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With better natural language semantic representations, computers can

do more applications more efficiently as a result of better understanding of

natural text. However, no single semantic representation at this time fulfills

all requirements needed for a satisfactory representation. Logic-based repre-

sentations like first-order logic capture many of the linguistic phenomena using

logical constructs, and they come with standardized inference mechanisms, but

standard first-order logic fails to capture the “graded” aspect of meaning in

languages. Other approaches for semantics, like distributional models, focus

on capturing “graded” semantic similarity of words and phrases but do not

capture sentence structure in the same detail as logic-based approaches. How-

ever, both aspects of semantics, structure and gradedness, are important for

an accurate language semantics representation.

In this work, we propose a natural language semantics representation

that uses probabilistic logic (PL) to integrate logical with weighted uncertain
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knowledge. It combines the expressivity and the automated inference of logic

with the ability to reason with uncertainty. To demonstrate the effectiveness

of our semantic representation, we implement and evaluate it on three tasks,

recognizing textual entailment (RTE), semantic textual similarity (STS) and

open-domain question answering (QA). These tasks can utilize the strengths

of our representation and the integration of logical representation and uncer-

tain knowledge. Our semantic representation 1 has three components, Logical

Form, Knowledge Base and Inference, all of which present interesting chal-

lenges and we make new contributions in each of them.

The first component is the Logical Form, which is the primary meaning

representation. We address two points, how to translate input sentences to

logical form, and how to adapt the resulting logical form to PL. First, we use

Boxer, a CCG-based semantic analysis tool to translate sentences to logical

form. We also explore translating dependency trees to logical form. Then,

we adapt the logical forms to ensure that universal quantifiers and negations

work as expected.

The second component is the Knowledge Base which contains “uncer-

tain” background knowledge required for a given problem. We collect the

“relevant” lexical information from different linguistic resources, encode them

as weighted logical rules, and add them to the knowledge base. We add rules

from existing databases, in particular WordNet and the Paraphrase Database

1System is available for download at: https://github.com/ibeltagy/pl-semantics
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(PPDB). Since these are incomplete, we generate additional on-the-fly rules

that could be useful. We use alignment techniques to propose rules that are

relevant to a particular problem, and explore two alignment methods, one

based on Robinson’s resolution and the other based on graph matching. We

automatically annotate the proposed rules and use them to learn weights for

unseen rules.

The third component is Inference. This component is implemented

for each task separately. We use the logical form and the knowledge base

constructed in the previous two steps to formulate the task as a PL infer-

ence problem then develop a PL inference algorithm that is optimized for

this particular task. We explore the use of two PL frameworks, Markov Logic

Networks (MLNs) and Probabilistic Soft Logic (PSL). We discuss which frame-

work works best for a particular task, and present new inference algorithms

for each framework.
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Chapter 1

Introduction

Computational semantics studies mechanisms for encoding the mean-

ing of natural language in a machine-friendly representation that supports

automated reasoning and that, ideally, can be automatically acquired from

large text corpora. Effective semantic representations and reasoning tools give

computers the power to perform complex applications like question answer-

ing. But applications of computational semantics are very diverse and pose

differing requirements on the underlying representational formalism. Some

applications benefit from a detailed representation of the structure of complex

sentences. Some applications require the ability to recognize near-paraphrases

or degrees of similarity between sentences. Some applications require infer-

ence, either exact or approximate. Often it is necessary to handle ambiguity

and vagueness in meaning. Finally, we frequently want to learn knowledge

relevant to these applications automatically from corpus data.

There is no single representation for natural language meaning at this

time that fulfills all of the above requirements, but there are representa-

tions that fulfill some of them. Logic-based representations (Montague, 1970;

Dowty, Wall, & Peters, 1981; Kamp & Reyle, 1993) like first-order logic repre-

1



sent many linguistic phenomena like negation, quantifiers, or discourse entities.

Some of these phenomena (especially representing negation scope and keeping

track of discourse entities over larger stretches of discourse) can not be easily

represented in syntax-based representations like Natural Logic (MacCartney

& Manning, 2009). In addition, first-order logic has standardized inference

mechanisms. Consequently, logical approaches have been widely used in se-

mantic parsing where it supports answering complex natural language queries

requiring reasoning and data aggregation (Zelle & Mooney, 1996; Kwiatkowski,

Choi, Artzi, & Zettlemoyer, 2013; Pasupat & Liang, 2015). But logic-based

representations often assume predetermined fixed ontology, which requires a

lot of training data to learn the mapping to logical form, and limits the appli-

cability of the representation to this one particular ontology. And first-order

logic, being binary in nature, does not capture the graded aspect of meaning.

Other models, like distributional models (Turney & Pantel, 2010), focus on

representing the graded semantic similarity of words and phrases (Landauer &

Dumais, 1997; Mitchell & Lapata, 2010). Both capabilities, representing logi-

cal structure and capturing graded information, are clearly complementary for

an accurate semantic representation.

Our aim is to construct a general-purpose natural language under-

standing system that provides in-depth representations of sentence meaning

amenable to automated inference, but that also allows for flexible and graded

inferences involving word meaning. Therefore, our approach combines logical

representation with a “weighted” knowledge base for robust semantic rep-
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resentation. Specifically, we use first-order logic as a basic representation,

providing a sentence representation that can be easily interpreted and ma-

nipulated. However, we also use a weighted knowledge base that encodes a

graded representation for words and short phrases, providing information on

near-synonymy and lexical entailment. Uncertainty and gradedness at the

lexical and phrasal level should inform inference at all levels, so we rely on

probabilistic logic (PL) to process the logical form and the weighted knowl-

edge base. Our framework is three components, Logical Form, Knowledge

Base and Inference, all of which present interesting challenges and we make

new contributions in each of them.

Tasks and System Architecture To demonstrate the generality and effec-

tiveness of our proposed semantic representation, we implement and evaluate

it on three tasks. The first is recognizing textual entailment (RTE) (Dagan,

Roth, Sammons, & Zanzotto, 2013), the task of finding if a sentence entails,

contradicts or is neutral to another sentence. The second is semantic textual

similarity (STS) (Agirre, Cer, Diab, & Gonzalez-Agirre, 2012), the task of

evaluating the semantic similarity of two sentence on a scale from 1 to 5. The

third is open-domain question answering (QA), the task of answering a ques-

tion given a short document containing the answer (not from a database of

facts) (Richardson, Burges, & Renshaw, 2013; Hermann et al., 2015). These

tasks can utilize the strengths of our representation and the integration of

logical representation and uncertain knowledge.
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Our approach has three main components,

1. Logical Form, where input sentences are mapped to logical then the

logical form is adapted for PL.

2. Knowledge Base, where we collect the relevant lexical information from

different linguistic resources, encode them as weighted logical rules and

add them to the inference problem.

3. Inference, takes the output of the previous two steps, formulate the task

as PL inference problem then solve it using the appropriate PL imple-

mentation.

In our framework, we can view each language understanding task as

consisting of a text T and a hypothesis H, along with a knowledge base KB.

The text T describes some situation or setting, and the hypothesis H in the

simplest case asks whether a particular statement is true in the situation de-

scribed in T , and the knowledge base KB encodes relevant background knowl-

edge. Formally, this is checking if the text and knowledge base entail the hy-

pothesis: T ∧ KB ⇒ H, and its probabilistic counterpart is calculating the

probability P (H|T,KB). We will present all of our work from the perspective

of solving this single entailment, and we will show in later chapters how each

task can be represented in terms of this entailment.

Logical Form The Logical Form component starts with translating input

sentences to logical form. For example, the sentences

4



T : A grumpy ogre is not smiling.

H: A sad ogre is not smiling.

will be translated to

T : ∃x. ogre(x) ∧ grumpy(x) ∧ ¬∃y. agent(y, x) ∧ smile(y)

H: ∃x. ogre(x) ∧ sad(x) ∧ ¬∃y. agent(y, x) ∧ smile(y)

We use Boxer (Bos, 2008), a rule-based semantic analysis tool that runs on

top of a CCG parse (Clark & Curran, 2004), for this translation. We also

developed a rule-based transformation to translate dependency trees to logical

forms that are less expressive but more robust, which make them suitable

for the long complex text (as in the QA task). Logical forms need to be

adapted to PL because PL frameworks make the Domain Closure Assumption

(DCA), which states that there are no objects in the universe other than the

named constants (Richardson & Domingos, 2006). This means that constants

need to be explicitly introduced in the domain in order to get the expected

inferences using PL. We discuss how to do these adaptations and evaluate them

on three entailment datasets including a synthetic dataset that exhaustively

tests inference performance on sentences with two quantifiers.

Knowledge Base The knowledge base encodes relevant background knowl-

edge: lexical knowledge, world knowledge, or both. We collect the relevant

5



rules for a particular T and H from a variety of linguistic resources then en-

code them as “weighted” first order rules. For the example above, we will need

the rule:

r1: ∀x. grumpy(x)⇒ sad(x) | w1

where w1 is a weight indicating how true this rule is. We collect two types

of rules, the first is precompiled rules collected from existing resources like

WordNet (Princeton University, 2010) and PPDB (Ganitkevitch, Van Durme,

& Callison-Burch, 2013). These resources are never complete, so the second

type of rules are on-the-fly rules that we generate for a particular T and H

pair. We align T and H then use the alignment to extract the rules relevant

for them. We use a lexical entailment classifier to learn how to weight the

extracted rules. We have two alignment techniques, a Robinson resolution-

based alignment which works for short pairs of T and H (like for RTE and

STS), and a graph-based alignment which works for longer text T (like in QA).

We evaluate this component of our system by its impact on the end task. We

evaluate the precompiled rules and the Robinson resolution alignment on the

RTE task, and the graph-based alignment on the QA task.

Inference The third component is Inference. We use the logical form and

the weighted knowledge base collected from the previous two steps to for-

mulate a task specific PL inference problem of the form P (H|T,KB). The

RTE task is represented in terms of two PL inferences, one to decide between

6



entail and neutral, and the other to decide between contradiction and neu-

tral. The STS task is represented in terms of two inferences, one from the

first sentence to the second, and the other from the second to the first. The

QA task is represented with the PL inference of finding an entity e from T

that maximizes probability of H. Given the formulated inference problem, we

use the appropriate PL framework to solve it. We use two PL frameworks,

Markov Logic Networks (MLN) (Richardson & Domingos, 2006) and Proba-

bilistic Soft Logic (PSL) (Kimmig, Bach, Broecheler, Huang, & Getoor, 2012;

Bach, Huang, London, & Getoor, 2013). MLNs and PSL are Statistical Rela-

tional Learning (SRL) techniques (Getoor & Taskar, 2007) that combine logical

and statistical knowledge in one uniform framework, and provide a mechanism

for coherent probabilistic inference. PL frameworks represent uncertainty in

terms of weights on the logical rules as in the example below:

∀x. ogre(x)⇒ grumpy(x) | 1.5

∀x, y. (friend(x, y) ∧ ogre(x))⇒ ogre(y) | 1.1
(1.1)

which states that there is a chance that ogres are grumpy, and friends of ogres

tend to be ogres too. The PL tools we use, namely MLNs and PSL, employ

such weighted rules to derive a probability distribution over possible worlds

through an undirected graphical model. This probability distribution over

possible worlds is then used to draw inferences. MLNs and PSL can be viewed

as templates that facilitate construction of large complex graphical models,

and do inference over them to answer queries.

The logical form and the knowledge base are mostly task independent.
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Inference however, is task dependent, and we will split its discussion into three

chapters, one for each task. Each chapter explains how a task is represented

in PL, then presents inference algorithm(s) for the task using the appropriate

PL tool. A general problem with PL inference is computational intractabil-

ity because PL usually generates large graphical models and graphical model

inference is intractable. This is an issue that we address in all of our imple-

mentations of PL inference.

For RTE, we used MLNs and we implement an inference algorithm that

directly supports querying complex logical formula (which is not supported in

the available MLN tools) and it exploits the closed-world assumption to make

inference more tractable. For STS, we use MLNs and PSL, and show how

to perform a form of “partial entailment” that is more fit for the task. For

the QA task, instead of using PSL or MLNs to build a graphical model and

do inference, we have our own implementation that is much faster. It takes

T , H and KB and build a graphical model representing the problem, then

implement our graphical model inference to answer the query.

Notation and Terminology This document refers to different types of

entailments:

• Recognizing Textual Entailment (RTE): is the task of given a text T and

hypothesis H, find if T entails, contradicts or neutral to H

• Entailment: is the more basic task of finding if T entails H. This is

8



the basic operation that we use to define the three other tasks. This

entailment is denoted by the probabilistic inference P (H|T,KB)

• Lexical entailment: finding entailment relations between words or short

phrases (Roller, Erk, & Boleda, 2014). We use it to weight rules of the

knowledge base.

We call inputs for the RTE task text T and hypothesis H, inputs for

the STS task are first and second sentences S1, S2, and inputs for the QA task

are document D and query Q. Once a task is formulated as P (H|T,KB), we

will only refer to text T and hypothesis H. KB is the knowledge base rules.

From the PL perspective, H is called query Q and T can be called evidence

E.

1.1 Thesis Contributions

The main contribution of this thesis is developing a practical system

that uses PL to integrate logical information with weighted uncertain knowl-

edge. It explains the challenges of bringing together the three distinct com-

ponents of our approach and how we address them. It addresses the following

challenges:

• Adapting logical form for PL to make sure universal quantifiers and nega-

tions work as expected. Adaptations are evaluated on three entailment

datasets including a synthetic dataset that exhaustively tests inference

performance on sentences with two quantifiers.
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• Two different methods for aligning the text and hypothesis and ex-

tract on-the-fly rules, then learning how to assess them. One alignment

method is based on Robinson resolution (works for RTE and STS) and

the other is based on graph matching (works for QA). We released a

dataset of all rules extracted from one of the RTE datasets. This is a

valuable resource for testing lexical entailment systems.

• An MLN inference algorithm that calculates the probability of a query

formula (not a single ground atom) and it is computationally efficient

for the type of inference problems we are interested in.

• New MLN and PSL inference algorithms for the STS task that support

partial entailments. The MLN algorithm replaces conjunction with an

average combiner, and the PSL algorithm uses a new relaxed conjunction

operator and a heuristic grounding algorithm that fits it.

• Formulating our own graphical model representation for the the QA task

(instead of using MLNs or PSL), and developing an inference algorithm

that answers the question encoded in in this graphical model. Our for-

mulation and inference is more than two orders of magnitude faster than

PSL.

We also addressed the following smaller problems

• Formulating the RTE task, the STS task and the QA task as PL inference

problems.
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• A rule-based method to translate dependency parse trees into Boxer like

logical form that is less expressive but more robust.

• A rule-based method to translate existing paraphrase resources into log-

ical rules.

• A special entity coreference assumption that is necessary for the detec-

tion of contradictions in the RTE task.

• A simple weight learning approach to map rule weights to MLN weights.

• Using multiple CCG parses to increase robustness of the translation from

text to logical form.

• Preliminary PSL inference algorithm that fits the requirements of the

QA task. We only use this inference algorithm for the comparison with

our graphical model formulation.

It should be noted that all of the contributions listed above except

the graph-based alignment and the QA work, have appeared in our previous

publications (Beltagy, Chau, Boleda, Garrette, Erk, & Mooney, 2013; Beltagy,

Erk, & Mooney, 2014; Beltagy & Mooney, 2014; Beltagy & Erk, 2015; Beltagy,

Roller, Cheng, Erk, & Mooney, 2016)

1.2 Thesis Outline

This thesis is organized by components. We present the logical form

component, followed by the knowledge base component. These two chapters
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are mostly task independent. Inference is task dependent so we dedicate a

chapter for the details of each task, RTE, STS and QA. For readability, we

present the QA-specific logical form and knowledge base in the QA chapter,

not in the logical form and knowledge base chapters.

• Chapter 2 reviews background topics and discusses related work.

• Chapter 3 explains the Logical Form adaptations.

• Chapter 4 discusses how we build the Knowledge Base from precompiled

rules and from on-the-fly rules using Robinson resolution alignment.

• Chapter 5 discusses the details of implementing our system for the RTE

task and our inference algorithms for RTE.

• Chapter 6 presents MLN and PSL inference algorithms tuned for the

STS task

• Chapter 7 presents our work for the QA task which include translating

dependency parses to logical form, collecting knowledge base rules using

a graph-based alignment and doing inference for the QA task.

• Chapter 8 lists some ideas for future work.

• Chapter 9 is the conclusion.
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Chapter 2

Background and Related Work

2.1 Logical Semantics

Logical representations of meaning have a long tradition in linguistic

semantics (Montague, 1970; Dowty et al., 1981; Kamp & Reyle, 1993; Al-

shawi, 1992) and computational semantics (Blackburn & Bos, 2005; van Eijck

& Unger, 2010), and commonly used in semantic parsing (Zelle & Mooney,

1996; Berant, Chou, Frostig, & Liang, 2013; Kwiatkowski et al., 2013). They

handle many complex semantic phenomena such as negation and quantifiers,

they identify discourse referents along with the predicates that apply to them

and the relations that hold between them. However, standard first-order logic

and theorem provers are binary in nature, which prevents them from captur-

ing the graded aspects of meaning in language: Synonymy seems to come in

degrees (Edmonds & Hirst, 2000), as does the difference between senses in

polysemous words (Brown, 2008). van Eijck and Lappin (2012) write: “The

case for abandoning the categorical view of competence and adopting a prob-

abilistic model is at least as strong in semantics as it is in syntax.”

Recent wide-coverage tools that use logic-based sentence representa-

tions include Copestake and Flickinger (2000), Bos (2008), and Lewis and

13



Steedman (2013). We use Boxer (Bos, 2008), a wide-coverage semantic anal-

ysis tool that produces logical forms using Discourse Representation Struc-

tures (Kamp & Reyle, 1993). It builds on the C&C CCG (Combinatory Cat-

egorial Grammar) parser (Clark & Curran, 2004) and maps sentences into a

lexically-based logical form, in which the predicates are mostly words in the

sentence. For example, the sentence An ogre loves a princess is mapped to:

∃x, y, z. ogre(x) ∧ agent(y, x) ∧ love(y) ∧ patient(y, z) ∧ princess(z) (2.1)

As can be seen, Boxer uses a neo-Davidsonian framework (Parsons, 1990): y

is an event variable, and the semantic roles agent and patient are turned into

predicates linking y to the agent x and patient z.

2.2 Distributional Semantics

Distributional models (Turney & Pantel, 2010) use statistics on con-

textual data from large corpora to predict semantic similarity of words and

phrases (Landauer & Dumais, 1997; Mitchell & Lapata, 2010). They are mo-

tivated by the observation that semantically similar words occur in similar

contexts, so words and short phrase can be represented as vectors in high di-

mensional spaces generated from the contexts in which they occur (Landauer

& Dumais, 1997; Lund & Burgess, 1996). Therefore, distributional models are

relatively easier to build than logical representations, automatically acquire

knowledge from large corpora, and capture the graded nature of linguistic

meaning, but they do not adequately capture logical structure (Grefenstette,

2013).
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Distributional information is being using in our system to assist build-

ing our knowledge base. In particular, we use it to inform the lexical entailment

classifier about similarity of words and short phrases (section 4.3.2).

2.3 Probabilistic Logic (PL)

PL are tools that combine logical and statistical knowledge in one rep-

resentation. The PL frameworks we use, namely MLNs and PSL, are Sta-

tistical Relational Learning (SRL) techniques (Getoor & Taskar, 2007) that

combine logical and statistical knowledge through graphical model inference.

PL frameworks typically employ weighted formulas in first-order logic to com-

pactly encode complex probabilistic graphical models. Weighting the rules

is a way of softening them compared to hard logical constraints and thereby

allowing truth assignments in which not all instances of the rule hold. Equa-

tion 1.1 shows sample weighted rules: Friends of ogres tend to be ogres and

ogres tend to be grumpy. Suppose we have two constants, A and B. Using

these two constants and the predicate symbols in Equation 1.1, the set of all

ground atoms we can construct is:

LA,B = {ogre(A), ogre(B), grumpy(A), grumpy(B), friend(A,A),

friend(A,B), friend(B,A), friend(B,B)}

If we only consider models over a domain with these two constants as entities,

then each truth assignment to LA,B corresponds to a model. PL frameworks

usually make the assumption of a one-to-one correspondence between con-

stants in the system and entities in the domain. We discuss the effects of this
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ogre(A)

ogre(B)

friend(A, B)friend(B, A)

friend(B, B)

friend(A, A)
grumpy(A)

grumpy(B)

Figure 2.1: A sample MLN ground network

Domain Closure Assumption (DCA) in chapter 3.

2.3.1 Markov Logic Networks (MLNs)

MLNs (Richardson & Domingos, 2006) are one of the PL frameworks

we use. MLNs work as template to construct undirected graphical models.

Markov Networks or undirected graphical models (Pearl, 1988) compute the

probability P (X = x) of an assignment x of values to the sequence X of

all variables in the model based on clique potentials, where a clique poten-

tial is a function that assigns a value to each clique (maximally connected

subgraph) in the graph. Markov Logic Networks construct Markov Networks

(hence their name) based on weighted first order logic formulas, like the ones

in Equation 1.1. Figure 2.1 shows the network for Equation 1.1 with two con-

stants. Every ground atom becomes a node in the graph, and two nodes are

connected if they co-occur in a grounding of an input formula. In this graph,

each clique corresponds to a grounding of a rule. For example, the clique in-
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cluding friend(A,B), ogre(A), and ogre(B) corresponds to the ground rule

friend(A,B) ∧ ogre(A) ⇒ ogre(B). A variable assignment x in this graph

assigns to each node a value of either True or False, so it is a truth assignment

(a world). The clique potential for the clique involving friend(A,B), ogre(A),

and ogre(B) is exp(1.1) if x makes the ground rule true, and 0 otherwise. This

allows for nonzero probability for worlds x in which not all friends of ogres are

also ogres, but it assigns exponentially more probability to a world for each

ground rule that it satisfies.

More generally, an MLN takes as input a set of weighted first-order

formulas F = F1, . . . , Fn and a set C of constants, and constructs an undi-

rected graphical model in which the set of nodes is the set of ground atoms

constructed from F and C. It computes the probability distribution P (X = x)

over worlds based on this undirected graphical model. The probability of a

world (a truth assignment) x is defined as:

P (X = x) =
1

Z
exp

(∑
i

wini (x)

)
(2.2)

where i ranges over all formulas Fi in F , wi is the weight of Fi, ni(x) is the

number of groundings of Fi that are true in the world x, and Z is the partition

function (i.e., it normalizes the values to probabilities). So the probability of a

world increases exponentially with the total weight of the ground clauses that

it satisfies.

Below, we use R (for rules) to denote the input set of weighted formulas.

In addition, an MLN takes as input an evidence set E asserting truth values for
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some ground clauses. For example, ogre(A) means that A is an ogre. Marginal

inference for MLNs calculates the probability P (Q|E,R) for a query formula

Q.

Alchemy (Kok, Singla, Richardson, & Domingos, 2005) is the most

widely used MLN implementation. It is a software package that contains im-

plementations of a variety of MLN inference and learning algorithms. However,

developing a scalable, general-purpose, accurate inference method for complex

MLNs is an open problem. MLNs have been used for various NLP applications

including unsupervised coreference resolution (Poon & Domingos, 2008), se-

mantic role labeling (Riedel & Meza-Ruiz, 2008) and event extraction (Riedel,

Chun, Takagi, & Tsujii, 2009).

2.3.2 Probabilistic Soft Logic (PSL)

Probabilistic Soft Logic (PSL) is recently proposed alternative frame-

work for PL (Kimmig et al., 2012; Bach et al., 2013). It uses logical representa-

tions to compactly define large graphical models with “continuous” variables,

and includes methods for performing efficient probabilistic inference for the

resulting models. A key distinguishing feature of PSL is that ground atoms

have soft, continuous truth values in the interval [0, 1] rather than binary truth

values as used in MLNs and most other PL tools. Given a set of weighted log-

ical formulas, PSL builds a graphical model defining a probability distribution

over the continuous space of values of the random variables in the model. A

PSL model is defined using a set of weighted if-then rules in first-order logic,
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as in the following example:

∀x, y, z. friend(x, y) ∧ votesFor(y, z)⇒ votesFor(x, z) | 0.3

∀x, y, z. spouse(x, y) ∧ votesFor(y, z)⇒ votesFor(x, z) | 0.8
(2.3)

The first rule states that a person is likely to vote for the same person as

his/her friend. The second rule encodes the same regularity for a person’s

spouse. The weights encode the knowledge that a spouse’s influence is greater

than a friend’s in this regard.

