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Abstract
This document describes the University of
Texas at Austin 2014 system for the Knowl-
edge Base Population (KBP) English Slot Fill-
ing (SF) task. The UT Austin system builds
upon the output of an existing relation extrac-
tor by augmenting relations that are explicitly
stated in the text with ones that are inferred
from the stated relations using probabilistic
rules that encode commonsense world knowl-
edge. Such rules are learned from linked open
data and are encoded in the form of Bayesian
Logic Programs (BLPs), a statistical relational
learning framework based on directed graph-
ical models. In this document, we describe
our methods for learning these rules, estimat-
ing their associated weights, and performing
probabilistic and logical inference to infer un-
seen relations. Although our system was able
to infer additional correct relations that were
not extracted by our baseline relation extrac-
tion system, we were unable to significantly
outperform a pure extraction baseline.

1 Introduction

In 2014, UT Austin was a second-time participant
in the English Slot Filling task of the Text Anal-
ysis Conference (TAC) Knowledge Base Popula-
tion (KBP) evaluation. In 2013, UT Austin partic-
ipated in KBP Slot Filling and placed 12th out of
18 teams in official scoring, with a top F1 score of
12.26 (Bentor et al., 2013). Our 2014 system uses
a similar approach, but replaces a low-performing
baseline extraction system with the top perform-
ing 2013 system, RelationFactory, from the Spo-
ken Language Group at Saarland University (with

permission) (Roth et al., 2014a). Additionally, we
implemented a new software architecture based on
the Apache Jena Semantic Web engine that greatly
improves performance and scalability of the weight
learning and logical inference components of the
2013 system, and we addressed other significant
shortcomings of our 2013 system.

The UT Austin KBP system aims to infer rela-
tions that are missed by a standard relation extrac-
tion system or that can be guessed using general,
commonsense world knowledge. Our approach,
called Bayesian Logic Programs for Textual Infer-
ence (BLP-TI) constructs Bayesian Logic Programs,
a statistical relational learning formalism that com-
bines the power of first order Horn logic with prob-
abilistic inference using directed graphical models,
to model probabilistic commonsense rules such as
“the parents of a child are often spouses” or “chil-
dren often live in the same state as their parents”. It
is our hope that such learned rules can increase the
recall of relation extraction and provide useful in-
formation to other downstream systems. This work
builds upon the approaches described in Raghavan
et al. (2012) and Bentor et al. (2013).

2 System Architecture

The 2014 BLP-TI system architecture is shown in
Figure 1. We train our system using processed
relation instances from DBpedia 3.9 (Lehmann et
al., 2014), as described in Section 4. An on-
line inference-rule learning system (Raghavan and
Mooney, 2013) proposes a set of first-order definite-
clause rules from these relation instances, and sub-
sequently a MLE weight learner uses counts of rela-



Figure 1: System overview

tion instances to assign weights to each rule. Com-
bined, these form a Bayesian Logic Program (Ker-
sting and De Raedt, 2007). In testing, we apply
our learned BLP to extractions from an off-the-shelf
relation extraction system, giving us additional in-
ferred facts.

3 Bayesian Logic Programs

Bayesian logic programs (BLPs) are a formalism
that unifies directed probabilistic graphical models
and traditional Prolog-style logic programming, cre-
ating templates for graphical models. A BLP de-
fines an abstract model composed of first-order Horn
clauses and associated conditional probability ta-
bles (CPTs) for each rule c such that CPT(c) =
P(head(c)|body(c)). In BLP clauses, all variables are
universally quantified and range restricted such that
variables{head} ⊆ variables{body}.

In BLP inference, these abstract models are in-
stantiated with a query and a set of ground facts.
Logical deduction (SLD resolution) is used to con-
struct the graphical model by tracing the proof struc-
ture. Evidence from multiple rules is combined us-
ing a noisy-or combining function. Standard meth-
ods for graphical model inference in Bayes nets,
such as SampleSearch (Gogate and Dechter, 2007),
may then be applied.

