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Abstract. Gradient Boosting and bagging applied to regressors can reduce the
error due to bias and variance respectively. Alternatively, Stochastic Gradient
Boosting (SGB) and Iterated Bagging (IB) attempt to simultaneously reduce the
contribution of both bias and variance to error. We provide an extensiveempir-
ical analysis of these methods, along with two alternate bias-variance reduction
approaches — bagging Gradient Boosting (BagGB) and bagging Stochastic Gra-
dient Boosting (BagSGB). Experimental results demonstrate that SGB does not
perform as well as IB or the alternate approaches. Furthermore, results show that,
while BagGB and BagSGB perform competitively for low-bias learners, ingen-
eral, Iterated Bagging is the most effective of these methods.

1 Introduction

The decomposition of a learner’s error intobias and variance terms provides a way
of analyzing the behavior of different learning algorithms[1]. Various methods have
been devised to reduce either the bias or variance of a learner. Some methods, such
as Gradient Boosting[2], can reduce bias by increasing the expressive power of the
base learner. While other methods, such as bagging[3], mainly reduce variance by sub-
sampling the training data. There have been some attempts ofcombining techniques
for bias and variance reduction, both for classification[4; 5] and for regression[6;
7]. For regression, Friedman[7] introduced Stochastic Gradient Boosting (SGB) as a
method that reduces the variance of Gradient Boosting (GB) by incorporating random-
ization in the process. Breiman[6] presented a related method, Iterated Bagging (IB)
that attempts to reduce the bias of bagging predictors. Despite their similarities, to our
knowledge, there has been no direct experimental comparison of these two methods.
In this paper, we present a detailed empirical analysis of SGB and IB. We show that
IB significantly outperforms SGB when applied to both prunedand unpruned regres-
sion trees. We also explored two alternate methods for combining bias and variance
reduction techniques for regression — bagging Gradient Boosting (BagGB) and bag-
ging Stochastic Gradient Boosting (BagSGB). Our experiments show that these meth-
ods also significantly outperform SGB. In comparison to IB, BagGB and BagSGB are
equally effective when applied to unpruned regression trees. However, for pruned re-
gression trees, which have a higher bias, we observe that IB is the most effective at error



reduction. This paper also presents a bias-variance analysis of the different algorithms,
which provides a better understanding of the relative effectiveness of these methods.

Section 2 provides a brief background on the bias-variance decomposition of error.
In section 3, we describe all the algorithms discussed in this paper, and our main ex-
perimental results are presented in section 4. In section 5,we discuss the results of our
bias-variance analysis; and section 6 presents our future work and conclusions.

2 Bias-Variance Decomposition of Error

The following formulation of the bias-variance (BV) decomposition is based on[8]. Let
us assume our data arose from a modely = F (x) + ǫ, where the random errorǫ has
E(ǫ) = 0 andV ar(ǫ) = σ2

ǫ
. Then the expected prediction error of a regression model

F̂ (x) for a pointx = xi using squared-error loss can be expressed as:

Ψ(y, F̂ (xi)) = E[(y − F̂ (xi))
2|x = xi]

= σ2

ǫ
+ [E(F̂ (xi)) − F (xi)]

2 + E[F̂ (xi) − E(F̂ (xi))]
2 (1)

= σ2

ǫ
+ bias2(F̂ (xi)) + variance(F̂ (xi))

The first term is theirreducible error, which is the variance of the target function
around its true meanF (x). This error cannot be avoided no matter how well we model
F (x). The second term is the contribution of squared bias to error, which is the amount
by which the average of our estimates differs from the true mean. The last term is
the contribution of variance to error, which is the expectedsquared deviation of̂F (xi)
around its mean. For brevity, we will refer to the contribution of squared bias and vari-
ance to error asbias2 andvariance respectively. In general, more complex models have
lower bias and higher variance; e.g., unpruned decision trees tend to have low bias and
high variance, while decision stumps have a very high bias but low variance.

