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Abstract

Automatically extracting information from biomedical text holds the promise of easily
consolidating large amounts of biological knowledge in computer accessible form. We are
investigating the use of information extraction techniques for processing biomedical text.
Currently, we have focused on the initial stage of identifying information on interacting
proteins, speci�cally the problem of recognizing protein and gene names with high
precision. We present preliminary results on extracting protein names from Medline
abstracts.
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Abstract

Automatically extracting informa-
tion from biomedical text holds the
promise of easily consolidating large
amounts of biological knowledge in
computer accessible form. We are
investigating the use of information
extraction techniques for processing
biomedical text. Currently, we have
focused on the initial stage of iden-
tifying information on interacting
proteins, speci�cally the problem of
recognizing protein and gene names
with high precision. We present pre-
liminary results on extracting protein
names from Medline abstracts.

1 Introduction

An incredible wealth of biological information
generated using biochemical and genetic ap-
proaches is stored in published articles in sci-
enti�c journals. However, retrieving and pro-
cessing this information is very diÆcult due
to the lack of formal structure in the natural-
language narrative in these documents. Auto-
matically extracting information from biomed-
ical text holds the promise of easily consoli-
dating large amounts of biological knowledge
in computer accessible form. Information ex-
traction (IE) systems could potentially gather
information on global gene relationships, gene
functions, gene-gene interactions, and other im-
portant information on biological processes.

In fact, all projects focused on extracting in-
formation about genes or proteins must face the
initial challenge of recognizing the gene/protein
names in the text. This process is exacerbated
by the lack of standardized gene naming conven-
tions in biology. Gene/protein name styles vary
considerably from organism to organism; even
for genes from the same organism, few rules ex-

ist. For example, human genes/proteins may
be named with standard English words, such
as "light", "map", "complement", and "Sonic
hedgehog". Names may be alphanumeric, may
include greek or latin letters, may be case sen-
sitive, and may be composed of multiple words.
Names are frequently substrings of each other,
such as "epidermal growth factor" and "epider-
mal growth factor receptor", which refer to two
di�erent proteins. It is therefore necessary that
an information extraction algorithm be speci�-
cally trained to extract gene and protein names
accurately.

A number of recent projects have focused on
the manual development of IE systems for ex-
tracting information from biomedical literature
(Fukuda et al., 1998; Humphreys et al., 2000;
Blaschke and Valencia, 2001; Proux et al., 2000;
Rindesch et al., 2000; Thomas et al., 2000;
Hahn et al., 2002). We are in the beginning
stages of a project focused on using machine-
learning methods to develop IE systems for ex-
tracting information on gene/protein function
and gene/protein interactions from Medline ab-
stracts. For our purposes, genes and proteins
are interchangeable since, typically, there is
a one-to-one correspondence between proteins
and the genes that code for them. In this pa-
per, we present initial results on extracting gene
and protein names, the �rst step in the process
of extracting protein interactions or other gene
speci�c data.

2 Biological Data

2.1 Tagging of Medline Abstracts

In order to assemble training and test data
for extracting proteins, 5,000 Medline abstracts
with the MeSH term 'human' were downloaded
from Medline. This set of 5,000 was �ltered us-
ing a tagging tool to isolate 218 abstracts that
spoke about genes, and from these the �nal
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TI - Di�erential mechanisms of recognition and activa-
tion of <prot> interleukin-8 receptor </prot> subtypes.
AB - We have probed an epitope sequence (His18-
Pro19-Lys20-Phe21) in <prot> interleukin-8 </prot>
(<prot> IL-8 </prot>) by site-directed mutagenesis.
This work shows that single and double Ala substi-
tutions of His18 and Phe21 in <prot> IL-8 </prot>
reduced up to 77-fold the binding aÆnity to <prot>
IL-8 receptor subtypes A </prot> (<prot> CXCR1
</prot>) and B (<prot> CXCR2 </prot>) and to the
<prot> Du�y antigen </prot>. These Ala mutants
triggered neutrophil degranulation and induced calcium
responses mediated by <prot> CXCR1 </prot> and
<prot> CXCR2 </prot>. Single Asp or Ser substi-
tutions, H18D, F21D, F21S, and double substitutions,
H18A/F21D, H18A/F21S, and H18D/F21D, reduced
up to 431-fold the binding aÆnity to <prot> CXCR1
</prot>,<prot> CXCR2 </prot>, and the <prot>
Du�y antigen </prot>. Interestingly, double mutants
with charged residue substitutions failed to trigger de-
granulation or to induce wild-type calcium responses me-
diated by <prot> CXCR1 </prot>. Except for the
H18A and F21A mutants, all other<prot> IL-8</prot>
mutants failed to induce superoxide production in neu-
trophils. This study demonstrates that <prot> IL-
8 </prot> recognizes and activates <prot> CXCR1
</prot>, <prot> CXCR2 </prot>, and the <prot>
Du�y antigen </prot> by distinct mechanisms.
AD - Department of Physiology and Biophysics and
Sealy Center for Molecular