In addition, PSL includes similarity functions. Similarity functions

take two strings or two sets as input and return a truth value in the interval

[0, 1] denoting the similarity of the inputs. For example, this is a rule that

incorporate the similarity of two predicates:

∀x. similarity(“predicate1”, “predicate2”) ∧ predicate1(x)⇒ predicate2(x)

(2.4)

As mentioned above, each ground atom, a, has a soft truth value in

the interval [0, 1], which is denoted by I(a). To compute soft truth values for

logical formulas, Lukasiewicz’s relaxation of conjunctions(∧), disjunctions(∨)

and negations(¬) are used:

I(l1 ∧ l1) = max{0, I(l1) + I(l2)− 1}

I(l1 ∨ l1) = min{I(l1) + I(l2), 1}

I(¬l1) = 1− I(l1)

(2.5)

Then, a given rule r ≡ rbody ⇒ rhead, is said to be satisfied (i.e. I(r) = 1)

iff I(rbody) ≤ I(rhead). Otherwise, PSL defines a distance to satisfaction d(r)
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which captures how far a rule r is from being satisfied: d(r) = max{0, I(rbody)−

I(rhead)}. For example, assume we have the set of evidence:

I(spouse(B,A)) = 1, I(votesFor(A,P )) = 0.9, I(votesFor(B,P )) = 0.3, and

that r is the resulting ground instance of rule (2.3). Then I(spouse(B,A) ∧

votesFor(A,P )) = max{0, 1 + 0.9− 1} = 0.9, and d(r) = max{0, 0.9− 0.3} =

0.6.

Using distance to satisfaction, PSL defines a probability distribution

over all possible interpretations I of all ground atoms. The pdf is defined as

follows:

p(I) =
1

Z
exp [−

∑
r∈R

λr(d(r))p];

Z =

∫
I

exp [−
∑
r∈R

λr(d(r))p]

(2.6)

where Z is the normalization constant, λr is the weight of rule r, R is the

set of all rules, and p ∈ {1, 2} provides two different loss functions. For our

application, we always use p = 1

PSL is primarily designed to support MPE inference (Most Probable

Explanation). MPE inference is the task of finding the overall interpretation

with the maximum probability given a set of evidence. Intuitively, the in-

terpretation with the highest probability is the interpretation with the lowest

distance to satisfaction. In other words, it is the interpretation that tries to

satisfy all rules as much as possible. Formally, from equation 2.6, the most

probable interpretation, is the one that minimizes
∑

r∈R λr(d(r))p. In case of

p = 1, and given that all d(r) are linear equations, then minimizing the sum
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requires solving a linear program, which, compared to inference in other PL

tools such as MLNs, can be done relatively efficiently using well-established

techniques. In case p = 2, MPE inference can be shown to be a second-order

cone program (SOCP) (Kimmig et al., 2012).

2.4 Tasks

We evaluate our semantic representation on the following three tasks,

RTE, STS and QA.

2.4.1 Recognizing Textual Entailment (RTE)

RTE is the task of determining whether one natural language text,

the Text T , entails, contradicts, or is not related (neutral) to another, the

Hypothesis H (Dagan et al., 2013). “Entailment” here does not mean logical

entailment: The Hypothesis is entailed if a human annotator judges that it

plausibly follows from the Text. When using naturally occurring sentences,

this is a very challenging task that should be able to utilize the unique strengths

of both logic-based and distributional semantics. Here are examples from the

SICK dataset (Marelli, Menini, Baroni, Bentivogli, Bernardi, & Zamparelli,

2014):

• Entailment

T: A man and a woman are walking together through the woods.

H: A man and a woman are walking through a wooded area.
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• Contradiction

T: Nobody is playing the guitar

H: A man is playing the guitar

• Neutral

T: A young girl is dancing

H: A young girl is standing on one leg

The SICK (“Sentences Involving Compositional Knowledge”) dataset,

which we use for evaluation in this paper, was designed to foreground par-

ticular linguistic phenomena but to eliminate the need for world knowledge

beyond linguistic knowledge. It was constructed from sentences from two im-

age description datasets, ImageFlickr1 and the SemEval 2012 STS MSR-Video

Description data.2 Randomly selected sentences from these two sources were

first simplified to remove some linguistic phenomena that the dataset was not

aiming to cover. Then additional sentences were created as variations over

these sentences, by paraphrasing, negation, and reordering. RTE pairs were

then created that consisted of a simplified original sentence paired with one of

the transformed sentences (generated from either the same or a different orig-

inal sentence). The dataset was collected for the SemEval 2014 competition

( an annual workshop that organizes semantic evaluation tasks and competi-

tions) and it consists of 5,000 T/H pairs for training and 5,000 for testing.

1http://nlp.cs.illinois.edu/HockenmaierGroup/data.html
2http://www.cs.york.ac.uk/semeval-2012/task6/index.php?id=data
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2.4.2 Semantic Textual Similarity (STS)

Semantic Textual Similarity (STS) is the task of judging the similarity

of a pair of sentences on a scale from 0 to 5, and was recently introduced

as a SemEval task (Agirre et al., 2012). Gold standard scores are averaged

over multiple human annotations and systems are evaluated using the Pearson

correlation between a system’s output and gold standard scores. Here are some

examples:

S1: A man is playing a guitar.

S2: A woman is playing the guitar.

• Score: 2.75

S1: A woman is cutting broccoli.

S2: A woman is slicing broccoli.

• Score: 5.00

S1: A car is parking.

S2: A cat is playing.

• Score: 0.00

For experiments, we use the SICK dataset which is used also for RTE

experiments. The dataset has annotations for both tasks, RTE and STS.
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2.4.3 Open-Domain Question Answering (QA)

There are many variations of the question answering task including

answering factoid questions from a database of facts (Berant et al., 2013;

Kwiatkowski et al., 2013), answering multiple choice questions about a short

story (Richardson et al., 2013) and answering elementary school science ques-

tions (Schoenick, Clark, Tafjord, Turney, & Etzioni, 2016). We are interested

in open-domain QA where the answers for a question Q can be extracted from

a short document D (as in (Richardson et al., 2013)), not from a database of

facts nor from all of the text on the web. This form of QA is more difficult

than querying a database of facts because we do not have a fixed schema that

we learn how to execute queries against. It is also more difficult than trying

to answer a question from all the text in the web because we do not have the

huge redundancy of representing the same piece of information that the web

provides. In our case, answering the question requires accurate understanding

of the document and the question.

The QA dataset we use is a large automatically collected dataset from

CNN and Daily Mail (Hermann et al., 2015). Each news article in CNN and

Daily Mail has a short summary in the form of a few bullet sentences. The

articles and the summary are tokenized, lower cased and processed by a named

entity recognizer and coreference resolution tool to find named entities (person,

location, organization ... ) in the document. Questions are constructed from

summary sentences that contain named entities by replacing the named entity

with a placeholder, and the task becomes finding the appropriate named entity
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CNN Daily Mail
Train 380,298 879,450
Dev 3,924 64,835
Test 3,198 53,182

Table 2.1: Size of the QA dataset

from the news article to fill in the placeholder. In addition, all named entities

are anonymized to prevent answering the questions from statistical knowledge

about the entities and make it necessary to answer the question from the

specified document. Table 2.1 lists the sizes of each section of the dataset.

Here is a snippet from a document followed by the question:

Document: @entity26 and @entity9 have spoken about the possibility of

putting boots on the ground . the @entity33 is expected to give its official

blessing to @entity28 on saturday , which could clear the way for a ground

invasion , @entity4 ’s @entity48 reported . but a few member nations, such

as @entity55 majority @entity53 or possibly @entity56 , could give military

action a thumbs down . though the @entity26 kingdom has taken the lead with

some 100 warplanes , the coalition partners include the @entity63 , @entity64

, @entity65 , @entity66 , @entity67 , @entity68 , @entity69 and @entity9 .

Question: @placeholder blessing of military action may set the stage for a

ground invasion

Answer: @entity33

This dataset has attracted a lot of attention and a several attempts to

solve. The most notable is the recent work by Chen, Bolton, and Manning
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(2016). They manually examined 100 examples to find the type of inferences

required to answer them. They found that 13% of questions are exact matches

of sentences in the document, 41% are paraphrases, 19% can be answered with

a partial clue (can not infer the whole question but can infer enough of it to

answer the question correctly), only 2% of the questions need an inference that

involves multiple sentences, 8% can not be answered because of a coreference

error in the dataset and 17% even humans can not answer confidently because

of ambiguity or it is hard to find the answer. This analysis suggests that the

best achievable performance is around 75%, and almost all of the questions can

be answered by processing a single sentence. They also showed that an entity

classifier with a few simple features can achieve high performance (around

68%) then presented a neural network approach that achieves 72.4% accuracy

which is very close to the best achievable performance.

Despite this analysis and results, we believe this dataset is a reasonable

testbed for our system. It helps us develop and evaluate our system on a larger

more diverse and more natural dataset than the RTE and STS datasets.

2.5 Related Work

There has recently been several other attempts to integrate logical and

distributional information, and we discuss some of them below. Lewis and

Steedman (2013) use clustering on distributional data to infer word senses,

and perform standard first-order inference on the resulting logical forms. The

main difference between this approach and our proposed one lies in the role of
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gradience. In Lewis and Steedman (2013), the uncertain knowledge is used to

find the clusters and does not propagate to inference, while in our work the

uncertain lexical knowledge propagates to the inference step.

Tian, Miyao, and Takuya (2014) represent sentences using Dependency-

based Compositional Semantics (Liang, Jordan, & Klein, 2011). They con-

struct phrasal entailment rules based on a logic-based alignment, and use

distributional similarity of aligned words to filter rules that do not surpass

a given threshold.

Also related to our work the work on distributional models where the

dimensions of the vectors encode model-theoretic structures rather than ob-

served co-occurrences (Clark, 2012; Sadrzadeh, Clark, & Coecke, 2013; Grefen-

stette, 2013; Herbelot & Vecchi, 2015), even though they are not strictly hybrid

systems as they do not include contextual distributional information. Grefen-

stette (2013) represents logical constructs using vectors and tensors, but con-

cludes that they do not adequately capture logical structure, in particular

quantifiers.

27



Chapter 3

Logical Form

The first component of our semantic representation is the logical form.

This chapter addresses two main question, how we translate natural sentences

to logical form and how we adapt the resulting logical form for PL. All of the

work presented in this chapter has been published in (Beltagy & Erk, 2015).

3.1 Chapter Overview

Logical form is the the basic representation we use which can be easily

interpreted and manipulated. This chapter discusses two points regarding

logical forms. The first point it addresses is the translation from natural

sentences to logical form. By default, we use Boxer, which is a rule-based

system that translates CCG parsed sentences to logical form. We also tried

translating dependency parse trees to logical forms that are suitable for the

QA task, but we leave the discussion of this approach to section 7.2.

The second point this chapter addresses is the adaptation of logical

form to PL. In our framework, we can view each language understanding task

as consisting of a text T and a hypothesis H, along with a knowledge base

KB. The text T describes some situation or setting, and the hypothesis H
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in the simplest case asks whether a particular statement is true in the situ-

ation described in T . The knowledge base KB encodes relevant background

knowledge: lexical knowledge, world knowledge, or both. Formally, this is

checking if the text and knowledge base entail the hypothesis: T ∧KB ⇒ H.

In the beginning of chapters 5, 6 and 7, we show how all three tasks can be

represented as instances of this basic entailment.

In PL, the logical entailment T ∧ KB ⇒ H is equivalent to calculat-

ing the probability of the hypothesis given the text and the knowledge base

P (H|T,KB,WT,H), where WT,H is the world configurations for a particular

T,H pair (this is the more detailed formulation of P (H|T,KB) mentioned

in the introduction. We use the detailed on in this chapter only). A world

configuration for a pair T,H is setting the domain size and prior probabilities

of ground atoms of the PL program for an accurate representation of T and

H. Practical PL frameworks usually make assumptions like the assumption

of a finite domain, which changes how quantifiers and negation behave in PL.

This chapter discusses how to adapt the logical form and set the world con-

figurations WT,H to take PL assumptions into account. It also evaluates these

adaptations on three entailment datasets.

3.2 Translating text to logical form

The default tool we use to translate text to logical form is Boxer (Bos,

2008), a rule-based semantic analysis system that translates a CCG parse into
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a logical form. The formula

∃x, y, z. ogre(x) ∧ agent(y, x) ∧ love(y) ∧ patient(y, z) ∧ princess(z) (3.1)

is an example of Boxer producing discourse representation structures using a

neo-Davidsonian framework. We call Boxer’s output alone an “uninterpreted

logical form” because the predicate symbols are simply words and do not have

meaning by themselves. Their semantics derives from the knowledge base KB

we build in Chapter 4.

Translating dependency parses to logical forms We have a rule-based

approach to translate dependency parses to logical forms that are more robust

but less expressive than what we get from Boxer. We only use this logical

form for the QA task, so we leave the detailed discussion to section 7.2.

3.3 Adapting logical form to PL

Our natural language understanding tasks can be all solved as functions

of the more basic operation of checking if the text and knowledge base entail

the hypothesis: T ∧KB ⇒ H , or probabilistically, calculating the probability

P (H|T,KB,WT,H). PL frameworks usually make assumptions that make the

probabilistic version different from the standard first logic formulation, even

with rules in KB are all hard (have infinite weights). One practical assump-

tion is the DCA, or the assumption that the domain has a fixed size. This

assumption has implications on how quantifiers and negations work. This sec-

tion discusses how to adapt logical form to take the DCA assumption into
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account. It addresses two points, how to get quantifiers to work while assum-

ing a fixed-sized domain, and how to set prior probabilities for the negations

to work as expected. This is done through setting the world configurations

WT,H , which encompasses number of constants in the domain (domain size)

and prior probability of each ground atom. The world configurations WT,H is

a function of T and H because it is set based on the quantifiers and negations

of T and H.

3.3.1 Using a Fixed Domain Size

PL frameworks compute a probability distribution over possible worlds,

as described in section 2.3. When we describe a task as a text T and a hy-

pothesis H, the worlds over which the PL computes a probability distribution

are “mini-worlds”, just large enough to describe the situation or setting given

by T . The probability P (H|T,KB,WT,H) then describes the probability that

H would hold given the probability distribution over the worlds that possibly

describe T . The use of “mini-worlds” is by necessity, as most practical PL

frameworks can only handle worlds with a fixed domain size, where “domain

size” is the number of constants in the domain.

Formally, the influence of the set of constants on the worlds considered

by a PL framework can be described by the Domain Closure Assumption

(DCA, (Genesereth & Nilsson, 1987; Richardson & Domingos, 2006)): The

only models considered for a set F of formulas are those for which the following

three conditions hold: (a) Different constants refer to different objects in the
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domain, (b) the only objects in the domain are those that can be represented

using the constant and function symbols in F , and (c) for each function f

appearing in F , the value of f applied to every possible tuple of arguments

is known, and is a constant appearing in F . Together, these three conditions

entail that there is a one-to-one relation between objects in the domain and

the named constants of F . When the set of all constants is known, it can

be used to ground predicates to generate the set of all ground atoms, which

then become the nodes in the graphical model. Different constant sets result

in different graphical models. If no constants are explicitly introduced, the

graphical model is empty (no random variables).

This means that to obtain an adequate representation of an inference

problem consisting of a text T and hypothesis H, we need to introduce a

sufficient number of constants explicitly into the formula: The worlds that

the PL considers need to have enough constants to faithfully represent the

situation in T and not give the wrong entailment for the hypothesis H. In

what follows, we explain how we determine an appropriate set of constants

for the logical-form representations of T and H. The domain size that we

determine is one of the two components of the parameter WT,H .

3.3.1.1 Skolemization

We introduce some of the necessary constants through the well-known

technique of Skolemization (Skolem, 1920). It transforms a formula of the form

∀x1 . . . xn∃y.F to ∀x1 . . . xn.F ∗, where F ∗ is formed from F by replacing all
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free occurrences of y in F by a term f(x1, . . . , xn) for a new function symbol f .

If n = 0, f is called a Skolem constant, otherwise a Skolem function. Although

Skolemization is a widely used technique in first-order logic, it is not frequently

employed in PL since many applications do not require existential quantifiers.

We use Skolemization on the text T (but not the hypothesis H, as we

cannot assume a priori that it is true). For example, the logical expression in

Equation 3.1, which represents the sentence T: An ogre loves a princess, will

be Skolemized to:

ogre(O) ∧ agent(L,O) ∧ love(L) ∧ patient(L,N) ∧ princess(N) (3.2)

where O,L,N are Skolem constants introduced into the domain.

Standard Skolemization transforms existential quantifiers embedded

under universal quantifiers to Skolem functions. For example, for the text T:

All ogres snore and its logical form ∀x. ogre(x) ⇒ ∃y. agent(y, x) ∧ snore(y)

the standard Skolemization is ∀x.ogre(x)⇒ agent(f(x), x)∧snore(f(x)). Per

condition (c) of the DCA above, if a Skolem function appeared in a formula,

we would have to know its value for any constant in the domain, and this

value would have to be another constant. To achieve this, we introduce a new

predicate Skolemf instead of each Skolem function f , and for every constant

that is an ogre, we add an extra constant that is a loving event. The example

above then becomes:

T : ∀x. ogre(x)⇒ ∀y. Skolemf (x, y)⇒ agent(y, x) ∧ snore(y)
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If the domain contains a single ogre O1, then we introduce a new constant C1

and an atom Skolemf (O1, C1) to state that the Skolem function f maps the

constant O1 to the constant C1.

3.3.1.2 Existence

But how would the domain contain an ogre O1 in the case of the text

T: All ogres snore, ∀x.ogre(x) ⇒ ∃y.agent(y, x) ∧ snore(y)? Skolemization

does not introduce any variables for the universally quantified x. We still

introduce a constant O1 that is an ogre. This can be justified by pragmatics

since the sentence presupposes that there are, in fact, ogres (Strawson, 1950;

Geurts, 2007). We use the sentence’s parse to identify the universal quantifier’s

restrictor and body, then introduce entities representing the restrictor of the

quantifier. The sentence T: All ogres snore effectively changes to T: All ogres

snore, and there is an ogre. At this point, Skolemization takes over to generate

a constant that is an ogre. Sentences like T: There are no ogres is a special

case: For such sentences, we do not generate evidence of an ogre. In this

case, the non-emptiness of the domain is not assumed because the sentence

explicitly negates it.

3.3.1.3 Universal quantifiers in the hypothesis

The most serious problem with the DCA is that it affects the behavior

of universal quantifiers in the hypothesis. Suppose we know that T: Shrek is a

green ogre, represented with Skolemization as ogre(SH) ∧ green(SH). Then
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we can conclude that H: All ogres are green, because by the DCA we are only

considering models with this single constant which we know is both an ogre

and green. To address this problem, we again introduce new constants.

We want a hypothesis H: All ogres are green to be judged true iff there

is evidence that all ogres will be green, no matter how many ogres there are

in the domain. So H should follow from T2: All ogres are green but not from

T1: There is a green ogre. Therefore we introduce a new constant G for the

hypothesis and assert ogre(G) to test if we can then conclude that green(G).

The new evidence ogre(G) prevents the hypothesis from being judged true

given T1. Given T2, the new ogre G will be inferred to be green, in which case

we take the hypothesis to be true. Again, with a hypothesis such as H: There

are no ogres, we do not generate any evidence for the existence of an ogre.

3.3.2 Setting Prior Probabilities

The second adaptation of the logical form to PL is finding out how

to set the prior probabilities of ground atoms. Suppose we have an empty

text T , and the hypothesis H: A is an ogre, where A is a constant in the

system. Without any additional information, the worlds in which ogre(A) is

true are going to be as likely as the worlds in which the ground atom is false,

so ogre(A) will have a probability of 0.5. So without any text T , ground atoms

have a prior probability in PL that is not zero. This prior probability depends

mostly on the size of the set R of input formulas. The prior probability of

an individual ground atom can be influenced by a weighted rule, for example
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ogre(A) | −3, with a negative weight, sets a low prior probability on A being

an ogre. This is the second group of parameters that we encode in WT,H :

weights on ground atoms to be used to set prior probabilities.

Prior probabilities are problematic for our probabilistic encoding of nat-

ural language understanding problems. As a reminder, we probabilistically test

for entailment by computing the probability of the hypothesis given the text,

or more precisely P (H|T,KB,WT,H). However, how useful this conditional

probability is as an indication of entailment depends on the prior probability

of H, P (H|KB,WT,H). For example, if H has a high prior probability, then a

high conditional probability P (H|T,KB,WT,H) does not add much informa-

tion because it is not clear if the probability is high because T really entails

H, or because of the high prior probability of H. In practical terms, we would

not want to say that we can conclude from T: All princesses snore that H:

There is an ogre just because of a high prior probability for the existence of

ogres.

We discuss two suggestions on how to solve this problem and make

the probability P (H|T,KB,WT,H) less sensitive to P (H|KB,WT,H). The

first is to use the ratio between the conditional and the prior probability of

the hypothesis,
P (H|T,KB,WT,H)

P (H|KB,WT,H)
, with the intuition that the absolute value of

P (H|T,KB,WT,H) does not really matter, but what matters is how much

adding T changes the probability of H positively (indicating entailment) or

negatively (indicating contradiction). We also discuss the relation between

this ration and mutual information. The second option is to pick a par-
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ticular WT,H such that the prior probability of H is approximately zero,

P (H|KB,WT,H) ≈ 0, so that we know that any increase in the conditional

probability is an effect of adding T .

For the rest of this section, we argue why we believe the first option

is not a good fit for natural language understanding tasks we are interested

in, while the second is a better fit. Then we show how to set the world

configurations WT,H such that P (H|KB,WT,H) ≈ 0 by enforcing the closed-

world assumption (CWA). This is the assumption that all ground atoms have

very low prior probability (or are false by default).

3.3.2.1 Problems with the ratio

The first problem with the ratio approach is that its motivation does

not fit our intuitions of when a hypothesis should be entailed by a text. For

example for T: An ogre loves a princess, and H: An ogre loves a green princess,

T should not be entailing H because there is no evidence that the princess is

green. However, the probability of H conditioned on T increases dramatically

compared to the prior probability of H because T has evidence for a large part

of H. So this means that a high ratio is not always an indication of entailment.

There are also cases of entailment with a not very high ratio. Consider

for example T: No ogre snores, and H: No ogre snores loudly. T entails H,

and P (H|T,KB,WT,H) is greater than P (H|KB,WT,H), but not too much

greater because P (H|KB,WT,H) is already a high value. Together, these two

examples should demonstrate that the idea behind taking the ratio, that the
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degree to which conditioning on T changes the probability of H is an indicator

of degree of entailment, does not really fit the intuition of when a hypothesis

should be entailed.

The last problem with the ratio is that it is very sensitive to the prob-

lem size (length of T and H). That is, entailing pairs of different sizes have

different ratios. This makes reasoning with the ratio tricky. It could be possi-

ble to normalize the ratios given the problem size, but we did not explore this

direction.