3 Algorithms

3.1 Gradient Boosting and Stochastic Gradient Boosting

Gradient Boosting (GB)[2] is an iterative algorithm which constructs additive models
by fitting a base learner to the currentresidue at each iteration; where the residue is
the gradient of the loss function being minimized with respect to the model values at
each data point. In[9], Friedman introduced Stochastic Gradient Boosting (SGB) which
improves the accuracy of GB by reducing its error due to variance. In SGB, at each
iteration a subsample of data is drawn uniformly at random, without replacement, from
the full training set. This random subsample is used to trainthe base learner to produce
a model for the current stage. Friedman[7] states that the idea of using a random subset
of the training set at each stages originates from bootstrapsampling in bagging, and
has a similar variance-reducing effect on the combined model. The SGB method (for
squared-error loss) is presented in Algorithm 1. GB can be viewed as a special case of
this algorithm in which the entire training set is used at each iteration, i.e.,f = 1.0. In
our experiments, the shrinkage parameterν for GB and SGB was set to 1.



Algorithm 1 Stochastic Gradient Boosting

Given: M – maximum number of stages;{xn, yn}
N
n=1 – training set of sizeN ; f = Ñ

N
, 0 <

Ñ ≤ N – fraction parameter that determines the size of subsample;ν – shrinkage parameter;
L – base learner

1. Form = 1 to M do:
2. Select random subset{xñ, y(ñ,m)}

Ñ
ñ=1 from {xn, y(n,m)}

N
n=1

3. Apply learnerL to sample set{xñ, y(ñ,m)}
Ñ
ñ=1 to produce predictor̂Fm

4. Replace residues of training set{xn, y(n,m)}
N
n=1 to form{xn, y(n,m+1)}

N
n=1,

wherey(n,m+1) = y(n,m) − ν · F̂m(xn)

Output: y =
∑M

m=1
ν · F̂m(x)

3.2 Iterated Bagging

Bagging has been shown to reduce the variance of predictors,while leaving the bias
largely unchanged[3]. Iterated Bagging (IB)[6], also known as Adaptive Bagging[10],
is an effort to reduce the bias error of the low-variance bagging predictors. Similar to
SGB, it is a stage-wise algorithm that attempts to minimize the residue in each stage.
IB addresses bias and variance reduction in two ways: (1) it uses low-variance bagging
predictors to compute residues and (2) it computes unbiasedestimates of residues us-
ing out-of-bag calculations[10]. The outline of IB is presented in Algorithm 2. In our
experiments, the threshold parameterτ for IB was set to 1.1, as done in[6].

Algorithm 2 Iterated Bagging
Given: M – maximum number of stages;K – number of bagging predictors in each stage;τ –
threshold of mean sum-of-squares of residues;{xn, yn}

N
n=1 – training set of sizeN ; L – base

learner

1. Initialize minimum residue,ǫM∗ = ∞, M∗ = 0
2. Form = 1 to M do:
3. Learn a set ofK bagging predictors{β(k,m)}

K
k=1 with learnerL

applied to bootstrap samples selected from{xn, y(n,m)}
N
n=1

4. Calculate the residuey(n,m+1) = yn,m −
∑K̂

k̂=1
β(k̂,m)(xn)/K̂,

whereβ(k̂,m) is one of theK̂ bagging predictors not trained onxn

5. Replace residues of the training set to form{xn, y(n,m+1)}
N
n=1

6. Calculate the mean sum-of-squares of residues,ǫm =
∑N

n=1
(y(n,m+1))

2/N
7. If ǫm < ǫM∗ thenM∗ = m, ǫM∗ = ǫm

8. Exit the loop ifǫm > τ · ǫM∗

Output: y =
∑M∗

m=1

∑K

k=1
β(k,m)(x)/K

3.3 Bagging GB and Bagging SGB

We explored two alternative approaches to bias-variance reduction — bagging Gradient
Boosting (BagGB) and bagging Stochastic Gradient Boosting(BagSGB). BagGB and



BagSGB use GB and SGB, respectively, as the base learners in each stage of building
a bagging predictor. A total ofK bootstrap sets of training instances are randomly
selected to trainK GB (or SGB) predictors. The outputy of a test inputx is predicted
by averaging the predictions of theK base predictors.