Figure 1: Sample Tagged Medline Abstract

50 abstracts were obtained. Tagging was car-
ried out using the texttagger.pl software down-
loaded from http://www-2.cs.cmu.edu/~kseymore/

general_tagger.pl. This program accepts a di-
rectory of �les to be tagged and allows a user to
tag them using a graphical user interface based
on a �le of possible labels and writes the tagged
�les into an output directory. An example of
tagged abstract is shown in Figure 1.

2.2 Gene/Protein Dictionary

In order to identify gene/protein names, two
fairly comprehensive dictionaries of human
gene/protein names were assembled.

1. The human.seq �le was down-
loaded from the EXPASY website
(http://us.expasy.org/sprot/hpi/hpi_ftp.html)
and processed to create one of the dictio-
naries.

2. The �le feb2002-tables.tar.gz was down-
loaded from the Gene Ontology Database

(http://www.godatabase.org/dev/database/
archive/latest) and processed to create
another dictionary of protein names.

Altogether, these dictionaries contain 42172
gene/protein names (synonyms included).
These dictionaries were used to create a
protein/gene name tagger as described in
Section 3.

3 Identifying Protein Names

3.1 Protein Tagger

The task of recognizing protein names in
biomedical corpora continues to represent a
challenge, mainly because of the following fac-
tors:

� Many instances of new protein names do
not follow exactly the standard nomencla-
ture.

� Authors often refer to proteins already in-
cluded in protein databases using varia-
tions which do not exist in those databases.

The success of a protein tagger depends on
how well it captures the regularities of protein
naming and name variations. Our approach was
to start with an extensive set of protein names
collected from two online dictionaries, hence-
forth referred to as the original dictionary, and
then extend it using a carefully designed pro-
cedure. We centered our e�ort around this ini-
tial set of proteins, our aim being to develop a
highly accurate tagger. The major task was to
extend the coverage of the original set, while at
the same time trying to minimize any decrease
in accuracy.
The tagger was divided in two main algo-

rithms:

1. An algorithm for the extension of the orig-
inal dictionary (OD). The result would be
a pair of dictionaries - a generic dictionary
(GD) and a canonical dictionary (CD). The
algorithm is described in Table 1.

2. An algorithm for traversing a given text
and identifying protein names, based on
the extended dictionaries produced by the
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previous algorithm. The algorithm is de-
scribed in Table 2.

ID � intermediate dictionary
let ID  ;
for each entry e 2 OD do

let gen generalForm(e)
let ID  ID [ fgeng

let GD ID

for each short name sn 2 ID
let CV  caseV ariations(sn)
let GD  GD [ CV

let CD ID

for each entry e 2 ID
let cf  canonicalForm(e)
let CD  CD [ fcfg

Table 1: Extension Algorithm

g � textual n-gram
let gf  generalForm(g)
if gf 2 GD

tag g as protein name
else

let cf  canonicalForm(gf)
if cf 2 CD
tag g as protein name

Table 2: Recognition Algorithm

Two important procedures, namely the name
generalization and the canonic form �nder, were
employed in both algorithms.

Generalizing a name means to identify those
parts susceptible of being changed in new pro-
tein names, and replace them with generic
placeholders. Thus, we isolate and replace num-
bers with <n>, latin letters with <l> and greek
letters with <g>. Table 3 shows some examples
of name generalizations.

The canonical form of a protein name refers
to that part of the name contained in all varia-
tions. We consider that all variations of a pro-
tein name create an equivalence class, and once
that we have identi�ed the equivalence class of
a protein name, we take only a representant of

Protein Name Generalized Name

interleukin-1 beta interleukin <n> <g>

interferon alpha-D interferon <g> <l>

NF-IL6-beta NF IL <n> <g>

TR2 TR <n>

Table 3: Generalizations

this class and insert it in a dictionary of canon-
ical forms. The representant of a class will be
chosen to be the smallest element of the class
i.e. the element contained in any variation from
that class.