By constructing the ground graphical model at
query time and by only permitting Horn clauses in
the rules, it is possible to limit the size and com-
plexity of the ground networks, resulting in more
tractable inference compared to Markov Logic Net-
works (MLNs) (Domingos and Lowd, 2009). Ad-

ditionally, a study by Raghavan et al. (2012) shows
superior performance of BLPs over MLNs on a re-
lation inference task in a similar domain.

4 Training Data and Dependencies

Our rule learner and weight learner are both trained
using relations from DBpedia. We first map rela-
tion types from the DBpedia ontology to the KBP
ontology using deterministic hand-coded rules, dis-
carding tuples that do not have a reasonable map-
ping in KBP. We further filter the resulting tuples to
ensure that the arguments are type consistent with
KBP types, resulting in approximately 1.1 million
training tuples that cover 30 of the 41 KBP relation
types. This increase from the 2013 UT Austin sys-
tem is due to upgrading from DBPedia 3.8 to DBPe-
dia 3.9 and an expansion of the hand-coded mapping
from the DBpedia to KBP ontology.

5 Algorithms

5.1 Relation Extraction

We use an existing relation extractor for obtaining
explicit relations occuring in text. Since these base
relations are provided as input to our inference al-
gorithm, it is important that they be accurate and
have reasonable recall. Hence, we used the top per-
forming RelationFactory system (Roth et al., 2014b)
from 2013 KBP English Slot Filling Task as our base
relation extractor. We will provide a brief overview
of this system in this section.

The pipeline of RelationFactory system has two
stages of operation. First, in the candidate genera-
tion stage, relevant documents are retrived and sen-
tences that might have possible relations are filtered
based on entity type checking. Second, in the can-
didate validation stage, SVM based classification is
used to determine whether the candidate sentences
express a valid relation for the query.

There are various tasks happening in these two
stages of the pipeline. Some of the main tasks are
identified and discussed briefly. A more complete
and elaborate discussion can be found in Roth et al.
(2014b) and Roth et al. (2012).

A major task in the first stage of pipeline is to
expand queries as the TAC KBP query might be
referenced with different alias names in training



data. Hence, a reasonable set of aliases must be in-
cluded for each query entity for our retrival com-
ponents to return good number of candidate docu-
ments/sentences. For this, the name of query entity
is expanded using Wikipedia anchor text similar to
Roth and Klakow (2010).

Due to the large size of training corpus, it is im-
portant to index the documents with respect to query
entities that are referenced in them. This will en-
sure good levels of performance of the entire rela-
tion extraction pipeline. For this purpose, we use
Apache Lucene1 - an efficient Java-based text search
engine library. After indexing, a point wise mutual
information based scheme is used for choosing the
query aliases that need to be used for retrieving can-
didate documents. After retrieving relevant docu-
ments, candidate sentences are filtered by using a
combination of different methods. One approach
is to perform type checking based on the expected
type of slot fill for each relation type. For this,
RelationFactory uses a named entity labeler based
on a perceptron-trained sequence labeler (Collins,
2002) trained on BBN training data (Weischedel and
Brunstein, 2005). Another approach is to use pat-
tern matching in which RelationFactory constructs
patterns for sentences that contain specific relation
slot fills and checks if a candidate sentence matches
these patterns.

These filtered candidate sentences are supplied to
the second stage of the pipeline, whose main task is
to classify the type of relation expressed in a candi-
date sentence. For this purpose, they use one binary
SVM classifier per relation type using SVMlight2.
All candidate sentences for a particular relation form
the positive training samples while the rest of the
sentences form the negative samples. A set of to-
ken n-gram features are extracted from these train-
ing sentences to capture context for different relation
types. RelationFactory uses aggregate training to
speed up the training process by grouping all sen-
tences by entity relation pair and using each as a
single training instance. While training is done in
an aggregate manner, prediction is performed on a
single sentence level only. Candidate slot fills are
extracted from positive predictions for each entity

1http://lucence.apache.org/
2http://svmlight.joachims.org, (Joachims, 1999)

relation type pair, which forms one half of the input
for UT Austin’s BLP-TI system. In a second run, the
output of the first run of RelationFactory is used as
input, generating extractions which may be useful to
satisfy the body of the BLP-TI rules.

