
Efficient Markov Logic Inference for Natural Language Semantics

Islam Beltagy
Department of Computer Science
The University of Texas at Austin

Austin, Texas 78712
beltagy@cs.utexas.edu

Raymond J. Mooney
Department of Computer Science
The University of Texas at Austin

Austin, Texas 78712
mooney@cs.utexas.edu

Abstract

Using Markov logic to integrate logical and distribu-
tional information in natural-language semantics results
in complex inference problems involving long, compli-
cated formulae. Current inference methods for Markov
logic are ineffective on such problems. To address this
problem, we propose a new inference algorithm based
on SampleSearch that computes probabilities of com-
plete formulae rather than ground atoms. We also intro-
duce a modified closed-world assumption that signifi-
cantly reduces the size of the ground network, thereby
making inference feasible. Our approach is evaluated
on the recognizing textual entailment task, and experi-
ments demonstrate its dramatic impact on the efficiency
of inference.

1 Introduction
A novel approach to natural-language semantics that uses
Markov Logic Networks (MLNs) (Richardson and Domin-
gos 2006) to integrate logical and distributional approaches
to linguistic meaning was recently proposed by Beltagy et
al. (2013). However, using this approach to solve prob-
lems in recognizing textual entailment (RTE) (i.e. determin-
ing whether one natural-language sentence reasonably im-
plies or contradicts another) (Dagan et al. 2013) results in
complex inference problems that are intractable for existing
MLN inference methods.

Given a set of weighted formulae in first-order logic,
MLNs use them as a template to construct a Markov network
that defines a probability distribution over possible worlds.
MLN inference calculates the probability of query Q given
a set of evidence E and a set of weighted clauses R in first-
order logic. MLN inference is computationally difficult, and
various sampling algorithms have been proposed for approx-
imate inference (Domingos and Lowd 2009).

The inference task addressed by Beltagy et al. (2013)
has two distinct features that tend to violate the implicit
assumptions behind the currently available MLN inference
algorithms and their implementations. First, the query is a
complex logical formula, while available MLN tools calcu-
late marginal probabilities of ground atoms only. In this pa-
per, we introduce an inference algorithm based on Sample-
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Search (Gogate and Dechter 2011) that directly calculates
the probability of complete formulae.

The second problem with the resulting inference tasks is
the large number of predicates and long formulae. This re-
sults in an extremely large number of ground clauses that
existing inference algorithms fail to handle efficiently. Even
recent advancements in lifted inference (Singla and Domin-
gos 2008; Gogate and Domingos 2011) are not able to re-
duce the size of the ground network to a feasible size. Lifted
inference relies on finding structural regularities (symme-
tries) in the MLN and avoiding grounding repeated struc-
tures. However, for these regularities to be frequent enough,
the implicit assumption is that formulae are typically short
and the set of evidence is large. These assumptions do not
fit the inference problems we are addressing, which involve
limited number of ground facts but complex logical formu-
lae, which makes lifting ineffective.

To address this problem, we propose a modified closed-
world assumption that helps reduce the size of the ground
network and make inference tractable. Any ground atom
that is unreachable from the evidence, is considered to be
False. A ground atom is said to be reachable from the ev-
idence if there is a way to propagate the evidence through
the formulae and reach this ground atom. Note that this no-
tion of reachability is different from reachability in the graph
theoretic sense. The intuition behind our modified closed-
world assumption is related to the idea of imposing a low
prior on all predicates, which means that all ground atoms
are effectively assumed to be False by default unless they
can be inferred from the available evidence and background
knowledge. However, by explicitly providing evidence that
unreachable atoms are False, the size of the ground network
is dramatically reduced.

The rest of the paper is organized as follows, section 2
is the background section, section 3 discusses an inference
algorithm that supports complex query formulae, section 4
explains the modified closed-world assumption, section 5 is
the experimental evaluation, and sections 6 and 7 discuss
future work and conclusions, respectively.
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2 Background
2.1 Logical Semantics
Logic-based representations of natural language meaning
map a natural sentence into a logical form (Montague 1970).
They handle many complex semantic phenomena such as
relational propositions, logical operators, and quantifiers;
however, they cannot handle “graded” aspects of meaning
in language because they are binary by nature.