We have identi�ed three types of protein
names, each with its own class of variation rules:

1. Short names - this category contains
all abbreviation-type names (ex: FGF1,
hGITRL, CCT-beta, TNF-alpha);

2. Full names - this category contains detailed
protein names (ex: tumor necrosis factor
ligand superfamily member 14);

3. One word names - names whose head is
a lower case word usually referring to a
class of proteins (ex: Alpha E-catenin, in-
terleukin 10);

Another independent reason for implement-
ing slightly di�erent versions of the canonical
form procedure is given by the context in which
this procedure is actually used. We distinguish
between:

� The extension version, used for deriving the
canonical dictionary, and

� The recognition version, used for creating
canonical forms from textual n-grams.

Below we give the three main steps of deriving
the canonical form for a short name (recognition
version):

1. Strip the short name of all elements from
the list A of aÆx words (Table 4).

2. Replace the acronym-type token from the
reduced short name with <x>.
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3. If the new token is in the class C of short
name variations (Table 4), then its canon-
ical form is the acronym-type token that
was replaced with <x> in the previous
step.

A h, human, anti, precursor, receptor, R

ligand, L, chain, kinase, protein, ...

<x>
<x><l>, <x><g>, <g><x>, <x><n>,

c<x>, s<x>, <x><l><n>,

C <x><l><g>, <x><g><n>,

<x><g><l>, <g><x><n>,

<x><n><l>, <x><n><g>,

<x><g><l><g>,

<l><x><n><l>, <l><x>

Table 4: Variation Class for Short Names

For the extension version, the aÆx set A is
considerably reduced. One element that is elim-
inated from this set is \receptor", because by
removing \receptor" from a protein name we
might end up with a non-protein name - for in-
stance \vitamin A receptor" vs. \vitamin A".
Example:

� [Extension] NF-25 is a protein name in the
original dictionary OD.

� [Extension] By generalization we get
NF<n>. This general form, together with
its case variation Nf<n>, is to be included
in the general dictionary GD.

� [Extension] NF<n> is a short name, hence
we can use the previous procedure for de-
riving its canonical form. We substitute
the acronym NF with <x>, and we get
<x><n>, which is a member of the class
C of variations, therefore its canonical form
will be <x> = NF. This form will be added
to the canonical form dictionary CD.

� [Recognition] The textual n-gram NF-
kappa B is not in the original dictionary,
however it generalizes to NF<g><l>.

� [Recognition] Further, replacing the
acronym NF with <x>, we get

<x><g><l>, which is a member of
the variations class C. Its canonical form,
NF, is found in the canonical dictionary,
therefore NF-kappa B will be tagged as a
protein name.

We've paid great attention to case variations,
and �nely tuned the procedures for deriving
canonical forms, distinguishing between the ex-
tension case and the recognition case, as well as
among the 3 types of protein names. In this way,
we were able to consider, for instance, PHE3
(Dihydrolipoamide dehydrogenase, mitochon-
drial precursor) as a gene/protein name and
avoid overgeneralizing it to the form Phe<n>
which would have covered non-protein entities
like the amino acid residues Phe93, or Phe205.
Other examples, often encountered in the test
abstracts, include THR1 (vs. Thr151), MET1
(vs. Met150), and many others. This may be
seen as an improvement over other approaches
that would tag them as protein names, and sup-
ports once more the general observation that
tagging protein names is a diÆcult task.

3.2 Experimental Evaluation

The protein tagger was tested against a set of 50
abstracts containing 742 protein names which
have been previously tagged. We used the stan-
dard measures of precision and recall. The re-
sults are summarized in Table 5, where the �rst
line refers to a baseline tagger which simply tries
to match n-grams from abstracts against entries
from the original dictionary, while the second
line refers to the actual tagger.

Precision Recall

OD only 95.2% 44.5%
OD+GD+CD 93.4% 82.2%

Table 5: Tagger Evaluation

The recall was signi�cantly improved, while
the precision decreased with only 1.8%. The
reason we got a smaller than 100% precision
with the baseline tagger resides in the inherent
ambiguity of some of the protein names, and
this problem was propagated in the �nal tagger
too. One example found in the test abstracts
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is CSF (colony stimulating factor in OD), used
there as an abbreviation for cerebrospinal uid.
Cell types present another case of conicting
names (NK1 receptor in OD vs. NK cell type
in text). We intend to make use of the context
surrounding protein names in order to disam-
biguate them and thus increase the precision.