5.2 Rule Structure Learning

Like our 2013 system, our rule learning approach
follows the online approach of Raghavan and
Mooney (2013), but replaces extractions from docu-
ments with sets of tuples from DBpedia.

We process 1000 relations at a time, building a
directed graph whose nodes represent relation in-
stances. Directed edges are added between relation
instances that share one or more constant arguments,
with edge direction chosen such that the edge’s head
is the more frequently seen relation instance. The
edge direction encodes the heuristic that relations
that are more frequently explicitly stated should help
us infer relations that are less frequently stated.

After all sets of relations are processed, the rule
learner traverses the resulting graph and constructs
rules in which the each rule head corresponds to a
tail in the graph and each rule body conjoins the
nodes traversed to reach that tail. All constants in
the resulting rules are replaced with unique variables
to create first order rules.

Because BLPs are range restricted as described in
Section 3, the rule learner retains only those rules
where all variables in the head appear in the body,
discarding all other non-conforming rules. The rule
learner maintains a count of how often each rule is
satisfied in the training set, and can be set to discard
rules that do not meet a user-defined threshold.

This online rule learning algorithm has been
shown to outperform a Inductive Logic Program-
ming (ILP) system (Mccreath and Sharma, 1998) on
some relation types, and, critically, to scale to much
larger data sets than is possible with ILP systems.

We refer the reader to Raghavan and Mooney
(2013) for additional details of the algorithm and an
empirical evaluation.

5.3 Rule Weight Learning

To assign weights to the learned rules, we compute
maximum likelihood estimates from the training
data using a modified closed world assumption.



While we do not assume that our training set is com-
plete, we do assume that if the training set contains
facts with a particular entity occurring in the subject
position, then it contains all relevant facts about
that entity. (Here, by subject position we denote the
first argument of the predicate.) This assumption
is motivated by the observation that in linked open
data resources, such as DBpedia, relation instances
are often only present when a notable entity is the
subject of the relation. For example, the relation
per: children(Barack Obama, Sasha Obama)
is more likely to appear than
per: parents(Sasha Obama,Barack Obama),
since Sasha Obama may not have her own cor-
responding Wikipedia page. Because of this,
maximum likelihood estimates computed us-
ing the standard closed world assumption were
qualitatively bad, with definitional rules (like
per: children(x, y) → per: parents(y, x)) as-
signed weights far from 1. This problem is
alleviated by using the modified assumption.

Put more formally, we call a substitution good
with respect to a rule if when that substitution is
applied to the head of the rule the fact generated
matches at least one fact in the training set, in both
the predicate and the first argument. For each rule,
we set the corresponding CPT parameter in the as-
sociated noisy-or combiner to be the percentage of
good substitutions for that rule for which the fact
generated is present in the training set.

To perform this weight learning efficiently on
large data sets, we use Apache Jena, a Semantic Web
Framework that can store and query large amounts
of data from a knowledge base efficiently.

5.4 Inference

In testing, we use the output of two runs of the Rela-
tionFactory KBP system. In the first run, we obtain
slot fillers for each of the KBP test queries. In a
second run, we use the slot fillers found in the first
run as input, generating “second-hop” results that
may be able to satisfy the bodies of some of our
BLP rules. For example, in the first run, Relation-
Factory may extract the value for a per:other family
slot for a KBP query, and in a second run, the family
member would serve as a query, and RelationFac-
tory may extract the value of per:religion for that
family member. We could then use these extractions

to satisfy the body of the second rule shown in Ta-
ble 1.