Boxer (Bos 2008) is an example of a wide-coverage
logical-semantic tool that maps a natural sentence to first-
order logic. For example, consider the two sentences “A man
is driving a car”, and “A guy is driving a vehicle”. They be-
come:
T : ∃x, y, z. man(x) ∧ agent(y, x) ∧ drive(y) ∧

patient(y, z) ∧ car(z)

H : ∃x, y, z. guy(x) ∧ agent(y, x) ∧ drive(y) ∧
patient(y, z) ∧ vehicle(z)

2.2 Distributional Semantics
Distributional models use statistics on large corpora to pre-
dict semantic similarity of words and phrases (Turney and
Pantel 2010; Mitchell and Lapata 2010), based on the ob-
servation that semantically similar words occur in similar
contexts. Distributional models capture the graded nature
of meaning, but do not adequately capture logical struc-
ture (Grefenstette 2013).

Distributional semantic knowledge can be encoded as
weighted inference rules. For the example above, relevant
rules could look like:
r1 : ∀x. man(x)⇒ guy(x) | w1

r2 : ∀x. car(x)⇒ vehicle(x) | w2

where w1, w2 are weights calculated from the distributional
similarity between the rule’s antecedent and consequent.

2.3 Recognizing Textual Entailment
Recognizing Textual Entailment (RTE) (Dagan et al. 2013)
is the task of determining whether one natural language text,
the premise T , Entails, Contradicts, or not related (Neutral)
to another, the hypothesis H .

Beltagy et al. (2013) proposed a framework to perform the
RTE task using MLNs. Given T and H in first-order logic,
and given the knowledge base KB generated from distri-
butional semantics, MLN inference is then used to compute
P (H|T,KB), which is then used as a measure of the degree
to which T entails H .

2.4 Markov Logic Network
Markov Logic Networks (MLNs) (Richardson and Domin-
gos 2006) are a framework for probabilistic logic that em-
ploy weighted formulae in first-order logic to compactly
encode complex undirected probabilistic graphical models
(i.e., Markov networks). MLNs define a probability distri-
bution over possible worlds. Probability of a given world x
is denoted by:

P (X = x) =
1

Z
exp

(∑
i

wini (x)

)
(1)

where Z is the partition function, i ranges over all formulae
Fi is the MLN, wi is the weight of Fi and ni is the number of
true groundings of Fi. MLN’s marginal inference calculates
the probability P (Q|E,R), where Q is a query, E is the
evidence set, and R is the set of weighted formulae.

Alchemy (Kok et al. 2005) is the most widely used MLN
implementation. It is a software package that contains im-
plementations of a variety of MLN inference and learning
algorithms.

2.5 MC-SAT
MC-SAT (Poon and Domingos 2006) is a popular and gen-
erally effective MLN inference algorithm. It combines ideas
from MCMC and satisfiability. MC-SAT generates samples
from the probability distribution specified by the weighted
rules, and use these samples to estimate marginal proba-
bilities of query ground atoms. For each sample, MC-SAT
randomly selects a set of weighted clauses to sample from,
where the probability of a clause to be added to the set expo-
nentially increases with the rule’s weight. Hard clauses are
always included in this set. Once a set of clauses is selected,
clauses are sampled using SampleSAT (Wei, Erenrich, and
Selman 2004). SampleSAT uses WalkSAT (Selman et al.
1993), an efficient satisfiability solver, to efficiently gener-
ate nearly uniform samples.

2.6 Lifted Inference
The grounding process of a first-order formula generates a
large number of ground atoms and ground clauses. Lifting
techniques exploit the logical structure of the problem and
the similarities in the ground network to reduce computation
and the size of the ground network.

