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Abstract. Gradient Boosting and bagging applied to regressors can reduce the
error due to bias and variance respectively. Alternatively, Stochastdi&nt
Boosting (SGB) and Iterated Bagging (IB) attempt to simultaneously eethe
contribution of both bias and variance to error. We provide an exteesnr-

ical analysis of these methods, along with two alternate bias-varianceti@uu
approaches — bagging Gradient Boosting (BagGB) and bagging Stacaa-

dient Boosting (BagSGB). Experimental results demonstrate that SES ruiat
perform as well as IB or the alternate approaches. Furthermotdtsrehow that,
while BagGB and BagSGB perform competitively for low-bias learnergein-

eral, Iterated Bagging is the most effective of these methods.

1 Introduction

The decomposition of a learner’s error irthtas and variance terms provides a way
of analyzing the behavior of different learning algorithfi$. Various methods have
been devised to reduce either the bias or variance of a leé&nme methods, such
as Gradient Boosting2], can reduce bias by increasing the expressive power of the
base learner. While other methods, such as bad@lhgnainly reduce variance by sub-
sampling the training data. There have been some attemmsnatbining techniques
for bias and variance reduction, both for classificatidn5] and for regressioii6;

7]. For regression, Friedmdr] introduced Stochastic Gradient Boosting (SGB) as a
method that reduces the variance of Gradient Boosting (gB)dorporating random-
ization in the process. Breimd6] presented a related method, Iterated Bagging (1B)
that attempts to reduce the bias of bagging predictors. iBetir similarities, to our
knowledge, there has been no direct experimental compadtthese two methods.
In this paper, we present a detailed empirical analysis d8 86d IB. We show that

IB significantly outperforms SGB when applied to both prumed unpruned regres-
sion trees. We also explored two alternate methods for aoimdibias and variance
reduction techniques for regression — bagging GradientsBiog (BagGB) and bag-
ging Stochastic Gradient Boosting (BagSGB). Our experisishow that these meth-
ods also significantly outperform SGB. In comparison to IRgBB and BagSGB are
equally effective when applied to unpruned regressiorstre@wever, for pruned re-
gression trees, which have a higher bias, we observe thatth& imost effective at error



reduction. This paper also presents a bias-variance asalythe different algorithms,
which provides a better understanding of the relative &ffeness of these methods.
Section 2 provides a brief background on the bias-variaecemposition of error.
In section 3, we describe all the algorithms discussed s ghper, and our main ex-
perimental results are presented in section 4. In sectimre3liscuss the results of our
bias-variance analysis; and section 6 presents our futark and conclusions.

2 Bias-Variance Decomposition of Error

The following formulation of the bias-variance (BV) decoosjtion is based of8]. Let

us assume our data arose from a maget F(z) + €, where the random errerhas
E(e) = 0 andVar(e) = o2. Then the expected prediction error of a regression model
F(x) for a pointx = z; using squared-error loss can be expressed as:

Wy, F) = Blly — F)Ple=2] A
= 0? + [B(F(x:)) = F(x) + E[F(x:) - B(F(z))]” (1)
= 02 + bias® (F(x;)) + variance(F(x;))

The first term is therreducible error, which is the variance of the target function
around its true meaR'(x). This error cannot be avoided no matter how well we model
F(x). The second term is the contribution of squared bias to esach is the amount
by which the average of our estimates differs from the tru@mm@&he last term is
the contribution of variance to error, which is the expectgdared deviation of'(z:;)
around its mean. For brevity, we will refer to the contribuatiof squared bias and vari-
ance to error abias? andvariance respectively. In general, more complex models have
lower bias and higher variance; e.g., unpruned decisi@s tiend to have low bias and
high variance, while decision stumps have a very high biasouvariance.

