space of all possible revisions, Banner uses information in the data to select

speci�c nodes and links in the network to be revised, which makes it e�cient. The initial theory

given to Banner may be in the form of a Bayesian network with Noisy-Or/And nodes, or in the

form of propositional Horn-clause rules. Thus, our technique also provides a direct mechanism for

incorporating knowledge expressed as propositional Horn-clause rules into a Bayesian network. Al-

though designed for theory re�nement, Banner can also be used as a system for learning Bayesian

networks with hidden variables inductively from data. We have evaluated our system on several

real-world problems that demonstrate its e�ectiveness in revising fairly large networks. We have

also presented Banner-Pr, which is an algorithm for revising the parameters of a restricted class

of Noisy-Or/And networks, in the presence of hidden variables, and have shown it to be compu-

tationally e�cient, and e�ective in producing accurate classi�ers. In the following subsections, we

�rst compare Banner-Pr with some of the existing techniques for learning the parameters of a

Bayesian network, followed by a discussion of how Banner relates to other techniques for learning

the structure of a Bayesian network.

91

7.1.1 Parameter Learning

Learning the parameters is fairly straightforward when all the variables of the network are rep-

resented in the data. A common approach is to use the maximum likelihood estimates for the

parameters, which in the case of no hidden variables, reduces to a function of the relative frequen-

cies of occurrences of the values of the variable.

Approximation methods like Gibbs Sampling (Geman & Geman, 1984) and EM (Dempster

et al., 1977; Lauritzen, 1995) have been proposed to learn the parameters of a network from

incomplete data. Both these methods require some initialization of the parameters. Using the

current network, the algorithms then estimate the values missing in the data. Complete data thus

obtained is sampled to compute new values for the parameters. These steps are repeated until

some convergence criteria are met. The goal of these methods is to optimize the likelihood of the

data given the network. APEM (Thiesson, 1995) is a technique that combines traditional EM with

gradient descent methods for faster convergence. Preliminary experiments using APEM1 on the

DNA promoter recognition problem did not yield encouraging results (Ramachandran & Mooney,

1996a). Although APEM could improve the accuracy of the network, it could only achieve about

65% accuracy on the test sets. However, since APEM does not currently handle Noisy-Or or Noisy-

And nodes, these nodes were modeled by general nodes with appropriate initial parameters. This

results in the system being less constrained and having to learn signi�cantly more parameters.

D�iez (1993) proposes a technique where the parameters are represented as distributions,

which are then re�ned incrementally based on the training examples. This technique is also shown

to be applicable to Noisy-Or/And nodes. LikeBanner, it is also based directly on the computations

used to propagate beliefs through a network, and hence su�ers the same limitations in terms of

the network architectures to which it can be applied. Moreover, this algorithm has not yet been

implemented (Di�ez, 1997), and since it makes certain assumptions about the distribution of the

parameters, it is not possible to evaluate it without empirical studies. Musick (1994) also presents

an approach where each parameter is represented as a distribution rather than as a point value.

The focus of this research is less on induction of networks and more on inference techniques for

Bayesian networks with parameters speci�ed as distributions.

APN (Russell et al., 1995) is a technique that uses gradient descent to learn the parameters

of a network given incomplete data. It can be used to learn a wide range of distributions, including

Noisy-Or/And models. It is more general than Banner-Pr and can be applied to networks with

loops. However, it does not exploit the linearity of computation o�ered by the Noisy-Or/And

models. Our experiments, comparing the two techniques, show that APN, when applied to Noisy-

Or/And networks converges much more slowly than Banner-Pr (see Section 4.3).

One of the early connectionist approaches to learning the parameters of a Bayesian networks

is that reported in Neal (1992). It also uses the Noisy-Or approximation of a Bayesian node.

However, since it uses stochastic networks similar to the Boltzmann machine, simulation of the

network involves allowing the network to settle down to an equilibrium for each pattern observed.

This is expensive and slows down learning dramatically. Our technique for parameter learning,

Banner-Pr, uses a forward propagation algorithm which results in signi�cantly faster training.

Schwalb (1993) addresses the problem of learning the parameters of a given Bayesian

1We used the implementation of APEM provided by Bo Thiesson.

92

network by mapping it onto a neural network with SIGMA-PI nodes and learning the conditional

probabilities associated with the network (represented by link weights in the corresponding neural

network) using standard backpropagation techniques (McClelland & Rumelhart, 1988). This has

the advantage that it is able to learn the conditional probabilities even in the presence of hidden

variables. However, the size of the neural network is combinatorial in the fan-in of the nodes in the

corresponding Bayesian network, making the technique infeasible for even modestly large networks

such as that for the DNA promoter recognition problem.

Kwoh and Gillies (1996) have recently proposed a technique similar to Banner-Pr for

learning the parameters of a network with general, discrete-valued, probabilistic nodes. Like

Banner-Pr, it performs gradient descent to minimize mean squared-error with respect to some

output variables. Since, like Banner they use the belief propagation computations for formulating

the gradients, their technique faces the same limitations in terms on the kinds of network structures

it can handle. As such, their computations are only valid for tree-structured networks and do not

handle Noisy-Or/And nodes.

7.1.2 Structure Learning

Cooper and Herskovits (1992) have proposed a Bayesian approach to learning both the structure

and the parameters of a Bayesian network. They view the problem as one of maximizing the

probability of the network given the data, and propose a scoring metric that is used as a basis for

hill-climbing incrementally through the space of networks to �nd one that is highly probable given

the data. Others (Buntine, 1991; Heckerman et al., 1994) have followed up on this paradigm, intro-

ducing variations to improve the performance of the algorithm. Provan and Singh (1994) and Singh

and Provan (1996) enhance this approach with techniques for restricting the number of attributes

considered by the learning algorithm by selecting a small subset of relevant attributes, from the

given set of attributes. All of these approaches assume that the data is complete. Recently, Ramoni

and Sebastiani (1997) have extended this technique to learn from data with missing values. All

of these approaches construct a Bayesian network incrementally. However, they use an undirected

search through the space of possible incremental additions to the network, and spend considerable

computational e�ort exploring unsuccessful paths. In addition to not being able to discover hidden

variables, these algorithms are also not designed to learn models optimized for some particular task.

Thus, the models they learn may be unnecessarily complex for their intended task.

MS-EM (Friedman, 1997) is a technique that extends the EM algorithm to learn the struc-

ture as well as the parameters of a network from incomplete data. Given a network and some data,

it �rst iteratively modi�es the parameters using the EM algorithm. When further modi�cation

of the parameters does not improve the network, it modi�es the structure of the network using a

technique similar to EM. These steps are repeated until convergence. This approach been shown to

be e�ective in learning small networks from simulated data, but has not been evaluated on larger

real-world data sets. Moreover, this technique has no mechanism for selecting a candidate set of

nodes in the network that most likely need to be revised and, instead, relies on blind search through

the space of all possible revisions. In addition, although this works even when the initial theory

has hidden variables, it cannot discover any new hidden variables.

There are few practical, scalable techniques to add hidden variables to a Bayesian network.

Connolly (1993) has proposed using a technique similar to COBWEB (Fisher, 1987) to build a

93

Bayesian network by clustering observed variables hierarchically into a tree. Observed variables

form the leaves of the tree, and the interior nodes are hidden variables. However, this technique can

only learn tree structured networks. Kwoh and Gillies (1996) discuss a procedure for adding hidden

variables by �rst learning a Bayesian network from data using any inductive learning algorithm,

and then using statistical analysis to �nd correlations between variables with the same cause and

clustering such variables with a new hidden node. This technique uses the generate then test

strategy, requiring the examination of the entire space of all possible clusterings of variables with

common causes, and is computationally expensive. In addition, it has only been evaluated on very

small networks with less than ten variables.

MS-EM is one of the few techniques that can be used for theory re�nement. However, it has

not been designed for theory re�nement and lacks mechanisms to focus on portions of the network

that are the most likely candidates for revision. Buntine (1991) has proposed a technique for

revising a Bayesian network e�ciently, using scoring metrics similar to that proposed by Cooper

and Herskovits (1992). However, he does not specify any method for recognizing when the network

needs to be revised. Nor does he discuss ways of focusing on the portions of the network that

should be modi�ed. As such, his approach involves extensive search and is therefore ine�cient,

especially in the presence of hidden variables. Lam and Bacchus (1994b) have a technique for

incrementally re�ning a Bayesian network using the Minimum Description Length (Rissanen, 1978)

principle. Their approach, however, can only modify those portions of the network whose variables

are observable. Thus, it cannot modify networks with hidden variables, nor can it add hidden

variables to the network.

In addition, many of the approaches discussed above provide a way of specifying prior knowl-

edge about the structure of the network, in the form of prior probabilities of network structures.

However, there has been no e�ort to study the e�ectiveness of using the above techniques for theory

re�nement. Most of the research in this �eld is focused on learning from scratch, and barring some

exceptions (Buntine, 1991; Lam & Bacchus, 1994b), the issue of theory re�nement has largely been

ignored.

Apart from Schwalb (1993), none of the techniques mentioned above are concerned with

learning networks that are optimized for their intended task. Singh and Provan (1996) have pro-

posed a selective induction technique that learns Bayesian network classi�ers by using information

theoretic metrics to select a subset of attributes that are most relevant to the classi�cation task,

and using a variant of the K2 algorithm to learn a network with these attributes. Here, the focus

is more on techniques for limiting the number of attributes to be considered by the learning algo-

rithm to those that best predict the classi�cation of the examples in the data, than on developing

an induction algorithm that is geared towards optimizing classi�cation accuracy. This technique

for selecting a subset of relevant attributes may be used in conjunction with other learning algo-

rithms. Friedman and Goldszmidt (1996) have proposed an algorithm for learning a restricted

class of Bayesian networks, called tree-augmented naive Bayes (TAN), that are optimized for classi-

�cation. Tans are extensions of the Naive Bayes classi�er, such that each attribute has links from

the class variable and at most one other attribute. This technique has been shown to be better

than the Naive Bayes algorithm on several real-world data sets. However, it is not designed for

theory re�nement. Greiner et al. (1997) analyse the advantages of learning Bayesian networks

that are optimal for the distribution of queries found in the data. They also propose a hill-climbing

94

algorithm that uses this criteria to learn the parameters of a network. However, they do not present

any experimental evaluation of their technique.