Ratio and Mutual Information Mutual information (MI) is a measure of

dependence between two random variables. In our setting, it could be possible

to use the mutual information between T and H to signal entailment. Mutual

information is denoted by:

MI(H,T ) =
∑
h∈H

∑
t∈T

P (h, t) log
P (h, t)

P (h)P (t)

However, this formulation of mutual information is not appropriate for en-

tailment because it is symmetric, while entailment is asymmetric. The other

issue with this formulation is practicality considerations of calculating the joint

probability P (H,T ) in PL. Remember that T and H are PL formulas not indi-

vidual ground atoms. PL inference requires the explicit introduction of domain

constants, and our adaptations in section 3.3.1 shows how to introduce these

constants for a conditional probability P (H | T ), but it is not clear how to

introduce these constants for the joint probability P (H,T ).
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The MI equation can be rearranged to use conditional probabilities

instead of joints, and include the world configurations WT,H which are set

following section 3.3.1. The reformulation is:

MI(H,T ) =
∑
h∈H

∑
t∈T

P (h|t,WT,H)P (t,WT,H) log
P (h|t,WT,H)

P (h,WT,H)

Remember that WT,H is set such that T is True. As a result, this formula can

be simplified to:

MI(H,T ) =
∑
h∈H

P (h|T,WT,H) log
P (h|T,WT,H)

P (h,WT,H)

The ratio between the prior probability and conditional probability of H is

a part of the calculation of the MI and it inherits the issues with the ratio

discussed above. This makes MI another solution that does not work for

entailment.

3.3.2.2 Using the CWA to set the prior probability of the hypoth-
esis

The closed-world assumption (CWA) is the assumption that everything

is false unless stated otherwise. We translate it to our probabilistic setting as

saying that all ground atoms have very low prior probability. For most queries

H, setting the world configuration WT,H such that all ground atoms have

low prior probability is enough to achieve that P (H|KB,WT,H) ≈ 0 (not for

negated Hs, and this case is discussed below). For example, H: An ogre loves

a princess, in logic is:

H : ∃x, y, z. ogre(x) ∧ agent(y, x) ∧ love(y) ∧ patient(y, z) ∧ princess(z)

39



Having low prior probability on all ground atoms means that the prior prob-

ability of this existentially quantified H is close to zero.

We believe that this setup is more appropriate for probabilistic natural

language entailment for the following reasons. First, this aligns with our intu-

ition of what it means for a hypothesis to follow from a text: that H should

be entailed by T not because of general world knowledge. For example, if T:

An ogre loves a princess, and H: Texas is in the USA, then although H is

true in the real world, T does not entail H. Another example: T: An ogre

loves a princess, H: An ogre loves a green princess, again, T does not entail

H because there is no evidence that the princess is green, in other words, the

ground atom green(N) has very low prior probability. As we said above, we

construct the worlds over which PL reasons to encode the situation or setting

described by T . Anything that is not explicitly stated in T should be assumed

to be false by default. In the RTE task, this is an explicit part of the task

specification. In sentence similarity (STS), we would not want a known fact

like Texas is in the USA to be judged similar to every sentence. In question

answering (QA), a text should only count as an answer to a query if it actually

addresses the query.

The second reason is that with the CWA, the inference result is less

sensitive to the domain size (number of constants in the domain). In logical

forms for typical natural language sentences, most variables in the hypothesis

are existentially quantified. Without the CWA, the probability of an existen-

tially quantified hypothesis increases as the domain size increases, regardless
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of the text. This makes sense in the PL setting, because in larger domains

the probability that something exists increases. However, this is not what we

need for testing natural language queries, as the probability of the hypothesis

should depend on T and KB, not the domain size. With the CWA, what

affects the probability of H is the non-zero evidence that T provides and KB,

regardless of the domain size.

The third reason is computational efficiency. As discussed in Sec-

tion 2.3, PL first compute all possible groundings of a given set of weighted

formulas which can require significant amounts of memory. This is particularly

striking for problems in natural language semantics because of long formulas.

We show how to utilize the CWA to address this problem by reducing the

number of ground atoms that the system generates. We discuss the details in

section 5.5.

3.3.2.3 Setting the prior probability of negated H

While using the CWA is enough to set P (H|KB,WT,H) ≈ 0 for most

Hs, it does not work for negated H (negation is part of H). Assuming that

everything is false by default and that all ground atoms have very low prior

probability (CWA) means that all negated queries H are true by default. The

result is that all negated H are judged entailed regardless of T . For example,

T: An ogre loves a princess would entail H: No ogre snores. This H in logic

is:

H : ∀x, y. ogre(x)⇒ ¬(agent(y, x) ∧ snore(y))
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As both x and y are universally quantified variables in H, we generate evidence

of an ogre ogre(O) as described in section 3.3.1. Because of the CWA, O is

assumed to be does not snore, and H ends up being true regardless of T .

To set the prior probability of H to ≈ 0 and prevent it from being

assumed true when T is just uninformative, we construct a new rule A that

implements a kind of anti-CWA. A is formed as a conjunction of all the pred-

icates that were not used to generate evidence before, and are negated in H.

This rule A gets a positive weight indicating that its ground atoms have high

prior probability. As the rule A together with the evidence generated from H

states the opposite of the negated parts of H, the prior probability of H is

low, and H cannot become true unless T explicitly negates A. T is translated

into unweighted rule, which are taken to have infinite weight, and which thus

can overcome the finite positive weight of A. Here is a Neutral RTE example,

T: An ogre loves a princess, and H: No ogre snores. Their representations are:

T : ∃x, y, z. ogre(x) ∧ agent(y, x) ∧ love(y) ∧ patient(y, z) ∧ princess(z)

H: ∀x, y. ogre(x)⇒ ¬(agent(y, x) ∧ snore(y))

E: ogre(O)

A: agent(S,O) ∧ snore(S)|w = 1.5

E is the evidence generated for the universally quantified variables in H, and

A is the weighted rule for the remaining negated predicates. The relation

between T and H is Neutral, as T does not entail H. This means, we want
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P (H|T,KB,WT,H) ≈ 0, but because of the CWA, P (H|T,KB,WT,H) ≈ 1.

Adding A solves this problem and P (H|T,A,KB,WT,H) ≈ 0 because H is not

explicitly entailed by T .

In case H has existentially quantified variables that occur in negated

predicates, they need to be universally quantified in A for H to have a low

prior probability. For example, H: There is an ogre that is not green:

H : ∃x. ogre(x) ∧ ¬green(x)

A : ∀x. green(x)|w = 1.5

If one variable is universally quantified and the other is existentially quantified,

we need to do something more complex. Here is an example, H: An ogre does

not snore:

H : ∃x. ogre(x) ∧ ¬( ∃y. agent(y, x) ∧ snore(y) )

A : ∀v. agent(S, v) ∧ snore(S)|w = 1.5

Notes about how inference proceeds with the rule A added If H is

a negated formula that is entailed by T , then T (which has infinite weight)

will contradict A, allowing H to be true. Any weighted inference rules in the

knowledge base KB will need weights high enough to overcome A. So the

weight of A is taken into account when computing inference rule weights.

In addition, adding the rule A introduces constants in the domain that

are necessary for making the inference. For example, take T: No monster

snores, and H: No ogre snores, which in logic are:

T : ¬∃x, y. monster(x) ∧ agent(y, x) ∧ snore(y)
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H: ¬∃x, y. ogre(x) ∧ agent(y, x) ∧ snore(y)

A: ogre(O) ∧ agent(S,O) ∧ snore(S)|w = 1.5

KB: ∀x. ogre(x)⇒ monster(x)

Without the constants O and S added by the rule A, the domain would have

been empty and the inference output would have been wrong. The rule A

prevents this problem. In addition, the introduced evidence in A fits the idea

of “evidence propagation” mentioned above, (detailed in Section 5.5.2). For

entailing sentences that are negated, like in the example above, the evidence

propagates from H to T (not from T to H as in non-negated examples). In the

example, the rule A introduces an evidence for ogre(O) that then propagates

from the LHS to the RHS of the KB rule.

3.3.3 Evaluation

We evaluate the proposed adaptations on three entailment datasets.

The first is a synthetic dataset that exhaustively tests inference performance

on sentences with two quantifiers. The second is the RTE part of the SICK

dataset (Marelli et al., 2014). The third is FraCas (Cooper, Crouch, Van Eijck,

Fox, Van Genabith, Jaspars, Kamp, Milward, Pinkal, Poesio, et al., 1996).

3.3.3.1 Synthetic dataset

We automatically generate an entailment dataset that exhaustively test

inferences on sentences with two quantifiers. Each entailment pair (T , H) is
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generated following this format:

T : Qt1(Lt1, Qt2(Lt2, Rt2))

H : Qh1(Lh1, Qh2(Lh2, Rh2))

where

• Qx ∈ {some, all, no, not all}

• Lt1, Lh1 ∈ {man, hungry man} and Lt1 6= Lh1

• Lt2, Lh2 ∈ {food, delicious food} and Lt2 6= Lh2

• Rt2, Rh2 = eat

Informally, the dataset has all possible combinations of sentences with two

quantifiers. Also it has all possible combinations of monotonicity directions –

upward and downward – between Lt1 and Lh1 and between Lt2 and Lh2. The

dataset size is 1,024 RTE pairs. Here is an example of a generated RTE pair:

T: No man eats all food

H: Some hungry men eat not all delicious food

The dataset is automatically annotated for entailment decisions by normalizing

the logical forms of the sentences and then using standard monotonicity rules

on the bodies and restrictors of the quantifiers. 72 pairs out of the 1,024 are

entailing pairs, and the rest are non-entailing.
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System Accuracy False positives False negatives
Baseline (most common) 92.96% 0 72
Skolem 50.78% 472 32
Skolem + Existence 57.03% 440 0
Skolem + (∀ in H) 82.42% 140 40
Skolem + (∀ in H) + Prior 96.09% 0 40
Full system 100% 0 0

Table 3.1: Results of the Synthetic dataset on different configurations of the
system. The most common class is Non-entail. False positives and False
negatives results are counts out of 1,024

Our system computes P (H|T,KB,WT,H). The resulting probability

between 0 and 1 needs to be mapped to an Entail/Non-entail decision. In

this dataset, and because we do not have weighted inference rules, all output

probabilities greater than 0.9 denote Entail and probabilities less than 0.0

denote Non-entail.

Results Table 3.1 summarizes the results on the synthetic dataset in terms

of accuracy. The baseline always judges non-entailment. Ablation tests are as

follows. Skolem is a system that applies Skolemization to existentially quanti-

fied variables in the Text T (section 3.3.1.1) but none of the other adaptations.

Existence is a system that makes the existence assumption for universal quan-

tifiers in T (section 3.3.1.2). (∀ in H) is constant introduction for universal

quantifiers in the hypothesis (section 3.3.1.3). Finally, Prior is a system that

handles negation by setting the prior of ground atoms as discussed above in

section 3.3.2. The results in table 3.1 show the importance of each part of
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System Accuracy
Baseline (most common) 56.36%
Skolem 68.10%
Skolem + Existence 68.10%
Skolem + (∀ in H) 68.14%
Skolem + (∀ in H) + Prior 76.48%
Full system 76.52%

Table 3.2: Results of the SICK dataset. The most common class is Neutral

the proposed system. Skolemization and the Existence assumption eliminate

some false negatives from missing constants. All false positives are eliminated

when constants are introduced for universal quantifiers in the Hypothesis (∀ in

H) and when the priors are set to handle negation. The full system achieves

100% accuracy, showing that our formulation is perfectly adapting the logical

form for PL on these complex quantified sentences.

3.3.3.2 The SICK dataset

Pairs in SICK (as well as FraCas in the next section) are classified

into three classes, Entailment, Contradiction, and Neutral. As we explain

in section 5.2, we do this threeway classification using the two inferences:

P (H|T,KB,WT,H) and P (¬H|T,KB,WT,¬H).

Results Table 3.2 reports results on the SICK dataset, again in terms of

accuracy. Almost all sentences in the SICK dataset are simple existentially

quantified sentences except for a few sentences with an outer negation. Ac-

cordingly, the system with Skolemization basically achieves the same accuracy
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as when Existence and (∀ in H) are added. Handling negation in H effectively

improves the accuracy of our system by reducing the number of false positives.

3.3.3.3 The FraCas dataset

FraCas (Cooper et al., 1996)1 is a dataset of hand-built RTE pairs.

The dataset consists of 9 sections, each of which is testing a different set of

phenomena. For this work, we use sentences from the first section, which tests

quantification and monotonicity. However, we exclude pairs containing the

determiners “few”, “most”, “many” and “at least” because our system does not

currently have a representation for them. We evaluate on 46 pairs out of 74.23

Because of that, we cannot compare with previous systems that evaluate on

the whole section (MacCartney & Manning, 2008; Lewis & Steedman, 2013).

To map sentences to logical form, we use Boxer as discussed above. By

default, Boxer relies on C&C (Curran, Clark, & Bos, 2009) to get the CCG

parses of the sentences. Instead, we run Boxer on CCG parses produced by

EasyCCG (Lewis & Steedman, 2014) because it is more accurate on FraCas.

Like Lewis and Steedman (2013), we additionally test on gold-standard parses

to be able to evaluate our technique of handling quantifiers in the absence of

parser errors.

1We use the version by MacCartney and Manning (2007)
2The first section consists of 80 pairs, but like MacCartney and Manning (2007) we ignore

the pairs with an undefined result.
3The gold standard annotation for pair number 69 should be Neutral not Entail. We

changed it accordingly.
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System Gold parses System parses
Baseline (most common) 47.82% 47.82%
Skolem 50.00% 43.48%
Skolem + Existence 43.48% 36.96%
Skolem + (∀ in H) 63.04% 50.00%
Skolem + (∀ in H) + Prior 100.0% 84.78%
Full system 100.0% 84.78%

Table 3.3: Results of the FraCas dataset. The most common Entail. Accura-
cies are reported for gold parses and parses from a CCG parser.

For multi-sentence examples, we add a simple co-reference resolution

step that connects definite NPs across sentences. For example, the right to live

in Europe in T1 and T3 should corefer in the following example:

T1: Every European has the right to live in Europe

T2: Every European is a person

T3: Every person who has the right to live in Europe can travel freely within

Europe

We also added two rules encoding lexical knowledge, paraphrased as “a lot of

x⇒ x” and “one of x⇒ x” to handle one of the examples, as lexical coverage

is not the focus of our analysis.

Results Table 3.3 summarizes the results of our system for gold parses and

system parses. We see that the Existence assumption is not needed in this

dataset because it is constructed to test semantics and not presupposition.

Results with Existence are lower because without Existence, three cases (the

previous example is one of them) are correctly classified as Entail, but with
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Existence they are classified as Neutral. Without Existence the domain is

empty, and P (¬T |H) = 0 because ¬T , which is existentially quantified, is

trivially false. With Existence added, P (¬T |H) = 1 because the domain is

not empty, and the CWA is not handled. Also we see that, as in the two

previous experiments, setting the priors appropriately has the biggest impact.

With all components of the system added, and with gold parses, we get 100%

accuracy. With system parses, all results are lower, but the relative scores for

the different subsystems are comparable to the gold parse case.

3.4 Chapter Summary

This chapter discussed the logical form component of our semantic

representation. We discussed how we translate text to logical form using a

CCG parse and Boxer.

The natural language understanding tasks we are interested in can all

be solved using the more basic probabilistic entailment P (H|T,KB,WT,H)

which we construct and calculate using PL. However, the logical form need to

be adapted to PL because of the assumption of fixed domain size. We showed

how to set the domain size and instantiate enough constants in the domain for

the universal quantifiers to work properly. We also showed how to set the prior

probability of each ground atom for negation to work as expected. Finally, we

evaluated the logical form adaptations on three datasets and we show their

effectiveness.
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Chapter 4

Knowledge Base

The second component of our semantic representation is the knowledge

base. This chapter addresses the question of the automatic collection of a

weighted knowledge base from various linguistic resources. We will evaluate

the contributions of this chapter in later chapters that are dedicated to indi-

vidual tasks. All of the work presented in this chapter has been published in

(Beltagy et al., 2016)

4.1 Chapter Overview

Natural language understanding usually requires reasoning about the

relations between words and short phrases. This is called the lexical entailment

task; the task of finding if a lexical term (a word or a short phrase) entails

another (Kotlerman, Dagan, Szpektor, & Zhitomirsky-Geffet, 2010). Another

equally important question in language understanding is finding out which

pairs or lexical terms are relevant to a given inference. This latter is the focus

of this chapter.

In this chapter, we are given two pieces of text, a text T and a hypoth-

esis H representing a language understanding task, and the goal is to collect a
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knowledge base KB that contains the lexical information required to find the

relation between T and H. The KB is encoded as a set of “weighted” logical

rules.

Our knowledge base has a set of rules from pre-existing rule collections,

and we add all possibly matching rules to the pair T and H (Section 4.2). The

main limitation with existing collections or rules is that they are never com-

plete, and we always need more rules that do not exist in these collections. The

second group of rules are “on-the-fly” rules that are generated for a particular

text/hypothesis pair. We align the text and hypothesis and use the alignment

to determine additionally useful inference rules. Our alignment procedure

aligns the logical form of T and H not the textual T and H. It tries to find

an alignment between the “entities” in T and the entities in H. Rules can be

true or false, so we still need to weight them using a lexical entailment tool 1.

For example,

T : A kid is playing guitar

H: A woman is playing a musical instrument

Our alignment procedure will find that the relevant lexical rules are

r1: kid ⇒ woman | w1

r2: guitar ⇒ musical instrument | w2

1The lexical entailment classifier is the work of Stephen Roller and Pengxiang Cheng and
its details are presented in the paper (Beltagy et al., 2016).
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Then the lexical entailment tool should give the first rule a low weight while

giving the second rule a high weight. We use the rules extracted from the

training set as training data from the lexical entailment tool. This can be

roughly viewed as transforming the full entailment task into multiple smaller

lexical entitlements, then rely on PL to combine these little lexical entailment

decisions into the overall entailment decision.

The first alignment procedure is more suited for short text as in RTE

and STS, and it uses a variant of Robinson resolution (Robinson, 1965). The

second alignment algorithm is a graph-based alignment that it is more suitable

for the QA task which has long text. For readability, we leave the discussion

of the graph-based alignment to the QA chapter (section 7.3.1).

We will evaluate the contributions of this chapter; the precompiled

rules and the Robinson resolution alignment in the context of the RTE task

(chapter 5).

4.2 Precompiled Rules

The first group of rules is collected from existing databases. We collect

rules from WordNet (Princeton University, 2010) and the paraphrase collection

PPDB (Ganitkevitch et al., 2013). We use simple string matching to find the

set of rules that are relevant to a given text/hypothesis pair T and H. If the

left-hand side of a rule is a substring of T and the right-hand is a substring

of H, the rule is added, and likewise for rules with LHS in H and RHS in T .

Rules that go from H to T are important in case T and H are negated, e.g.
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T : No ogre likes a princess, H: No ogre loves a princess. The rule needed is

love ⇒ like which goes from H to T .

4.2.1 WordNet

WordNet (Princeton University, 2010) is a lexical database of words

grouped into sets of synonyms. In addition to grouping synonyms, it lists se-

mantic relations connecting groups. We represent the information on WordNet

as “hard” logical rules. The semantic relations we use are:

• Synonymy: ∀x. man(x)⇔ guy(x)

• Hypernymy: ∀x. car(x)⇒ vehicle(x)

• Antonymy: ∀x. tall(x)⇔ ¬short(x)

One advantage of using logic is that it is a powerful representation that can

effectively represent these different semantic relations.

4.2.2 Paraphrase collections

Paraphrase collections are precompiled sets of rules, e.g: a person riding

a bike⇒ a biker. We translate paraphrase collections, in this case PPDB (Gan-

itkevitch et al., 2013), to logical rules. We use the Lexical, One-To-Many and

Phrasal sections of the XL version of PPDB.

We use a simple rule-based approach to translate natural-language rules

to logic. First, we can make the assumption that the translation of a PPDB
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rule is going to be a conjunction of positive atoms. PPDB does contain some

rules that are centrally about negation, such as deselected ⇒ not selected, but

we skip those as the logical form analysis already handles negation. As always,

we want to include in KB only rules pertaining to a particular text/hypothesis

pair T and H. Say LHS ⇒ RHS is a rule such that LHS is a substring of

T and RHS is a substring of H. Then each word in LHS gets represented

by a unary predicate applied to a variable, and likewise for RHS – note that

we can expect the same predicates to appear in the logical forms L(T ) and

L(H) of the text and hypothesis. For example, if the rule is a person riding

a bike ⇒ a biker, then we get the atoms person(p), riding(r) and bike(b)

for the LHS, with variables p, r, b. We then add Boxer meta-predicates to

the logical form for LHS, and likewise for RHS. Say that L(T ) includes

person(A) ∧ ride(B) ∧ bike(C) ∧ agent(B,A) ∧ patient(B,C) for constants

A, B, and C, then we extend the logical form for LHS with agent(r, p) ∧

patient(r, b). We proceed analogously for RHS. This gives us the logical

forms: L(LHS) = person(p) ∧ agent(r, p) ∧ riding(r) ∧ patient(r, b) ∧ bike(b)

and L(RHS) = biker(k).

The next step is to bind the variables in L(LHS) to those in L(RHS).

In the example above, the variable k in the RHS should be matched with

the variable p in the LHS. We determine these bindings using a simple rule-

based approach: We manually define paraphrase rule templates for PPDB,

which specify variable bindings. A rule template is conditioned on the part-

of-speech tags of the words involved, or an X for variables with no words
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involved. In our example it is N1V2N3 ⇒ N1, which binds the variables of the

first N on the left to the first N on the right, unifying the variables p and

k. The final paraphrase rule is: ∀p, r, b. person(p) ∧ agent(r, p) ∧ riding(r) ∧

patient(r, b) ∧ bike(b)⇒ biker(p). In case some variables in the RHS remain

unbound, they are existentially quantified, e.g.: ∀p. pizza(p)⇒ ∃q. slice(p) ∧

of(p, q) ∧ pizza(q). Another common case is when a variable does not have

an involved word, for example staring at X ⇒ looking at X which has the

template V1X2 ⇒ V1X2 which in logic will be: ∀s, x.star(s)∧at(s, x)∧look(s)∧

at(s, x). Appendix B list all templates with examples. Any rule that does not

match one of these templates is discarded because it is usually a result of

misparse.

Each PPDB rule comes with a set of similarity scores which we need to

map to a single MLN weight. We use the simple log-linear equation suggested

by Ganitkevitch et al. (2013) to map the scores into a single value:

weight(r) = −
N∑
i=1

λi logϕi (4.1)

where, r is the rule, N is number of the similarity scores provided for the rule

r, ϕi is the value of the ith score, and λi is its scaling factor. For simplicity,

following Ganitkevitch et al. (2013), we set all λi to 1. To map this weight

to a final MLN rule weight, we use the weight-learning method discussed in

Section 5.5.3.
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4.2.3 Handcoded rules

We also add a few handcoded rules to the KB that we do not get

from other resources. We only add several lexical rules where one side of the

rule is the word nobody, e.g: nobody ⇔ ¬ somebody and nobody ⇔ ¬ person.

Appendix C lists all handcoded rules.

4.3 On-the-fly rules from Alignment

Existing collections of rules are never complete, and we always need

more rules that do not exist in these collections. The second group of rules we

generate are “on-the-fly” rules that generated for a particular text/hypothesis

pair. A naive way of generating on-the-fly rules would be to generate rules

matching any word or short phrase in T with any word or short phrase in

H. This includes many unnecessary rules, for example for T: An ogre loves

a princess and H: A monster likes a lady, the system generates rules linking

ogre to lady.

A better way would be to find an alignment between words and phrases

in T and words or phrases in H guided by the logic, and the rules we need are

the rules dictated by the alignment. We have two alignment procedures, one

relies on a variant of Robinson resolution (Robinson, 1965), and the other uses

graph matching. The first (which we discuss below) is more suitable for short

sentences with relatively similar structure (as in the RTE and STS datasets

we use for evaluation). The graph-based alignment is more suitable for longer

more diverse sentence as in QA, so for readability, we leave its discussion to the
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QA chapter (section 7.3.1). Finally, it briefly mentions the lexical entailment

classifier we use to weight the rules.

4.3.1 Robinson Resolution Alignment

Robinson resolution is a theorem proving method for testing unsatisfia-

bility that has been used in some previous RTE systems Bos (2009). It assumes

a formula in conjunctive normal form (CNF), a conjunction of clauses, where

a clause is a disjunction of literals, and a literal is a negated or non-negated

atom. More formally, the formula has the form ∀x1, . . . , xn
(
C1 ∧ . . . ∧ Cm),

where Cj is a clause and it has the form L1 ∨ . . . ∨ Lk where Li is a literal,

which is an atom ai or a negated atom ¬ai. The resolution rule takes two

clauses containing complementary literals, and produces a new clause implied

by them. Writing a clause C as the set of its literals, we can formulate the

rule as:

C1 ∪ {L1} C2 ∪ {L2}
(C1 ∪ C2)θ

where θ is a most general unifier of L1 and ¬L2.