BagGB should reduce the variance error of predictions by stabilizing the predic-
tions of the GB base learners. BagGB and IB are similar as theyboth possess two
components: (1) a bagging predictor to stabilize the predictions of the base learners
by averaging the results of the predictors each trained witha different bootstrap sam-
ple and (2) a greedy stage-wise training of base predictors to minimize the residues.
The difference between IB and BagGB is that IB performs greedy stage-wise training
with a set of bagging predictors to stabilize the predictions of their base learners, while
BagGB stabilizes the predictions of a set of base-predictors, each of which performs
greedy stage-wise training. Although SGB already attemptsto reduce the variance of
GB through randomization, we believe that bagging SGB may further enhance its vari-
ance reduction.

4 Experimental Evaluation

4.1 Methodology

We ran all our experiments on 25 datasets, with continuous class (target) values, from
the UCI repository[11]. Details on the datasets can found in the extended version of
this paper[12]. We compared 7 different regression methods, which are listed in Table 1
along with their setup parameters. The performance of most meta-learners (additive
models) varies with the number of base models used. In order to make the comparison
fair, we chose parameters such that each method produces 100base models. In the
case of IB, this is an upper bound since it can choose to use fewer models. As a base
learner for all the meta-learners we used M5′ [13], which is regression tree induction
modified based on[14] and[15]. We ran separate sets of experiments on pruned M5′

and unpruned M5′. In pruned M5′, the regression tree is pruned back from the leaves,
so long as the expected estimated error decreases. All our results were averaged over 10
runs of 10-fold stratified cross-validation. The difference in performance between two
systems was compared using a two-tailed paired t-test (p < 0.05).

Algorithm Description
IB 10 stages of IB with 10 stages of bagging each (M = 10, K = 10).
BagSGB/BagGB10 stages of bagging× 10 SGB/GB iterations each (M = 10).
SGB/GB 100 iterations (M = 100).
Bagging 100 stages of bagging M5′ trees.
M5′ pruned or unpruned M5′ tree induction

Table 1. Experimental setup of each method.

The performance of SGB and BagSGB is dependent on the fraction parameterf
chosen for the experiment. Some values forf perform significantly better than others
on the same dataset. In order to compare with the best instances of SGB and BagSGB,
we performed10 runs of10-fold cross-validation on SGB and BagSGB with different
values off from{0.4, 0.5, 0.6, 0.7, 0.8, 0.9} and selected thef that produced the lowest
error for each dataset.



IB BagSGB BagGB SGB GB Bag M5′ %ErrRed
IB - 13/1/11 10/6/9 10/12/3 18/4/3 16/1/8 17/1/7 16.44
BagSGB 11/1/13 - 10/8/7 16/5/4 15/5/5 18/4/3 21/2/2 16.35
BagGB 9/6/10 7/8/10 - 10/11/4 15/5/5 16/2/7 18/2/5 15.61
SGB 3/12/10 4/5/16 4/11/10 - 12/10/3 13/1/11 14/5/6 14.39
GB 3/4/18 5/5/15 5/5/15 3/10/12 - 13/0/12 13/1/11 7.45
Bag 8/1/16 3/4/18 7/2/16 11/1/13 12/0/13 - 17/5/3 1.98
M5′ 7/1/17 2/2/21 5/2/18 6/5/14 11/1/13 3/5/17 - -

(a)Base learner: unpruned M5′

IB BagSGB BagGB SGB GB Bag M5′ %ErrRed
IB - 18/4/3 20/3/2 23/1/1 24/0/1 19/3/3 22/1/2 16.89
BagSGB 3/4/18 - 9/9/7 19/6/0 18/6/1 19/4/2 22/3/0 11.82
BagGB 2/3/20 7/9/9 - 18/7/0 17/7/1 21/2/2 22/2/1 11.85
SGB 1/1/23 0/6/19 0/7/18 - 2/18/5 13/5/7 16/8/1 8.14
GB 1/0/24 1/6/18 1/7/17 5/18/2 - 13/4/8 16/7/2 8.55
Bag 3/3/19 2/4/19 2/2/21 7/5/13 8/4/13 - 16/7/2 2.59
M5′ 2/1/22 0/3/22 1/2/22 1/8/16 2/7/16 2/7/16 - -

(b)Base learner: pruned M5′

Table 2. Summary of results comparing the different methods.