While there are several algorithms for learning Bayesian networks, experimental evaluation

of techniques on real data sets are scarce. With the exception of a few (Provan & Singh, 1994;

Singh & Provan, 1996; Friedman & Goldszmidt, 1996; Kwoh & Gillies, 1996), most techniques have

been evaluated on arti�cial data generated from arti�cial networks, or from networks built to model

certain tasks. Furthermore, there have been no evaluation for revising Bayesian networks on real

problems, using real data. On the other hand, we have demonstrated the e�ectiveness of Banner

through extensive evaluation on real-world learning problems involving fairly large networks.

7.2 Theory Re�nement

Early research in theory re�nement focused on purely logical representations. Such representations

are very comprehensible, but were found to be inadequate for many real-world problems. Classi�ers

produced via logical theory re�nement were found to perform poorly on such problems. This led

to the idea of integrating logical and numerical representations, and the development of algorithms

to revise rule bases by mapping them to representations that employs some form of uncertain rea-

soning or numerical summing of evidence. Such techniques have been shown to be very e�ective

in many domains, often resulting in dramatically improved accuracies. However, what these ap-

proaches gained in performance, they lost in comprehensibility. Such hybrid representations lacked

well-de�ned semantics and could not be easily understood. Banner, by using the Bayesian net-

work representation, bridges the gap between performance and comprehensibility. Experiments

show that Banner performs as well as any of the other existing hybrid learning systems. At

the same time, the networks produced by Banner are easily understood within the framework of

Bayesian networks. Another advantage of Banner is that it can be used to learn networks for

causal and well as evidential reasoning. Most existing techniques for theory re�nement are geared

towards classi�cation tasks involving causal inference. Thus, they cannot be used in cases when

the classi�cation task involves evidential reasoning. Since Banner is built upon Bayesian inference

mechanisms, which can be used for deductive as well as abductive inference, it does not su�er from

this limitation. In the following subsections, we �rst present a overview of the related research

within logical theory re�nement, and then discuss some of the hybrid learning algorithms.

7.2.1 Logic-Based Approaches

Mechanisms for picking appropriate revision points in a theory is one of the key aspects of logical

theory re�nement algorithms. While techniques like Either (Ourston & Mooney, 1994) and Nei-

ther (Ba�es & Mooney, 1993) have mechanisms for tracing blame for misclassi�cations through

the theory, these mechanisms do not provide them with any direct way of determining the level at

which to revise the theory. Viewing the theory as an AND-OR graph, both Either and Neither

�rst select the best revision at the lowest level of the theory. They then hill-climb up the path

from the selected revision point to the root of the theory, evaluating appropriate revisions to each

node in the path, and selecting the one that is the simplest. This adds to the computational cost

of these techniques.

95

Probabilistic theory revision (PTR) (Feldman, Segre, & Koppel, 1991; Koppel et al., 1994)

takes a di�erent approach to revising propositional Horn-clause theories. This technique uses

probabilities to express con�dence in the correctness of di�erent portions of the theory, which

are then used to locate faults. PTR converts the logical theory into an AND-OR graph. Each

edge in the graph is assigned a probability that reects the prior con�dence that the edge is a

part of the target theory. PTR iterates over the examples to compute the posterior probabilities

associated with the edges given the data. The network is revised whenever the posterior probability

associated with an edge in the network falls below a certain threshold. It should be emphasized

that, while PTR uses probabilities to locate faults in the theory, the theory itself always remains

logical. Experiments on the DNA promoter recognition problem (Noordewier et al., 1991) show

that the performance of PTR is only slightly better than that of Either.

7.2.2 Hybrid Approaches

There are several techniques that combine logical and numeric representations to learn accurate

classi�ers. One such technique is Kbann (Towell & Shavlik, 1994) which converts an initial logical

domain theory into a multi-layered feedforward neural network and uses gradient descent back-

propagation to improve the accuracy of this network on the data. The �nal network may itself be

used as a classi�er. Alternately, there are techniques for extracting logical rules out of the �nal

network (Towell & Shavlik, 1993; Craven & Shavlik, 1996; Craven, 1996). While KBANN only

re�nes the weights of the network, TopGen (Opitz & Shavlik, 1993; Opitz, 1995b) is a technique

for modifying the structure of the network by adding new nodes and links. Thus, Kbann and

TopGen are together comparable to Banner. Our experiments show that the performance of

Banner is comparable to that of Kbann in terms of classi�cation accuracy. However, a clear ad-

vantage of Banner is that it learns Bayesian networks that have well-de�ned semantics. Thus, the

�nal networks produced by Banner are easily understood in terms of the semantics of Bayesian

networks, and, unlike the networks produced by Kbann, do not need to be post-processed into

some comprehensible form.

Our research was inspired by Rapture (Mahoney & Mooney, 1993, 1994), which converts

an initial certainty factor rule-base into a multi-layered feedforward neural network and uses a

gradient descent backpropagation algorithm to revise the certainty factors. It can also modify the

structure of the network by adding new links, and by adding new hidden nodes using the Upstart

algorithm (Frean, 1990). However, Rapture and Banner take very di�erent approaches to the

problem of structure revision. While Banner uses the information in the current network to

pick revision points, Rapture limits its revisions to the output nodes. Thus, Rapture always

attaches new nodes and links to output nodes, and cannot make any modi�cations to deeper layers

of the structure. Sometimes, lower level rules concepts participate in several rules de�ning higher

level concepts, and modifying the rules associated with such lower level concepts would be more

e�cient and simpler than modifying all the higher level rules in which they participate. In terms of

performance on real data-sets, Rapture performs as well as, and sometimes better than Banner

by small margins. However, the networks produced by Banner have more clearly de�ned semantics

because Bayesian networks are theoretically more well-grounded than certainty factors.

96

Chapter 8

Future Work

This research presents many avenues for further exploration with respect to both parameter revi-

sion and structure revision of Bayesian networks. Interesting directions for future research include

exploring ways to extend Banner-Pr so as to make it more general in its applicability, and extend-

ing the structure revision algorithm to handle general nodes and multi-valued nodes. We would

also like study the e�ects of incorporating, into Banner, some of the other existing techniques for

adding links and hidden variables to a Bayesian networks. In addition, we would like to perform

more experiments to study various aspects of these techniques further. We elaborate on these ideas

in the following sections.

8.1 Experimental Study

We have evaluated Banner on several real-world learning problems. The initial theories for all

these problems were expressed in the form of propositional Horn-clause rules. We could not obtain

any real data sets where the initial theory is expressed in the form of a Bayesian network with Noisy-

Or/And nodes. One important direction for future research is to evaluate Banner on revising such

theories. We are also interested in applying Banner to real-world applications where a Bayesian

network representation is desired. Such an evaluation would shed more light on the usefulness of

Banner as a tool for learning Bayesian networks.

Most of the problems used to evaluate Banner, with the exception of the problem of

diagnosing brain disorders, have involved causal prediction (Chapter 6). The purpose of evaluating

Banner on the brain disorder diagnosis domain was to show that, in principle, Banner can be

used to revise networks intended for non-causal (abductive) classi�cation. The results show that

Banner can e�ectively revise such networks, although it does not perform as well as the Naive

Bayes algorithm, and is limited by combination of a high degree of incompleteness in the data due

to the removal of information about a large number of disorders, and a limited number of training

examples. Since Bayesian networks are used for many tasks involving diagnostic prediction, such as

medical diagnosis, we would like to evaluate the performance of Banner further other real-world

problems involving such non-causal prediction, especially problems with a large number of training

examples.

An interesting issue that we have touched upon in this dissertation concerns the advantage

of training a network to be optimized for the speci�c task for which it is intended, compared to

97

training it to model the data without regard to the intended task. We have adapted an existing

parameter learning algorithm, APN (Russell et al., 1995), that uses the latter approach, to create

an algorithm, C-APN, that learns classi�ers by modeling the distribution of a speci�c set of class

variables conditioned on a speci�c set of evidence variables. While Friedman and Goldszmidt (1996)

have experimentally demonstrated the advantages of a system targeted speci�cally at learning

classi�ers, our experiments with APN and C-APN, however, have not provided any conclusive

evidence of the advantage of one approach over the other. We would like to study this issue further

by evaluating these techniques on more data sets, and on problems involving non-causal predictions.

Finally, we would also like to further study the usefulness of Banner as a hybrid theory

re�nement system. Our experiments have demonstrated that the performance of Banner is com-

parable to the performances of other hybrid learning algorithms such as Kbann (Towell & Shavlik,

1994) and Rapture (Mahoney & Mooney, 1993). In the future, we would like to test the hypothesis

that the networks generated by Banner are more comprehensible than the representations learned

by the other techniques. This can be done through studies where humans rate the representations

generated by these techniques according to how easy they are to understand.

8.2 Extensions to Banner-Pr

As mentioned earlier, Banner-Pr can only be used to learn a certain class of networks, namely

those composed of Noisy-Or/And nodes. Banner-Pr also requires that the network should be a

polytree or a virtual polytree. Finally, it can only be used to learn networks intended for causal

prediction tasks. Banner-Pr can be extended quite easily to the case of general nodes. The

techniques proposed by Schwalb (1993) and, more recently, by Kwoh and Gillies (1996) are very

similar to Banner-Pr in that they use a gradient descent, backpropagation approach to learning

the parameters of a network with general nodes and can be easily incorporated into our technique.

Extending Banner-Pr to learn networks for non-causal classi�cation tasks is also fairly

straightforward. Gradient descent backpropagation involves two phases: a �rst phase involving the

propagation of the e�ects of the evidence to the class variables, and the second pass involving the

propagation of errors from the class variables to the rest of the network. Assuming causal reasoning,

a single pass through the network is su�cient to propagate the inuence due to the evidence.