Next, we perform BLP inference as described in
(Kersting and De Raedt, 2007) and (Raghavan et al.,
2012), using each KBP slot as a query on which we
perform logical deduction within the Apache Jena
framework, using a hybrid backward-forward rea-
soner. We construct a ground Bayesian network
from the trace of the deduction, as described in Sec-
tion 3. For each RelationFactory extraction, we cre-
ated a “dummy node” with a combiner that incorpo-
rated the confidence reported by the extractor into
the BLP. We then use SampleSearch (Gogate and
Dechter, 2007), an approximate sampling method
for Bayesian networks, to estimate the marginal
probability of each inferred slot filler.

5.5 Post Processing

We combine extracted and inferred relation in-
stances to form our KBP submission, preferring the
relation instance with highest probability. Because
this resulted in a large number of inferences, es-
pecially in the case of list valued slots, many of
which had low probabilities, we construct a confi-
dence filter and discard inferences and extractions
whose confidence do not exceed a specific value.
These values are learned individually for each rela-
tion type by finding the values that maximize perfor-
mance on the 2013 queries.

To complete the relation provenance field (col-
umn 4) of the KBP response, we combine up to 4 re-
lation provenance values from extractions that were
used to satisfy the body of rules that were used in
the deduction of an inference.

6 Results

6.1 Rules

We applied our rule learner to a set of about 1.1 mil-
lion facts from DBpedia mapped to the KBP ontol-
ogy using a deterministic mapping and a filter for
type consistency. We divided this set into about
1000 “documents”, lexicographically sorted by the
first argument, and presented each segment to the
rule learner in turn. We were able to map DBPedia
relations to 30 of the 41 KBP predicates.

Our rule learner initially produced 627 rules, in-
cluding rules with up to 3 predicates in the body.



per:country of birth(A,B)→ per:countries of residence(A,B) [0.80]
If person A was born in country B, he or she likely resided in country B
per:other family(A,B) ∧ per:religion(B,C)→ per:religion(A,C) [0.69]
If a person A is related to a person B, they may share the same religion

per:country of birth(A,B)→ per:country of death(A,B) [0.60]
If person A was born in country B, then he or she died in that country

per:country of death(A,B)→ per:country of birth(A,B) [0.66]
If person A died in country B, then he or she was likely born in that country

per:children(A,B)→ per:parents(B,A) [0.96]
If A is a child of B, B is the parent of A

org:subsidiaries(A,B)→ org:parents(B,A) [0.86]
If an organization A has a subsidiary B, B’s parent organization is A

org:parents(A,B)→ org:subsidiaries(B,A) [0.58]
If an organization A’s parent organization is B, B has a subsidiary A

Table 1: Sample learned probabilistic rules. Associated learned weights are in brackets. Note that the weight on
the last rule is significantly lower than its converse, which is likely because DBpedia’s list of subsidiaries is often
incomplete.

We filtered rules that had little empirical support
(low counts in the training data) and those whose
learned weights were very low. Table 1 shows some
of the sample rules learned by the rule learner. We
observed that many of the definitional rules had
weights close to 1.0, while other rules and weights
seemed qualitatively plausible. Our methods did not
yield rules with more than one predicate in the body
using our automated rule learner, but we supple-
mented the learned rules with a small set of hand-
written rules. A total of 35 rules were used in our
2014 submission.

6.2 KBP Results

We submitted four runs of the UT Austin BLP-TI
system, as described in Table 2. The utaustin1
run represents our full system, combining inference
and the post-process pruning to improve precision.
The utaustin4 serves as a baseline for measuring
the impact of inference and pruning, while utaustin3
isolates just the effects of pruning and utaustin2
isolates just the effects of inference.

Because the KBP Slot Filling task does not explic-
itly allow for inference in relation provenance, and
because providing such provenance can be tricky,
the inference scores for our system have been signif-
icantly higher under lenient scoring measures such
as anydoc and ignoreoffsets. Because these
results were not available at the time of submission,
they will be added to the proceedings version of this

paper.