4.3.1.1 Alignment algorithm

In our case, we use a variant of Robinson resolution to remove the

parts of text T and hypothesis H that the two sentences have in common.

Instead of one set of clauses, we use two: one is the CNF of T , the other is

the CNF of ¬H. The resolution rule is only applied to pairs of clauses where

one clause is from T , the other from H. When no further applications of the
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resolution rule are possible, we are left with remainder formulas rT and rH. If

rH contains the empty clause, then H follows from T without inference rules.

Otherwise, inference rules need to be generated. In the simplest case, we form

a single inference rule as follows. All variables occurring in rT or rH are

existentially quantified, all constants occurring in rT or rH are un-Skolemized

to new universally quantified variables, and we infer the negation of rH from

rT . That is, we form the inference rule

∀x1 . . . xn∃y1 . . . ym. rTθ ⇒ ¬rHθ

where {y1 . . . ym} is the set of all variables occurring in rT or rH, {a1, . . . an}

is the set of all constants occurring in rT or rH and θ is the inverse of a

substitution θ : {a1 → x1, . . . , an → xn} for distinct variables x1, . . . , xn.

For example, consider T: An ogre loves a princess and H: A monster

loves a princess. This gives us the following two clause sets. Note that all

existential quantifiers have been eliminated through Skolemization. The hy-

pothesis is negated, so we get five clauses for T but only one for H.

T : {ogre(A)}, {princess(B)}, {love(C}, {agent(C,A)}, {patient(C,B)}
¬H : {¬monster(x),¬princess(y),¬love(z),¬agent(z, x),¬patient(z, y)}

The resolution rule can be applied 4 times. After that, C has been unified

with z (because we have resolved love(C) with love(z)), B with y (because we

have resolved princess(B) with princess(y)), and A with x (because we have

resolved agent(C,A) with agent(z, x)). The formula rT is ogre(A), and rH is

¬monster(A). So the rule that we generate is:

∀x.ogre(x)⇒ monster(x)
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The modified Robinson resolution thus does two things at once: It removes

words that T and H have in common, leaving the words for which inference

rules are needed, and it aligns words and phrases in T with words and phrases

in H through unification.

One important refinement to this general idea is that we need to dis-

tinguish content predicates that correspond to content words (nouns, verb

and adjectives) in the sentences from non-content predicates such as Boxer’s

meta-predicates agent(X, Y ). Resolving on non-content predicates can result

in incorrect rules, for example in the case of T: A person solves a problem and

H: A person finds a solution to a problem, in CNF:

T : {person(A)}, {solve(B)}, {problem(C)}, {agent(B,A)},
{patient(B,C)}

¬H : {¬person(x),¬find(y),¬solution(z),¬problem(u),¬agent(y, x),
¬patient(y, z),¬to(z, u)}

If we resolve patient(B,C) with patient(y, z), we unify the problem C with the

solution z, leading to a wrong alignment. We avoid this problem by resolving

on non-content predicates only when they are fully grounded (that is, when

the substitution of variables with constants has already been done by some

other resolution step involving content predicates).

In this variant of Robinson resolution, we currently do not perform any

search, but unify two literals only if they are fully grounded or if the literal

in T has a unique literal in H that it can be resolved with, and vice versa.

This usually works if T and H are short and have relatively similar structure

as in the RTE and STS datasets we use. For longer sentences, we use the
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graph-based alignment discussed in section 7.3.1.

Rule Refinement The modified Robinson resolution algorithm gives us one

rule per text/hypothesis pair. This rule needs postprocessing, as it is some-

times too short (omitting relevant context), and often it combines what should

be several inference rules.

In many cases, a rule needs to be extended. This is the case when

it only shows the difference between text and hypothesis is too short and

needs context to be usable as a distributional rule, for example: T: A dog is

running in the snow, H: A dog is running through the snow, the rule we get

is ∀x, y. in(x, y) ⇒ through(x, y). Although this rule is correct, it does not

carry enough information to compute a meaningful vector representation for

each side. What we would like instead is a rule that infers “run through snow”

from “run in snow”.

Remember that the variables x and y were Skolem constants in rT

and rH, for example rT : in(R, S) and rH : through(R, S). We extend the

rule by adding the content words that contain the constants R and S. In

this case, we add the running event and the snow back in. The final rule is:

∀x, y. run(x) ∧ in(x, y) ∧ snow(y)⇒ run(x) ∧ through(x, y) ∧ snow(y). Here

is another example: T: A person is pouring olive oil into a pot , H: A person

is pouring cooking oil into a pot, and the rule is ∀x. olive(x) ⇒ cooking(x)

which we extend to ∀x. olive(x) ∧ oil(x)⇒ cooking(x) ∧ oil(x)

In some cases however, extending the rule adds unnecessary complexity,
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for example: T: A man is jumping into an empty pool, H: A man is jumping

into a full pool and the rule is ∀x. empty(x)⇒ full(x), and extending it gives

∀x. empty(x)∧ pool(x)⇒ full(x)∧ pool(x) which makes the rule unnecessary

complex. In other examples, part of the rule better be extended and another

part not, for example: T: A man is eating a bowl of cereal, H: A man is eating

cereal, and the rule is: ∀x, y, zpatient(x, y)∧bowl(y)∧of(y, z)⇒ patient(x, z),

which better be extended by adding the cereal but not adding the eating event.

At the moment, we have no general algorithm for when to extend a

rule, which would have to take context into account. At this time, we extend

all rules as described above.

Sometimes, long rules need to be split. A single pair T and H gives

rise to one single pair rT and rH, which often conceptually represents multiple

inference rules. So we split rT and rH as follows. First, we split each formula

into disconnected sets of predicates. For example, consider T: The doctors

are healing a man, H: The doctor is helping the patient which leads to the

rule ∀x, y. heal(x) ∧man(y) ⇒ help(x) ∧ patient(y). The formula rT is split

into heal(x) and man(y) because the two literals do not have any variable in

common and there is no relation (such as agent()) to link them. Similarly, rH

is split into help(x) and patient(y). If any of the splits has more than one verb,

we split it again, where each new split contains one verb and its arguments.

After that, we create new rules that link any part of rT to any part of

rH with which it has at least one variable in common. So for our example we

get ∀x heal(x)⇒ help(x) and ∀y man(y)⇒ patient(y).
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There are cases where splitting the rule does not work, for example

with A person, who is riding a bike ⇒ A biker . Here, splitting the rule and

using person ⇒ biker loses crucial context information.

4.3.1.2 Rules as lexical entailment dataset

The output from the previous steps is a set of rules {r1, ..., rn} for each

pair T and H. From these rules, we would like to learn how to evaluate un-

seen rules. We can use rules extracted from the training RTE examples as a

dataset to train a lexical entailment classifier (section 4.3.2) that can evaluate

unseen rules. Computing inference-rule training data from RTE data requires

deriving labels for individual rules from the labels on RTE pairs (Entailment,

Contradiction and Neutral). The Entailment cases are the most straightfor-

ward. Knowing that T ∧ r1 ∧ ... ∧ rn ⇒ H, then it must be that all ri are

entailing. We automatically label all ri of the entailing pairs as entailing rules.

For Neutral pairs, we know that T ∧ r1∧ ...∧ rn ; H, so at least one of

the ri is non-entailing. We experimented with automatically labeling all ri as

non-entailing, but that adds a lot of noise to the training data. For example,

if T: A man is eating an apple and H: A guy is eating an orange, then the

rule man ⇒ guy is entailing, but the rule apple ⇒ orange is non-entailing.

So we automatically compare the ri from a Neutral pair to the entailing rules

derived from entailing pairs. All rules ri found among the entailing rules from

entailing pairs are assumed to be entailing (unless n = 1, that is, unless we

only have one rule), and all other rules are assumed to be non-entailing. We
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found that this step improved the accuracy of our system. To further improve

the accuracy, we performed a manual annotation of rules derived from Neutral

pairs, focusing only on the rules that do not appear in Entailing. We labeled

rules as either entailing or non-entailing. In our experiments with the SICK

dataset, from around 5,900 unique rules, we found 737 to be entailing.

For Contradicting pairs, we make a few simplifying assumptions that fit

almost all such pairs in RTE datasets. In most of the contradiction pairs, one

of the two sentences T or H is negated. For pairs where T or H has a negation,

we assume that this negation is negating the whole sentence, not just a part

of it. We first consider the case where T is not negated, and H = ¬Sh. As T

contradicts H, it must hold that T ⇒ ¬H, so T ⇒ ¬¬Sh, and hence T ⇒ Sh.

This means that we just need to run our modified Robinson resolution with

the sentences T and Sh and label all resulting ri as entailing.

Next we consider the case where T = ¬St while H is not negated. As

T contradicts H, it must hold that ¬St ⇒ ¬H, so H ⇒ St. Again, this

means that we just need to run the modified Robinson resolution with H as

the “Text” and St as the “Hypothesis” and label all resulting ri as entailing.

The last case of contradiction is when both T and H are not negated,

for example: T: A man is jumping into an empty pool, H: A man is jumping

into a full pool, where empty and full are antonyms. As before, we run the

modified Robinson resolution with T and H and get the resulting ri. Similar

to the Neutral pairs, at least one of the ri is a contradictory rule, while the

rest could be entailing or contradictory rules. As for the Neutral pairs, we
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take a rule ri to be entailing if it is among the entailing rules derived so far.

All other rules are taken to be contradictory rules. We did not do the manual

annotation for these rules because they are few.

Dataset We publish a dataset of the on the fly rules rules that our system

constructs when running on SICK, along with gold standard annotations. The

training and testing sets are extracted from the SICK training and testing

sets respectively. The total number of rules (training + testing) is 12,510,

only 10,213 are unique with 3,106 entailing rules, 177 contradictions and 6,928

neutral. This is a valuable resource for testing lexical entailment systems,

containing a variety of entailment relations (hypernymy, synonymy, antonymy,

etc.) that are actually useful in an end-to-end RTE system.

4.3.2 Lexical Entailment Classifier

For natural language understanding, we usually need lexical knowledge

to reason about the relation between words and short phrases. Lexical entail-

ment is the task of deciding if a lexical term (word or short phrase) entails

another lexical term (Kotlerman et al., 2010). Lexical entailment systems are

important within natural language understanding systems because it is not

possible to collect all lexical information of a language.

The simplest form of lexical entailment is using cosine similarity of the

vectors of the lexical terms. The issue with cosine similarity is that it is sym-

metric, which does not really match the task. For example, we want to find
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that car is a vehicle but vehicle is not a car. Therefor, lexical entailment

tools are usually implemented as supervised classifiers with various linguistics

features extracted from the left hand side and right hand side of the rule. To

give this classifier the ability to generalized to unseen vocabulary (which is a

basic requirement for lexical entailment), the classifier uses the vector repre-

sentations of the lexical terms and learns how to use them to signal entailment.

The classifier’s confidence is usually used as a weight indicating the strength

of the rule.

We use the lexical entailment classifier developed by Roller and Cheng

discussed in the paper (Beltagy et al., 2016). They use a set of linguistic

features to train a logistic regression classifier. The features are word form

features like POS and lemma, WordNet features and distributional features.

We use their lexical entailment classifier in our RTE experiments. Given a

trained lexical entailment classifier, we run it on unseen rules and use the

classifier confidence as a rule weight.

4.4 Chapter Summary

This chapter discussed the details of our knowledge base component

which encompasses all the lexical knowledge relevant to a particular text and

a hypothesis. It discussed the collection of precompiled rules from WordNet

and PPDB. It also discussed our Robinson resolution alignment algorithm, and

how we use it to find relevant on-the-fly rules. Contributions of this chapter

will be evaluated later in chapter 5 with the RTE task evaluation.
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Chapter 5

RTE Task

In prior chapters, we discussed how to translate sentences to logical

form, how to adapt logical form to PL and how to collect a relevant weighted

knowledge base. These were mostly task independent discussions. This chap-

ter, on the other hand, discusses RTE specific details. It shows how to rep-

resent the RTE task in PL, how to perform efficient MLN inference for RTE,

and it evaluates this work on one of the RTE datasets. The work presented in

this chapter has been published in (Beltagy & Mooney, 2014; Beltagy et al.,

2016).

5.1 Chapter Overview

In prior chapters, we showed how to translate sentences to logical form,

and how to adapt the logical form to PL in the form of the probabilistic

representation P (H|T,KB). We also showed how to build the KB for a given

T and H.

This chapter discusses the details of how we perform the RTE task

using PL. The RTE task is finding if T entails, contradicts or neutral to H.

The first part of this chapter shows how to find the relation between T and
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H using the more basic entailment problem P (H|T,KB). It also discusses

a special entity coreference assumptions that is necessary for the detection

of contradictions. Finally, it shows how to use multiple parses to reduce the

impact of parsing errors.

The second part of this chapter is inference. We discuss why MLNs are

more appropriate for the task that PSL, then explain the details of our MLN

implementation. We present an efficient MLN inference algorithm that calcu-

lates probability of complex logical forms not individual ground atoms at it is

the case in standard MLN implementations. It also performs an optimization

that utilizes the CWA to reduce size of graphical model and make inference

more tractable. It also uses a simple weight learning procedure to map the

weights in the KB to MLN weights.

Finally, this work is evaluated on the RTE task. We evaluate the run-

time of the inference optimizations, and evaluate the effect of other components

of our system as well. Our results show a state of the art performance on the

SICK dataset.

5.2 Representing RTE

In the RTE task, we are given a text T and a hypothesis H and asked

for a categorical decision between three categories, Entailment, Contradiction,

and Neutral. In standard logic, we determine entailment by checking whether

T ∧KB ⇒ H, or its probabilistic version P (H|T,KB) (section 3). A decision

about Entailment/Neutral can be made by learning a threshold on the prob-
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ability P (H|T,KB). To differentiate between Contradiction and Neutral, we

additionally calculate the probability P (¬H|T,KB). If P (H|T,KB) is high

while P (¬H|T,KB) is low, this indicates entailment. The opposite case indi-

cates contradiction. If the two probabilities values are close, this means T does

not significantly affect the probability of H, indicating a neutral case. To learn

the thresholds for these decisions, we train an SVM classifier with LibSVM’s

default parameters (Chang & Lin, 2001) to map the two probabilities to the

final decision. The learned mapping is always simple and reflects the intuition

described above.

5.3 Coreference for RTE contradiction

This section discusses a special entity coreference assumption that is

important for the detection of contradictions. Here is an RTE example for

demonstration: T: An ogre does not snore and H: An ogre snores. Strictly

speaking T and H are not contradictory because it is possible that the two

sentences are referring to different ogres. Although the sentence uses an ogre

not the ogre, RTE dataset annotators usually make the assumption that the

ogre in H refers to the same ogre in T . In the SICK textual entailment

dataset, many of the pairs that annotators have labeled as contradictions are

only contradictions if we assume that some expressions corefer across T and

H.

For the above examples, here are the logical formulas with coreference
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in the updated ¬H:

T : ∃x. ogre(x) ∧ ¬(∃y. agent(y, x) ∧ snore(y))

Skolemized T : ogre(O) ∧ ¬(∃y. agent(y,O) ∧ snore(y))

H : ∃x, y. ogre(x) ∧ agent(y, x) ∧ snore(y)

¬H : ¬∃x, y. ogre(x) ∧ agent(y, x) ∧ snore(y)

updated ¬H : ¬∃y. ogre(O) ∧ agent(y,O) ∧ snore(y)

Notice how the constant O representing the ogre in T is used in the updated¬H

instead of the quantified variable x.

We use a rule-based approach to determining coreference between T

and H, considering both coreference between entities and coreference of events.

Two items (entities or events) corefer if they 1) have different polarities, and

2) share the same lemma or share an inference rule. Two items have different

polarities in T and H if one of them is embedded under a negation and the

other is not. For the example above, ogre in T is not negated, and ogre in ¬H

is negated, and both words are the same, so they corefer.

A pair of items in T and H under different polarities can also corefer

if they share an inference rule. In the example of T: A monster does not

snore and H: An ogre snores, we need monster and ogre to corefer. For cases

like this, we rely on the inference rules found using the modified Robinson

resolution method discussed in Section 4.3.1. In this case, it determines that

monster and ogre should be aligned, so they are marked as coreferring. Here

is another example: T: An ogre loves a princess, H: An ogre hates a princess.

In this case, loves and hates are marked as coreferring.
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5.4 Using multiple parses

In our framework that uses probabilistic inference followed by a clas-

sifier that learns thresholds (section 5.2), we can easily incorporate multiple

parses to reduce errors due to misparsing. If we can obtain multiple parses

for a text T and hypothesis H, and hence multiple logical forms, this should

increase our chances of getting a good estimate of the probability of H given

T .

The default CCG parser that Boxer uses is C&C (Clark & Curran,

2004). This parser can be configured to produce multiple ranked parses (Ng

& Curran, 2012); however, we found that the top parses we get from C&C

are usually not diverse enough and map to the same logical form. Therefore,

in addition to the top C&C parse, we use the top parse from another recent

CCG parser, EasyCCG (Lewis & Steedman, 2014).

So for a natural language text NT and hypothesis NH , we obtain two

parses each, say ST1 and ST2 for T and SH1 and SH2 for H, which are trans-

formed to logical forms T1, T2, H1, H2. We now compute probabilities for all

possible combinations of representations of NT and NH : the probability of H1

given T1, the probability of H1 given T2, and conversely also the probabilities

of H2 given either T1 or T2. When we use multiple parses in this manner,

the thresholding classifier is simply trained to take in all of these probabilities

as features. In section 5.6.2, we evaluate using C&C alone and using both

parsers.
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5.5 MLN Inference

We believe that MLNs are more appropriate for the RTE task than

PSL for various reasons. PSL conjunction uses Lukasiewicz’s equation I(l1 ∧

l1) = max{0, I(l1) + I(l2)− 1} which is more strict than taking the minimum.

This equation works fine for short formulas, but for long lists of conjuncted

predicates (as it is the case in the hypothesis), value of most formulas will

be zero. Another issue with PSL is that PSL has a few syntax constraints

on the logical formulas it accepts. These constraints do not allow text and

hypothesis with negations and universal quantifiers. Because of these issues,

we find MLNs to be more suitable for the RTE task.

MLN inference is usually intractable, and using MLN implementations

“out of the box” does not work for our application. This section discusses

an MLN implementation that supports complex queries and uses the closed

world assumption (CWA) to decrease problem size, hence making inference

more efficient. Finally, this section discusses a simple weight learning scheme

to learn global scaling factors for weighted rules in KB from different sources.

5.5.1 Complex formulas as queries

Current implementations of MLNs like Alchemy (Kok et al., 2005) do

not allow queries to be complex formulas, they can only calculate probabilities

of ground atoms. This section discusses an inference algorithm for arbitrary

query formulas.
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The standard work-around Although current MLN implementations can

only calculate probabilities of ground atoms, they can be used to calculate the

probability of a complex formula through a simple work-around. The complex

query formula H is added to the MLN using the hard formula:

H ⇔ result(D) | ∞ (5.1)

where result(D) is a new ground atom that is not used anywhere else in the

MLN. Then, inference is run to calculate the probability of result(D), which

is equal to the probability of the formula H. However, this approach can be

very inefficient for some queries. For example, consider the following query:

H : ∃x, y, z. ogre(x) ∧ agent(y, x) ∧ love(y) ∧ patient(y, z) ∧ princess(z)
(5.2)

This form of an existentially quantified formula with a list of conjunctively

joined atoms is very common in the inference problems we are addressing, so

it is important to have efficient inference for such queries. In general, logical

forms of natural language sentences usually comprise large numbers of exis-

tentially quantified variables and only rarely any other quantifiers. However,

using this particular H in Equation 5.1 results in a very inefficient MLN. For

the direction H ⇐ result(D) of the double-implication in Equation 5.1, the

existentially quantified formula is replaced with a large disjunction over all pos-

sible combinations of constants for variables x, y and z (Gogate & Domingos,

2011). Generating this disjunction, converting it to clausal form, and running

inference on the resulting ground network becomes increasingly intractable as

the number of variables and constants grow.
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New inference method Instead, we propose an inference algorithm to di-

rectly calculate the probability of complex query formulas. In MLNs, the

probability of a formula is the sum of the probabilities of the possible worlds

that satisfy it. Gogate and Domingos (2011) show that to calculate the prob-

ability of a formula H given a set of probabilistic rules R (in our case of

calculating P (H|T,KB), R = T ∧KB), it is enough to compute the partition

function Z of R with and without H added as a hard formula:

P (H | R) =
Z(R ∪ {(H,∞)})

Z(R)
(5.3)

Therefore, all we need is an appropriate algorithm to estimate the partition

function Z of a Markov network. Then, we construct two ground networks, one

with the query and one without, and estimate their Zs using that estimator.

The ratio between the two Zs is the probability of H.

We tried to estimate Z using a harmonic-mean estimator on the sam-

ples generated by MC-SAT (Poon & Domingos, 2006), a popular and generally

effective MLN inference algorithm, but we found that the estimates are highly

inaccurate as shown by Venugopal and Gogate (2013). Instead we use Sam-

pleSearch (Gogate, 2009) to estimate the partition function. SampleSearch is

an importance sampling algorithm that has been shown to be effective when

there is a mix of probabilistic and deterministic (hard) constraints, a funda-

mental property of the inference problems we address. Importance sampling

in general is problematic in the presence of determinism, because many of

the generated samples violate the deterministic constraints, and they get re-

jected. Instead, SampleSearch uses a base sampler to generate samples then
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uses backtracking search with a SAT solver to modify the generated sample if

it violates the deterministic constraints. We use an implementation of Sam-

pleSearch that uses a generalized belief propagation algorithm called Iterative

Join-Graph Propagation (IJGP) (Mateescu, Kask, Gogate, & Dechter, 2010)

as a base sampler. This version is available online (Gogate, 2014).

For cases like the example H in Equation 5.2, we need to avoid gener-

ating a large disjunction because of the existentially quantified variables. So

we replace H with its negation ¬H, replacing the existential quantifiers with

universals, which are easier to ground and perform inference upon. Finally, we

compute the probability of the query P (H) = 1−P (¬H). Note that replacing

H with ¬H cannot make inference with the standard work-around faster, be-

cause with ¬H, the direction ¬H ⇒ result(D) suffers from the same problem

of existential quantifiers that we previously had with H ⇐ result(D).

5.5.2 Inference Optimization using the Closed-World Assumption

This section explains why our MLN inference problems are compu-

tationally difficult, then explains how the closed-world assumption (CWA)

(section 3.3.2) can be used to reduce the problem size and speed up inference.

In the inference problems we address, formulas are typically long, es-

pecially the query H. The number of ground clauses of a first-order formula

is exponential in the number of variables in the formula, it is O(cv), where c

is number of constants in the domain and v is number of variables in the for-

mula. For a moderately long formula, the number of resulting ground clauses
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is infeasible to process.

We have argued before (section 3.3.2) that for probabilistic inference

problems based on natural language text/hypothesis pairs, it makes sense to

make the closed world assumption: If we want to know if the query is true in

the situation or setting laid out in the text, we should take as false anything

not said in the text. In our probabilistic setting, the CWA amounts to giving

low prior probabilities to all ground atoms unless they can be inferred from

the text and knowledge base. However, we found that a large fraction of the

ground atoms cannot be inferred from the text and knowledge base, and their

probabilities remain very low. As an approximation, we can assume that this

small probability is exactly zero and these ground atoms are false, without

significantly affecting the probability of the query. This will remove a large

number of the ground atoms, which will dramatically decrease the size of the

ground network and speed up inference.