This means that a single backpropagation pass is su�cient to propagate the errors. For arbitrary

inference tasks, the inuence propagation phase would require multiple forward and backward

passes through the network. Therefore, the error propagation phase would require multiple passes

through the network as well. The computations of the gradients would be more complex. We

have derived these computations, but have not implemented an abductive version of Banner-Pr

because we do not have interesting data sets with which to evaluate it.

Extending Banner-Pr to handle networks with loops, however, presents a challenge. The

errors computed during the backpropagation phase are based on the computations involved in belief

propagation through the network. Most of the inference techniques applicable to networks with

loops (Pearl, 1988) involve non-local computations and the backpropagation algorithm cannot be

applied to them. Di�ez (1996) has proposed a technique called local conditioning that uses local

computations for propagating beliefs through a network with loops. This technique, although not

yet implemented, provides a potential avenue for extending Banner-Pr to handle network with

98

loops.

8.3 Extension to General Nodes

The structure revision algorithm used by Banner relies on the semantics of Noisy-Or/And nodes in

order to locate faults in the theory. The interaction of inuences a�ecting such nodes are structured

and compositional in that individual inuences combine in well-de�ned ways to produce an overall

inuence. This makes it possible to break down the overall inuence on a Noisy-Or/And node

into contributions due to each individual inuence, and thus localize faults. It is not clear how

these techniques could be extended to cover nodes which allow for arbitrary interactions between

individual inuences.

The more general idea of using abduction to generate explanations of failures in prediction

should be extendible to networks with other models of interactions of inuences. One approach

is to use two inference passes per misclassi�ed example in order to locate faults in the theory;

one inference pass that propagates beliefs through the network based on the given evidence, and a

second inference pass that propagates beliefs based on the desired values of the class variables. The

�rst pass determines the beliefs of the nodes in the network given the evidence. The second pass

determines what the beliefs of the nodes in the network should be in order to produce the desired

outcome. Nodes in the network whose beliefs vary signi�cantly between the two passes indicate

discrepancies between the current state of the network and the desired state of the network, and

are potential sites for revision. This procedure is similar to the use of abduction in logical theory

re�nement approaches such as Either (Ourston & Mooney, 1994) and Neither (Ba�es & Mooney,

1993) to determine potential revisions. While such a procedure can identify faulty nodes, it cannot

localize faults to individual links in the network. Although adding or deleting links from these

faulty nodes would involve search, focusing attention on a small of subset of nodes would still be

bene�cial by reducing the space of revisions to be considered.

8.4 Integrating other Bayesian Techniques

Our structure revision algorithm proceeds in two phases: one phase that selects speci�c nodes to be

revised, and a second phase that applies a set of revision operators that expand or shrink the parent

set of the node to be revised, or add new hidden nodes to the network. As discussed in Chapter 5,

Banner uses the information gain metric (Mitchell, 1997; Quinlan, 1990, 1986; Mingers, 1989) to

select the nodes to be added to, or deleted from, the parent set of the node being revised. It would

be interesting to study the e�ects of using the Bayesian scoring metrics employed by other Bayesian

network learning techniques (Cooper & Herskovits, 1992; Ramoni & Sebastiani, 1997; Friedman,

1997) for this purpose. These metrics would �rst have to adapted to Noisy-Or/And nodes. In

addition to being more computationally expensive than the information gain metric, they are not

geared toward optimizing conditional distributions. However, since they are well integrated into

the framework of Bayesian networks, they may be better at selecting appropriate additions and

deletions to the network. This is an empirical question that would be interesting to explore.

99

8.5 Extension to Multi-valued Variables

While all our algorithms have assumed that the variables in the network are binary-valued, several

real-world applications of Bayesian networks require multi-valued variables. The notion of Noisy-Or

nodes has been extended to handle multi-valued variables (Pradhan et al., 1994). Noisy-and nodes

can be similarly extended. We believe that the parameter revision component can be adapted to

this case easily. Adapting the theory re�nement algorithm poses a challenge, since we now have

to search for hidden variables with an unknown number of values, which would increase the search

space considerably. Connolly (1993) proposes a technique for discovering hidden variables with

an unknown number of values using a clustering algorithm similar to Cobweb (Fisher, 1987).

However, their approach can only learn tree-structured networks with all the observable variables

at the bottom-most level. It would interesting to explore the possibility of using such techniques

to extend Banner to learn multi-valued variables.

100

Chapter 9

Conclusion

Theory re�nement is an area of research that is based on the idea that, when only limited data is

available, biasing an inductive learner with prior knowledge can improve learning by focusing the

search space of possible hypotheses. Theory re�nement systems assume that the learner has an

initial imperfect knowledge base (usually obtained from a domain expert), which is then inductively

revised to �t the data. Experiments on real-world data have demonstrated that revising an approx-

imate domain theory produces more accurate results than learning from training data alone. Early

research in theory re�nement focused on purely symbolic representations, which are very compre-

hensible, but show poor accuracies on several real-world learning problems. Techniques that revise

rule-bases by mapping them into representations that combine logical rules and some form of un-

certain reasoning, or numerical summing of evidence, have been shown to result in dramatically

improved accuracies. One hybrid representation that is extensively used for this purpose is a class

of multi-layered feedforward neural networks, called Knowledge-Based neural networks, where the

structure of the networks are determined by the initial logical theory (Towell & Shavlik, 1994).

Mahoney and Mooney (1993) have proposed a theory re�nement technique that uses the certainty

factor representation (Buchanan & Shortli�e, 1984). However, such hybrid representations lack

well-de�ned semantics and cannot be easily understood.

Bayesian networks, on the other hand, are attractive as hybrid representations because they

combine sound mechanisms for representing probabilities with a well-founded qualitative repre-

sentation of the correlations between variables. The structure of a Bayesian network represents

qualitative relationships between variables, and the parameters of the network represent quanti-

tative relationships. Both the structure and the parameters of a Bayesian network have simple

semantics that are grounded in probability theory, and several sound inference mechanisms have

been developed to reason with such networks.

In the recent years, there has been a growing interest in the problem of learning Bayesian

networks from data. Research in this �eld has made rapid progress in recent years, and many

di�cult problems, such as learning from incomplete data, have been addressed. However, until

now, there has not been a solution to the problem of learning or revising Bayesian networks with

hidden variables, shown to be e�cient, e�ective, and scalable through evaluation on real problems.

In addition, most Bayesian network learning algorithms are focused on the task of modeling the

distribution of the data, without regard to the speci�c task for which the network is being built.

There has been little e�ort to design algorithms that are speci�cally geared towards optimizing the

101

classi�cation accuracy of the learned network.

The goal of our research has been two-fold: to develop an e�cient and e�ective approach

to revising Bayesian network classi�ers with hidden variables, and to develop a hybrid theory

re�nement technique that revises logical theories by mapping them into Bayesian networks. Unlike

the previous approaches to revising Bayesian networks, we were speci�cally interested in developing

mechanisms, similar to those employed by logical theory re�nement techniques (Ourston & Mooney,

1994; Koppel et al., 1994; Cohen, 1992; Wogulis & Pazzani, 1993; Richards & Mooney, 1995; Brunk,

1996), for using the data to focus the search for e�ective modi�cations to the network.

With this in view, we have developed a technique, implemented in a system called Banner,

for revising Bayesian networks with Noisy-Or and Noisy-And nodes. We focused our attention

on Noisy-Or/And nodes because their speci�cation requires only a linear number of parameters,

a�ording e�ciency with respect to representation, reasoning, and learning. In addition, they are

semantically close to logical disjunction and conjunctions, and thus facilitate the use of knowledge

expressed in the form of logical rules as an initial theory.

The inputs to Banner are an approximately correct initial theory, either in the form of a

Bayesian network with Noisy-Or/And nodes, or in the form of logical Horn-clause rules, and some

data consisting of labeled examples that may not include observations of all the variables in the

network. An initial theory speci�ed in the form of a logical rules is converted into a Bayesian network

with Noisy-Or/And nodes. The goal of Banner is to use the data to improve the classi�cation

accuracy of the network by revising its parameters and structure and adding hidden variables

when necessary. It uses a two-tiered approach, where it �rst tries to �t the data by revising the

parameters of the network. If this is not su�cient to accurately classify all the examples in the data,

the structure of the network is modi�ed in order to correct the misclassi�cations. The parameter

revision and structure revision steps are repeated until convergence. This two-tiered approach

makes Banner modular in that it is possible to plug in di�erent algorithms for either of these two

phases without a�ecting the other.

The parameter revision phase assumes that the underlying Bayesian structure is correct,

and is concerned with modifying the parameters of the network to improve predictive accuracy.

Our implementation of Banner provides two di�erent parameter revision techniques: Banner-

Pr and a variant of APN (Russell et al., 1995) calledC-APN. Banner-Pr uses a gradient descent

backpropagation algorithm similar to that used in multi-layered feedforward networks. It has

been designed speci�cally to take advantage of the computational e�ciency o�ered by Noisy-Or

and Noisy-And nodes, and is targeted towards learning classi�ers by optimizing the conditional

distribution of the class variables given the evidence. However, it can only be applied to polytrees

or virtual polytrees, and for tasks involving causal predictions.

C-APN, based on APN, (Section 2.5) is a more general technique for revising the parame-

ters of a Bayesian network which also uses gradient descent. Whereas APN learns to optimize the

likelihood of the entire data being generated by the network, C-APN learns a network that is opti-

mized to estimate the probability of certain class variables given some evidence. Our experiments

show that, when applicable, Banner-Pr converges much faster than APN or C-APN, and learns

more accurate networks.

As mentioned earlier, the structure revision phase is invoked when it is found that revising

the parameters of the network was not su�cient to classify all the examples in the data correctly.