Lifted First-Order Belief Propagation proposed in (Singla
and Domingos 2008) is a lifted version of the well known in-
ference algorithm, Belief Propagation. It starts by building a
lifted network where similar ground atoms of a first-order
atom are grouped in one supernode, and similar ground
clauses of a first-order clause are grouped in one superfea-
ture. Ground atoms are considered similar (and merged in
the same supernode) if they send and receive the same mes-
sages at each step of belief propagation. Similarly, ground
clauses are considered similar (and merged in the same su-
perfeature) if the ground clauses send and receive the same
messages at each step of belief propagation. The minimum
size of the lifted network is the size of the MLN, and the
maximum size is that of a full ground Markov network. Af-
ter building the lifted network, belief propagation proceeds
normally with different messages that take lifting into ac-
count.

Another lifting technique is proposed in (Gogate and
Domingos 2011). It starts by showing that inference in the
propositional case (full ground network) is equivalent to
“weighted model counting”, then suggests an algorithm for
weighted model counting that involves two basic steps, a de-
composition and a splitting step. Then, it shows that infer-
ence in the first-order case is equivalent to “lifted weighted
model counting”, and shows how to lift the basic decompo-
sition and splitting steps.
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2.7 SampleSearch
SampleSearch (Gogate and Dechter 2011) is an importance
sampling algorithm for graphical models that have a mix of
probabilistic and deterministic constraints. Importance sam-
pling in general is problematic in the presence of determin-
ism, because many of the generated samples violate the de-
terministic constraints, and they get rejected. Instead, Sam-
pleSearch combines the sampling process with a backtrack-
ing search that uses a SAT solver to modify the generated
sample if it violates the deterministic constraints.

SampleSearch works on top of a base-level sampler. The
base sampler generates samples, and then SampleSearch
makes sure the final samples satisfy all hard constraints. We
use an implementation of SampleSearch that uses a general-
ized belief propagation algorithm called Iterative Join-Graph
Propagation (IJGP)(Dechter, Kask, and Mateescu 2002).
This version is available online (Gogate 2014).

3 Inference with Complex Query Formulae
Current implementations of MLNs like Alchemy (Kok et al.
2005) do not allow queries to be complex formulae, they can
only calculate probabilities of ground atoms. This section
discusses an inference algorithm for arbitrary query formu-
lae.

3.1 Standard Work-Around
Although current MLN implementations can only calculate
probabilities of ground atoms, they can be used to calculate
the probability of a complex formula through a simple work-
around. The complex query formula Q is added to the MLN
using the hard formula:

Q↔ result(D) | ∞ (2)

where result(D) is a new ground atom that is not used any-
where else in the MLN. Then, inference is run to calculate
the probability of result(D), which is equal to the probabil-
ity of the formula Q.

However, this approach can be very inefficient for some
queries. For example, consider the query Q,

Q : ∃x, y, z. man(x) ∧ agent(y, x) ∧ drive(y)

∧ patient(y, z) ∧ car(z) (3)

This form of existentially quantified formula with a list of
conjunctively joined atoms, is very common in the infer-
ence problems we are addressing, so it is important to have
efficient inference for such queries. However, using this Q
in equation 2 results in a very inefficient MLN. The direc-
tion Q ← result(D) of the double-implication in equation
2 is very inefficient because the existentially quantified for-
mula is replaced with a large disjunction over all possible
combinations of constants for variables x, y and z (Gogate
and Domingos 2011). Generating this disjunction, convert-
ing it to clausal form, and running inference on the result-
ing ground network becomes increasingly intractable as the
number of variables and constants grows.

3.2 New Inference Method
Instead, we propose an inference algorithm to directly cal-
culate the probability of complex query formulae. The prob-
ability of a formula is the sum of the probabilities of the
possible worlds that satisfy it. Gogate and Domingo (2011)
show that to calculate the probability of a formula Q given
a probabilistic knowledge base K, it is enough to compute
the partition function Z of K with and without Q added as
a hard formula:

P (Q | K) =
Z(K ∪ {(Q,∞)})

Z(K)
(4)

Therefore, all we need is an appropriate algorithm to esti-
mate the partition function Z of a Markov network. Then,
we construct two ground networks, one with the query and
one without, and estimate their Zs using that estimator. The
ratio between the two Zs is the probability of Q.