We assume that all ground atoms are false by default unless they are

can be inferred from the text and the knowledge base T ∧KB. For example:

T : ogre(O) ∧ agent(S,O) ∧ snore(S)

KB : ∀x. ogre(x)⇒ monster(x)

H : ∃x, y. monster(x) ∧ agent(y, x) ∧ snore(y)

Ground atoms {ogre(O), snore(S), agent(S,O)} are not false because they can

be inferred from T . Ground atom monster(O) is also not false because it can

be inferred from T ∧KB. All other ground atoms are false.
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Here is an example of how this simplifies the query H. H is equivalent

to a disjunction of all its possible groundings:

H : (monster(O) ∧ agent(S,O) ∧ snore(S))

∨(monster(O) ∧ agent(O,O) ∧ snore(O))

∨(monster(S) ∧ agent(O, S) ∧ snore(O))

∨(monster(S) ∧ agent(S, S) ∧ snore(S))

Setting all ground atoms to false except the inferred ones, then simplifying

the expression, we get: H : monster(O) ∧ agent(S,O) ∧ snore(S). Notice

that most ground clauses of H are removed because they are False. We are

left just with the ground clauses that potentially have a non-zero probability.

Dropping all False ground clauses leaves an exponentially smaller number of

ground clauses in the ground network. Even though the inference problem

remains exponential in principle, the problem is much smaller in practice, such

that inference becomes feasible. In our experiments with the SICK dataset,

the number of ground clauses for the query ranges from 0 to 19,209 with mean

6. This shows that the CWA effectively reduces the number of ground clauses

for the query from millions (or even billions) to a manageable number. With

the CWA, the average number of inferrable ground atoms (ignoring ground

atoms from the text) ranges from 0 to 245 with an average of 18.

Algorithm and Implementation Algorithm 5.1 describes the details of

the grounding process with the CWA applied. Lines 1 and 2 initialize the

set of inferrable ground atoms with the evidence and any ground atom in
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Algorithm 5.1 MLN grounding with the CWA

Input: R: {K ∪ Q} set of first-order clauses, where K is the set of clauses
from the input MLN, and Q is the set of clauses from the query.

Input: E: set of evidence (list of ground atoms)
Output: : a set of ground clauses with the inference optimization applied

1: Add all E to the inferrable ground atoms
2: Add all ground atoms in R to inferrable
3: repeat
4: for all r ∈ R do
5: p = propagate inferrable ground atoms between predicates sharing

the same variable
6: add propagated ground atoms (p) to inferrable
7: if p not empty then
8: changed = true
9: end if

10: end for
11: until not changed
12: Generate False evidence for ground atoms 6∈ inferrable and add them to

E
13: GC = Use MLN’s grounding process to ground clauses R
14: for all gc ∈ GC do
15: gc = gc after substituting values of known ground atoms in E
16: if gc = True then
17: drop gc
18: else if gc = False then
19: if gc is a grounding of one of Q’s clauses then
20: Terminate inference with Z = 0
21: else if gc is hard clause then
22: Error inconsistent MLN
23: else drop gc
24: end if
25: else keep gc in GC
26: end if
27: end for
28: return GC
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R. Lines 3-11 repeatedly propagate evidence until there is no change in the

inferrable set. Line 12 generates False evidence for all un-inferrable ground

atoms. Line 13 generates all ground clauses, then lines from 14-31 substitute

values of the known ground atoms in the ground clauses. Alchemy drops all

True and False ground clauses, but this does not work when the goal of the

inference algorithm is to calculate Z. Lines from 16-30 describe the change.

True ground clauses are dropped, but not False ground clauses. If a False

ground clause is a grounding of one of Q’s clauses, then Z = 0 and there is

no need to perform inference since there is no way to satisfy Q given E and

R. If there is False hard clause, then this MLN is inconsistent. Otherwise, the

False ground clause can be dropped. The resulting list of ground clauses GC

are then passed to the inference algorithm to estimate Z.

5.5.3 Weight Learning

Our KB is a collection of weighted rules and the weights are all in the

interval [0, 1] (this is the case for classification confidence scores and PPDB

weights) where 0 indicating a completely ineffective rules and 1 indicating a

hard rule. MLN weights are in the interval [0, inf] (negative weighted rules

in MLNs are actually replaced with the negation of the rule and a positive

weight), and the weights will be exponentiated before being used in the graph-

ical model that MLNs construct. This makes it an important question to find

out how to map the [0, 1] weights from the knowledge base to [0, inf] MLN

weights. We do not have the same problem in PSL or our implementation for
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PL inference and we can use the [0, 1] weights directly.

Another reason for weight learning is that our KB contains weighted

rules from different sources, and these weights are not necessarily on the same

scale, for example one source could produce systematically larger weights than

the other. Weight learning will help map them into uniform weights. This is

not MLN specific, but we implemented and evaluated it only on our RTE on

MLN experiments.

As with Zirn, Niepert, Stuckenschmidt, and Strube (2011), we learn a

single mapping parameter for each source of rules that functions as a scaling

factor:

MLNweight = scalingFactor × ruleWeight (5.4)

We use a simple grid search to learn the scaling factors that optimize perfor-

mance on the RTE training data.

Given that all rule weights are in [0, 1], we also try the following map-

ping:

MLNweight = scalingFactor × log(
ruleWeight

1− ruleWeight
) (5.5)

This function assures that for an MLN that only contains a single rule LHS ⇒

RHS |MLNweight, it is the case that P (RHS|LHS) = ruleWeight, given

that scalingFactor = 1.
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5.6 Evaluation

This section evaluates our system on the RTE task. It first evaluates

the runtime of the described MLN inference algorithm, then it evaluates the

impact of the knowledge base, multiple parses, coreferences and weight learning

on RTE accuracy. We use the SICK dataset (section 2.4) in both experiments.

5.6.1 Inference Evaluation

This section evaluates the two inference processes mentioned above;

the support of a complex query formula and the inference optimization using

CWA. The goal of this section is to evaluate the computational efficiency of the

proposed inference algorithm, therefor, we do not employ most of the ideas

discussed above and we leave that for the next section. We translate text

to logical form using C&C and Boxer, apply the Skolemization adaptation

(section 3.3.1.1) and we use a KB of the precompiled rules only. We do not

employ the rest of the logical adaptations (section 3.3.1), the RTE coreferences

for contradiction (section 5.3) and multiple parses (section 5.4).

Systems Compared

• mln: This system uses MC-SAT (Richardson & Domingos, 2006) for

inference without any modifications. It uses the work-around explained

in section 5.5.1 to calculate the probability of a complex query formula.

• mln+qf : This system uses our SampleSearch inference to directly cal-
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culate the probability of a query formula (qf).

• mln+cwa: This system uses MC-SAT with the work-around for com-

puting the probability of a complex query formula, but uses our CWA-

based inference optimization.

• mln+qf+cwa: This is our full proposed inference algorithm, supporting

a query formula (qf) and doing the inference optimization (cwa)

We use a 30 minute timeout for each MLN inference run in order to make

the experiments tractable. If the system times out, it outputs -1 indicating

an error, and the classifier learns to assign it to one of the three RTE classes.

Usually, because the Neutral class is the largest, timeouts are classified as

Neutral.

Evaluation metrics

• Accuracy: Percentage of correct classifications (Entail, Contradict, or

Neutral)

• CPU Time (completed runs): Average CPU time per run for the com-

pleted runs only, i.e. timed out runs are not included.

• Timeouts: Percentage of inferences that timeout after 30 minutes.
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Accuracy CPU Time Timeouts
mln 56.94% 2min 27s 95.78%
mln+qf 68.74% 1min 51s 29.64%
mln+cwa 65.80% 10s 2.52%
mln+qf+cwa 71.80% 7s 2.12%

Table 5.1: Systems’ performance, accuracy, CPU Time for completed runs
only, and percentage of Timeouts

Results and Discussion Table 5.1 summarizes the results of the experi-

ments. First, for all systems, the CPU time (average time per run for com-

pleted runs only) is very short compared to the length of the timeout (30

minutes). This shows the exponential nature of the inference algorithms, ei-

ther the problem is small enough to finish in a few minutes, or if it is slightly

larger, it fails to finish in reasonable time.

Comparing the systems, results clearly show that the base system, mln,

is not effective for the type of inference problems that we are addressing, almost

all of the runs timed out. System mln+qf shows the impact of being able to

calculate the probability of a complex query directly. It significantly improves

the accuracy, and it lowers the number of timeouts; however, the number of

timeouts is still large. System mln+cwa shows the impact of the inference

optimization, demonstrating that it makes inference significantly faster, since

the number of uninferrable ground atoms in our application is large compared

to the total number of ground atoms. However, the accuracy of mln+cwa is

lower than that of mln+qf, since calculating the probability of a query directly

is more accurate than the standard work-around. Finally, mln+qf+cwa is
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both more accurate and faster than the other systems, clearly demonstrating

the effectiveness of our overall approach.

5.6.2 RTE and Knowledge Base Evaluation

This section evaluates the knowledge base (chapter 4) in the context of

the RTE task. It also evaluates the RTE specific adaptations mentioned in this

chapter, namely coreferences, multiple parses and weight learning. Evaluation

shows that our full implementation achieves a state-of-the-art results on the

SICK RTE dataset.

We evaluate the following system parts. The logic is our basic MLN-

based logic system that computes two inference probabilities (section 5.2). It

includes all logical form adaptations mentioned in chapter 3 and it uses the in-

ference algorithm presented in section 5.5. The coref is coreference resolution

to identify contradictions (section 5.3), and the multiparse signals the use of

two parsers, the top C&C parse and the top EasyCCG parse (section 5.4).

We also evaluate different configurations of the knowledge base. The

rr is a knowledge base containing rules extracted using Robinson resolution

alignment 4.3.1 and weighted using the lexical entailment classifier 4.3.2. The

ppdb component adds rules from PPDB paraphrase collection (Section 4.2.2).

The wlearn component learns a scaling factor for ppdb rules, and another

scaling factor for the rr rules that maps the classification confidence scores

to MLN weights (Section 5.5.3). Without weight learning, the scaling factor

for ppdb is set to 1, and all rr rules are used as hard rules (infinite weight).
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Components Enabled Train Acc. Test Acc.
logic 72.1 71.7
+ coref 73.8 73.4
+ coref + ppdb 75.3 74.8
+ coref + ppdb + wlearn 76.5 76.3
+ coref + ppdb + wlearn + wn 78.8 78.4
+ coref + ppdb + wlearn + wn + handcoded 79.2 78.8
+ coref + ppdb + wlearn + wn + handcoded + multiparse 80.8 80.4

Table 5.2: Ablation experiment for the system components without rr

The wlearn log component is similar to wlearn but uses equation 5.5, which

first transforms a rule weight to its log odds. The wn component adds rules

from WordNet (Section 4.2.1). In addition, we have a few handcoded rules

(Section 4.2.3). Like wn, the components hyp and mem repeat information

that is used as features for entailment rules classification but is not always

picked up by the classifier. As the classifier sometimes misses hypernyms, hyp

marks all hypernymy rules as entailing (so this component is subsumed by

wn), as well as all rules where the left-hand side and the right-hand side are

the same. (The latter step becomes necessary after splitting long rules derived

by our modified Robinson resolution; some of the pieces may have equal left-

hand and right-hand sides.) The mem component memorizes all entailing

rules seen in the training set of rr.

Sometimes inference takes a long time, so we set a 2 minute timeout

for each inference run. If inference does not finish processing within the time

limit, we terminate the process and return an error code. About 1% of the

dataset times out.
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Ablation Experiment without rr Because rr has the most impact on

the system’s accuracy, and when enabled suppresses the contribution of the

other components, we evaluate the other components first without rr. In the

following section, we add the rr rules. Table 5.2 summarizes the results of this

experiment. The results show that each component plays a role in improving

the system accuracy. Our best accuracy without rr is 80.4%.

Each rule set (ppdb, wn, handcoded) improves accuracy by reducing

the number of false negatives. We also note that applying weight learning

(wlearn) to find a global scaling factor for PPDB rules makes them more

useful. The learned scaling factor is 3.0. When the knowledge base is lacking

other sources, weight learning assigns a high scaling factor to PPDB, giving it

more influence throughout. When rr is added in the following section, weight

learning assigns PPDB a low scaling factor because rr already includes a large

set of useful rules, such that only the highest weighted PPDB rules contribute

significantly to the final inference.

The last piece we tested is the use of multiple parses (multiparse).

Many of the false negatives are due to misparses. Using two different parses

reduces the impact of the misparses, improving the system accuracy.

Ablation Experiment with rr In this experiment, we first use rr as a

knowledge base, then incrementally add the other system components. Table

5.3 summarizes the results. First, we note that adding rr to the knowledge

base KB significantly improves the accuracy from 73.4% to 83.0%. This is
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Components Enabled Train Acc. Test Acc.
logic + coref 73.8 73.4
logic + coref + rr 84.0 83.0
+ handcoded 84.6 83.2
+ handcoded + multiparse 85.0 83.9
+ handcoded + multiparse + hyp 85.6 83.9
+ handcoded + multiparse + hyp + wlearn 85.7 84.1
+ handcoded + multiparse + hyp + wlearn log 85.9 84.3
+ handcoded + multiparse + hyp + wlearn log + mem 93.4 85.1
+ handcoded + multiparse + hyp + wlearn log + mem + ppdb 93.4 84.9
current state of the art (Lai & Hockenmaier, 2014) – 84.6

Table 5.3: Ablation experiment for the system components with rr, and the
best performing configuration

higher than what ppdb and wn achieved without rr. Adding handcoded

still improves the accuracy somewhat.

Adding multiparse improves accuracy, but interestingly, not as much

as in the previous experiment (without rr). The improvement on the test set

decreases from 1.6% to 0.7%. Therefore, the rules in rr help reduce the impact

of misparses. Here is an example to show how: T: An ogre is jumping over a

wall, H: An ogre is jumping over the fence which in logic are:

T : ∃x, y, z. ogre(x) ∧ agent(y, x) ∧ jump(y) ∧ over(y, z) ∧ wall(z)

H: ∃x, y, z.ogre(x)∧agent(y, x)∧jump(y)∧over(y)∧patient(y, z)∧wall(z)

T should entail H (strictly speaking, wall is not a fence but this is a positive

entailment example in SICK). The modified Robinson resolution yields the

following rule:
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F : ∀x, y.jump(x)∧over(x, y)∧wall(y)⇒ jump(x)∧over(x)∧patient(x, y)∧

wall(y)

Note that in T , the parser treats over as a preposition, while in H, jump

over is treated as a particle verb. A lexical rule wall ⇒ fence is not enough

to get the right inference because of this inconsistency in the parsing. The

rule F reflects this parsing inconsistency. When F is translated to text for

the entailment classifier, we obtain jump over wall ⇒ jump over fence, which

is a simple phrase that the entailment classifier addresses without dealing

with the complexities of the logic. Without the modified Robinson resolution,

we would have had to resort to collecting “structural” inference rules like

∀x, y. over(x, y)⇒ over(x) ∧ patient(x, y).

Table 5.3 also shows the impact of hyp and mem, two components that

in principle should not add anything over rr, but they do add some accuracy

due to noise in the training data of rr.

Weight learning results are the rows wlearn and wlearn log. Both

weight learning components help improve the system’s accuracy. It is inter-

esting to see that even though the SICK dataset is not designed to evaluate

”degree of entailment”, it is still useful to keep the rules uncertain (as opposed

to using hard rules) and use probabilistic inference. Results also show that

wlearn log performs slightly better than wlearn.

Finally, adding ppdb does not improve the accuracy. Apparently, rr

already captures all the useful rules that we were getting from ppdb. It is
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interesting to see that simple distributional information can subsume a large

paraphrase database like PPDB.

The system comprising logic, cwa, coref, multiparse, rr, hand-

coded, hyp, wlearn log, and mem achieves a state-of-the-art accuracy score

of 85.1% on the SICK test set.

5.7 Chapter Summary

This chapter discussed the details of how we perform the RTE task

using PL. We perform the RTE task using two PL inferences, the first is

checking if the hypothesis can be entailed, and the second is checking if the

negation of the hypothesis can be entailed. We also discussed an implicit

coreference assumption that is usually being made, and we discussed how to

add it to our logical form. In addition, we used multiple parser to reduce

parsing errors.

On the inference side, we showed an MLN inference algorithm that

calculates probabilities of complex logical queries not just individual ground

atoms, and it employs an inference optimization based on CWA that makes

inference more tractable.

We evaluated the proposed inference algorithm and showed a dramat-

ical performance improvement. We also used this chapter to evaluate the

knowledge base discussed in chapter 4 in the context of the RTE task. Our

task evaluation shows that using the full implementation of our system achieves
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a state of the art results on the SICK dataset.
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Chapter 6

STS Task

The main goal of this chapter is to show that PL can be used to perform

the STS task, and it discusses the details of this implementation. It shows how

to represent the STS task in PL, then discusses how to solve this PL inference

problem using MLNs and PSL. The work presented in this chapter has been

published in (Beltagy et al., 2013, 2014).

6.1 Chapter Overview

The third component of our semantic representation is inference. We

discussed the first two in chapters 3 and 4. This chapter mainly focuses on

how to do inference for the STS task.

We show that we can view the STS task as two entailments, one entail-

ment is entailing the second sentence from the first, and the other is entailing

the first sentence from the second. However, we found this view of STS a lot

more “strict” than how the task is defined, and what we actually need is a

form of “partial” entailment where we assign partial credit if a part of the hy-

pothesis is entailed. In the following sections, we present inference algorithms

that support this form of inference.
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We implemented PL inference for STS on MLNs and on PSL. In MLNs,

we use standard MLN inference algorithms but we change the encoding of the

hypothesis H to allow for partial entailment. In PSL, we define a new con-

junction operator that is less strict that logical conjunction, and it also allows

for partial entailments. This new conjunction operator requires a different

grounding procedure than what PSL provides, which we develop.

Finally, we evaluate the two proposed inference procedures on three

STS datasets. Our experiments show that PSL performs much better than

MLNs when evaluated on the STS task.

6.2 Representing STS

In the STS task, we are given two sentences, S1 and S2. The STS task

can be viewed as two entailment, one from S1 to S2 and one from S2 and

S1. As a text and hypothesis, we need the two inferences P (S1|S2, KB) and

P (S2|S1, KB). To produce a final similarity score, we train a regressor to learn

the mapping between the two probabilities to the overall similarity score.

One issue with viewing STS as two entitlements is that the STS is a

lot more “relaxed” that the RTE task. For example, S1: “A man is driving

fast” and S2: “A man is driving a car”, which in logic are

S1: ∃x0, e1. man(x0) ∧ agent(e1, x0) ∧ drive(e1) ∧ fast(e1)

S2: ∃x0, e1, x2.man(x0)∧agent(e1, x0)∧ drive(e1)∧ patient(e1, x2)∧ car(x2)
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S1 does not entail S2 because there is no evidence for a car and S2 does not

entail S1 because there is no evidence that the driving is fast. However,

humans find these sentences to be quite similar because they share a man

and driving event. It looks like annotators rated the data points in this task

for a form of partial entailment where they give partial credit if part of the

hypothesis is entailed. The following sections show how to support this form

of inference in MLNs and PSL.

6.3 MLN inference

We showed in section 6.2 how to represent STS as an inference problem

in the form P (H|T,KB) and argued for the need of a form of partial entail-

ments. In MLNs, we can replace the deterministic logical conjunction with

a different way of combining evidence. We chose to use the average evidence

combiner for MLNs introduced by Natarajan, Khot, Lowd, Tadepalli, Kerst-

ing, and Shavlik (2010). To use the average combiner, the full logical form

is divided into smaller clauses (which we call mini-clauses), then the com-

biner averages their probabilities. In case the formula is a list of conjuncted

predicates, a mini-clause is a conjunction of a single-variable predicate with a

relation predicate (as in the example below). In case the logical form contains

a negated sub-formula, the negated sub-formula is also a mini-clause. For

the inference problem P (S2|S1, KB) above, the hypothesis S2 after dividing
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clauses for the average combiner looks like this:

man(x0) ∧ agent(e1, x0)⇒ result(x0, e1, x2) | w

drive(e1) ∧ agent(e1, x0)⇒ result(x0, e1, x2) | w

drive(e1) ∧ patient(e1, x2)⇒ result(x0, e1, x2) | w

car(x2) ∧ patient(e1, x2)⇒ result(x0, e1, x2) | w

(6.1)

where result becomes the query predicate. Here, result has all of the variables

in the clause as arguments in order to maintain the binding of variables across

all of the mini-clauses. The weights w are the following function of n, the

number of mini-clauses (4 in the above example):

w =
1

n
× log(

α

1− α
) (6.2)

where α is a value close to 1 that is set to maximize performance on the training

data. Setting w this way produces a probability of α for the result() in cases

that satisfy the antecedents of all mini-clauses. For the example above, the

antecedents of the first two mini-clauses are satisfied, while the antecedents of

the last two are not since the premise provides no evidence for an object of the

verb drive. The similarity is then computed to be the maximum probability

of any grounding of the result predicate, which in this case is around α
2
.

The average combiner is very memory consuming since the number of

arguments of the result() predicate can become large (there is an argument

for each individual and event in the sentence). Consequently, the inference

algorithm needs to consider a combinatorial number of possible groundings of

the result() predicate, making inference very slow.
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6.4 PSL inference

For several reasons, we believe PSL is a more appropriate PL tool for

STS than MLNs. First, it is explicitly designed to support efficient infer-

ence, therefore it scales better to longer sentences with more complex logical

forms. Second, it is also specifically designed for computing similarity between

complex structured objects rather than determining PL entailment. In fact,

the initial version of PSL (Broecheler, Mihalkova, & Getoor, 2010) was called

Probabilistic Similarity Logic, based on its use of similarity functions. This

initial version was shown to be very effective for measuring the similarity of

noisy database records and performing record linkage (i.e. identifying database

entries referring to the same entity, such as bibliographic citations referring to

the same paper).

This section explains how we adapt PSL’s inference to be more suitable

for the STS task. As mentioned above, we need a form of partial entailment

with a relaxed conjunction to fit the STS task. PSL does not support any

of that “out of the box”, so we develop a relaxed conjunction, and make the

required changes to the optimization problem and the grounding technique.

6.4.1 Relaxed Conjunction

As mentioned above, Lukasiewicz’s formula for conjunction is very re-

strictive and does not work well for STS. Therefore, we replace it with a new

averaging interpretation of conjunction that we use to interpret the hypothesis
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H. The truth value of the proposed average function is defined as:

I(p1 ∧ .... ∧ pn) =
1

n

n∑
i=1

I(pi) (6.3)

where pi is one of the conjuncted ground atoms. This averaging function is

linear, and the result is a valid truth value in the interval [0, 1], therefore this

change is easily incorporated into PSL without changing the complexity of

inference which remains a linear-programming problem.

6.4.2 Heuristic Grounding

Grounding is the process of instantiating the variables in the quantified

rules with concrete constants in order to construct the nodes and links in the

final graphical model. In principle, grounding requires instantiating each rule

in all possible ways, substituting every possible constant for each variable in

the rule. However, this is a combinatorial process that can easily result in an

explosion in the size of the final network (same problem in MLN). Therefore,

PSL employs a “lazy” approach to grounding that avoids the construction of

irrelevant groundings. If there is no evidence for one of the antecedents in a

particular grounding of a rule, then the normal PSL formula for conjunction

guarantees that the rule is trivially satisfied (I(r) = 1) since the truth value of

the antecedent is zero. Therefore, its distance to satisfaction is also zero, and it

can be omitted from the ground network without impacting the result of MPE

inference. This approach has similar effect as the MLN inference optimization

using the closed-world assumption from section 5.5.2.
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However, this technique does not work once we switch to using averag-

ing to interpret the query. For example, given the rule ∀x.p(x)∧q(x)⇒ t() and

only one piece of evidence p(C) there are no relevant groundings because there

is no evidence for q(C), and therefore, for normal PSL, I(p(C) ∧ q(C)) = 0

which does not affect I(t()). However, when using averaging with the same evi-

dence, we need to generate the grounding p(C)∧q(C) because I(p(C)∧q(C)) =

0.5 which does affect I(t()).