102

Like most techniques for revising logical theories, our approach to structure revision uses abduction

to attribute failures in prediction to speci�c portions of the network. By augmenting a network with

leak nodes, our technique uses Bayesian inference to detect speci�c nodes and links in the network

that would have to be revised in order to correct misclassi�cations. This restricts the search space

considerably by focusing attention on a subset of variables that can be held responsible for an

erroneous prediction by the network.

We have evaluated our technique on the following real-world learning problems: recognis-

ing DNA promoters (Noordewier et al., 1991), recognising DNA splice-junctions (Noordewier et al.,

1991), learning student models for a C++ tutor (Ba�es, 1994), diagnosing brain disorders in human

patients (Tuhrim et al., 1991), and classifying chess end-games (Shapiro, 1983, 1987). These experi-

ments showed that the performance of Banner is comparable to those of hybrid theory re�nement

systems such as Rapture (Mahoney & Mooney, 1993; Mahoney, 1996) and Kbann (Towell &

Shavlik, 1994). They also demonstrate that the strategy of starting with an initial, approximate

theory gives Banner an considerable edge over the Naive Bayes algorithm, which is a purely in-

ductive Bayesian network learning algorithm. Our experiments also show that, on some domains,

Banner performs better than Naive Bayes even when it is given no initial theory. In addition, we

have evaluated the structure revision component on Banner by performing experiments on cor-

rupted versions of the theory for recognizing DNA promoters. These experiments demonstrate the

e�ectiveness of our technique in revising such theories so as to signi�cantly improve their accuracies.

The research presented in this dissertation stands at the cross-roads of theory re�nement and

Bayesian network learning, making contributions to each of these �elds. Our research contributions

can be summarized as follows:

� From a Bayesian network learning perspective:

1. We have introduced a novel technique for revising Bayesian networks that can revise net-

works with hidden variables as well as discover hidden variables when necessary. This

technique is speci�cally aimed at learning classi�ers. We have demonstrated, through ex-

periments on real-world data sets, that this approach can e�ciently revise large networks

and produce highly accurate classi�ers.

2. Whereas previous techniques for revising Bayesian networks searched through the space

of all possible revisions, we have introduced novel mechanisms for using the information

in the data to guide the search for useful revisions, thus eliminating a large number of

irrelevant revisions from consideration.

3. Since the initial theory given to Bannermay be in the form of propositional Horn-clause

rules, our technique also provides a direct mechanism for incorporating knowledge ex-

pressed as propositional Horn-clause rules into a Bayesian network. Since many existing

knowledge bases are written in the form of rules, and many experts have become com-

fortable with this formalism, such a mechanism could potentially ease the process of

building Bayesian networks.

4. Although designed for theory re�nement, Banner can also be used as a system for

inductively learning Bayesian networks with hidden variables from incomplete data.

5. We have also introduced a new technique for revising the parameters of a network with

Noisy-Or/And nodes that directly exploits the e�ciency a�orded by these models, and

103

is targeted towards learning classi�ers by trying to optimize the conditional distribution

of the class variables given the evidence. We have shown that this technique converges

faster and produces more accurate classi�ers than an existing algorithm for learning the

parameters of a network.

� From a theory re�nement perspective:

1. We have introduced a novel hybrid theory re�nement system that bridges the gap be-

tween performance and comprehensibility. Our experiments have shown that its perfor-

mance is comparable to that of other existing hybrid learning systems. At the same time,

the networks produced by Banner are more easily understood within the framework of

Bayesian networks.

104

Appendix A

Derivation of the Gradients for

Banner-Pr

A.1 Gradient for a Noisy-Or Node

Since we are concerned with Banner-Pr, we will assume that all evidence is limited to root nodes

in the network, that all target variables are sinks in the graph, and that all inference is causal.

Under this assumption, the belief of a node Nk representing a target variable, given the evidence

is given by:

Bel(Nk = F) =
Y
i

(1� cikBel(Ni = T)) (A.1)

Bel(Nk = T) = 1�
Y
i

(1� cikBel(Ni = T)) (A.2)

where cik is the weight on the link from node Ni to node Nk, F represents the values False, and

T represents the value True.

The error function being minimized is given by

E[w] =
1

2

X
�

(��k (Nk = T)�Bel�k (Nk = T))2 (A.3)

where ��i (Nk = T) is the value of the k-th target variable for pattern � of the data.

In order to achieve gradient descent, we require that

�cij / �@E[w]
@cij

(A.4)

= ��@E[w]
@cij

(A.5)

where � is the constant of proportionality. Since E[w] is summed over all examples in the training

set, the contribution to �cij from a single example � is given by:

��cij = ��
X
k

@ 12
P

k(�
�(Nk = T)�Bel�(Nk = T))2

@cij
(A.6)

105

��cij = ��Pk

@ 12(�
�(Nk = T)�Bel�(Nk = T))2

@Bel�(Nj = T)
�

@Bel�(Nj = T)

@cij
(A.7)

where k ranges over all target variables. There are three cases to be considered: one where the node

Nj represents a target variable, one where node Nj represents hidden variable directly connected

to a target variable, and one where node Nj represents a hidden variable connected indirectly to a

target variable. Let us consider these cases separately.

1. Case 1: When j is a target variable.

Since each target variable is a sink, and since all the root nodes have evidence, the right-hand

side of Equation A.7 can be written as:

��cij = �(��(Nj = T)�Bel�(Nj = T))�
@Bel�(Nj = T)

@cij
(A.8)

Substituting Equation A.2 into the above, we get

��cij = �(��(Nj = T)�Bel�(Nj = T))�
@(1�Qk(1� ckjBel

�(Nk = T)))

@cij
(A.9)

Computing the above partial derivatives yields:

��cij = �(��(Nj = T)�Bel�(Nj = T))�Q
k(1� ckjBel

�(Nk = T))

1� cijBel(Ni = T)
(A.10)

The �rst term in the equation above is the error associated with the node for pattern �, ��j .

Thus,

��j = (��(Nj = T)�Bel�(Nj = T)) (A.11)

2. Case 2: When node Nj is a hidden variable connected directly to some output variables:

The right-hand side of Equation A.7 can be written as:

��cij = ��Pk

@ 12(�
�(Nk = T)� (1�Ql(1� clkBel

�(Nl = T)))))2

@Bel�(Nj = T)

�@Bel
�(Nj = T)

@cij
(A.12)

106

= �
X
k

(��(Nk = T)� (1�
Y
l

(1� clkBel
�(Nl = T))))

�@(1�
Q
l(1� clkBel

�(Nl = T)))

@Bel�(Nj = T)

�@Bel
�(Nj = T)

@cij
(A.13)

where k ranges over all the target variables, and l ranges over all the parents of the variable

Nk. Since

(1�
Y
l

(1� clkBel
�(Nl = T))) = Bel�(Nk = T);

the last step in the derivation can be re-written as:

��cij = �
P

k (��(Nk = T)�Bel�(Nk = T))�
@(1�Ql(1� clkBel

�(Nl = T)))

@Bel�(Nj = T)
�

@Bel�(Nj = T)

@cij
(A.14)

= ��
X
k

(��(Nk = T)�Bel�(Nk = T))�

@
Q

l(1� clkBel
�(Nl = T))

@Bel�(Nj = T)
�

@Bel�(Nj = T)

@cij
(A.15)

= �
X
k

(��(Nk = T)�Bel�(Nk = T))cjk �
Y
l 6=j

(1� clkBel
�(Nl = T))�

@Bel�(Nj = T)

@cij
(A.16)

= �
X
k

(��(Nk = T)�Bel�(Nk = T))cjk �
Y
l 6=j

(1� clkBel
�(Nl = T))�

@(1�Qm(1� cmjBel
�(Nm = T)))

@cij
(A.17)

where m ranges over the parents of node Nj. The second term is similar to Case 1 above,

and computing partial derivative yields:

��cij = ��Pk (��(Nk = T)�Bel�(Nk = T))cjk �Y
l 6=j

(1� clkBel
�(Nl = T))�

@
Q

m(1� cmjBel
�(Nm = T))

@cij
(A.18)

= �
P

k (��(Nk = T)�Bel�(Nk = T))cjk �

107

Y
l 6=j

(1� clkBel
�(Nl = T))�

Bel�(Ni = T)�Y
m6=i

(1� cmjBel
�(Nm = T)) (A.19)

The �rst term in the equation above is the error, ��j attributed to node Nj for pattern �.

Thus,

��j =
X
k

(��(Nk = T)�Bel�(Nk = T))cjk
Y
l 6=j

(1� clkBel
�(Nl = T)) (A.20)

3. Case 3: When node Nj is a hidden variable not directly connected to an output variables,

it can be shown that

��cij = ���i Bel
�(Ni = T)

Y
m6=i

(1� cmjBel
�(Nm = T)) (A.21)

where m ranges over the parents of node Nj, and

��i =
X
j

��j
Y
l 6=j

(1� cljBel
�(Nl = T)) (A.22)

where j ranges over the children of node Ni, l ranges over the parents of node Nj.

The gradient for a Noisy-And node is similarly derived.