3 Algorithms

3.1 Gradient Boosting and Stochastic Gradient Boosting

Gradient Boosting (GB)2] is an iterative algorithm which constructs additive models
by fitting a base learner to the curramesidue at each iteration; where the residue is
the gradient of the loss function being minimized with redgde the model values at
each data point. 18], Friedman introduced Stochastic Gradient Boosting (SGB
improves the accuracy of GB by reducing its error due to vaeaIn SGB, at each
iteration a subsample of data is drawn uniformly at randoithout replacement, from
the full training set. This random subsample is used to ttaérbase learner to produce
a model for the current stage. Friedni@hstates that the idea of using a random subset
of the training set at each stages originates from bootsaampling in bagging, and
has a similar variance-reducing effect on the combined indde SGB method (for
squared-error loss) is presented in Algorithm 1. GB can beed as a special case of
this algorithm in which the entire training set is used atheiéeration, i.e.,f = 1.0. In

our experiments, the shrinkage parametésr GB and SGB was set to 1.



Algorithm 1 Stochastic Gradient Boosting

Given: M — maximum number of stage§t.., y» }h—; — training set of sizéV; f = % 0<
N < N —fraction parameter that determines the size of subsampleshrinkage parameter;
L — base learner

Form = 1to M do: .
Select random Subsgt, y(s.,m) ta—1 frOM {Zn, Y(n.m) Fnei

1.

2

3. Apply learner( to sample sefzs, y(ﬁ,m)};ﬂvzl to produce predictof,

4 Replace residues of training @ty ¥(n,m) tn=1 t0 Form {zn, y(n,m+1) bne1,

Wherey m+1) = Yn,m) — v+ Fin(2n)

Output: y = SN v B (2)

m=1

3.2 |Iterated Bagging

Bagging has been shown to reduce the variance of predictbite leaving the bias
largely unchangefB]. Iterated Bagging (I1B)6], also known as Adaptive Baggihgl,

is an effort to reduce the bias error of the low-variance baggredictors. Similar to
SGB, it is a stage-wise algorithm that attempts to minimizeresidue in each stage.
IB addresses bias and variance reduction in two ways: (Beis low-variance bagging
predictors to compute residues and (2) it computes unbieséthates of residues us-
ing out-of-bag calculationkl0]. The outline of IB is presented in Algorithm 2. In our
experiments, the threshold parametdor IB was set to 1.1, as done [f].

Algorithm 2 Iterated Bagging
Given: M —maximum number of stagek; — number of bagging predictors in each stage;
threshold of mean sum-of-squares of residdes;, v, }—; — training set of sizeV; £ — base
learner

1. Initialize minimum residue;;« = co, M* =0

2. Form = 1to M do:

3. Learn a set of{ bagging predictor$ﬁ<k,m>}§:1 with learnerl
applied to bootstrap samples selected from, y<n,m)}f¥:1

4. Calculate the residug,, +1) = Yn,m — 25:1 ﬁ(;;,m)(xn)/f(,

whereﬁ(,;,m) is one of theK bagging predictors not trained af),

Replace residues of the training set to fofm,, y(n,m+1) }5:1

Calculate the mean sum-of-squares of residygs+ Efj:l (Ynm+1))° /N
If e, < ens+ thenM™ = m, enr = e
Exit the loop ife,, > 7 - epr=

output: y = S0 S By (@) /K

O N g

3.3 Bagging GB and Bagging SGB

We explored two alternative approaches to bias-variarsgcteon — bagging Gradient
Boosting (BagGB) and bagging Stochastic Gradient BoogagSGB). BagGB and



BagSGB use GB and SGB, respectively, as the base learnegstirstage of building
a bagging predictor. A total of{ bootstrap sets of training instances are randomly
selected to traid< GB (or SGB) predictors. The outpytof a test inputz is predicted
by averaging the predictions of thé€ base predictors.

BagGB should reduce the variance error of predictions blyilsteng the predic-
tions of the GB base learners. BagGB and IB are similar as liodly possess two
components: (1) a bagging predictor to stabilize the ptiudlis of the base learners
by averaging the results of the predictors each trained avitifferent bootstrap sam-
ple and (2) a greedy stage-wise training of base predictorsitimize the residues.
The difference between IB and BagGB is that IB performs gyestdge-wise training
with a set of bagging predictors to stabilize the predidiohtheir base learners, while
BagGB stabilizes the predictions of a set of base-predictach of which performs
greedy stage-wise training. Although SGB already attertipteduce the variance of
GB through randomization, we believe that bagging SGB mathéu enhance its vari-
ance reduction.