One way to solve this problem is to eliminate lazy grounding and gen-

erate all possible groundings. However, this produces an intractably large net-

work. Therefore, we developed a heuristic approximate grounding technique

that generates a subset of the most impactful groundings. Pseudocode for this

heuristic approach is shown in algorithm 6.1. Its goal is to find constants that

participate in ground atoms with high truth value and preferentially use them

to construct a limited number of groundings of the query rule.

The algorithm takes the antecedents of a rule (in this case, the query

formula Q) employing averaging conjunction as input. It also takes the ground-

ing limit which is a threshold on the number of groundings to be returned. The

algorithm uses several subroutines, they are:

• Ant(vi): given a variable vi, it returns the set of rule antecedent atoms

containing vi. E.g, for the rule: a(x) ∧ b(y) ∧ c(x), Ant(x) returns the

set of atoms {a(x), c(x)}.

• Const(vi): given a variable vi, it returns the list of possible constants
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Algorithm 6.1 PSL heuristic grounding for STS

Input: rbody = a1 ∧ .... ∧ an: antecedent of a rule with average interpretation
of conjunction

Input: V : set of variables used in rbody
Input: Ant(vi): subset of antecedents aj containing variable vi
Input: Const(vi): list of possible constants of variable vi
Input: Gnd(ai): set of ground atoms of ai.
Input: GndConst(a, g, v): takes an atom a, grounding g for a, and variable

v, and returns the constant that substitutes v in g
Input: gnd limit: limit on the number of groundings

1: for all vi ∈ V do
2: for all C ∈ Const(vi) do
3: score(C) =

∑
a∈Ant(vi)(max I(g)) for g ∈ Gnd(a) ∧

GndConst(a, g, vi) = C
4: end for
5: sort Const(vi) on scores, descending
6: end for
7: return For all vi ∈ V , take the Cartesian-product of the sorted Const(vi)

and return the top gnd limit results

that can be used to instantiate the variable vi.

• Gnd(ai): given an atom ai, it returns the set of all possible ground atoms

generated for ai.

• GndConst(a, g, v): given an atom a and grounding g for a, and a variable

v, it finds the constant that substitutes for v in g. E.g, assume there is

an atom a = ai(v1, v2), and the ground atom g = ai(A,B) is one of its

groundings. GndConst(a, g, v2) would return the constant B since it is

the substitution for the variable v2 in g.

Lines 1-6 loop over all variables in the rule. For each variable, lines 2-5 con-
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struct a list of constants for that variable and sort it based on a heuristic score.

In line 3, each constant is assigned a score that indicates the importance of

this constant in terms of its impact on the truth value of the overall grounding.

A constant’s score is the sum, over all antecedents that contain the variable

in question, of the maximum truth value of any grounding of that antecedent

that contains that constant. Pushing constants with high scores to the top of

each variable’s list will tend to make the overall truth value of the top ground-

ings high. Line 7 computes a subset of the Cartesian product of the sorted

lists of constants, selecting constants in ranked order and limiting the number

of results to the grounding limit.

One point that needs to be clarified about this approach is how it relies

on the truth values of ground atoms when the goal of inference is to actually

find these values. PSL’s inference is actually an iterative process where in

each iteration a grounding phase is followed by an optimization phase (solving

the linear program). This loop repeats until convergence, i.e. until the truth

values stop changing. The truth values used in each grounding phase come

from the previous optimization phase. The first grounding phase assumes only

the ground atoms in the evidence set have non-zero truth values.

6.5 Evaluation

This section shows result of evaluating our PL on STS and compares

MLNs and PSL. We compare the accuracy of their predictions and their com-

putational efficiency. We also evaluate the effect of PSL grounding limit on
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the results.

Experimental setup We translate text to logical form using C&C and

Boxer. We use a simple knowledge base KB of WordNet rules in addition

to lexical rules generated between all pairs of works in T and H, and rules are

weighted using cosine similarity of vectors of the words in each rule.

Our experiments used the following three STS datasets:

• SICK: the same dataset we used for RTE experiments but annotated

with human similarity scores (section 2.4).

• msr-vid: Microsoft Video Paraphrase Corpus from the competition of

SemEval 2012 (Agirre et al., 2012). The dataset consists of 1,500 pairs of

short video descriptions collected using crowdsourcing (Chen & Dolan,

2011) and subsequently annotated for the STS task. Half of the dataset

is for training, and the second half is for testing.

• msr-par: Microsoft Paraphrase Corpus from SemEval 2012 (Agirre

et al., 2012). The dataset is 5,801 pairs of sentences collected from

news sources (Dolan, Quirk, & Brockett, 2004). Then, for STS 2012,

1,500 pairs were selected and annotated with similarity scores. Half of

the dataset is for training, and the second half is for testing.

We evaluate the performance of MLNs and PSL using Pearson correlation.

We also compare their computational efficiency in terms of average CPU time
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per run and number of timeouts. We terminate inference after 10 minutes and

count number of pairs that did not finish processing within the time limit. In

case of a timeout, we return an error code. We train a regressor to map the

two inference results to a final similarity score. The regressor also decides how

to deal with the error code. We used Additive Regression (Friedman, 1999)

model with WEKA’s default parameters (Hall, Frank, Holmes, Pfahringer,

Reutemann, & Witten, 2009).

PSL MLN state of the art
Corr. runtime Corr. runtime timeouts Corr.

msr-vid 0.79 8s 0.63 1m 31s 8.8% 0.87
msr-par 0.53 30s 0.16 11m 49s 97.1% 0.68
SICK 0.74 10s 0.47 4m 24s 35.82% 0.82

Table 6.1: Pearson correlation, average CPU time per STS pair, and percent-
age of timed-out pairs in MLN with a 10 minute time limit. PSL grounding
limit is set to 10,000 groundings.

Results Table 6.1 summarizes results of evaluating our experiments. Results

show that PSL performance is a lot better that MLNs and it is an order of

magnitude faster. One obvious reason for MLNs to perform worse than PSL

is that MLNs are not computationally efficient and a large percentage of the

dataset times out, while PSL always finished processing within the time limit.

The other reason could be that MLN results are sensitive to the parameters

of the average combiner.

As an attempt to improve MLN inference, it should be possible to

apply the MLN inference optimization based on the CWA that we developed
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for the RTE task (section 5.5.2). This has the potential to significantly reduce

the size of the ground network and make MLN inference faster. It will also

make the comparison with PSL more fair, because PSL is already enforcing

a comparable technique (lazy grounding) that plays a similar role in reducing

the problem size. This is left for future work.

Our results are a bit lower than the state of the art results, but our

results can potentially improve with more rules in the knowledge base. Notice

that we only used the precompiled rules in this experiment, and our results

might improve if we add on-the-fly rules. We have seen the same behavior

with the RTE experiments.

PSL grounding limit experiments We also evaluate the effect of changing

the grounding limit on both Pearson correlation and CPU time for the msr-

par dataset. Most of the sentences in msr-par are long, which results is large

number of groundings, and limiting the number of groundings has a visible

effect on the overall performance. In the other two datasets, the sentences are

fairly short, and the full number of groundings is not large; therefore, changing

the grounding limit does not significantly affect the results.

Figures 6.1a and 6.1b show the effect of changing the grounding limit

on Pearson correlation and CPU time. As expected, as the grounding limit

increases, accuracy improves but CPU time also increases. However, note that

the difference in scores between the smallest and largest grounding limit tested

is not large, suggesting that the heuristic approach to limit groundings is quite
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effective.

(a) Correlation score

(b) CPU time

Figure 6.1: Effect of PSL’s grounding limit on performance for the msr-par
dataset

103



6.6 Chapter Summary

This section evaluated our semantic representation on the STS task. We

showed how to view STS as PL inferences, and how to adapt PL inferences to

the partial entailment of STS. We implemented it on MLNs and PSL and our

experiments show that PSL is a better fit for the task; it is much faster and

more accurate that MLNs for STS.
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Chapter 7

QA Task

This chapter address our implementation for the QA task (introduced in

section 2.4.3). The diversity and complexity of the text in QA datasets imposes

additional challenges that are not in RTE and STS, and that require revisiting

how we translate text to logical form, how we generate the knowledge base and

the tools we use for inference. For the logical form, we present a new approach

to translate dependency trees to logical form. For the knowledge base, we

discuss a new graph-based alignment technique to generate on-the-fly rules.

For the inference, this chapter explains the QA inference requirements and

why MLNs and PSL are not very appropriate for the task. Then, it discusses

a graphical model formulation for the problem and an inference algorithm to

answer questions encoded in this graphical model. Finally, it presents and

discusses the results of our evaluation.

7.1 Chapter Overview

In previous chapters, we discussed the translation of text to logical

form and the collection of a KB, however, for the QA task, these need to

be revisited. The text in the QA task is a lot longer and more complex and
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diverse than what we had in RTE and STS, which means that we need more

robust techniques for the translation to logical form and to build the KB.

We use a rule-based technique to translate dependency parses (usually more

accurate than CCG parses) to logical form. For the KB, we use a graph-based

alignment algorithm to align T and H and extract the relevant rules.

The objective of the inference in QA is different than that for RTE and

STS. Given the logical form of the document T and query H(x) and the KB,

inference should find an entity e from T such that it maximizes probability of

H(e) given the information in T and KB (for notation consistency, we refer

to document and query with T and H). In addition to finding the answer

entity for the question, there are two more requirements for the inference to

fit the QA task. The first is that we need not just the answer entity, but

the full assignment of entities from T to H. This full assignment is useful

because we can project it back and find out which KB rules were relevant

to producing the assignment. We need these rules for the training of the

lexical entailment classifier (section 7.3.1). The second inference requirement

is partial entailment -as in the STS task-, which is giving partial credit for the

entailed part of H. This is important because it is often the case that parts of

T can not be easily entailed (even for the right answer), and we want to give

partial credit in this case.

This inference can be implemented in MLNs and PSL to some extent,

but they are not the most appropriate tools for the task. Partial entailment

in MLNs is not efficient as we have shown in our STS experiments. For PSL,
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both requirements can be implemented with some effort. Partial entailment

can be implemented with some changes to the averaging equation we used

for STS, and finding the set of relevant rules can be found by inspecting the

inference procedure. We have a preliminary implementation that does the

first. However, we found that it would be easier to develop our own graphical

model formulation for the task than modifying PSL inference. For every T ,

H(x) and KB, we formulate a graphical model that encodes all possible ways

of entailing H from T then we develop a search procedure that finds the best

one.

Finally, we evaluate our implementation on one of the QA datasets.

Our implementation is more than two orders of magnitude faster than our

preliminary PSL implementation and it is a lot more accurate. However, we

found that our results are limited by the accuracy of the lexical entailment

classifier (which is not the focus of this work), and that we can achieve strong

results with better lexical entailment classification.

7.2 Logical form

In section 3.2, we mentioned that we use Boxer to translate text to

logical form and that Boxer runs on top of a CCG parse of the text. However,

because of the complexity and diversity of the text in the QA task, the current

CCG parsers are not very accurate. In this section we present an alternative

approach to transform dependency parses to logical form. Dependency parsers

are currently more accurate and mature than CCG parsers, which makes the
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resulting logical form more robust. However, this logical form is less expressive

because it does not capture all the linguistic phenomena that Boxer represents.

The main limitation of this logical representation is that it fails to represent

any phenomena that requires scope, e.g: negation (don’t, no ... ), general-

ized quantifiers (few, most, all ..) and relative clauses (forgot to, said that

...). Reddy, Täckström, Collins, Kwiatkowski, Das, Steedman, and Lapata

(2016) recently introduced the same idea but with a few implementational dif-

ferences. The main difference is that they have special rules for the translation

of conjunctions, relative clauses and Wh questions.

Figure 7.1: Dependency parse tree (Chen & Manning, 2014)

Translating dependency parses to logical forms A dependency parse

is a structure that analyzes the relations between words in a sentence (Metzler,

Noreault, Richey, & Heidorn, 1984). Words are connected with directed arrows

points from a “head” word to a word that modifies it. Figure 7.1 shows an

example dependency parse. The word faster modified the word moving. The

dependency parse has a root which is usually the main verb in the sentence.

In this example, it is the verb moving. Each dependency relation (arrow) has

a name indicating the type of modification.
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In our implementation, we use Stanford Dependency Parse (Chen &

Manning, 2014) with Universal Dependencies. Universal dependencies are a

special dependency standard that uses the same set of dependency relations

for all languages. It has 42 dependency relations and 17 part-of-speech tags.

Universal dependencies allow for language-specific relation sub-types. English

has 7 additional relation sub-types.

Each dependency relation points from the “governor” word (head) to

the “dependent” word (modifies the head). To translate a dependency parse

to logical form, we iterate over all dependency relations starting from the root,

and for each relation we greedily decide either to drop the dependent word,

use the variable of the governor word for it, or introduce a new variable. The

relations are split into three sets, DROP, MERGE and NEW, each set corresponds

to one of the decisions. The relation root is a special case.

Here is the procedure in more details. Given a relation rel, a governor

word gov and a dependent word dep, do one of the following:

• if rel = “root”, then introduce a new variable v for gov. This adds the

predicate gov(v) to the logical form

• if rel ∈ DROP, then drop dep. This does not change the logical form (e.g

for punctuation)

• if rel ∈ MERGE, then get the variable u used for gov, and use it for dep.

This adds the predicate dep(u) to the logical form (e.g for adjectives)
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• if rel ∈ NEW, then get the variable u used for gov, introduce a new

variable v for dep and add rel connecting u and v. This adds the

predicates dep(u) ∧ rel(u, v) to the logical form (e.g for subjects)

The sets of relations mentioned above are:

DROP: det, det:predet, neg, case, dislocated, remnant, discourse, aux, auxpass,

cop, mark, punct, cc, cc:preconj

MERGE: nmod:npmod, amod, advmod, compound, compound:prt, name, mwe,

foreign, goeswith

NEW: nsubj, nsubjpass, dobj, iobj, csubj, csubjpass, ccomp, xcomp, nummod,

appos, nmod, nmod:poss, nmod:tmod, acl, acl:relcl, advcl, list, parataxis,

reparandum, vocative, expl, conj, dep

For the dependency parse in figure 7.1, we get the logical form:

∃v1, v2, v3. moving(v1) ∧ faster(v1) ∧ even(v1) ∧ tmod(v1, v2) ∧ time(v2)

∧around(v2) ∧ tmod(v1, v3) ∧ they(v3)

7.3 Knowledge base

In section 4.3, we introduced the idea of alignment to generate on-the-

fly rules, then presented an alignment technique using Robinson resolution.

This alignment and rule extraction approach works reasonably well for short

sentences with relatively similar structure (like in the RTE and STS datasets

we used) but it is not suitable for longer more diverse sentences or documents

as in the QA task. The main limitation of the Robinson resolution alignment

110



is that it assumes there is a unique way of aligning T and H and it matches

entities of T with entities of H only when the words associated with the entities

uniquely match. With longer text, these assumptions do not hold; there might

be multiple valid alignments from T to H, and entities of H might have many

potential matches in T . This section discusses a graph-based alignment that

views T and H as graphs, finds an alignment between the nodes of two graphs,

extracts rules from this node alignment, automatically weight the rules and

use them to train a lexical entailment classifier.

7.3.1 Graph-based Alignment

Graph representation For the purpose of this algorithm, we view T and

H as graphs. To do so, we assume that each of T and H is a set of conjuncted

predicates like the one we construct from translating a dependency parse to

logical form (section 7.2). We can use the logical form produced by Boxer after

dropping negations and universal quantifiers. Each logical form will look like:

∃e1 . . . preda(e1)∧ relu(e1, e2)∧ predb(e2)∧ predc(e2)∧ relv(e2, e3) . . . where ei

is a Boxer-type “entity”, predx(ei) is a unary atom and the “predicate” predx

is one of the content words associated with entity ei, and relx(ei, ej) is a binary

atom and the “relation” relx is the syntactic relation between the entities ei

and ej. We will use the terms entity, predicate and relation throughout this

section and later in QA inference (chapter 7).

It is straight forward to view the described logical form as an undi-

rected graph. In this graph, entities are nodes, relations are undirected edges

111



connecting nodes (entities), relation names are additional labels for edges, and

predicates are additional labels for the nodes. Notice that the syntactic rela-

tions relx are originally directional, but we drop this direction and just use

undirected edges.

Potential entity matches Our alignment algorithm can be viewed as try-

ing to find the list of entities in T that best matches the list of entities in H

(an alignment is a set of entity matches). For example, if we have an entity

in H that is a person and we have multiple person entities in T , we want

to find which one of them is the person entity of H. An alignment should

respect two things; the lexical knowledge and similarity between words and

phrases (which we cover in this section in the lexical rules we generate), and

the overall structure of T and H (which we do through inference in chapter 7).

Because we are trying to infer H from T , we typically assume that T has a lot

of content and we are tying to find out which of this content entails H. In the

graph sense, we want to find which subgraph of T matches the graph of H.

The first step of the alignment is to find potential matchings from

entities of T to entities of H. The simplest form of deciding if two entities

(nodes) can potentially match is if their associated words (node labels) share

a common lemma. Entities can also potentially match if there is a rule that

indicates that the associated words of the two entities are similar. The rule

can be from a lexical resource like WordNet or a cosine similarity higher than

some threshold. In the QA task, H has a special entity indicating the query
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entity. The potential matches of this entity are all “named” entities in T . The

result of this step is to have for each entity in H, a set of potentially matching

entities from T .

Extracting rules From the graphs of T and H and the potential matching

between entities, we can find the set of relevant lexical rules that we will

later evaluate using lexical entailment. Notice that these rules correspond to

multiple potential alignments from T to H. It is the role of inference to find

out which group of rules belong to the same alignment, use that to generate

all alignments and evaluate each one of them to find the best one (chapter 7).

This is different from the Robinson resolution alignment where all generated

rules are part of the same alignment from T to H.

et1 et2 et3 et4 et5
relt1 relt2 relt3 relt4

(a) Subgraph of T . Each node eti has an associated label predti

eh1 eh2 eh3 eh4
relh1 relh2 relh3

(b) Graph of H. Each node ehi has an associated label predhi

Figure 7.2: Node color indicate a potential entity match. White nodes do not
have any potential matches

To explain how we use the graph of T and H and the potential matches

to extract rules, we will use the simplified example in figure 7.2 for demonstra-

tion. Typically T is larger than H but for simplicity, the figure shows a small

subgraph of T that can be used to infer H. Another simplification is that the
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graphs are linear chains. Same node color indicates a potential match, while

white nodes do not have any potential matches. Because the figure shows a

subgraph of T , presumably there are many more gray, yellow and green nodes

in T , but we focus just on this subgraph. Also each node is associated with

one predicate, but in general nodes can be associated with more than one.

Again, this is just a simplified example for the sake of demonstration, but the

algorithm explained below works for any arbitrary graph.

Our procedure needs a start node inH. This node should have potential

matches. Typically in the QA task, we start from the query node (query

entity). In figure 7.2, we will assume it is the gray node eh1. Given the graph

of H, we list the nodes of the graph following a breadth first traversal starting

from the query node. This is to say, list the nodes of the graph starting from

the query node followed by all its neighbor nodes followed by their neighbors

and so on. This gives us a sorted list of node to loop over and generate rules.

As a high level view, our algorithm generates rules from the query node

to all other nodes, then if it finds two rules r1 and r2 where r1 is already part

of r2, it updates r2 by removing the common part.

Algorithm 7.1 describes the details of how we align and extract the

rules. Line 1 gets a sorted list of nodes of H sorted by their breadth first

traversal order, then line 3 loops over the nodes excluding the first which is q.

Line 4 finds the shortest path from the query node to the current node, then

excludes the part of this path that has been generated before. This gives us

a start and end node in H. From the potential matches, we also have start
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Algorithm 7.1 Graph alignment and rule extraction algorithm

Input: H: graph of the hypothesis
Input: q: query node of H
Input: T: graph of the text
Output: : a set of rules relevant to the pair T and H

1: L = nodes of H sorted following breadth-first-traversal starting from q

2: visited = Set (q) . A set of visited nodes
3: for all hTo ∈ ( L except q) do
4: path = shortest path from q to hTo in H

5: hFrom = find node in path that ∈ visited and closest to hTo

6: rules = generateRules(hFrom, hTo)
7: allRules += rules

8: if count(rules) > 0 then
9: add hTo to visited

10: end if
11: end for
12: return allRules

13: =========================
14: def generateRules(hFrom, hTo)
15: pathH = shortest path from hFrom to hTo in H

16: for all tFrom ∈ potentialMatchs(hFrom) do
17: for all tTo ∈ potentialMatchs(hTo) do
18: pathT = shortest path from tFrom to tTo in T

19: if pathT exists then
20: rules += create rule pathT ⇒ pathH

21: end if
22: end for
23: end for
24: return rules

25: end

and end points in T (lines 16 and 17). Finally, a rule is generated from the

shortest path connecting the two nodes of T and the shortest path connecting

the two nodes of H.
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Applying this procedure to the example in figure 7.2, the first it-

eration will generate the rule between the gray and yellow nodes which is

∀et1, et2, et3.predt1(et1)∧relt1(et1, et2)∧predt2(et2)∧relt2(et2, et3)∧predt3(et3)⇒

predh1(et1) ∧ relh1(et1, et2) ∧ predh2(et2) then it will add node eh2 (yellow) to

the list of visited node. Notice the change of variable names in the right

hand side of the rule. In the second iteration, it will find the long path in H

from the gray to the green node, then it will remove its beginning and leave

just the path from the yellow to the green node. This will generate the rule

∀et3, et4, et5.predt3(et3)∧relt3(et3, et4)∧predt4(et4)∧relt4(et4, et5)∧predt5(et5)⇒

∃eh3. predh2(et3)∧relh2(et3, eh3)∧predh3(eh3)∧relh3(eh3, et5)∧predh4(et5). No-

tice that variables on the right hand side are either coming from the left hand

side or existentially quantified.

Weighting rules Annotating the extracted rules the way we did for the

rules extracted using Robinson resolution (section 4.3.1.2) can not be applied

here because, as mentioned before, rules from Robinson resolution correspond

to one alignment while the rules extracted here correspond to multiple po-

tential alignments. This means, we first need to find out which alignment

is the best one and use its rules to train a lexical entailment tool which will

weight the rules. However, we can not find the best assignment without having

weights on the rules in the first place. Such circular problems can be solved

by expectation maximization, where we iterate between weighting the rules

and finding the best alignment. Weighting the rules is done through training
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a lexical entailment classifier.

Algorithm 7.2 Expectation maximization to train a lexical entailment clas-
sifier
Input: QA training set
Output: : Trained lexical entailment classifier

1: initialize lexical entailment classifier randomly or using a simple baseline
2: repeat
3: weight KB using lexical entailment classifier
4: POS = empty set of positive rules
5: NEG = empty set of negative rules
6: for all T, H pairs for QA training problems do
7: KB = unweighted rules extracted for T and H using Algorithm 7.1
8: KB = weight KB using current lexical entailment classifier
9: ALIGN = run inference to find the best alignment ( of the correct

answer)
10: R = find the KB rules used to produce ALIGN

11: POS += R

12: NEG += KB - R
13: end for
14: train lexical entailment classifier on POS and NEG

15: until no change in QA results

Algorithm 7.2 briefly shows our expectation maximization procedure to

train the lexical entailment classifier. It starts with an initial lexical entailment

classifier, uses it to weight the rules, does inference, automatically weights rules

resulting into the right answer as positive and the rest as positive, retrains the

lexical entailment classifier, and repeats.

The inference role is to find the best alignment (chapter 7). The al-

gorithm requires an initial lexical entailment classifier. We tried to initially

weight rules randomly and use a simple baseline and usually both reach the

same final result.
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Lexical Entailment Classifier We use the same lexical entailment clas-

sifier discussed in section 4.3.2 with small changes. We use Random Forest

classifier instead of logistic regression. We experimented with different clas-

sifiers and found that the Random Forest classifier performs the best on the

validation set. We also added a few additional features. The most important

one is a lexicalized feature for words in the LHS and RHS of the rule. We scan

all all rules and find the top 1,000 common words, then we have two features

for each word indicating that the word exists in the LHS or the RHS of the

rule. The rationale behind this feature is that it allows the classifier to learn

common words that can be ignored. The most common ones are like say, have

and when.

