Techni cal Report UT-AlI-TR-05-321, Artificial Intelligence Lab, University of Texas at Austin

Combining Bias and Variance Reduction
Techniques for Regression

Yuk Lai Suen®, Prem Melville?, and Raymond J. Mooney?

! Dept. of Electrical and Computer Engr., Univ. of Texas at Austin
suen@ece.utexas.edu,
2 Dept. of Computer Sciences, Univ. of Texas at Austin
melville@cs.utexas.edu,
3 mooney@cs.utexas.edu

Abstract. Gradient Boosting and bagging applied to regressors can
reduce the error due to bias and variance respectively. Alternatively,
Stochastic Gradient Boosting (SGB) and Iterated Bagging (IB) attempt
to simultaneously reduce the contribution of both bias and variance
to error. We provide an extensive empirical analysis of these methods,
along with two alternate bias-variance reduction approaches — bagging
Gradient Boosting (BagGB) and bagging Stochastic Gradient Boosting
(BagSGB). Experimental results demonstrate that SGB does not per-
form as well as IB or the alternate approaches. Furthermore, results
show that, while BagGB and BagSGB perform competitively for low-
bias learners, in general, Iterated Bagging is the most effective of these
methods.

1 Introduction

The decomposition of a learner’s error into bias and variance terms provides
a way of analyzing the behavior of different learning algorithms [1]. Various
methods have been devised to reduce either the bias or variance of a learner.
Some methods, such as Gradient Boosting [2], can reduce bias by increasing
the expressive power of the base learner. While other methods, such as bagging
[3], mainly reduce variance by subsampling the training data. There have been
some attempts of combining techniques for bias and variance reduction, both for
classification [4; 5] and for regression [6; 7]. For regression, Friedman [7] intro-
duced Stochastic Gradient Boosting (SGB) as a method that reduces the vari-
ance of Gradient Boosting (GB) by incorporating randomization in the process.
Breiman [6] presented a related method, Iterated Bagging (IB) that attempts to
reduce the bias of bagging predictors. Despite their similarities, to our knowl-
edge, there has been no direct experimental comparison of these two methods. In
this paper, we present a detailed empirical analysis of SGB and IB. We show that
IB significantly outperforms SGB when applied to both pruned and unpruned
regression trees.

We also explored two alternate methods for combining bias and variance re-
duction techniques for regression — bagging Gradient Boosting (BagGB) and

bagging Stochastic Gradient Boosting (BagSGB). Our experiments show that
these methods also significantly outperform SGB. In comparison to IB, BagGB
and BagSGB are equally effective when applied to unpruned regression trees.
However, for pruned regression trees, which have a higher bias, we observe that
IB is the most effective at error reduction. This paper also presents a bias-
variance analysis of the different algorithms, which provides a better under-
standing of the relative effectiveness of these methods.

Section 2 provides a brief background on the bias-variance decomposition of
error. In section 3 we describe all the algorithms discussed in this paper, and
our main experimental results are presented in section 4. In section 5 we discuss
the results of our bias-variance analysis; and section 6 presents our future work
and conclusions.

2 Bias-Variance Decomposition of Error

The following formulation of the bias-variance (BV) decomposition is based on
[8]. Let us assume our data arose from a model y = F'(z) + ¢, where the random
error € has F(e) = 0 and Var(e) = o?. Then the expected prediction error
of a regression model F(z) for a point £ = ; using squared-error loss can be
expressed as:

()% = z;
= o, +[(F(i) = F(a))) + E[F(z:) - E(F(z:)? (1)
= 02 + bias® (F(z;)) + variance(F(z;))

The first term is the irreducible error, which is the variance of the target
function around its true mean F'(z). This error cannot be avoided no matter
how well we model F(z). The second term is the contribution of squared bias
to error, which is the amount by which the average of our estimates differs from
the true mean. The last term is the contribution of variance to error, which
is the expected squared deviation of ﬁ’(a:z) around its mean. For brevity, we
will refer to the contribution of squared bias and variance to error as bias®
and variance respectively. In general, more complex models have lower bias and
higher variance; e.g., unpruned decision trees tend to have low bias and high
variance, while decision stumps have a very high bias but low variance.