We tried to estimate Z using a harmonic-mean estimator
on the samples generated by MC-SAT, but we found that the
estimates are highly inaccurate as shown in (Venugopal and
Gogate 2013). So, the partition function estimator we use
is SampleSearch (Gogate and Dechter 2011). SampleSearch
has been shown to be an effective sampling algorithm when
there is a mix of probabilistic and deterministic (hard) con-
straints, a fundamental property of the inference problems
we address.

For the example Q in equation 3, in order to avoid gener-
ating a large disjunction because of the existentially quanti-
fied variables, we replace Q with its negation ¬Q, so the ex-
istential quantifiers are replaced with universals, which are
easier to ground and perform inference upon. Finally, we
compute the probability of the query P (Q) = 1 − P (¬Q).
Note that replacing Q with ¬Q cannot make inference with
the technique discussed in section 3.1 faster, because with
¬Q, the direction ¬Q → result(D) suffers from the same
problem of the existential quantifiers instead of the other di-
rection ¬Q← result(D).

4 Modified Closed-World Assumption
This section explains the problem with the explosive size
of the ground network, and why lifting techniques are not
enough to solve it. Next it discusses the relationship be-
tween the traditional low prior on predicates, and our mod-
ified closed-world assumption. Finally, it defines our modi-
fied closed-world assumption and describes how it is imple-
mented.

4.1 Problem Description
In the inference problems we address, typically formulae are
long, especially the query formula. First-order formulae re-
sult in an exponential number of ground clauses, where the
number of ground clauses of a formula is O(cv), where c is
number of constants in the domain, and v is number of vari-
ables in the formula. For any moderately long formula, the
number of resulting ground clauses is infeasible to process
in any reasonable time using available inference algorithms.
Even recent lifting techniques (Singla and Domingos 2008;
Gogate and Domingos 2011) that try to group similar ground
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clauses to reduce the total number of nodes in the ground
network, are not applicable here. Lifting techniques implic-
itly assume that c is large compared to v, and number of
ground clauses is large because c is large. In our case, c and
v are typically in the same range, and v is large, and this
makes lifting algorithms fail to find similarities to lift.

4.2 Low prior
In the inference problems we address, as in most MLN ap-
plications, all atoms are initialized with a low prior. This
low prior means that, by default, all groundings of an atom
have very low probability, unless they can be inferred from
the evidence and knowledge base. However, we found that
a large fraction of the ground atoms cannot be inferred, and
their probabilities remain very low. This suggests that these
ground atoms can be identified and removed in advance with
very little impact on the approximate nature of the inference.
As the number of such ground atoms is large, this has the
potential to dramatically decrease the size of the ground net-
work. Our modified closed-world assumption was created to
address this issue.

4.3 Definition
Closed-world, open-world and our modified closed-world
assumptions are different ways of specifying what ground
atoms are initialized to True, False or Unknown. True and
False ground atoms are used to construct the appropriate net-
work but are not part of the final ground Markov network.
Only Unknown ground atoms participate in probabilistic in-
ference. All ground atoms specified as evidence are known
(True or False). The difference between the three assump-
tions is in the non-evidence ground atoms. With a closed-
world assumption, non-evidence ground atoms are all False.
In case of the open-world assumption, non-evidence ground
atoms are all Unknown and they are all part of the infer-
ence task. In case of our modified closed-world atom, non-
evidence ground atoms are False by default, unless they are
reachable from any of the evidence, or from a ground atom
in an input formula.