4 Experimental Evaluation

4.1 Methodology

We ran all our experiments on 25 datasets, with continucassditarget) values, from
the UCI repository[11]. Details on the datasets can found in the extended version of
this papef12]. We compared 7 different regression methods, which aeslist Table 1
along with their setup parameters. The performance of mesaiearners (additive
models) varies with the number of base models used. In ood®miake the comparison
fair, we chose parameters such that each method producebabs@Omodels. In the
case of IB, this is an upper bound since it can choose to user fmwsdels. As a base
learner for all the meta-learners we used’NMB3], which is regression tree induction
modified based ofi14] and[15]. We ran separate sets of experiments on prunet! M5
and unpruned M5 In pruned M5, the regression tree is pruned back from the leaves,
so long as the expected estimated error decreases. Allsultsevere averaged over 10
runs of 10-fold stratified cross-validation. The differenn performance between two
systems was compared using a two-tailed paired t-test(.05).

Algorithm Description

B 10 stages of IB with 10 stages of bagging eath£ 10, K = 10).
BagSGB/BagGBLO stages of bagging 10 SGB/GB iterations eacti{ = 10).
SGB/GB 100 iterations {4 = 100).

Bagging 100 stages of bagging M¥rees.

M5’ pruned or unpruned Mdree induction

Table 1. Experimental setup of each method.

The performance of SGB and BagSGB is dependent on the frapticameterf
chosen for the experiment. Some values fgverform significantly better than others
on the same dataset. In order to compare with the best irtaicSGB and BagSGB,
we performedl0 runs of10-fold cross-validation on SGB and BagSGB with different
values off from {0.4,0.5,0.6,0.7,0.8,0.9} and selected thé that produced the lowest
error for each dataset.



1B BagSGB BagGB SGB GB Bag M5 %ErrRed
1B - 13/1/11 10/6/9 10/12/3 18/4/3 16/1/8 17/1/7 16.44
BagSGB|11/1/13 - 10/8/7 16/5/4 15/5/5 18/4/3 21/2/2 16.35
BagGB |9/6/10 7/8/10 - 10/11/4 15/5/5 16/2/7 18/2/5 15.61
SGB 3/12/10 4/5/16 4/11/10 - 12/10/3 13/1/11 14/5/6 14.39
GB 3/4/18 5/5/15 5/5/15 3/10/12 - 13/0/12 13/1/11 7.45
Bag 8/1/16 3/4/18 712/16 11/1/13 12/0/13 - 17/5/3 1.98
M5’ 711/17 2/2/21 5/2/18 6/5/14 11/2/13  3/5/17 - -

(a)Base learner: unpruned M5’

1B BagSGB BagGB SGB GB Bag M5 %ErrRed
1B - 18/4/3  20/3/2  23/1/1  24/0/1  19/3/3  22/1/2 16.89
BagSGB |3/4/18 - 9/9/7 19/6/0 18/6/1 19/4/2 22/3/0 11.82
BagGB |2/3/20 71919 - 18/7/0 17/7/1 21/2/2 22/2/1 11.85
SGB 1/1/23  0/6/19 0/7/18 - 2/18/5  13/5/7  16/8/1 8.14
GB 1/0/24 1/6/18 1/7/17 5/18/2 - 13/4/8 16/7/2 8.55
Bag 3/3/19 2/4/19 2/2/21 7/5/13 8/4/13 - 16/7/2 2.59
M5’ 2/1/22 0/3/22 1/2/22 1/8/16 2/7/16 2/7/16 - -

(b)Baselearner: pruned M5’
Table 2. Summary of results comparing the different methods.
4.2 Results