We have also computed the precision and re-
call for a modi�ed version of our tagger in which
all protein names from the original dictionary
were converted to lower case names, in order to
asses the importance of discriminating between
lower case and upper case names when perform-
ing recognition. The recall in this case was al-
most the same as that of the unmodi�ed tagger,
while the precision dropped to 74%. This result
shows that case is important for protein name
recognition.

4 Related Work

Automated information extraction from
biomedical text is a growing area of research.
Most of the work in the area has concerned the
manual development of IE systems for extract-
ing speci�c pieces of information (Fukuda et
al., 1998; Humphreys et al., 2000; Blaschke and
Valencia, 2001; Proux et al., 2000; Rindesch
et al., 2000; Thomas et al., 2000; Hahn et al.,
2002; Ono et al., 2001). There has also been
some prior work in the area of automatically
learning IE systems for biomedical tasks
(Craven and Kumlien, 1999; Ray and Craven,
2001; Eliassi-Rad and Shavlik, 2001). This
work has addressed tasks such as identifying
the subcellular structures in which proteins are
located. To our knowledge, our work is the
�rst attempt to identify gene/protein names
starting from a dictionary, then extending it
to contain generalized patterns of gene and
protein names.

5 Future Work

Our research on extracting information from
biomedical literature is in its beginning stages.
This section outlines some of our plans to ex-
tend the current work.

First, we hope to improve our current

manually-developed protein tagger using ma-
chine learning. In particular, we plan to ex-
plore \bootstrapping" techniques such as those
described in (Rilo� and Shepherd, 1997; Rilo�
and Jones, 1999) to enlarge the current dictio-
nary. First, we will use the current tagger to lo-
cate protein names in large numbers of Medline
abstracts. Next, this tagged text will be used as
training examples to learn surrounding contexts
that are indicative of protein names using exist-
ing IE-learners such as BWI. These learned pat-
terns can be used to increase the recall of pro-
tein tagging and also to add new protein names
to the dictionary (possibly after �ltering by a
human biologist). Finally, this overall process
can be iterated to construct increasingly accu-
rate taggers.

Next, we plan to use the protein tagger as
an initial step in indentifying protein interac-
tions from Medline abstracts. We intend to
base our approach on boosted wrapper induction

(BWI) (Freitag and Kushmerick, 2000), which
uses boosting (Freund and Schapire, 1996) to im-
prove the performance of a pattern-learning sys-
tem initially developed fro extracting informa-
tion from structured web pages (Kushmerick et
al., 1997). We also intend to explore additional
IE-learning techniques such as Rapier (Cali�
and Mooney, 1999), and hidden Markov models
(Bikel et al., 1999; Freitag and McCallum, 2000)
and their recent improvements (McCallum et
al., 2000; La�erty et al., 2001). We also in-
tend to explore using additional syntactic infor-
mation, such as that provided by a full parser,
to improve extraction performance (Craven and
Kumlien, 1999; Ray and Craven, 2001). We
hope to greatly increase the amount of train-
ing data we can provide to our system by us-
ing information in the Database of Interacting
Proteins to produce weakly-labeled training data
(Craven and Kumlien, 1999). First, we need to
�nd all sentences in a large collection of Med-
line abstracts that reference both elements of a
pair of known interacting proteins. By assuming
that such sentences actually assert that these
proteins interact, large numbers of (potentially
noisy) extraction training examples can be au-
tomatically generated. As with protein tagging,
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this process can be iterated in order to \boot-
strap" an existing database of interacting pro-
teins into a much larger collection by exploiting
information in the biomedical literature.

We also hope to apply similar techniques to
extract other important biological information
such as gene functions and global gene relation-
ships. In addition, as observed in (Blaschke and
Valencia, 2001), the information to be extracted
is frequently not contained in the abstract and is
only available in the full text of the article. Con-
sequently, we also hope to apply our methods
to extract from complete articles in cases where
full text is also available in electronic form.

6 Conclusions

This paper has presented initial results on ex-
tracting protein and gene names from Medline
abstracts, which is the �rst step for a system
aimed at extracting gene/protein interactions.
Although the current results are promising, ex-
tensive additional research is required in or-
der to eventually be able to transform the rich
biological knowledge present in the wealth of
biomedical literature into structured and acces-
sible electronic form.
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