Run ID Description
utaustin1 Full system, with inference and NIL pre-

diction and list pruning
utaustin2 Inference system with no NIL prediction

or list pruning methods
utaustin3 No inference, but apply NIL prediction

and list pruning to extraction
utaustin4 The baseline run of the LSV extraction

system, with no inference and no NIL pre-
diction

Table 2: Summary of UT Austin runs

The official results are summarized in Tables 3
and 4.

7 Discussion and Future Work

From the results in Table 4, we see that inference
had the effect of increasing recall by a small amount,
at the expense of some precision, while the learned
threshold-based pruning had the desired effect of in-
creasing precision. Combined, however, we were
unable to beat the baseline extraction performance
of the RelationFactory system.

We were able to improve upon several deficien-
cies in our KBP SF 2013 submission, including the
ability to infer multiple slot fillers for list-valued
slots, relying on an input relation extraction system
with higher performance, and exploiting the changes
in KBP rules to provide additional justification off-



Run ID Filled Correct KB Redun-
dant

Response
Redundant

Inexact Incorrect

utaustin1 727 235 2 8 25 457
utaustin2 863 241 2 8 27 585
utaustin3 568 226 2 7 23 310
utaustin4 600 232 2 7 25 334

Table 3: Summary of UT Austin runs

Run ID Diagnostic
Recall

Diagnostic
Precision

Diagnostic
F1

Official Re-
call

Official
Precision

Official F1

utaustin1 0.236 0.324 0.273 0.236 0.326 0.274
utaustin2 0.242 0.280 0.260 0.242 0.282 0.260
utaustin3 0.227 0.399 0.290 0.227 0.401 0.290
utaustin4 0.233 0.388 0.291 0.233 0.390 0.292

Table 4: Official results for UT Austin runs

sets that better capture the properties of inference.
The improvements in recall from performing in-

ference were limited this year. We propose several
extensions to the system as well as discuss funda-
mental difficulties below:

• Our system is highly dependent on a strong
baseline extraction system, and the perfor-
mance of existing open source systems is still
somewhat low. We would like to ensemble sev-
eral systems together using the BLP framework
in future runs.

• Some relations are inherently difficult to in-
fer from other relations, such as org:website or
per:charges.

• Some relations can be inferred, but may be
helped by an extractor that can provide extrac-
tions outside of the target ontology. For exam-
ple, an extractor that targets the entire DBpe-
dia ontology may extract relations that do not
have a KBP mapping but nonetheless can be
used in the body of a inference rule whose head
is a KBP-mappable relation. Such an extractor
would likely be trained using distant supervi-
sion methods, and will likely greatly expand the
set of rules that BLP-TI is able to learn.

• Our rule learner is not very well suited to large
datasets, as it can only consider one “docu-
ment” at a time. For performance reasons, we
were forced to consider sets of 1,000 relation

instances from DBpedia at a time. We propose
using rule learning systems such as the Path
Ranking Algorithm (Lao et al., 2011), which
have been shown to effectively learn rules form
databases of upward of 500, 000 facts, or exten-
sions to PRA that incorporate text corpora and
distributional similarity, such as Gardner et al.
(2014).

• While the KBP task definition has been ex-
panded to allow additional justification spans,
annotation guidelines currently only permit re-
lation instances which are explicitly stated in
the text or ones that can always be inferred from
the text to be counted as correct. In contrast,
BLP-TI may infer facts that are correct, but that
cannot always be deduced from the justifica-
tion spans given, because they are generated by
probabilistic rules.

• Software problems may have limited our ability
to combine inferences from several sources this
year.

Similarly to our 2013 entry, our results do not
quite match previous promise shown by BLPs in
similar domains (Raghavan et al., 2012). BLPs show
more promise than other statistical relational learn-
ing frameworks when scaling to large data sets, and
we hope to show that such inferences are helpful in
future tasks.
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