Tables 2(a) and 2(b) summarize the results of our expersnesing unpruned and
pruned M5 base learners respectively. Each cell in the tables reponin/draw/loss
comparison between the algorithm in the row versus the itgoiin the column. The
win/draw/loss record presents three values, the numbeatafsits for which algorithm
A obtained better, equal, or worse performance than algori#hwith respect to root-
mean-squared (RMS) error. A win or loss is only counted ifdHference in values is
determined to be significant at the 0.05 level by a pairtabt. The last column of each
table presents the percentage reduction of the RMS errag ulifferent algorithms
compared with using M5 This value is averaged over all the 25 datasets, and p®vide
an indication of the magnitude of improvements one can @xpecverage. In the
following subsections we summarize the key comparisons ffable 2.

IB vs. SGB: Our results show that IB significantly outperforms SGB, biotherms

of win/draw/loss records and error reduction. The diffeemin performance are more
dramatic on pruned M5where IB performs better than SGB on 23 of the 25 datasets,
and produces twice the error reduction on average. The mg@dwormance difference

on pruned M5can be attributed to IB’s superior bias-reduction.

SGB, BagGB and BagSGB: BagGB performs significantly better than SGB, both
for pruned and unpruned M5Similarly to IB, the differences are more pronounced
on pruned M5 where BagGB wins over SGB on 18 of the datasets, with no fsigni
icant losses. The results suggest that applying bootsamaypling to GB has a better
variance-reducing effect than the randomization incaeat in SGB. In fact, applying
bagging to SGB (BagSGB), can significantly drive down theraf SGB, as can be
seen for both M5settings. BagSGB performs marginally better than BagGRims

of win/draw/loss records, though their error reductioresguite comparable.



IB vs. BagGB/BagSGB: On unpruned M5 BagGB and BagSGB perform compara-
bly to IB both in terms of win/draw/loss records and errorugiibn — all methods pro-
ducing approximately a 16% reduction in RMS error. Howefar pruned M5 trees,
which have higher bias, IB exhibits a significant advantaggr 8agGB and BagSGB.
It wins over BagGB and BagSGB on 20 and 18 datasets resplgciiVe also observe
approximately a 5% difference in error reduction betweeratl the other methods.
IB’s effectiveness at debiasing learners makes it a clean&viin higher bias settings.

SGB vs GB: Our results on high-variance unpruned Nbipport the claim 7] that
SGB has a better variance-reducing effect than GB. SGB orageeaeduced 14.39

of the error of unpruned M5while GB reduced only 7.4%. However, SGB has signif-
icant wins in only 12 datasets and ties with GB in 10. Althoutle error reduction of
SGB is quite good, the win/draw/loss results do not suggesigmificant an advantage
of SGB over GB as ifi9]. In fact, on pruned M5 the performance of SGB and GB are
tied on 18 datasets, with SGB performing slightly worse andther datasets.

Bias-variance reduction vs. bias or variance reduction: GB and bagging focus
solely on reducing the bias or the variance of learners. @mother hand, IB, SGB,
BagGB and BagSGB attempt to reduce both the contributioniasf &nd variance to
error. For brevity, we will refer to these four methods as B&thods. Our results show
that generally the BV-methods have a significant advantage®B and bagging, even
when using the same number of base models. When compared 8\@Bethods per-
form significantly better on at least 12 datasets and lose oroat 5 datasets. The only
exception is SGB using pruned K5vhich loses to GB by a margin of 3 datasets. Even
when compared to bagging, SGB is less effective than the Bittenethods. It wins by

a margin of 2 (13 wins vs. 11 losses) and 6 (13 wins vs. 7 losglesh using unpruned
M5’ and pruned M5respectively. The other BV-methods win by at least 16 désase
and lose on at most 8 when compared to bagging. The resudtdyciedicate that com-
bining techniques for bias and variance reduction is maiecgfe than focusing on
either component alone.