108

Appendix B

Initial Domain Theories

Initial Domain Theories

B.1 DNA Promoter Recognition

B.1.1 Input Features

P-50, ..., P-1, P1, ..., P7: (A G C T)

B.1.2 Categories

Promoter: (present absent)

B.1.3 Domain Theory

(promoter ?x) <- (contact ?x) (conformation ?x)

(contact ?x) <- (minus_35 ?x) (minus_10 ?x)

(minus_35 ?x) <- (p-37 c) (p-36 t) (p-35 t) (p-34 g) (p-33 a)

(p-32 c)

(minus_35 ?x) <- (p-36 t) (p-35 t) (p-34 g) (p-32 c) (p-31 a)

(minus_35 ?x) <- (p-36 t) (p-35 t) (p-34 g) (p-33 a) (p-32 c)

(p-31 a)

(minus_35 ?x) <- (p-36 t) (p-35 t) (p-34 g) (p-33 a) (p-32 c)

(minus_10 ?x) <- (p-14 t) (p-13 a) (p-12 t) (p-11 a) (p-10 a)

(p-9 t)

(minus_10 ?x) <- (p-13 t) (p-12 a) (p-10 a) (p-8 t))

(minus_10 ?x) <- (p-13 t) (p-12 a) (p-11 t) (p-10 a) (p-9 a)

(p-8 t)

(minus_10 ?x) <- (p-12 t) (p-11 a) (p-7 t)

109

(conformation ?x) <- (p-47 c) (p-46 a) (p-45 a) (p-43 t) (p-42 t)

(p-40 a) (p-39 c) (p-22 g) (p-18 t) (p-16 c)

(p-8 g) (p-7 c) (p-6 g) (p-5 c)

(p-4 c) (p-2 c) (p-1 c)

(conformation ?x) <- (p-45 a) (p-44 a) (p-41 a)

(conformation ?x) <- (p-49 a) (p-44 t) (p-27 t) (p-22 a) (p-18 t)

(p-16 t) (p-15 g) (p-1 a)

(conformation ?x) <- (p-45 a) (p-41 a) (p-28 t) (p-27 t) (p-23 t)

(p-21 a) (p-20 a) (p-17 t) (p-15 t) (p-4 t)

B.2 Splice Junction Recognition

B.2.1 Input Features

P-30, ..., P-1, P1, ..., P30: (A G C T)

B.2.2 Categories

IE: (present absent)

EI: (present absent)

B.2.3 Domain Theory

% Prolog notation is used with two minor extensions.

% ::- indicates a "definitional" rule. That is, rules with this

% indicator should never be changed. These rules merely recode

% inputs into low-level derived features.

% The second extension allows n-of-m style rules. That is rules

% are allowed to say if any 'n' of the following 'm' antecedents

% are true, then the consequent should be considered true.

% Also, the rules use a shorthand notation for expressing sequences.

% Namely, the rule:

% EI-stop ::- @-3 `TAA'.

% could be expanded to:

% EI-stop ::- @-3=T, @-2=A, @-1=A.

% In this shorthand, there is no position 0.

% An exon->intron boundary is defined by a short sequence arround

% the boundary and the absence of a "stop" codon on the exon side

% of the boundary.

110

EI :- @-3 `MAGGTRAGT', not(EI-stop).

EI-stop ::- @-3 `TAA'.

EI-stop ::- @-3 `TAG'.

EI-stop ::- @-3 `TGA'.

EI-stop ::- @-4 `TAA'.

EI-stop ::- @-4 `TAG'.

EI-stop ::- @-4 `TGA'.

EI-stop ::- @-5 `TAA'.

EI-stop ::- @-5 `TAG'.

EI-stop ::- @-5 `TGA'.

% An intro->exon boundary is defined by a short sequence arround the

% boundary, the absence of a "stop" codon immediately following the

% boundary and a "pryamidine rich" region preceeding the boundary.

IE :- pyramidine-rich, @-3 `YAGG', not(IE-stop).

pyramidine-rich :- 6 of (@-15 `YYYYYYYYYY').

IE-stop1 ::- @1 `TAA'.

IE-stop2 ::- @1 `TAG'.

IE-stop3 ::- @1 `TGA'.

IE-stop4 ::- @2 `TAA'.

IE-stop5 ::- @2 `TAG'.

IE-stop6 ::- @2 `TGA'.

IE-stop7 ::- @3 `TAA'.

IE-stop8 ::- @3 `TAG'.

IE-stop9 ::- @3 `TGA'.

% In addition to the above rules, the following iterative constructs

% can be used as needed to define letters other than {A G C T}.

% These letters represent disjunctive combinations of the four

% nucleotides. The codes are standard in the biological literature.

For i from ((-30 to -1) and (+1 to +30))

{@<i>`Y' ::- @<i>`C'.

@<i>`Y' ::- @<i>`T'.}

For i from ((-30 to -1) and (+1 to +30))

{@<i>`M' ::- @<i>`C'.

@<i>`M' ::- @<i>`A'.}

111

For i from ((-30 to -1) and (+1 to +30))

{@<i>`R' ::- @<i>`A'.

@<i>`R' ::- @<i>`G'.}

B.3 C++ Tutor

B.3.1 Input Features

pointer: (constant non-constant absent)

integer: (constant non-constant)

pointer-init: (true false)

integer-init: (true false)

pointer-set: (true false)

integer-set: (yes no through-pointer)

multiple-operands: (true false)

poistion-A: (normal left-lazy right-lazy)

operator-A-lazy: (AND OR)

lazy-A-left-value: (non-zero zero)

on-operator-A-side: (left right)

on-operator-B-side: (left right)

operator-A: (assign modify-assign

mathematical logical

comparison auto-incr)

operator-B: (assign modify-assign

mathematical logical

comparison auto-incr)

B.3.2 Categories

compile-error: (true false)

ambiguous: (true false)

B.3.3 Domain Theory

compile-error <- constant-not-init

compile-error <- constant-assigned

constant-not-init <- (pointer constant) (pointer-init false)

constant-not-init <- (integer constant) (integer-init false)

112

constant-assigned <- (integer constant) integer-init

(integer-set yes)

constant-assigned <- (integer-constant) integer-init

(integer-set through-pointer)

constant-assigned <- (pointer-constant) pointer-init pointer-set

ambiguous <- multiple-operands operands-linked

operands-linked <- operand-A-uses operator-B-sets

operands-linked <- operand-A-sets operator-B-uses

operand-A-uses <- operand-A-evaluated operator-A-uses

operand-A-sets <- operand-A-evaluated operator-A-sets

operand-A-evaluated <- (position-A normal)

operand-A-evaluated <- (position-A left-lazy)

operand-A-evaluated <- (position-A right-lazy lazy-A-full-eval)

lazy-A-full-eval <- (operator-A-lazy AND)

(lazy-A-left-value non-zero)

lazy-A-full-eval <- (operator-A-lazy OR)

(lazy-A-left-value zero)

operator-A-uses <- (on-operator-A-side right)

operator-A-uses <- (on operator-A-side left)

(not (operator-A-assign))

operator-A-sets <- (operator-A auto-incr)

operator-A-sets <- (on-operator-A-side left)

(operator-A modify-assign)

operator-A-sets <- (on-operator-A-side left)

(operator-A assign)

operator-B-uses <- (on-operator-B-side right)

operator-B-uses <- (on-operator-B-side left)

(not (operator-B assign))

operator-B-sets <- (operator-B auto-incr)

operator-B-sets <- (on-operator-B-side left)

(operator-B modify-assign)

operator-B-sets <- (on-operator-B-side left)

113

(operator-B assign)

B.4 Brain Disorders

B.4.1 Input Features

decloc-degree: (0 drowsy stupor coma)

disoriented-degree: (0 mild moderate severe)

dyspraxia: (0 present)

hemineglect-side: (0 right left)

denial: (0 present)

compdef-severity: (0 mild moderate severe)

nonfluency-severity: (0 mild moderate severe)

repetition-severity: (0 mild moderate severe)

anomia-severity: (0 mild moderate severe)

cogabn: (0 present)

vf-deficit-side-type: (0 left-hemianopsia

right-hemianopsia

left-quadrantanopsia-inferior

left-quadrantanopsia-superior

right-quadrantanopsia-inferior

right-quadrantanopsia-superior)

poorokn-direction: (0 rhoriz lhoriz vertical)

nystagmus-type: (0 gazeev horiz-left horiz-right

vertical-upbeat vertical-downbeat

rotary)

abneom-type: (0 hgaze-left hgaze-right

fourn-right ino-left ino-right

vgaze-up vgaze-down thirdn-left

thirdn-right skew sixthn-left

sixthn-right)

abnpupils-side-type: (0 left-miosis right-miosis

right-mydriasis left-mydriasis)

ptosis-side: (0 left right)

swallow-severity: (0 partial unable)

prd-side: (0 right left)

gag-severity: (0 impaired absent)

facenumb-side: (0 left right)

facial-side-type: (0 right-central left-central

right-peripheral left-peripheral)

tongweak-side: (0 left right)

114

dysarthria-severity: (0 mild moderate severe)

weakness-type: (0 hemiparesis-right

hemiparesis-left monoparesis-lue

monoparesis-lle monoparesis-rue

monoparesis-rle)

ataxia-type: (0 limb-right-mild limb-left-mild

limb-left-severe limb-right-severe

truncal)

decram-side: (0 right-mild right-severe left-mild

left-severe)

abndtrs-side: (0 right-incdtr right-decdtr

left-incdtr left-decdtr)

babs-side: (0 left right)

gait-type: (0 lhemi rhemi unsteady other)

dss-side: (0 left right)

pp-side: (0 right-mild left-mild

right-moderate left-moderate

right-severe left-severe)

touch-side: (0 left right)

temp-side: (0 left right)

posloss-side: (0 right left)

vibloss-side: (0 left right)

twopoint-side: (0 left right)

agraph-side: (0 right left)

B.4.2 Categories

left-internal-capsule: (present absent)

left-temporal-lobe: (present absent)

left-frontal-lobe: (present absent)

left-parietal-lobe: (present absent)

B.4.3 Domain Theory

(facenumb-side right) <- (left-internal-capsule present)

(facenumb-side right) <- (left-parietal-lobe present)

(facial-side-type right-central) <- (left-internal-capsule present)

(facial-side-type right-central) <- (left-frontal-lobe present)

115

(tongweak-side right) <- (left-internal-capsule present)

(tongweak-side right) <- (left-frontal-lobe present)

(swallow-severity partial) <- (left-internal-capsule present)

(swallow-severity partial) <- (left-frontal-lobe present)

(swallow-severity partial) <- (left-parietal-lobe present)

(swallow-severity partial) <- (left-temporal-lobe present)

(swallow-severity unable) <- (left-internal-capsule present)

(swallow-severity unable) <- (left-frontal-lobe present)

(swallow-severity unable) <- (left-parietal-lobe present)

(swallow-severity unable) <- (left-temporal-lobe present)

(gag-severity impaired) <- (left-internal-capsule present)

(gag-severity impaired) <- (left-frontal-lobe present)