4.2 Results

Tables 2(a) and 2(b) summarize the results of our experiments using unpruned and
pruned M5′ base learners respectively. Each cell in the tables reportsa win/draw/loss
comparison between the algorithm in the row versus the algorithm in the column. The
win/draw/loss record presents three values, the number of data sets for which algorithm
A obtained better, equal, or worse performance than algorithm B with respect to root-
mean-squared (RMS) error. A win or loss is only counted if thedifference in values is
determined to be significant at the 0.05 level by a pairedt-test. The last column of each
table presents the percentage reduction of the RMS error using different algorithms
compared with using M5′. This value is averaged over all the 25 datasets, and provides
an indication of the magnitude of improvements one can expect on average. In the
following subsections we summarize the key comparisons from Table 2.

IB vs. SGB: Our results show that IB significantly outperforms SGB, bothin terms
of win/draw/loss records and error reduction. The differences in performance are more
dramatic on pruned M5′, where IB performs better than SGB on 23 of the 25 datasets,
and produces twice the error reduction on average. The marked performance difference
on pruned M5′ can be attributed to IB’s superior bias-reduction.

SGB, BagGB and BagSGB: BagGB performs significantly better than SGB, both
for pruned and unpruned M5′. Similarly to IB, the differences are more pronounced
on pruned M5′, where BagGB wins over SGB on 18 of the datasets, with no signif-
icant losses. The results suggest that applying bootstrap sampling to GB has a better
variance-reducing effect than the randomization incorporated in SGB. In fact, applying
bagging to SGB (BagSGB), can significantly drive down the error of SGB, as can be
seen for both M5′ settings. BagSGB performs marginally better than BagGB in terms
of win/draw/loss records, though their error reductions are quite comparable.



IB vs. BagGB/BagSGB: On unpruned M5′, BagGB and BagSGB perform compara-
bly to IB both in terms of win/draw/loss records and error reduction — all methods pro-
ducing approximately a 16% reduction in RMS error. However,for pruned M5′ trees,
which have higher bias, IB exhibits a significant advantage over BagGB and BagSGB.
It wins over BagGB and BagSGB on 20 and 18 datasets respectively. We also observe
approximately a 5% difference in error reduction between IBand the other methods.
IB’s effectiveness at debiasing learners makes it a clear winner in higher bias settings.

SGB vs GB: Our results on high-variance unpruned M5′ support the claim in[7] that
SGB has a better variance-reducing effect than GB. SGB on average reduced 14.39%
of the error of unpruned M5′, while GB reduced only 7.45%. However, SGB has signif-
icant wins in only 12 datasets and ties with GB in 10. Although, the error reduction of
SGB is quite good, the win/draw/loss results do not suggest as significant an advantage
of SGB over GB as in[9]. In fact, on pruned M5′, the performance of SGB and GB are
tied on 18 datasets, with SGB performing slightly worse on the other datasets.

Bias-variance reduction vs. bias or variance reduction: GB and bagging focus
solely on reducing the bias or the variance of learners. On the other hand, IB, SGB,
BagGB and BagSGB attempt to reduce both the contribution of bias and variance to
error. For brevity, we will refer to these four methods as BV-methods. Our results show
that generally the BV-methods have a significant advantage over GB and bagging, even
when using the same number of base models. When compared to GB,BV-methods per-
form significantly better on at least 12 datasets and lose on at most 5 datasets. The only
exception is SGB using pruned M5′, which loses to GB by a margin of 3 datasets. Even
when compared to bagging, SGB is less effective than the other BV-methods. It wins by
a margin of 2 (13 wins vs. 11 losses) and 6 (13 wins vs. 7 losses)when using unpruned
M5′ and pruned M5′ respectively. The other BV-methods win by at least 16 datasets
and lose on at most 8 when compared to bagging. The results clearly indicate that com-
bining techniques for bias and variance reduction is more effective than focusing on
either component alone.