5 Bias-Variance Analysis

We explain most of our results based on how the differennkeareffect the bias and
variance components of the error. To support our conjesfwe ran additional ex-
periments to explicitly measure the bias and variance iedusffects of the methods
presented. As if6], we performed BV decompositions on three synthetic dataset
Friedmanl, 2 and3 4. We do not introduce noise in these datasets, so that theaeval
tion of the bias and variance reduction capability of a lears not confounded with its
ability to handle noise. We use synthetic datasets, so thatam control for noise and
get better estimates of bias and variance.

To estimate bias and variance we used the method proposeahayikand Wolpert16],
appropriately modified for regression (as opposed to dleason). Each dataset was
divided into two halvesD andE. D was used to draw our sample of training sets from,

4 Details of the datasets can be found 12].



andE was used to estimate the terms in the BV decomposition. Werged 50 train-
ing sets fromD sampled uniformly at random without replacement. Eachimgi set
of size 200 was selected from the pool of 400 examples.ikach learning algorithm
was run on each of the training sets and the squared bias aade@terms were cal-
culated on sel’ based on equation 1. These values were averaged over adlibQedst
cycles. For SGB and BagSGB, we used a fracfica 0.6; which is roughly equivalent
to drawing bootstrap samples at each iteration.

Friedmanl Friedman2 Friedman3

Bias’ Var. Err. Bias’ Var. Err. Bias’ Var. Err.
1B Bag 1B 1B 1B 1B 1B Bag 1B
GB BagSGB|BagSGB||GB Bag BagSGB||GB BagSGB|BagGB
SGB BagGB |BagGB |BagGB |BagSGB|BagGB ||SGB 1B GB
BagGB |IB GB SGB BagGB |GB BagGB |BagGB |BagSGB
BagSGB|M5’ SGB BagSGB|GB SGB BagSGB|M5’ SGB
M5’ GB Bag M5’ M5’ Bag M5’ SGB Bag
Bag SGB M5’ Bag SGB M5’ Bag GB M5’

Table 3. Methods in order of increasing bias, variance and overall error.

Table 3 presents the different algorithms applied to ungdudS, in the order of
increasing bias, variance and overall error on each dafBlsetresults for pruned trees
were qualitatively similar, though in general the errorseMeigher for all methods. For
detailed results sdd 2]. We observe that GB performs very well at reducing bias, but
does not perform well at variance reduction. In factForedmanl andFriedman3, GB
actually increases the variance of the base learner. Aoalbg bagging can increase
the bias of the learner, but performs very well in terms ofarare reduction. By com-
bining the power of bagging and GB, BagGB produces a lowerativerror than each
of its components. Similarly, BagSGB improves on the biaiction of bagging and
the variance reduction of SGB, and as a result produces a mveeall error than both
component algorithms. IB shows the best performance orabaror, and it appears
to be quite effective in reducing both bias and varianceabt,fIB also performs the
best in terms of bias reduction on all three datasets.

6 FutureWork and Conclusion

We compared four approaches to combining bias and variauitestion techniques —
Stochastic Gradient Boosting, Iterated Bagging, bagginad®nt Boosting and bag-
ging Stochastic Gradient Boosting. Our results demoresthat methods for combining
bias and variance reduction (BV-methods) are more effe¢tian methods that focus
either on bias or variance in isolation. We also showed thaevS5GB often improves
on GB, it is not very consistent and is easily outperformedHhgyother BV-methods.
Experimental results show that for unpruned trees, whiellaw-bias learners, BagGB
and BagSGB perform somewhat comparably to IB. However, &ndpa more effec-
tive bias-reduction method, performs much better comptredher algorithms when
applied to pruned trees.

In our study, we restricted our methods to building at mo& d@dels each. Typ-
ically, the performance of these ensemble methods (oriaéditodels) improve with



ensemble size. In future work, we would like to explore thiatienship between the
number of models used and the effectiveness of each mettiazlrAexperiments were
run on UCI datasets, commonly used in previous studies. Menvéhese datasets are
not very large — the largest has 625 instances. It would be ¢meee how results vary
for much larger datasets. Experimenting with base |learotbrsr than decision trees,
such as neural networks and support vector machines waddal very useful.
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