(gag-severity impaired) <- (left-parietal-lobe present)

(gag-severity impaired) <- (left-temporal-lobe present)

(gag-severity absent) <- (left-internal-capsule present)

(gag-severity absent) <- (left-frontal-lobe present)

(gag-severity absent) <- (left-parietal-lobe present)

(gag-severity absent) <- (left-temporal-lobe present)

(dysarthria-severity mild) <- (left-internal-capsule present)

(dysarthria-severity mild) <- (left-frontal-lobe present)

(dysarthria-severity mild) <- (left-parietal-lobe present)

(dysarthria-severity moderate) <- (left-internal-capsule present)

(dysarthria-severity moderate) <- (left-frontal-lobe present)

(dysarthria-severity moderate) <- (left-parietal-lobe present)

(dysarthria-severity severe) <- (left-internal-capsule present)

(dysarthria-severity severe) <- (left-frontal-lobe present)

(dysarthria-severity severe) <- (left-parietal-lobe present)

(weakness-type hemiparesis-right) <- (left-internal-capsule present)

(weakness-type hemiparesis-right) <- (left-frontal-lobe present)

(weakness-type monoparesis-rue) <- (left-internal-capsule present)

(weakness-type monoparesis-rle) <- (left-internal-capsule present)

(decram-side right-mild) <- (left-internal-capsule present)

116

(decram-side right-mild) <- (left-frontal-lobe present)

(decram-side right-severe) <- (left-internal-capsule present)

(decram-side right-severe) <- (left-frontal-lobe present)

(babs-side right) <- (left-internal-capsule present)

(babs-side right) <- (left-frontal-lobe present)

(abndtrs-side right-incdtr) <- (left-internal-capsule present)

(abndtrs-side right-incdtr) <- (left-frontal-lobe present)

(abndtrs-side right-decdtr) <- (left-internal-capsule present)

(abndtrs-side right-decdtr) <- (left-frontal-lobe present)

(gait-type rhemi) <- (left-internal-capsule present)

(gait-type rhemi) <- (left-frontal-lobe present)

(gait-type rhemi) <- (left-parietal-lobe present)

(gait-type other) <- (left-internal-capsule present)

(gait-type other) <- (left-frontal-lobe present)

(gait-type other) <- (left-parietal-lobe present)

(dss-side right) <- (left-internal-capsule present)

(dss-side right) <- (left-parietal-lobe present)

(pp-side right-mild) <- (left-internal-capsule present)

(pp-side right-mild) <- (left-parietal-lobe present)

(pp-side right-moderate) <- (left-internal-capsule present)

(pp-side right-moderate) <- (left-parietal-lobe present)

(pp-side right-severe) <- (left-internal-capsule present)

(pp-side right-severe) <- (left-parietal-lobe present)

(touch-side right) <- (left-internal-capsule present)

(temp-side right) <- (left-internal-capsule present)

(posloss-side right) <- (left-internal-capsule present)

(posloss-side right) <- (left-parietal-lobe present)

(vibloss-side right) <- (left-internal-capsule present)

(vibloss-side right) <- (left-parietal-lobe present)

117

(twopoint-side right) <- (left-internal-capsule present)

(twopoint-side right) <- (left-parietal-lobe present)

(agraph-side right) <- (left-internal-capsule present)

(agraph-side right) <- (left-parietal-lobe present)

(decloc-degree drowsy) <- (left-frontal-lobe present)

(decloc-degree drowsy) <- (left-parietal-lobe present)

(decloc-degree drowsy) <- (left-temporal-lobe present)

(decloc-degree stupor) <- (left-frontal-lobe present)

(decloc-degree stupor) <- (left-parietal-lobe present)

(decloc-degree stupor) <- (left-temporal-lobe present)

(decloc-degree coma) <- (left-frontal-lobe present)

(decloc-degree coma) <- (left-parietal-lobe present)

(decloc-degree coma) <- (left-temporal-lobe present)

(disoriented-degree mild) <- (left-frontal-lobe present)

(disoriented-degree mild) <- (left-parietal-lobe present)

(disoriented-degree mild) <- (left-temporal-lobe present)

(disoriented-degree moderate) <- (left-frontal-lobe present)

(disoriented-degree moderate) <- (left-parietal-lobe present)

(disoriented-degree moderate) <- (left-temporal-lobe present)

(disoriented-degree severe) <- (left-frontal-lobe present)

(disoriented-degree severe) <- (left-parietal-lobe present)

(disoriented-degree severe) <- (left-temporal-lobe present)

(dyspraxia present) <- (left-frontal-lobe present)

(hemineglect-side right) <- (left-frontal-lobe present)

(hemineglect-side right) <- (left-parietal-lobe present)

(hemineglect-side right) <- (left-temporal-lobe present)

(denial present) <- (left-frontal-lobe present)

(compdef-severity mild) <- (left-frontal-lobe present)

(compdef-severity mild) <- (left-parietal-lobe present)

(compdef-severity mild) <- (left-temporal-lobe present)

118

(compdef-severity moderate) <- (left-frontal-lobe present)

(compdef-severity moderate) <- (left-parietal-lobe present)

(compdef-severity moderate) <- (left-temporal-lobe present)

(compdef-severity severe) <- (left-frontal-lobe present)

(compdef-severity severe) <- (left-parietal-lobe present)

(compdef-severity severe) <- (left-temporal-lobe present)

(nonfluency-severity mild) <- (left-frontal-lobe present)

(nonfluency-severity mild) <- (left-parietal-lobe present)

(nonfluency-severity mild) <- (left-temporal-lobe present)

(nonfluency-severity moderate) <- (left-frontal-lobe present)

(nonfluency-severity moderate) <- (left-parietal-lobe present)

(nonfluency-severity moderate) <- (left-temporal-lobe present)

(nonfluency-severity severe) <- (left-frontal-lobe present)

(nonfluency-severity severe) <- (left-parietal-lobe present)

(nonfluency-severity severe) <- (left-temporal-lobe present)

(repetition-severity mild) <- (left-frontal-lobe present)

(repetition-severity mild) <- (left-parietal-lobe present)

(repetition-severity mild) <- (left-temporal-lobe present)

(repetition-severity moderate) <- (left-frontal-lobe present)

(repetition-severity moderate) <- (left-parietal-lobe present)

(repetition-severity moderate) <- (left-temporal-lobe present)

(repetition-severity severe) <- (left-frontal-lobe present)

(repetition-severity severe) <- (left-parietal-lobe present)

(repetition-severity severe) <- (left-temporal-lobe present)

(anomia-severity mild) <- (left-frontal-lobe present)

(anomia-severity mild) <- (left-parietal-lobe present)

(anomia-severity mild) <- (left-temporal-lobe present)

(anomia-severity moderate) <- (left-frontal-lobe present)

(anomia-severity moderate) <- (left-parietal-lobe present)

(anomia-severity moderate) <- (left-temporal-lobe present)

(anomia-severity severe) <- (left-frontal-lobe present)

(anomia-severity severe) <- (left-parietal-lobe present)

(anomia-severity severe) <- (left-temporal-lobe present)

119

(cogabn present) <- (left-frontal-lobe present)

(cogabn present) <- (left-parietal-lobe present)

(cogabn present) <- (left-temporal-lobe present)

(poorokn-direction rhoriz) <- (left-frontal-lobe present)

(poorokn-direction rhoriz) <- (left-parietal-lobe present)

(poorokn-direction rhoriz) <- (left-temporal-lobe present)

(nystagmus-type horiz-right) <- (left-frontal-lobe present)

(nystagmus-type gazeev) <- (left-parietal-lobe present)

(abneom-type hgaze-right) <- (left-frontal-lobe present)

(abneom-type hgaze-right) <- (left-parietal-lobe present)

(abneom-type hgaze-right) <- (left-temporal-lobe present)

(weakness-type monoparesis-lue) <- (left-frontal-lobe present)

(weakness-type monoparesis-lle) <- (left-frontal-lobe present)

(gait-type unsteady) <- (left-frontal-lobe present)

(ataxia-type limb-right-mild) <- (left-frontal-lobe present)

(vf-deficit-side-type right-hemianopsia) <-

(left-parietal-lobe present)

(vf-deficit-side-type right-hemianopsia) <-

(left-temporal-lobe present)

(vf-deficit-side-type right-quadrantanopsia-inferior) <-

(left-parietal-lobe present)

(vf-deficit-side-type right-quadrantanopsia-superior) <-

(left-temporal-lobe present)

120

Bibliography

Alberts, B. (1988). Mapping and Sequencing the Human Genome. National Academy Press, Wash-

ington, D.C.

Aliferis, C. F., & Cooper, G. F. (1994). An evaluation of an algorithm for inductive learning of

Bayesian belief networks using simulated data. In de Mantaras, R. L., & Poole, D. (Eds.),

Proceedings of the Tenth conference on Uncertainty in Arti�cial Intelligence, pp. 8{14 Seattle.

Morgan Kaufmann.

Ba�es, P., & Mooney, R. (1993). Symbolic revision of theories with M-of-N rules. In Proceedings

of the Thirteenth International Joint Conference on Arti�cial Intelligence, pp. 1135{1140

Chambery, France.

Ba�es, P. T. (1994). Automatic Student Modeling and Bug Library Construction using Theory

Re�nement. Ph.D. thesis, University of Texas, Austin, TX.

Ba�es, P. T., & Mooney, R. J. (1996). A novel application of theory re�nement to student modeling.

In Proceedings of the Thirteenth National Conference on Arti�cial Intelligence, pp. 403{408

Portland, OR.

Beinlich, I., Suermondt, H., Chavez, R., & Cooper, G. (1989). The alarm monitoring system: A

case study with two probabilistic inference techniques for belief networks. In Proceedings of

the Second European Conference on Arti�cial Intelligence in Medicine, pp. 247{256 London,

England.

Brunk, C. A. (1996). An Investigation of Knowledge Intensive Approaches to Concept Learning

and Theory Re�nement. Ph.D. thesis, University of California, Irvine, CA.