7.4 Inference

This section discusses how we perform inference for the QA task. It

discusses how to represent the QA task in PL, then explains two requirements

that the inference needs to be suitable for the QA task. We show how such

inference might be implemented in MLNs and PSL and why they are not the

most appropriate tools for the task, then present our own graphical model

formulation for the task and show an inference algorithm that answers the

question encoded in this graphical model.
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7.4.1 Representing QA

In previous chapters, we had inference problems that are trying to

calculate probability of some query formula. In QA, the goal of inference is

different; we are given a document T and a query H(x) for a variable x; and

we want to find an entity e from T that maximizes the probability of H(e)

given the information in T and the KB. Formally, the inference problem is

arg maxx P (H(x)|T,KB) (7.1)

In PL (or in graphical models in general), this inference problem is called

maximum a posteriori inference (MAP), which is computing the most likely

assignment for some variable. Notice that we refer to the entities of T as

“entities” while we refer to the entities of H as “variables” because, from

the graphical model’s perspective, they are random variables and inference is

looking for their best assignment.

However, for the purpose of our implementation for the QA task, and

for the particular dataset we are evaluating on, solving the inference problem

mentioned above is not sufficient. Our inference procedure has two additional

requirements; finding the KB rules corresponding to the most likely assign-

ment and supporting partial entailments centered around the query variable.

The rest of this section discusses these two requirements in details then briefly

discusses how we might implement them in MLN and PSL and why we think

that none of them is appropriate for the task. The following section discusses
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how we solve this inference problem using our own graphical model formula-

tion.

7.4.2 Inference Requirements

H(x) has the form ∃v1 . . . preda(v1) ∧ relu(v1, v2) ∧ . . . , and the query

variable x is one of the variables vis. We mentioned in section 7.3.1 that our

goal is to find an alignment from T to H. An alignment is an “assignment” of

entities from T to the variables vi in H. We need the full assignment (not just

value of x) because we need to project this assignment back to the KB and find

out which lexical rules are relevant to this assignment, then use these rules as

positive training instances for the lexical entailment classifier (algorithm 7.1).

To add this additional inference requirement (finding the full assign-

ment, not just x), the inference problem changes to

arg maxV P (H(V )|T,KB) (7.2)

where V is the list of all variables vi of H, and the arg max finds the list

of entities from T that maximizes probability of H. This form of inference

is called Most Probable Explanation (MPE); the task of finding the most

probable assignment to all variables.

The second inference requirement is supporting partial entailments.

The idea of partial entailment has been discussed before in the context of

the STS task (chapter 6), which is assigning partial credit if a part of the hy-

pothesis can be inferred. The same idea is relevant for QA because it is often
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the case that only a part of the query H(x) can be inferred for a given value of

x, and we still need to be able to compare between different values of x even

if H(x) can not be completely entailed for all of them. The main difference

between the partial entailment in STS and in QA is that in STS, we would

like to assign partial credit if any part of H is inferable, while in QA we only

assign partial credit for parts of H that are “syntactically connected” to the

query variable x. This makes the QA task a form of STS between H and the

context around an entity ei in T .

Here is an example,

Document: the @entity33 blessing to @entity28 on saturday could clear the

way for a ground invasion . though the @entity26 has taken the lead with

some 100 warplanes , the coalition partners include the @entity63 , @entity64

and @en tity65 .

Question: @placeholder blessing of military action may set the stage for a

ground invasion

First, @entity33 is the one associated with the blessing which makes it the

right answer to the question even though we can not infer military action

from the sentence. Second, even though the first sentence has evidence of

a blessing and a ground invasion, that does not increase the probability of

any of the entities in the second sentence because they are not syntactically

connected to the evidence in the first sentence.
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7.4.3 MLN and PSL implementations

We made preliminary attempts to implement the explained inference

requirements using MLNs and PSL and we found that they are not appropriate

for the task. This section discusses the implementations and their issues.

Even though we do not have results for our MLN and PSL attempts, this

discussion is still useful because we use similar ideas in our own graphical

model implementation.

MLN The inference problem arg maxV P (H(V )|T,KB) can be represented

in MLNs using the workaround mentioned in section 5.5.1. The query formula

H will be added to the PL program in the form of the following rule:

H(v1, v2 . . . )⇔ result(v1, v2 . . . ) | ∞ (7.3)

then use MLNs to query the probability of all ground atoms of result. Every

ground atom has the form result(ea, eb . . . ) where each ex is an entity from T .

The ground atom with the maximum probability will encode the best assign-

ment of entities ex to variables vi. This approach however is very inefficient

because we have an exponential number of groundings of result. To speed it

up, we need the inference optimization discussed in section 5.5.2 which will

identify and remove ground atoms that are known to have zero probability.

In our preliminary implementation, we found inference to be reasonably fast

with this optimization applied.

The problem with MLN inference is that we did not find a good way

to implement partial entailment which is very crucial for this task. Our MLN
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implementation for the STS task (section 6.3) showed that using the average

combiner to implement partial entailment is not a promising direction. That

is why we concluded that MLNs are not good fit for the task.

PSL Implementing partial entailment in PSL is relatively easy. Similar to

our STS implementation, we encode the query using the averaging equation

instead of conjunction. For grounding, we have a different (and a lot eas-

ier) procedure. We simply generate all possible “partial groundings” of H(x)

starting from the query variable x. For example,

T : book(B1)

∧read(R2) ∧ patient(R2, B2) ∧ book(B2)

∧person(P3) ∧ agent(R3, P3) ∧ read(R3) ∧ patient(R3, B3) ∧ book(B3)

∧person(P4) ∧ agent(R4, P4) ∧ read(R4)

∧person(P5)

H : ∃x, y, z. person(x) ∧ agent(y, x) ∧ read(y) ∧ patient(y, z) ∧ book(z)

Grounding starts from x, grounds any evidence of person then follows the

graph structure of H to extend the groundings with any additional evidence

it finds. In the example above, we get only three possible groundings for H

which are (each line is one grounding):

person(P3) ∧ agent(R3, P3) ∧ read(R3) ∧ patient(R3, B3) ∧ book(B3)

person(P4) ∧ agent(R4, P4) ∧ read(R4)

person(P5)
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We implemented this approach on PSL and inference was reasonably fast.

We will use the same idea of partial grounding again in our graphical model

implementation.

So far we have discussed how to implement partial entailment. Next,

we explain how we might find the KB rules that are relevant to the best

assignment. With PSL, we can find the rules of the best alignment without

first finding the full assignment itself. We can keep the query H(x) where x is

the query variable, and add the following rule to PSL

H(x)⇔ result(x) | ∞ (7.4)

then use PSL to calculate the probability of ground atoms of result, which is

easy because number of ground atoms of result is not large, and it is limited

by number of named entities in T . Then, we can examine the PSL inference

procedure to find the rules that were relevant to the result. Remember that

PSL inference is a linear program where every ground clause is a linear con-

straint in the linear program. The solution to the optimization problem is

a point that lies at the intersection of a set of constraints. This set of con-

straints is what defines the result, and the ground clauses corresponding to

these constraints are the set of rules we are looking for. We did not explore

how to practically implement this technique because we found that it would be

simpler to develop our own graphical model formulation, and that it is faster

than PSL.
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7.4.4 Graphical model formulation and inference

So far we have discussed the requirements of an inference that would fit

the QA task, then we showed how we might implement this inference in MLNs

and PSL and discussed the limitations of this implementation. In this section,

we develop our own graphical model formulation for the problem instead of

relying on MLNs or PSL to do that, then present an inference algorithm that

answers the question encoded in the graphical model.

Formulating graphical model A graphical model is a structure that en-

codes probability distribution over a set of random variables. Nodes are ran-

dom variables, and each random variable has a set of possible values. Cliques

encode dependencies between possible values of nodes in terms of potential

functions.

We are given T , H(x) and KB and we formulate a graphical model

that encodes all possible ways of aligning T and H. As mentioned before,

an alignment between T and H is specified by an assignment of entities from

T to variables in H. In our graphical model formulation, we have a node

corresponding to every variables vi of H. Every node has a set of possible

values that are specified by T and KB. The document T has a set of entities,

and the KB specifies which entities have chances of being assigned to variables

of H. The KB we use for the QA experiments is the graph-based alignment

KB constructed in section 7.3.1. This KB is constructed based on a set of

potential matches between the entities of T and the variables of H. As a
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result, possible values for every node vi in our graphical model is the set of

potentially matching entities from T . We also add an additional possible value

N indicating the introduction of a new entity that is not in T .

Using variables with multiple possible values is an important distinction

between our graphical model formulation and how MLNs and PSL define their

graphical models. Let’s say we have the predicate predi(vj) in H, and that

vj has the possible values e1, . . . en. Our graphical model encodes this as

one variable vj that has n possible values. However, MLNs and PSL will

generate the ground atoms predi(e1), . . . predi(en), where each ground atom is

a binary random variable (or continuous random variable with values between

0 and 1 in PSL). The n ground atoms have 2n possible values while in our

formulation we only have n possible values. Typically we can add additional

constraints to the MLNs/PSL saying that only one of the ground atoms should

be true, which will successfully reduce number of possible values to n but at

the expense of additional processing during inference time to make sure this

constraint is satisfied. In this regard, our formulation is more efficient because

such constraint is automatically enforced by construction.

The next step of our graphical model formulation is defining the cliques

and potential functions. All the rules in KB have the form

∀a1 . . . am LHS(a1 . . . am)⇒

∃b1 . . . bl RHS(a1 . . . am, b1 . . . bl) | w = score(LHS,RHS)

where the left hand side (LHS) matches part of T and the right hand side

(RHS) matches part of H. Variables of the LHS correspond to a list of entities
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ey . . . ey+m in T and variables of the RHS correspond to entities vz . . . vz+m+l

in H. Even thought the rule is universally quantified, it actually fires once

because it is constructed for a particular T/H pair, and the LHS of the rule

matches one specific part of T . As a result, it would be a waste of computation

to keep the rule universally quantified, and it would be a bit more efficient to

directly use a ground clause. The rule above becomes:

LHS(ey . . . ey+m)⇒ RHS(ey . . . ey+m, N . . . N) | w = score(LHS,RHS)

(7.5)

where ey . . . ey+m are entities from T and N . . .N are newly introduced entities

(Skolemization, section 3.3.1.1). The rule can be simplified further knowing

that the LHS of the rule is always true, which simplifies the rule to

RHS(ey . . . ey+m, N . . . N) | w = score(LHS,RHS) (7.6)

Notice that this simplified rule is what we get if we use MLNs with the in-

ference optimization of section 5.5.2, but not with PSL which keeps the full

rules. What this rule does is increase the probability of assigning the entities

ey . . . ey+m, N . . . N to the variables vz . . . vz+m+l of the graphical model. This

is equivalent to a clique connecting the variables vz . . . vz+m+l and a potential

function of weight exp(w) for the assignment ey . . . ey+m, N . . . N and exp(0)

for all other combinations of values. For the rest of this chapter, we will follow

the PL terminology and refer to “rules” instead of referring to “cliques” and

“potential functions”. Whenever the rule is “satisfied” the exp(w) is used, and

the exp(0) is used otherwise.
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To summarize, we construct the graphical model G(V,R), where V is

a set of variables and R is a set of rules, as follows:

• Variables vi ∈ V : the same variables of the logical form H

• Possible values for each vi: entity potential matches from section 7.3.1

in addition to another special value (N) indicating the introduction of a

new entity that is not in T

• Potential functions ri ∈ R: every rule in KB is skolemized, grounded

and simplified to a clique over the variables of the RHS of the rule with a

potential function that has one weight equals exp(w) whenever the rule

is satisfied and exp(0) otherwise, and w is the rule weight

Inference The form of inference we need is MPE; finding the best assign-

ment to the variables of the graphical model G(V,R):

arg maxA P (G(V = A,R)) = arg maxA

∏
r∈R r(A)

Z
(7.7)

where A is a variable assignment to the varaibles V , r(A) is exp(w) or exp(0)

depending if the rule is satisfied or not under the assignment A, and Z is the

normalization constant. Z is a constant and it can be dropped without affect-

ing the optimization problem. Also all weights of the rules are exponentiated

and it would be convenient to take the log of the product, again, without

affecting the result of the optimization problem. We get:

arg maxA P (G(V = A,R)) = arg maxA
∑
r∈R

log(r(A)) (7.8)
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which reads as: find an assignment A to the variables V with the maximum

sum of weights of satisfied rules.

The brute force solution for this optimization problem is to enumerate

all possible assignments A, sum the weights of satisfied rules, and choose the

assignment with the maximum sum. This of course is not a practical solution.

A practical solution should utilize the fact that most assignments do not satisfy

any rule, and that assignments that satisfy more than one rule are very sparse.

It would be more efficient to have a search guided by the rules.

Before discussing the details of our inference algorithm, we see how

it can satisfy the inference requirements mentioned in the previous section.

Assuming that the set of rules is empty, all assignments will equally score

zero, and in this case we choose the default assignment of assigning N (new

entity) to all variables. With rules added, different assignments will have

different scores, and we are looking for the set of rules that dictates the best

assignment. This implicitly addresses the first requirement because finding

the best assignment is equivalent to finding the set of rules that are relevant

to this assignment.

The second requirement is to support entailing a part of H that is syn-

tactically connected to the query variable x. Entailing a part of H means that

an assignment does not necessarily have to have a value for every variable.

The constraint of the syntactic connectivity simplifies our inference algorithm

a lot. To enforce syntactic connectivity, our inference algorithm starts with

assigning all possible values for the query variable, then iteratively exploring
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Algorithm 7.3 Inference for QA

Input: V: list of variables v

Input: x: query variable ( x ∈ V)
Input: R: set of rules r (set of pairs (vi, ei), weight w )
Output: : (assignment, score, rules) of the best assignment for V

1: queue = priority queue containing the assignments being explored
2: for all a possible values of x do
3: queue.insert (assignment = assign a to x, score = 0, rules = empty)
4: end for
5: while queue is not empty do
6: A = queue.dequeue . current partial assignment
7: if A.score > bestA.score then . better than the best assignment
8: bestA = A

9: end if
10: proposed = empty set of (assignment, score, rules)
11: for all r ∈ R and r 6∈ A.rules do
12: if r is not compatible with A.assignment then
13: Ignore
14: else if none of r.vi have an assigned value in A.assignment then
15: Ignore
16: else . only consider rules with some overlap with A.assignment
17: tmpA = add all pairs (vi, ei) of r to A.assignment
18: proposed += (tmpA, A.score + r.w, A.rules + r)
19: end if
20: end for
21: For every entry in proposed, find leastVarIndx; the least index of a

variable that is assigned in proposed.assignment but not in A.assignment
22: minLeastVarIndx = minimum of all leastVarIndx
23: Remove from proposed where leastVarIndx > minLeastVarIndx

24: queue.insert remaining entries in proposed

25: end while
26: return bestA

the search space of adding rules until no more rules can be added. Adding

a rule to an assignment means setting the variables of the assignment to the
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values that satisfy the rule. A rule is added to an assignment only if there

is an overlap between the variables of the rule and the assigned variables of

the assignment. This condition guarantees that each assignment we explore

satisfies the constraint of syntactic connectivity to the query variable. It is

important to notice that syntactically connected assignments are not neces-

sarily globally optimal, but this is what we need for the task. As shown in the

example in section 7.4.2, is would be wrong to give high weights to entities of

the second sentence because of evidence in the first sentence.

Algorithm 7.3 outlines our inference procedure. Given a set of variables

V , a query variable x and a set of weighted rules R, it finds the best assignment

of entities to the variables V . The rules R are weighted using the lexical

entailment classifier trained using the expectation maximization procedure

explained in Algorithm 7.2.

The inference algorithm uses a priority queue to keep track of the as-

signments we are currently exploring. The queue prioritizes exploring the

assignments based on their score. Even though we explore all possible syn-

tactically connected assignments anyway, exploring the promising ones first

reduces queue size. The queue is initialized with assignments that correspond

to assigning all possible values for the query variable x (line 3). The initial

score of these assignments is zero because they do not satisfy any rule yet.

Then, while there are more assignments in the queue to explore, we get one

assignment A from the queue to be considered. Then we use the rules to ex-

tend A and generate a set of proposed assignments. We keep the rules that 1)
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are compatible with A (the can be satisfied under the assignment A) (line 12),

and 2) have some overlap with A (some of the assigned variables in A are vari-

ables of the rule) (line 14). For each one of the remaining rules, we generate a

new proposed assignment by applying the rule to A. A rule is applied to A by

assigning more variables in A so that the rule is satisfied (lines 17, 18). The

score of the assignment A increases by the weight of the rule it just satisfied

(line 18).

By the end of the loop (line 20), we have a list of proposed assignments.

Our algorithm would work correctly if we just add all these proposed assign-

ments to the queue. However, doing so will not be efficient because we will be

repeating a lot of work as a result of generating the same assignment so many

times. Here is an example: let’s say we have an assignment A and we have two

rules r1, r2 that can be added to this assignment, where r1 assigns a value to

the variable vi and produces a new proposed assignment A1 and r2 assigns a

value to a different variable vj and produces another proposed assignment A2.

Notice that in later processing, the rule r2 can be applied to A1 to produce

A1,2 and r1 can be applied to A2 to produce the same assignment A1,2. This is

the same assignment generated twice through two different search paths. This

happens every time we have rules that can be applied to an assignment where

each rule assigns a value to a different variable. The solution is to only keep

proposed assignments that all share the same changed variable, and ignore

the rest of the proposed assignments. This does not leave any search space

unexplored because we know that the rules that we ignore in this iteration will
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be considered in later iterations, and that the order of applying rules does not

matter (we will reach the same assignment if we apply rules r1 followed by r2

or r2 followed by r1). To decide which proposed assignments to keep, we use

the index of the changed variable. We keep the ones with the least changed

variable index. In the example above, if i < j, we keep A1, if i > j, we keep

A2 and if i = j, we keep both.

This part of the algorithm is in lines 21 - 24. In line 21, we find the

index of the changed variable for every proposed assignment. If more than

one variable changed, we use the smallest value. Line 22 finds the minimum

of these indices. The actual order of the variables and using the minimum

or maximum does not really matter. It is just a way to set a specific order

for the exploration of the assignments. Line 23 removes some of the proposed

assignments (because we know if we keep them, we will be repeating the same

processing so many times later), and line 23 inserts the remaining ones in the

queue for further processing.

Finally, the algorithm keeps track of the best assignment found so far,

and at the end it returns this best assignment. As assignment consists of value

for each variable in the graphical model, the rules that are satisfied under this

assignment (we keep track of them while building the assignment), and the

score of the assignment (sum of weights of the rules).
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Train Validate Test
Full KB 43.2% 42.0% 43.1%
Full KB + weight learning 74.2% 46.2% 48.2%
Limited KB 47.2% 48.1% 47.2%
Limited KB + weight learning 78.7% 50.0% 51.6%
Alignment classifier 57.7% 54.5% 56.3%
Alignment classifier + additional features 64.7% 61.8% 62.9%
PSL – 33.0% –
State of the art (Chen et al., 2016) – 72.4% 72.4%

Table 7.1: QA results on the CNN part of the dataset by Hermann et al.
(2015). Results on the training set with weigh learning can be viewed as the
results of an oracle lexical entailment.

Average runtime per question
Our graphical model 9 milliseconds
PSL 4 seconds

Table 7.2: Runtime comparison of our graphical model inference and PSL on
the CNN part of the QA dataset

7.5 Evaluation

Experimental setup We evaluated our implementation on the QA dataset

by Hermann et al. (2015). We only use the CNN part of the dataset for

evaluation, and we only use the first 10K training questions out of 380K. We

did not find the additional training data to help. Sentences are translated to

logical form using our translation of dependency parses (section 7.2). This

logical form does not encode universal quantifiers and negations, so the only

relevant logical form adaptation is the Skolemization (section 3.3.1.1). The

KB is constructed using the graph-based alignment (section 7.3.1). We use
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the preliminary PSL implementation for comparison.

Compared Systems We compared different configurations of our system.

The configuration Full KB refers to constructing a KB as discussed in sec-

tion 7.3.1, while Limited KB refers to following the same procedure but

limiting the generated rules to relations between the query variable and all its

immediate syntactic neighbors.

We also compared with and without weight learning. The weight

learning is implemented following algorithm 7.2.Without weight learning, we

weight rules simply based on the difference of the length of the LHS and RHS

of the rule: w = 1
1+abs(len(LHS)−len(RHS)) . This equation considers only the

length of the rule, not the actual content. If both sides of the rule have the

same length, the rule is given weight 1 which is the highest weight, and as the

difference of the length increases, the weight decreases.

We also compare with training the classifier to evaluate full alignments

instead of individual lexical rules. The classifier follows the entity-centric

classifier of (Chen et al., 2016). We use inference to find the best alignment

for each entity, then extract features from the alignment of each entity. We

evaluated two configurations, Alignment classifier which extract features

only from the alignment, and Alignment classifier + additional features

which adds a few more simple features. The alignment features are number

of rules, sum of rule weights, number of aligned entities, number of unaligned

entities of the question, number of entities in the question and number of new
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entities introduced in the RHS of rules. The additional features are simple

unigram and bigram features and a simple word alignment score from the

original paper of the dataset (Hermann et al., 2015).

Finally, we compare with PSL, which is the preliminary PSL inference

algorithm that supports partial entailment. We did not use any weight learning

in this configuration.

Results and Discussion Table 7.1 and table 7.2 show the results of our

experiments. Obviously, the results of our graphical model formulation is a lot

better than PSL. It is more than two orders of magnitude faster than PSL. We

found that the number of assignments that our inference explores is usually a

few tens or a few hundreds (average 90 assignments), which justifies why it is

fast, because number of assignments that worth exploring is small. PSL is a

lot slower because ground atoms are not multi-valued, and because of a lot of

overhead in grounding and processing the rules.

With weight learning accuracy improves. However, there are a few

issues with the lexical entailment classifier. The first is that we found that our

lexical entailment classifier gives incorrectly high weights to many rules. As a

result, we have a high rate of false positives and that reduces the accuracy of

our system. To confirm this hypothesis, we see that (counter intuitively) the

results improve with the limited KB because it reduces false positives. The

second is that the classifier obviously overfits the training set, and a better

classifier can potentially improve the results. The results for the training set
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with weight learning can be viewed as the result of our system with an “oracle”

lexical entailment. The oracle results reach 7x% which is a large room for

improvement. In addition, this 7x% agrees with the conclusion of Chen et al.

(2016) (discussed in section 2.4.3) that the maximum achievable result in this

dataset is around 75%.

Results also shows that training an alignment classifier is more accurate

that training the classifier to evaluate individual lexical rules. This is expected

because the classifier is trained to optimize the final end task, not an artificial

intermediate one.

Finally, our current best result is a lot better than the result of what

we get from one of the standard PL tools, but our results are still a bit lower

than state of the art. However, we believe that there is still a big room

for improvement on training the lexical entailment classifier and training the

alignment classifier.

7.6 Chapter Summary

In this chapter, we discussed our implementation for the QA task. We

revisited the implementation of our pipeline to adapt it to the QA task. The

logical form is constructed by a rule-base translation of dependency parses,

the knowledge base is collected using a graph-based alignment technique. For

inference, we discussed that it needs to support partial entailment and allow

for finding the KB rules that were relevant for the result. These requirements

can be achieved to some extent on MLNs and PSL but they are not the most

137



appropriate tool. As a result, we formulated or own graphical model for the

problem instead of relying on MLNs or PSL for that, and developed an infer-

ence algorithm for it. Our formulation is simpler than modifying MLNs and

PSL, and it is faster. Our inference algorithm explores the space of syntacti-

cally connected alignments from the document to the question and finds the

best one. We evaluated our implementation on a QA dataset and found that

our graphical model formulation is more than two orders of magnitude faster

than PSL and it is a lot more accurate. We also compared between training a

lexical entailment classifier and training an alignment classifier and found that

an alignment classifier is more accurate. Our results did not reach the state

of the art, but we believe there is still a big room for improvement.
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Chapter 8

Future Work

This section suggests several ideas for future work. We discuss ideas for

logical form including support for generalized quantifiers and a more accurate

translation of dependency trees to logical form which will enable applying our

semantic representation to other languages. We also suggest developing a new

PL formulation that is more appropriate for natural language understanding

tasks than existing ones. Finally, we discuss the potential use of deep learning

for integrating symbolic and continuous representations.