4.4 Reachability
A ground atom is said to be reachable from the evidence if
there is a way to propagate the evidence through the formu-
lae and reach this ground atom. The same applies for ground
atoms specified in an input formula. For example, consider
the evidence set E, and clauses r1, r2:

E : { g(C1), h(C2) }
r1 : ∀x, y. g(x) ∨ h(y) ∨ i(x, y)

r2 : ∀x, y. j(x) ∨ k(y) ∨ i(x, y)

From r1, variables x, y can be assigned the constants C1, C2

respectively because of the evidence g(C1), h(C2). Then,
this evidence gets propagated to i(C1, C2), so the ground
atom i(C1, C2) is Unknown. From r2, the variables x, y can
be assigned the constants C1, C2 respectively because of the
Unknown ground atom i(C1, C2), and this gets propagated
to j(C1), k(C2), so ground atoms j(C1), k(C2) are also Un-
known. All other ground atoms, except the evidence g(C1)

Algorithm 1 Grounding with modified closed-world as-
sumption
Input R: {K ∪Q} set of first-order clauses, where K is the

set of clauses from the input MLN, and Q is the set of
clauses from the query.

Input E: set of evidence (list of ground atoms)
Output : a set of ground clauses with the modified closed-

world assumption applied
1: Add all E to the reachable ground atoms
2: Add all ground atoms in R to reachable
3: repeat
4: for all r ∈ R do
5: p = propagate reachable ground atoms between

predicates sharing the same variable
6: add propagated ground atoms (p) to reachable
7: if p not empty then
8: changed = true
9: end if

10: end for
11: until not changed
12: Generate False evidence for ground atoms
6∈ reachable and add them to E

13: GC = Use MLN’s grounding process to ground clauses
R

14: for all gc ∈ GC do
15: gc = gc after substituting values of known ground

atoms in E
16: if gc = True then
17: drop gc
18: else if gc = False then
19: if gc is a grounding of one of Q’s clauses then
20: Terminate inference with Z = 0
21: else
22: if gc is hard clause then
23: Error inconsistent MLN
24: else
25: drop gc
26: end if
27: end if
28: else
29: keep gc in GC
30: end if
31: end for
32: return GC

and h(C2), are False because they are not reachable from
any evidence.

Note that the definition of reachability here (mcw-
reachable) is different from the definition of reachability
in graph theory (graph-reachable). Nodes can be graph-
reachable but not mcw-reachable. For the example above,
consider the full ground network of E and r1, which con-
tains 8 nodes, and 4 cliques. It is a connected graph, and all
nodes are graph-reachable from each others. However, as ex-
plained in the example, i(C1, C2) is the only mcw-reachable
node.
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4.5 Algorithm and Implementation
Algorithm 1 describes the details of the grounding process
with the modified closed-world assumption applied. Lines
1 and 2 initialize the reachable set with the evidence and
any ground atom in R. Lines 3-11 repeatedly propagate ev-
idence until there is no change in the reachable set. Line 12
generates False evidence for all unreachable ground atoms.
Line 13 generates all ground clauses, then lines from 14-31
substitute values of the known ground atoms in the ground
clauses. Alchemy drops all True and False ground clauses,
but this does not work when the goal of the inference al-
gorithm is to calculate Z. Lines from 16-30 describe the
change. True ground clauses are dropped, but not False
ground clauses. If a False ground clause is a grounding of
one of Q’s clauses, then Z = 0 and there is no need to per-
form inference since there is no way to satisfy Q given E
and R. If there is False hard clause, then this MLN is incon-
sistent. Otherwise, the False ground clause can be dropped.
The resulting list of ground clauses GC are then passed to
the inference algorithm to estimate Z.

5 Evaluation
This section evaluates the two techniques proposed in this
paper using the RTE task, demonstrating the effectiveness
of both components.

5.1 Task
Given the two natural-language sentences T and H repre-
sented in first-order logic, and given the background knowl-
edge KB generated as in (Beltagy et al. 2013), two infer-
ences are run, P (H|T,KB) and P (H|¬T,KB).

The dataset used in our evaluation is “Sentences Involving
Compositional Knowledge” (SICK) (Marelli et al. 2014).
SICK is a new RTE dataset collected for the SemEval 2014
competition. Only the “training set” is available at this point,
which consists of 5,000 pairs of sentences.