Buchanan, G., & Shortli�e, E. (Eds.). (1984). Rule-Based Expert Systems:The MYCIN Experiments

of the Stanford Heuristic Programming Project. Addison-Wesley Publishing Co., Reading,

MA.

Buntine, W. (1991). Theory re�nement on Bayesian networks. In Proceedings of the Conference on

Uncertainty in Arti�cial Intelligence, pp. 52{60.

Burnell, L., & Horovitz, E. (1995). Structure and chance: Melding logic and probability for software

debugging. Communications of the Association for Computing Machinery, 38 (3), 31{41.

Clark, P., & Niblett, T. (1989). The CN2 induction algorithm. Machine Learning, 3, 261{284.

121

Cohen, W. (1992). Compiling prior knowledge into an explicit bias. In Proceedings of the Ninth

International Conference on Machine Learning, pp. 102{110 Aberdeen, Scotland.

Connolly, D. (1993). Constructing hidden variables in Bayesian networks via conceptual cluster-

ing. In Proceedings of the Tenth International Conference on Machine Learning, pp. 65{72

Amherst, MA.

Cooper, G. (1990). Computational complexity of probabilistic inference using Bayesian belief net-

works (research note).. Arti�cial Intelligence, 42, 393{405.

Cooper, G. G., & Herskovits, E. (1992). A Bayesian method for the induction of probabilistic

networks from data. Machine Learning, 9, 309{347.

Cox, P. T., & Pietrzykowski, T. (1987). General diagnosis by abductive inference. In Proceedings

of the 1987 Symposium on Logic Programming, pp. 183{189.

Craven, M. W. (1996). Extracting Comprehensible Models from Trained Neural Networks. Ph.D.

thesis, Department of Computer Sciences, University of Wisconsin-Madison.

Craven, M. W., & Shavlik, J. W. (1996). Extracting tree-structured representations of trained

networks. In Advances in Neural Information Processing Systems, Vol. 8, pp. 24{30 Denver,

CO. MIT Press.

Dempster, A., Laird, N., & Rubin, D. (1977). Maximum likelihood from incomplete data via the

EM algorithm. Journal of the Royal Statistical Society B, 39, 1{38.

Dempster, A. (1968). A generalization of Bayesian inference. J. Royal Statist. Soc., 30, 205{247.

Dietterich, T. G. (1998). Statistical tests for comparing supervised learning algorithms. Neural

Computation. To appear.

D�iez, F. J. (1993). Parameter adjustment in Bayes networks. The generalized noisy OR-gate.. In

Proceedings of the Ninth Conference on Uncertainty in Arti�cial Intelligence, pp. 99{105.

Di�ez, F. J. (1996). Local conditioning in Bayesian networks. Arti�cial Intelligence, 87, 1{20.

Di�ez, F. J. (1997). Private communication..

Domingos, P., & Pazzani, M. (1996). Beyond independence: conditions for the optimality of the

simple Bayesian classi�er. In Saitta, L. (Ed.), Proceedings of the Thirteenth International

Conference on Machine Learning, pp. 105{112. Morgan Kaufmann.

Domingos, P., & Pazzani, M. (1997). On the optimality of the simple Bayesian classi�er under

zero-one loss. Machine Learning. In press.

Feldman, R., Segre, A., & Koppel, M. (1991). Incremental re�nement of approximate domain

theories. In Proceedings of the Eighth International Workshop on Machine Learning, pp.

500{504 Evanston, IL.

Fisher, D. H. (1987). Knowledge acquisition via incremental conceptual clustering. Machine Learn-

ing, 2, 139{172.

122

Frean, M. (1990). The Upstart algorithm: A method for constructing and training feedforward

neural networks. Neural Computation, 2, 198{209.

Friedman, N. (1997). Learning belief networks in the presence of missing values and hidden vari-

ables. In Proceedings of the Fourteenth International Conference on Machine Learning, pp.

125{133 Nashville, Tennessee. Morgan Kaufmann Publishers.

Friedman, N., & Goldszmidt, M. (1996). Building classi�ers using Bayesian networks. In Proceedings

of the Thirteenth National Conference on Arti�cial Intelligence, pp. 1277{1284.

Fung, R., & Del Favero, B. (1995). Applying Bayesian networks to information retrieval. Commu-

nications of the Association for Computing Machinery, 38 (3), 42{48.

Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions and the Bayesian

restoration of images. IEEE transactions on Pattern Analysis and Machine Intelligence, 6,

721{742.

Geman, S., Bienenstock, E., & Doursat, R. (1992). Neural networks and the bias/variance dilemma.

Neural Computation, 4, 1{58.

Greiner, R., Grove, A. J., & Schuurmans, D. (1997). Learning Bayesian nets that perform well. In

Proceedings of the Thirteenth Conference on Uncertainty in Arti�cial Intelligence Providence,

RI.

Heckerman, D. (1986). Probabilistic interpretations for Mycin's certainty factors. In Kanal, L. N.,

& Lemmer, J. F. (Eds.), Uncertainty in Arti�cial Intelligence, pp. 167{196. North Holland,

Amsterdam.

Heckerman, D. (1995). A tutorial on learning Bayesian networks. Tech. rep. MSR-TR-95-06,

Microsoft Research, Advanced Technology Division, Microsoft Corporation, One Microsoft

Way, Redmond, WA 98052.

Heckerman, D., Geiger, D., & Chikering, D. M. (1994). Learning Bayesian networks: The combina-

tion of knowledge and statistical data. In Proceedings of the Tenth Conference on Uncertainty

in Arti�cial Intelligence, pp. 293{301 Seattle, WA.

Hertz, J., Krogh, A., & Palmer, R. G. (1991). Introduction to the Theory of Neural Computation.

Addison Wesley.

Holder, L. (1991). Maintaining the Utility of Learned Knowledge Using Model-Based Control. Ph.D.

thesis, University of Illinois at Urbana-Champaign.

Kohavi, R., Becker, B., & Sommer�eld, D. (1997). Improving simple Bayes. In Proceedings of the

European Conference on Machine Learning.

Kohavi, R., & Wolpert, D. H. (1996). Bias plus variance decomposition for zero-one loss func-

tions. In Saitta, L. (Ed.), Proceedings of the Thirteenth International Conference on Machine

Learning. Morgan Kaufmann.

123

Koppel, M., Feldman, R., & Segre, A. M. (1994). Bias-driven revision of logical domain theories.

Journal of Arti�cial Intelligence Research, 1, 1{50.

Kulikowski, C. A., & Weiss, S. M. (1991). Computer Systems That Learn - Classi�cation and

Prediction Methods from Statistics, Neural Nets, Machine Learning, and Expert Systems.

Morgan Kaufmann, San Mateo, CA.

Kwoh, C.-K., & Gillies, D. (1996). Using hidden nodes in Bayesian networks. Arti�cial Intelligence,

88 (1-2), 1{38.

Lam, W., & Bacchus, F. (1994a). Learning Bayesian belief networks. An approach based on the

MDL principle. Computational Intelligence, 10, 269{293.

Lam, W., & Bacchus, F. (1994b). Using new data to re�ne a Bayesian network. In Proceedings of

the Conference on Uncertainty in Arti�cial Intelligence, pp. 383{390.

Langley, P., & Simon, H. A. (1995). Applications of machine learning and rule induction. Commu-

nications of the Association for Computing Machinery, 38 (11), 55{64.

Lauritzen, S. L. (1995). The EM algorithm for graphical association models with missing data.

Computational Statistics and Data Analysis, 19, 191{201.

Mahoney, J. J. (1996). Combining Symbolic and Connectionist Learning to Revise Certainty-Factor

Rule Bases. Ph.D. thesis, University of Texas, Austin, TX. Also appears as Arti�cial Intelli-

gence Laboratory Technical Report AI 96-260.

Mahoney, J. J., & Mooney, R. J. (1993). Combining connectionist and symbolic learning to re�ne

certainty-factor rule-bases. Connection Science, 5, 339{364.

Mahoney, J. J., & Mooney, R. J. (1994). Comparing methods for re�ning certainty-factor rule

bases. In Proceedings of the Eleventh International Conference on Machine Learning, pp.

173{180 New Brunswick, NJ.

McClelland, J. L., & Rumelhart, D. E. (1988). Explorations in Parallel Distributed Processing: A

Handbook of Models, Programs, and Exercises. The MIT Press, Cambridge, MA.

Merz, C., Murphy, P. M., & Aha, D. W. (1996). Repository of machine learning databases

http://www.ics.uci.edu/~mlearn/mlrepository.html. Department of Information and Computer

Science, University of California, Irvine, CA.

Michalski, R. S., & Chilausky, S. (1980). Learning by being told and learning from examples:

An experimental comparison of the two methods of knowledge acquisition in the context of

developing an expert system for soybean disease diagnosis. Journal of Policy Analysis and

Information Systems, 4 (2), 126{161.

Mingers, J. (1989). An empirical comparison of selestion measures for decision-tree induction.

Machine Learning, 3, 319{342.

Mitchell, T. (1997). Machine Learning. McGraw-Hill, New York, NY.

124

Mooney, R. J. (1995). A preliminary PAC analysis of theory revision. In Petsche, T., Hanson, S.,

& Shavlik, J. (Eds.), Computational Learning Theory and Natural Learning Systems, Vol. 3,

pp. 43{53. MIT Press, Cambridge, MA.

Mooney, R. J. (1997). Integrating abduction and induction in machine learning. In Working Notes

of the IJCAI-97 Workshop on Abduction and Induction in AI.

Musick, R. C. (1994). Belief Network Induction. Ph.D. thesis, University of California at Berkeley.

Neal, R. M. (1992). Connectionist learning of belief networks. Arti�cial Intelligence, 56, 71{113.

Noordewier, M. O., Towell, G. G., & Shavlik, J. W. (1991). Training knowledge-based neural

networks to recognize genes in DNA sequences. In Advances in Neural Information Processing

Systems, Vol. 3 San Mateo, CA. Morgan Kaufman.