8.1 Logical Form

Translating dependency trees to logical forms In section 7.2 we de-

scribed a rule-based approach to translate dependency trees to logical form.

The resulting logical form is more robust than what we get from CCG parsers

because dependency parsers are currently more mature and more accurate.

However, the logical form is less expressive because we do not represent any

linguistic phenomena that requires scope like negations, quantifiers and rela-

tive clauses.

For future work, it would be useful to explore how to recover scope from
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dependency parses. One way to do so is, again, using manually constructed

rules. A more attractive option would be to “learn” the translation from data.

The training data can come from running Boxer on the CCG parses of the

CCGbank and running dependency parser on the sentences. Learning the

mapping can potentially be more accurate than our rule-based approach not

only because of finding scope, but also by capturing more phenomena that

are not supported in dependency parses. One example is possessives as in A

man is driving his car. Boxer output signals that the “car” belongs to the

“man” with the addition of a meta predicate connecting them. The connection

between the “car” and the “man” is not encoded in dependency trees.

Theoretically, our semantic representation is language independent, but

the lack of training data and tools (other than a Chinese CCGbank (Tse &

Curran, 2010)) prevents us from trying it on languages other than English.

However, relying on translating dependency structure to logical form can ad-

dress this limitation. There has been recently a lot of focus on Universal

Dependencies ; dependency structures that are unified over languages. The

model we learn to translate English dependencies can be a good start point to

translate dependency trees of other languages.

Generalized Quantifiers Generalized quantifiers are words like Few, Most,

Many, Only .. etc (Barwise & Cooper, 1981). First-order logic has native

support for two of them, Every and Some. Also, some of them can be encoded

relatively easy in first-order logic, like Exactly. However, some of them like
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Few, Most and Many are not natively supported in first-order logic, and they

can not be encoded easily. We would like to add support for these generalized

quantifiers in our system. A generalized quantifier has a restrictor and body. In

“Most birds fly”, the generalized quantifier “Most” has the restrictor “birds”

and the body “fly”. One way to add support for generalized quantifiers in

the RTE task, is to reason about the direction of entailments between the

restrictors and the bodies of the sentences. For example, consider the RTE

pair: “T: Most big birds fly high”, “H: Some birds fly”. We can conclude

that T entails H because the restrictor “big birds” of T entails the restrictor

“birds” of H, and the body “fly high” of T entails the body “fly” of H. This

is a purely symbolic handling of the problem.

Some of the generalized quantifiers, especially Most and Few, can be

represented in a different way that leverages the probabilistic capabilities of

PL. The idea is to to replace Most or Few with “Every” then give the logical

formula a low weight indicating that some worlds could be violating it. Setting

the weight is a function of the generalized quantifier being represented.

8.2 Inference

This section suggests a few inference-related ideas for future work.

PL framework for natural language understanding We explored the

use of MLNs and PSL for different natural language understanding tasks, but

our QA experiments showed that developing our own formulation is a more
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productive, more efficient and more promising direction. It is also easier to

develop a new formulation than adapting exciting ones. For future work, we

would like to develop a new PL formulation that follows the general structure of

our PL formulation for the QA task. The new formulation will view inference

as a form of alignment. It facilitates the construction of graphical models

that encodes all possible alignments then chooses the best one. As in our

QA implementation, random variables will be multi-valued variables encoding

potential matches between the constants of the given and the variables of the

query.

This formulation will require new inference algorithms that can reason

efficiently with multi-valued variables. The inference algorithm we developed

for the QA task was efficient because of the syntactic connectivity constraint

which reduced the search space of promising alignments. It would be interest-

ing to find out how to develop efficient inference algorithm for this formulation.

It is also worth exploring how to efficiently support negation and universal

quantifiers in this formulation.

Finally, and similar to the graph matching classifier proposed above,

we can generalize this idea to other tasks. The new PL formulation views

inference as form of alignment. Instead of just using the alignment with the

highest score, we can extract features from the alignments and train a final

classifier to evaluate them. This is more flexible and can potentially give more

accurate results.
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8.3 Deep learning

The main motivation for this thesis is to build a semantic representa-

tion that combines the advantages of symbolic representations with continuous

representations of meaning, and we used probabilistic logic to do so. With the

recent advancements in neural networks and deep learning, it would be inter-

esting to explore ways of combining symbolic and continuous representations

using deep learning. Using deep learning for natural language inference can

provide a flexible form of inference with powerful end-to-end training.

Deep learning uses various neural network (NN) architectures to map

an input to some latent continuous representation then use this continuous

representation to perform an end task the neural network is trained to perform.

In natural language understanding, a lot of work have used the NN architecture

of Long Short-Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997) to

translate raw text to a continuous representation. LSTM is a form of recurrent

neural network that reads the input document word by word and produces the

continuous encoding of the input. This can be viewed as automatic feature

discovery, where the LSTM automatically finds which features of the input

are relevant to the end task, extract them and encode them in a vector of real

values. With large enough training data, it can automatically learn to perform

complex tasks like Machine Translation.

Despite the power of deep learning architectures, they lack some of

the basic and simple capabilities that we get from symbolic representations.

Andreas, Rohrbach, Darrell, and Klein (2016) developed a deep learning archi-
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tecture that leverages the compositionality of language. Our aim is to develop

an architecture that leverages more of the symbolic representation capabilities.

One of them is interpretability; being able to inspect the meaning represen-

tation and interpret how the end task is performed. This is easy in symbolic

representations (e.g. Boxer’s output is easy to read) but difficult in deep learn-

ing because the meaning is a vector of real values. Another missing capability

is being able to use existing resources to assist inference. For example, if we

are doing RTE and we already know from WordNet that man ⇒ person, we

should be able to use this knowledge instead of having to train on hundreds

of training examples with the words man and person.

We propose the following ideas to add some support for symbolic in-

formation within deep learning:

Logical form as input Tree-LSTM is a variation of LSTM that takes a

tree structure as input, not just a sequence of words (Tai, Socher, & Manning,

2015). We want to explore similar architectures to input a logical form to the

NN. Our logical form describes the entities in the sentence and the relations

between them. Feeding this structured input to the NN is potentially more

informative than raw text, and it facilitates interpretability and integrating

existing resources (discussed next). Equivalent ideas have been introduced

before for propositional logic, where propositional formulas are mapped to a

neural network then refine the weights of the neural network on the training

data (Towell & Shavlik, 1994).

144



Interpretability The tasks RTE, STS and QA can all be viewed as aligning

a text and a hypothesis then processing the alignment to make a conclusion.

This can be implemented in NN using an architecture called “attention” which

produces a soft alignment (a 2d matrix of real values indicating how much each

word of the text aligns with words of the hypothesis) (Sutskever, Vinyals, &

Le, 2014). However, instead of searching for an alignment between words,

we want an alignment between entities of the logical form (as we did in the

QA task). An alignment between entities can be easier to understand from

an alignment between words. We can also use the pair-wise alignment score

between entities to find a single best discrete alignment that is easy to read

and interpret. This can facilitate debugging the neural network because we can

inspect the alignment to find common mistakes then fix them with additional

training data. For example, if we find that the NN mistakenly aligns word1 and

word2 frequently, we can train it with additional examples (maybe synthetic

ones) that focus on these two words.

Existing resources Existing linguistic resources (like WordNet and PPDB)

and tools (like parsing, word sense disambiguation and coreference resolution)

are the results of a large body of research in NLP. They can be informative to

the inference and can reduce the training data requirements because we are

not learning everything from raw text. We need a way to provide the output

of all NLP tools and resources to the NN.

Using logical form as input already covers parsing, and coreferences
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(can be easily represented in the logical form). Other resources like WordNet

can be provided as additional input with every token. Even if we do not

use logical form, parsing and part of speech tagging can also be provided as

addition input with every input token. For example,

Text: # # A man # # is # driving # a car ####

Parse: ( ( DT NN ) ( VBZ ( VBG ( DT NN ))))

WordNet: - - - guy - - - - - - - - - - - -
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Chapter 9

Conclusion

In this work, we presented a natural language understanding system

that relies on probabilistic logic for meaning representation and inference. It

combines the expressivity of logic-based representations with the ability to

reason with uncertainty. It uses first-order logic as a basic representation

and integrates that with a weighted knowledge base that encodes a graded

representation for words and short phrases. To show the generality and effec-

tiveness of our proposed semantic representation, we developed and evaluated

this system on three language understanding tasks, namely Textual Entail-

ment, Textual Similarity and Question Answering. These tasks can utilize the

strengths of our representation and the integration of logical representation

and uncertain knowledge. Our framework is three components, Logical Form,

Knowledge Base and Inference. We developed and made new contributions in

each of them.

The logical form component starts with translating input sentences

to logical form, and we use Boxer, a rule-based semantic analysis tool that

runs on top of a CCG parse, for this translation. We also developed a rule-

based translation of dependency parses to logical forms that are less expressive

147



but more robust and we only use it for the QA experiments. The resulting

logical forms are adapted to PL to take the assumption of a closed domain

into account. We showed how to introduce enough constants in the domain

and how to set the prior probability of ground atoms to make sure universal

quantifiers and negations work as expected. We evaluated these adaptations

on three entailment datasets including a synthetic dataset that exhaustively

tests inference performance on sentences with two quantifiers.

The second component is the knowledge base which encodes relevant

background knowledge in the form of weighted logical rules. Relevant rules

are collected from existing lexical resources like WordNet and PPDB, however,

these resources are never complete and inference usually requires more lexical

information. Therefor we generated additional on-the-fly rules by aligning

the text and hypothesis then use the alignment to extract rules for each pair

of text and hypothesis. We developed two alignment techniques, one based

on Robinson resolution and another based on graph matching. The rules

we extract from the alignment are automatically annotated as positive and

negative, then we use them to train a lexical entailment classifier which we use

to weight unseen rules.

The third component is Inference. We use the logical form and the

weighted knowledge base collected from the previous two steps to formulate a

task specific PL inference problems, then use the appropriate PL tools to solve

them. The RTE task is represented in terms of two PL inferences, one to decide

between entail and neutral, and the other to decide between contradiction and
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neutral. The STS task is represented in terms of two inferences, one form

the first sentence to the second, and the other from the second to the first.

The QA task is represented with the PL inference of finding the entity that

maximizes probability of the question.

We used MLNs for the RTE task. Existing MLN implementations do

not work very well for the type of problems we are solving, so we developed

a new MLN inference algorithm that can calculate the probability of a query

formula (not just a single ground atom) and it automatically identifies and

removes parts of the ground network that do not significantly affect the result.

The logical form adaptations, the Robinson resolution alignment and this in-

ference algorithm (in addition to a few other smaller contributions) achieve a

state of the art result on the SICK textual entailment dataset.

For the STS task, we showed how to adapt MLN and PSL inference to

support partial entailments. For MLNs, we replaced the conjunctions in the

hypothesis with an average combiner. For PSL, we used an averaging function

to encode the hypothesis instead of conjunctions and developed a grounding

algorithm that fits it. Our experiments show that PSL is a lot faster and more

suitable for this task than MLNs.

For the QA task, we developed our own graphical model formulation

instead of relying on MLNs or PSL to do so. Then, we developed an MPE

inference procedure that answers the question encoded in the graphical model.

Our inference algorithm supports partial entailment (as in STS) and finds

the KB rules that were relevant to the result which we need to train the
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lexical entailment classifier. Results show that our implementation is more

than two order of magnitude faster than a preliminary PSL implementation,

that training an alignment classifier is more accurate than a lexical entailment

classifier, and that there is still a big room of improvement in training both

classifiers.

Overall, we showed that probabilistic logic is a powerful representation

that can effectively integrate symbolic and continuous aspects of meaning. It

is also flexible and can be adapted to various natural language understanding

tasks. For future work, it would be interesting to develop a new probabilistic

logic formulation that is more suitable for natural language tasks, instead of

adapting existing ones.
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Appendix A

PL program example

The following RTE examples encompasses examples of all adaptations

mentioned in section 3.3. As we mention in section 5.2, an RTE problem is two

entailments P (H|T,KB,WT,H) and P (¬H|T,KB,WT,¬H). Figure A.1 shows

the two full PL programs of the example:

T : A grumpy ogre is not smiling.

H: A monster with a bad temper is not laughing.

Which in logic are:

T : ∃x. ogre(x) ∧ grumpy(x) ∧ ¬∃y. agent(y, x) ∧ smile(y)

H: ∃x, y. monster(x)∧with(x, y)∧ bad(y)∧ temper(y)∧¬∃z. agent(z, x)∧

laugh(z).

This example has the following rules in the knowledge base KB:

r1: laugh ⇒ smile

r2: ogre ⇒ monster
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r3: grumpy ⇒ with a bad temper

Figure A.1 shows the two PL programs representing the RTE task

(Section 5.2). D is the set of constants in the domain. T and r3 are skolemized

and sk is the skolem function of r3 (Section 3.3.1). G is the set of non-False

(True or unknown) ground atoms as determined by the CWA (Section 3.3.2,

5.5.2). A is the CWA for the negated part of H (Section 3.3.2.3). D,G,A are

the world assumptions WT,H ( or WT,¬H). r1, r2, r3 are the KB. r1 and its

weight w1 are from PPDB (Section 4.2.2). r2 is from WordNet (Section 4.2.1).

r3 is constructed using the Robinson resolution alignment (Section 4.3.1), and

its weight w3 is calculated using the lexical entailment classifier (Section 4.3.2).

The resource specific weights wppdb, weclassif are learned using weight learning

(Section 5.5.3). Finally the two probabilities are calculated using PL inference

where H (or ¬H) is the query formula (Section 5.5.1)
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D : {O,L,Co}
G : {ogre(O), grumpy(O),monster(O), agent(L,O), smile(L), laugh(L),

skolemf (O,Co), with(O,Co), bad(Co), temper(Co)}
T : ogre(O) ∧ grumpy(O) ∧ ¬∃y. agent(y,O) ∧ smile(y) | ∞
r1 : ∀x. laugh(x)⇒ smile(x) | w1 × wppdb
r2 : ∀x. ogre(x)⇒ monster(x) | wwn =∞
r3 : ∀x. grumpy(x)⇒ ∀y. skolemf (x, y)⇒ with(x, y) ∧ bad(y) ∧ temper(y) |

w3 × weclassif
sk : skolemf (O,Co) | ∞
A : ∀x. agent(L, x) ∧ laugh(L) | 1.5
H : ∃x, y. monster(x) ∧ with(x, y) ∧ bad(y) ∧ temper(y) ∧ ¬∃z. agent(z, x)

∧ laugh(z)

(a) PL program to calculate P (H|T,KB,WT,H)

D : {O,Co,M, T}
G : {ogre(O), grumpy(O),monster(O), skolemf (O,Co), with(O,Co),

bad(Co), temper(Co),monster(M), with(M,T ), bad(T ), temper(T )}
T : ogre(O) ∧ grumpy(O) ∧ ¬∃y. agent(y,O) ∧ smile(y) | ∞
r1 : ∀x. laugh(x)⇒ smile(x) | w1 × wppdb
r2 : ∀x. ogre(x)⇒ monster(x) | wwn =∞
r3 : ∀x. grumpy(x)⇒ ∀y. skolemf (x, y)⇒ with(x, y) ∧ bad(y) ∧ temper(y) |

w3 × weclassif
sk : skolemf (O,Co) | ∞
A :monster(M) ∧ with(M,T ) ∧ bad(T ) ∧ temper(T ) | 1.5
¬H : ¬∃x, y. monster(x) ∧ with(x, y) ∧ bad(y) ∧ temper(y)

∧ ¬∃z. agent(z, x) ∧ laugh(z)

(b) PL program to calculate P (¬H|T,KB,WT,¬H)

Figure A.1: PL programs representing an RTE example
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Appendix B

PPDB rules templates

This appendix lists all templates used to translate PPDB rules to log-

ical form (section 4.2.2). As mentioned before, a PPDB rule that does not

match any of the templates is ignored because it is usually the result of a

misparse. Adjectives are denoted with N like nouns. Variables that do not

have an associated adjective, adverb, noun or verb are denoted with the letter

X. POS tags of a template are listed following the topological order of the

variables in the rule (viewing variables are nodes in a graph and relations as

directed edges). If two variables have the same topological order, we order

them following their POS tag order V , N , X.

In each template, subscripts of POS tags specify the mapping of vari-

ables from LHS to RHS.

• N1 ⇒ N1 e.g: boy ⇒ little kid

• N1N2 ⇒ N1 e.g: piece of paper ⇒ paper

• N1N2 ⇒ N1N2 e.g: slice of pizza ⇒ piece of pizza

• N1X2 ⇒ N1X2 e.g: slice of X ⇒ piece of X
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• X1N2 ⇒ X1N2 e.g: X into the water ⇒ X in the sea

• X1N2X3 ⇒ X1N2X3 e.g: X in front of Y ⇒ X with Y

• X1X2N3 ⇒ X1X2N3

• V1N2 ⇒ V1N2

• X2 ⇒ N1X2

• X1N2 ⇒ X1 e.g: X is in the air ⇒ X is up

• X1 ⇒ X1 e.g: quickly ⇒ very fast

• X1X3 ⇒ X1N2X3 e.g: X at Y ⇒ X in front of Y

• X1X2 ⇒ X1X2 e.g: X in Y ⇒ X near Y

• X1X2X3 ⇒ X2X3 e.g: X next to Y ⇒ X outside of Y

• V1X3 ⇒ V1N2X3 e.g: looking at X ⇒ standing in front of X

• V1X2 ⇒ V1X2 e.g: looking at X ⇒ staring at X

• V1N2 ⇒ V1 e.g: drinking water ⇒ drinking

• V1X2 ⇒ V1 e.g: looking at X ⇒ watching (change RHS to watching X)

• V1 ⇒ V1 e.g: carrying ⇒ holding
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Appendix C

Handcoded rules

This appendix lists all handcoded rules mentioned in section 4.2.3.

• time ⇒ lot of time

• a boy ⇒ one boy

• a girl one ⇒ girl

• a man ⇒ one man

• a person ⇒ one person

• a woman ⇒ one woman

• a cat ⇒ one cat

• a dog ⇒ one dog

• a herd ⇒ one herd

• the man ⇒ one person

• cutting ⇒ slicing

• cutting ⇒ chopping down
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• jumping ⇒ bouncing

• climbing ⇒ climbing up

• man⇒ person

• someone ⇒ ¬ nobody

• nobody ⇒ ¬ someone

• nobody ⇒ ¬ people

• people ⇒ ¬ nobody

• nobody ⇒ ¬ man

• man ⇒ ¬ nobody

• nobody ⇒ ¬ men

• men ⇒ ¬ nobody

• nobody ⇒ ¬ person

• person ⇒ ¬ nobody

• nobody ⇒ ¬ woman

• woman ⇒ ¬ nobody

• nobody ⇒ ¬ women

• women ⇒ ¬ nobody
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• nobody ⇒ ¬ boy

• boy ⇒ ¬ nobody

• nobody ⇒ ¬ boys

• boys ⇒ ¬ nobody

• nobody ⇒ ¬ girl

• girl ⇒ ¬ nobody

• nobody ⇒ ¬ girls

• girls ⇒ ¬ nobody

• empty ⇒ ¬ full

• full ⇒ ¬ empty
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Appendix D

QA Example

This appendix is a complete example of how a KB is constructed for a

QA task, and how inference proceeds. For simplicity, the example is shown in

text not logical form.

Given:

T: . . . The Arab League is expected to give its official blessing to the military

operation on Saturday, which could clear the way for a ground invasion, Becky

Anderson reported. The Arab League actions are . . .

H(x): x blessing of military action may set the stage for a ground invasion

Answer: The Arab League

Figure D.1 shows the interesting parts of graphs of T and H. Nodes

with the same color are potentially matching nodes. The resulting KB has the

following rules, and the first three rules correspond to the best alignment.

r1: Arab League expected to give official blessing ⇒ X blessing

r2: official blessing to military operation ⇒ blessing of military action

r3: official blessing clear way for ground invasion ⇒ blessing set stage for

ground invasion

r4: Arab League actions ⇒ X blessing of military action
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military 
action
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invasion

Arab 
League

official 
bless
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operation

ground 
invasion

giveexpected

way

actions Becky 
Anderson report

T: 

H: 

Figure D.1: Graphs representing T and H

r5: Becky Anderson reported give official blessing ⇒ X blessing

Figure D.2 shows the graphical model formulation. The top row are

list of multivalued random variables and each one has a list of possible values.

Rules are cliques between the values. Inference starts from possible values of

X and explores the search space for the best assignment. The best assignment

is specified by the values in the middle row.
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r3: official blessing clear 
way for ground invasion

r5: Becky Anderson 
reported give official 

blessing

r1: Arab League 
expected to give official 

blessing

r4: Arab League 
actions

r2: official 
blessing to 

military operation
official 

blessing
ground 

invasion
military 

operationArab League

Becky 
Anderson

actions

Figure D.2: Graphical model formulation for the QA task
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Erfüllbarkeit oder Beweisbarkeit mathematischer Sätze. Skrifter utgit

av Videnskapselskapet i Kristiania, 4, 4–36.

Strawson, P. F. (1950). On referring. Mind, 59, 320–344.

Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learn-

ing with neural networks. In Advances in neural information processing

systems, pp. 3104–3112.

Tai, K. S., Socher, R., & Manning, C. D. (2015). Improved semantic represen-

tations from tree-structured long short-term memory networks. In ACL

2015.

Tian, R., Miyao, Y., & Takuya, M. (2014). Logical inference on dependency-

based compositional semantics. In Proceedings of the 52nd Annual Meet-

ing of the Association for Computational Linguistics (ACL 2014), Bal-

timore, MD.

Towell, G. G., & Shavlik, J. W. (1994). Knowledge-based artificial neural

networks. Artificial Intelligence, 70, 119–165.

Tse, D., & Curran, J. R. (2010). Chinese CCGbank: extracting CCG

derivations from the Penn Chinese Treebank. In Proceedings of the

Twenty Third International Conference on Computational Linguistics

(COLING-2010).

174



Turney, P., & Pantel, P. (2010). From frequency to meaning: Vector space

models of semantics. Journal of Artificial Intelligence Research, 37 (1),

141–188.

van Eijck, J., & Lappin, S. (2012). Probabilistic semantics for natural lan-

guage. In Logic and interactive rationality (LIRA) yearbook. Amsterdam

dynamics group.

van Eijck, J., & Unger, C. (2010). Computational Semantics with Functional

Programming. Cambridge University Press.

Venugopal, D., & Gogate, V. (2013). GiSS: Combining SampleSearch and Im-

portance Sampling for inference in mixed probabilistic and deterministic

graphical models. In Proceedings of Association for the Advancement of

Artificial Intelligence(AAAI-13).

Zelle, J. M., & Mooney, R. J. (1996). Learning to parse database queries

using inductive logic programming. In Proceedings of the Thirteenth Na-

tional Conference on Artificial Intelligence (AAAI-96), pp. 1050–1055,

Portland, OR.

Zirn, C., Niepert, M., Stuckenschmidt, H., & Strube, M. (2011). Fine-grained

sentiment analysis with structural features.. In Proceedings of the The 5th

International Joint Conference on Natural Language Processing (IJC-

NLP 2011), pp. 336–344.

175



Vita

Islam Beltagy was born in 1986 in Alexandria, Egypt. He studied

computer engineering at Alexandria University. He received his Bachelor of

Engineering in 2008 and was ranked the first among his batch. He obtained

his Master of Science degree in Computer Science at Alexandria University

in 2011 working on routing in cognitive networks. He was also working in an

Alexandria-based software company. He obtained a Master of Science degree

in Computer Science at the University of Texas at Austin in 2014. He then

continued his doctoral study at the Department of Computer Science, the

University of Texas at Austin, where he has been working in natural language

understanding. After graduation, he will be joining Quora in Mountain View

starting in September, 2016.

Permanent address: beltagy@cs.utexas.edu

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

176