5 Bias-Variance Analysis

We explain most of our results based on how the different learners effect the bias and
variance components of the error. To support our conjectures, we ran additional ex-
periments to explicitly measure the bias and variance reducing effects of the methods
presented. As in[6], we performed BV decompositions on three synthetic datasets —
Friedman1, 2 and3 4. We do not introduce noise in these datasets, so that the evalua-
tion of the bias and variance reduction capability of a learner is not confounded with its
ability to handle noise. We use synthetic datasets, so that we can control for noise and
get better estimates of bias and variance.

To estimate bias and variance we used the method proposed by Kohavi and Wolpert[16],
appropriately modified for regression (as opposed to classification). Each dataset was
divided into two halves,D andE. D was used to draw our sample of training sets from,

4 Details of the datasets can be found in[12].



andE was used to estimate the terms in the BV decomposition. We generated 50 train-
ing sets fromD sampled uniformly at random without replacement. Each training set
of size 200 was selected from the pool of 400 examples inD. Each learning algorithm
was run on each of the training sets and the squared bias and variance terms were cal-
culated on setE based on equation 1. These values were averaged over all 50 train-test
cycles. For SGB and BagSGB, we used a fractionf = 0.6; which is roughly equivalent
to drawing bootstrap samples at each iteration.

Friedman1 Friedman2 Friedman3
Bias2 Var. Err. Bias2 Var. Err. Bias2 Var. Err.
IB Bag IB IB IB IB IB Bag IB
GB BagSGB BagSGB GB Bag BagSGB GB BagSGB BagGB
SGB BagGB BagGB BagGB BagSGB BagGB SGB IB GB
BagGB IB GB SGB BagGB GB BagGB BagGB BagSGB
BagSGB M5′ SGB BagSGB GB SGB BagSGB M5′ SGB
M5′ GB Bag M5′ M5′ Bag M5′ SGB Bag
Bag SGB M5′ Bag SGB M5′ Bag GB M5′

Table 3. Methods in order of increasing bias, variance and overall error.

Table 3 presents the different algorithms applied to unpruned M5′, in the order of
increasing bias, variance and overall error on each dataset. The results for pruned trees
were qualitatively similar, though in general the errors were higher for all methods. For
detailed results see[12]. We observe that GB performs very well at reducing bias, but
does not perform well at variance reduction. In fact, onFriedman1 andFriedman3, GB
actually increases the variance of the base learner. Analogously, bagging can increase
the bias of the learner, but performs very well in terms of variance reduction. By com-
bining the power of bagging and GB, BagGB produces a lower overall error than each
of its components. Similarly, BagSGB improves on the bias reduction of bagging and
the variance reduction of SGB, and as a result produces a lower overall error than both
component algorithms. IB shows the best performance on overall error, and it appears
to be quite effective in reducing both bias and variance. In fact, IB also performs the
best in terms of bias reduction on all three datasets.

6 Future Work and Conclusion

We compared four approaches to combining bias and variance reduction techniques —
Stochastic Gradient Boosting, Iterated Bagging, bagging Gradient Boosting and bag-
ging Stochastic Gradient Boosting. Our results demonstrate that methods for combining
bias and variance reduction (BV-methods) are more effective than methods that focus
either on bias or variance in isolation. We also showed that while SGB often improves
on GB, it is not very consistent and is easily outperformed bythe other BV-methods.
Experimental results show that for unpruned trees, which are low-bias learners, BagGB
and BagSGB perform somewhat comparably to IB. However, IB, being a more effec-
tive bias-reduction method, performs much better comparedto other algorithms when
applied to pruned trees.

In our study, we restricted our methods to building at most 100 models each. Typ-
ically, the performance of these ensemble methods (or additive models) improve with



ensemble size. In future work, we would like to explore the relationship between the
number of models used and the effectiveness of each method. All our experiments were
run on UCI datasets, commonly used in previous studies. However, these datasets are
not very large — the largest has 625 instances. It would be good to see how results vary
for much larger datasets. Experimenting with base learnersother than decision trees,
such as neural networks and support vector machines would also be very useful.
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