O'Neill, M., & Chiafari, F. (1989). Escherichia coli promoters. Journal of Biological Chemistry,

264, 5531{5534.

Opitz, D. W. (1995a). An anytime approach to connectionist theory re�nement: Re�ning the

topologies of knowledge-based neural network. Tech. rep. 1281, University of Wisconsin-

Madison.

Opitz, D. W. (1995b). An Anytime Approach to Connectionist Theory Re�nement: Re�ning

the Topologies of Knowledge-Based Neural Network. Ph.D. thesis, University of Wisconsin-

Madison.

Opitz, D. W., & Shavlik, J. W. (1993). Heuristically expanding knowledge-based neural networks.

In Proceedings of the Thirteenth International Joint Conference on Arti�cial Intelligence, pp.

512{517 Chamberry, France.

Ourston, D. (1991). Using Explanation-Based and Empirical Methods in Theory Revision. Ph.D.

thesis, University of Texas, Austin, TX. Also appears as Arti�cial Intelligence Laboratory

Technical Report AI 91-164.

Ourston, D., & Mooney, R. (1990). Changing the rules: A comprehensive approach to theory

re�nement. In Proceedings of the Eighth National Conference on Arti�cial Intelligence, pp.

815{820 Detroit, MI.

Ourston, D., & Mooney, R. (1991). Improving shared rules in multiple category domain theo-

ries. In Proceedings of the Eighth International Workshop on Machine Learning, pp. 534{538

Evanston, IL.

Ourston, D., & Mooney, R. J. (1994). Theory re�nement combining analytical and empirical

methods. Arti�cial Intelligence, 66, 311{344.

Pazzani, M., & Brunk, C. (1993). Finding accurate frontiers: A knowledge-intensive approach to

relational learning. In Proceedings of the Eleventh National Conference on Arti�cial Intelli-

gence, pp. 328{334 Washington, D.C.

125

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

Morgan Kaufmann, Inc., San Mateo,CA.

Pradhan, M., Provan, G., Middleton, B., & Henrion, M. (1994). Knowledge engineering for large

belief networks. In Proceedings of the Conference on Uncertainty in Arti�cial Intelligence,

pp. 484{490 Seattle, WA.

Provan, G. M., & Singh, M. (1994). Learning Bayesian networks using feature selection. In

Proceedings of the Workshop on Arti�cial Intelligence and Statistics, pp. 291{300. Springer-

Verlag, New York, Inc.

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1 (1), 81{106.

Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo,CA.

Quinlan, J. (1990). Learning logical de�nitions from relations. Machine Learning, 5 (3), 239{266.

Ramachandran, S., & Mooney, R. J. (1996a). Revising Bayesian network parameters using back-

propagation. Unpublished.

Ramachandran, S., & Mooney, R. J. (1996b). Revising Bayesian networks parameters using back-

propagation. In International Conference on Neural Networks: Plenary, Panel and Special

Sessions, pp. 82{87 Washington D.C., USA.

Ramoni, M., & Sebastiani, P. (1997). Learning bayesian networks from incomplete databases. In

Geiger, D., & Shenoy, P. (Eds.), Proceedings of the Thirteenth Conference on Uncertainty in

Arti�cial Intelligence. Morgan Kaufmann Publishers, Inc.

Reiter, R. (1980). A logic for default reasoning. Arti�cial Intelligence, 13, 81{132.

Richards, B. L., & Mooney, R. J. (1995). Automated re�nement of �rst-order Horn-clause domain

theories. Machine Learning, 19 (2), 95{131.

Rissanen, J. (1978). Modeling by shortest data description. Automatica, 14, 465{471.

Rumelhart, D., Durbin, D., Golden, R., & Chauvin, Y. (1995). Backpropagation: The basic

theory. In Chauvin, W., & Rumelhart, D. (Eds.), Backpropagation: Theory, Architectures,

and Applications, pp. 1{34. Lawrence Erlbaum Associates, Hillsdale, NJ.

Russell, S., Binder, J., Koller, D., & Kanazawa, K. (1995). Local learning in probabilistic networks

with hidden variables. In Proceedings of the Fourteenth International Joint Conference on

Arti�cial Intelligence, pp. 1146{1152 Montreal, Canada.

Schwalb, E. (1993). Compiling Bayesian networks into neural networks. In Proceedings of the Tenth

International Conference on Machine Learning, pp. 291{297 Amherst, MA.

Shafer, G. (1976). A Mathematical Theory of Evidence. Princeton University Press, Princeton, NJ.

Shapiro, A. D. (1983). The Role of Structured Induction in Expert Systems. Ph.D. thesis, University

of Edinburgh.

126

Shapiro, A. D. (1987). Structured Induction in Expert Systems. Addison-Wesley.

Shortli�e, E., & Buchanan, B. (1975). A model of inexact reasoning in medicine. Mathematical

Biosciences, 23, 351{379.

Siegel, A. F. (1988). Statistics and data analysis: An Introduction, chap. 15, pp. 336{339. John

Wiley and Sons.

Singh, M. (1997). Learning Bayesian networks from incomplete data. In Proceedings of the Four-

teenth National Conference on Arti�cial Intelligence, pp. 534{539 Providence, Rhode Island.

Singh, M., & Provan, G. (1996). E�ective learning of selective Bayesian network classi�ers. In

Proceedings of the Thirteenth International Conference on Machine Learning, pp. 453{461

Bari, Italy.

Spiegelhalter, D. J., & Lauritzen, S. L. (1990). Sequential updating of conditional probabilities on

directed graphical structures. Networks, 20, 579{605.

Srinivas, S., & Breese, J. (1993). Ideal: Inuence diagram evaluation and analysis in Lisp: Docu-

mentation and users' guide. Tech. rep. No. 23, Rockwell International Science Center, Palo

Alto: Rockwell.

Thiesson, B. (1995). Accelerated quanti�cation of Bayesian networks with incomplete data. In

Fayyad, U. M., & Uthurusamy, R. (Eds.), Proceedings of the First International Conference

on Knowledge Discovery and Data Mining, pp. 306{11. AAAI Press.

Thompson, C. A. (1993). Inductive learning for abductive diagnosis. Tech. rep. Masters Thesis,

Department of Computer Sciences, University of Texas, Austin, TX.

Thompson, C. A., & Mooney, R. J. (1994). Inductive learning for abductive diagnosis. In Pro-

ceedings of the Twelfth National Conference on Arti�cial Intelligence, pp. 664{669 Seattle,

WA.

Thompson, K., Langley, P., & Iba, W. (1991). Using background knowledge in concept forma-

tion. In Proceedings of the Eighth International Workshop on Machine Learning, pp. 554{558

Evanston, IL.

Towell, G. G. (1991). Symbolic Knowledge and Neural Networks: Insertion, Re�nement, and

Extraction. Ph.D. thesis, University of Wisconsin, Madison, WI.

Towell, G. G., & Shavlik, J. W. (1994). Knowledge-based arti�cial neural networks. Arti�cial

Intelligence, 70, 119{165.

Towell, G. G., Shavlik, J. W., & Noordewier, M. O. (1990). Re�nement of approximate domain

theories by knowledge-based arti�cial neural networks. In Proceedings of the Eighth National

Conference on Arti�cial Intelligence, pp. 861{866 Boston, MA.

Towell, G., & Shavlik, J. (1993). Extracting re�ned rules from knowledge-based neural networks.

Machine Learning, 13 (1), 71{102.

127

Tuhrim, S., Reggia, J., & Goodall, S. (1991). An experimental study of criteria for hypothesis

plausibility. Journal of Experimental and Theoretical Arti�cial Intelligence, 3, 129{144.

Watson, J., Roberts, H., Steitz, J., & Weiner, A. (1987). The Molecular Biology of Gene. Benjamin-

Cummings, Menlo Park, CA.

Weigand, A., Huberman, B., & Rumelhart, D. (1990). Predicting the future: A conenctionist

approach. International Journal of Neural Systems, I, 193{209.

Wogulis, J. (1991). Revising relational domain theories. In Proceedings of the Eighth International

Workshop on Machine Learning, pp. 462{466 Evanston, IL.

Wogulis, J. (1994). An Approach to Repairing and Evaluating First-Order Theories Containing

Multiple Concepts and Negation. Ph.D. thesis, University of California, Irvine, CA.

Wogulis, J., & Pazzani, M. (1993). A methodology for evaluating theory revision systems: Results

with Audrey II. In Proceedings of the Thirteenth International Joint Conference on Arti�cial

Intelligence, pp. 1128{1134 Chambery, France.

Zadeh, L. A. (1981). Possibility theory and soft data analysis. In Cobb, L., & Thrall, R. M. (Eds.),

Mathematical Frontier of Social and Policy Sciences, pp. 69{129. Westview.

Zadeh, L. (1965). Fuzzy sets. Information and Control, 8, 338{353.

128

Vita

Sowmya Ramachandran was born in Madras, India, on November 11, 1965, the daughter of Shantha

Ayyar and Dr. R. R. Ayyar. She graduated from Chinmaya Vidyalya in 1981, and entered the

Indian Institute of Technology, Madras, where she earned the degree of Bachelor of Technology

in Computer Science. She subsequently moved to Bombay, India, to work for Tata Consultancy

Services. She enrolled at Rutgers, The State University of New Jersey, New Brunswick, NJ, in

August 1989, where she received the degree of Master of Science in Computer Science. Funded by

a Microelectronics and Computer Development (MCD) Fellowship, she joined the doctoral program

in the Department of Computer Sciences at the University of Texas at Austin in August, 1991.

Permanent Address: 14, Cross St.,

Ravi Colony, St. Thomas Mount,

Madras, India, 600016

This dissertation was typeset with LATEX2"
1 by the author.

1LATEX2" is an extension of LATEX. LATEX is a collection of macros for TEX. TEX is a trademark of the American
Mathematical Society. The macros used in formatting this dissertation were written by Dinesh Das, Department of
Computer Sciences, The University of Texas at Austin.

129