5.2 Systems Compared
• mln: This system uses MC-SAT (Richardson and Domin-

gos 2006) for inference without any modifications. It uses
the work-around explained in section 3.1 to calculate the
probability of a complex query formula, and uses an open-
world assumption.

• mln+qf: This system uses our SampleSearch inference to
directly calculate the probability of a query formula (qf),
while making an open-world assumption.

• mln+mcw: This system uses MC-SAT with the work-
around for computing the probability of a complex query
formula, but uses our modified closed-world (mcw) as-
sumption.

• mln+qf+mcw: This is our proposed technique, inference
that supports a query formula (qf) and makes a modified
closed-world (mcw) assumption.

For all systems, we run the two inferences P (H|T,KB) and
P (H|¬T,KB), then train a classifier that maps their out-
puts to one of the classes: Entails, Contradicts or Neutral.

Accuracy CPU Time Timeouts
mln 56.94% 2min 27s 9,578
mln+qf 68.74% 1min 51s 2,964
mln+mcw 65.80% 10s 252
mln+qf+mcw 71.80% 7s 212

Table 1: Systems’ performance, accuracy, CPU Time for
completed runs only, and number of Timeouts out of 10,000
runs

We use a 30 minute timeout for each MLN inference prob-
lem in order to make the experiments tractable. If the system
times out, it outputs−1 indicating an error, and and the final
classifier learns to assign it to one of the three RTE classes.
Usually, because the Neutral class is the largest, timeouts are
classified as Neutral.

5.3 Metrics
• Accuracy: Percentage of correct classifications (Entail,

Contradict, or Neutral) using 10-fold cross validation.

• CPU Time (completed runs): Average CPU time per run
for the completed runs only, i.e. timed out runs are not
included.

• Timeouts: Number of inferences that timeout after 30
minutes. Total number of runs is 10,000.

5.4 Results and Discussion
Table 1 summarizes the results of the experiments. First, for
the four different systems, the CPU time (average time per
run for completed runs only) is very short compared to the
length of the timeout (30 minutes). This shows the exponen-
tial nature of the inference algorithms, either the problem
is small enough to finish in few minutes, or if it is slightly
larger, it fails to finish in reasonable time.

Comparing the systems, the results clearly show that the
base system, (mln), is not effective for the type of infer-
ence problems that we are addressing, almost all of the runs
timed out. System mln+qf shows the impact of being able to
calculate the probability of a complex query directly. It sig-
nificantly improves the accuracy, and it lowers the number
of timeouts; however, the number of timeouts is still large.
System mln+mcw shows the impact of the modified closed-
world assumption, demonstrating that makes inference sig-
nificantly faster, since the number of unreachable ground
atoms in our application is large compared to the total num-
ber of ground atoms. However, the accuracy of mln+mcw
is lower than that of mln+qf, since calculating the proba-
bility of a query directly is more accurate than the standard
work-around. Finally, mln+qf+mcw is both more accurate
and faster than the other systems, clearly demonstrating the
effectiveness of our overall proposed approach.

6 Future Work
An obvious extension to this work is a better algorithm for
computing the probability of an arbitrary formula. Instead
of making two separate runs of SampleSearch to estimate
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two different Zs, it would be helpful to exploit the similari-
ties between the two Markov networks (one with Q and one
without Q) to reduce the amount of repeated computation.
Also, it should be possible to optimize the calculations, or
simplify them, knowing that we are really only interested in
the ratio between the two Zs and not their individual values.

7 Conclusion
This paper has addressed the problem of making MLN infer-
ence feasible for textual inference that combines logical and
distributional semantics, where queries are long, complex
logical formulae (not just single ground atoms). We pro-
posed a simple MLN inference algorithm based on Sample-
Search to compute probabilities of formulae, and proposed
a modified closed-world assumption that can dramatically
reduce the size of the ground network. Experiments on a
recent SemEval task in textual entailment demonstrated the
effectiveness of these techniques.
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