3 Algorithms

3.1 Gradient Boosting and Stochastic Gradient Boosting

Gradient Boosting [2] (GB) is an iterative algorithm which constructs ad-
ditive models by fitting a base learner to the current residue at each iteration;
where the residue is the gradient of the loss function being minimized with
respect to the model values at each data point. In [9], Friedman introduced

Algorithm 1 Stochastic Gradient Boosting
Given:
M — maximum number of stages
{Zn,yn }N_1 — training set of size N
f= %, 0 < N < N — fraction parameter that determines the size of subsample
v — shrinkage parameter
L — base learner

1. For m =1 to M do: N

2 Select random subset {xﬁ,y(ﬁ,m)}ﬁNzl from {xn,y(n,m)}gzl

3. Apply learner £ to sample set {z4, y(,—,,m)}ﬁNzl to produce predictor F

4 Replace residues of training set {zn, y(n,m)}fj:l to form {xn,y(n,mﬂ)}nN:l,
where Yn,m+1) = Ym,m) — V- Fm(z‘”)

M ~

Output: y =3 " v Fn(z)

Stochastic Gradient Boosting (SGB) which improves the accuracy of GB by
reducing its error due to variance.

In SGB, at each iteration a subsample of data is drawn uniformly at ran-
dom, without replacement, from the full training set. This random subsample is
used to train the base learner to produce a model for the current stage. Fried-
man [7] states that the idea of using a random subset of the training set at
each stages originates from bootstrap sampling in bagging, and has a similar
variance-reducing effect on the combined model.

The SGB method is presented in Algorithm 1. GB can be viewed as a special
case of this algorithm in which the entire training set is used at each iteration,
i.e., f = 1.0. SGB proceeds in M stages, each of which learns a predictor E,
to predict the current residues of the training set and updates the residues of
the training set for the next stage. The learning in the mth stage starts with
randomly selecting N = N - f instances from the N initial training instances
{zn,y(nym)}ﬁ;l, where f € (0...1] is a user-defined fraction value. The learner
L then uses this new training set {zj, y(,—wn)]»lﬁ\]:1 to learn a new predictor E,
that attempts to minimize the squared error (y — }7—1)2 SGB can be used to
handle other loss functions, such as least absolute deviation, Huber loss and
logistic binomial log-likelihood [2; 7]. However, this paper will only focus on
least squared error.

The target value y,, is treated as the initial residue y(,, 1) for the nth instance.
The SGB residue of a training instance in the next iteration is the difference
between the current residue and the negative gradient of the loss function, i.e.,
a partial differentiation of the loss function with respect to the predictor being
learned in the current stage. The residue y(, ;1) for the nth instance in the
(m + 1)th iteration is computed as:

Yn,m+1) = Yn,m) — V- Fn (mn)

Algorithm 2 Iterated Bagging
Given:
M — maximum number of stages
K — number of bagging predictors in each stage
7 — threshold of mean sum-of-squares of residues
{mn,yn}nNzl — training set of size N
L — base learner

1. Initialize minimum residue, ep+ = co, M* =0

2. For m =1 to M do:

3. Learn a set of K bagging predictors {B(x,m)}re; with learner £
applied to bootstrap samples selected from {z, y(mm)}ﬁ:l

4. Calculate the residue Y m41) = Yn,m — Z;;K:1 B m)(mn)/f{,

where ﬁ(,;, m) is one of the K bagging predictors not trained on z,

Replace residues of the training set to form {z,, y(n7m+1)}ﬁ:1

Calculate the mean sum-of-squares of residues, €, = Zivzl Y(n,m+1) /N
If € < ep~ then M* = m,epm* = €m
Exit the loop if €, > 7 - enm=

Output: y = Z::/le Zszl Bk,m)(z)/ K

00~ O ot

where v is a user-defined shrinkage value to weigh and smooth the prediction at
each stage.

After M stages, SGB creates a combined (additive) model, i.e., a set of
trained predictors {Fm}%zl. The predicted output y for a test input z is given
by:

y=Ym_ v Fn(@)

which is a weighted sum of the outputs of the predictors in the combined model.

The performance of SGB is dependent on the fraction parameter f which
determines the size of the training set at each iteration. Although experimental
results in [7] suggests that there is a weak correlation between f and the error,
there was no conclusive methodology provided for the selection of f.

3.2 Iterated Bagging

Bagging has been shown to reduce the variance of predictors, while leaving
the bias largely unchanged [3]. Tterated Bagging (IB) [6], also known as Adaptive
Bagging [10], is an effort to reduce the bias error of the low-variance bagging
predictors. Similar to SGB, it is a stage-wise algorithm that attempts to mini-
mize the residue in each stage. IB addresses bias and variance reduction in two
ways: (1) it uses low-variance bagging predictors to compute residues and (2) it
computes unbiased estimates of residues using out-of-bag calculations [10]. The
outline of IB is presented in Algorithm 2.

The algorithm proceeds in M stages, with each stage learning K bagging pre-
dictors and re-computing the residues of all training instances. At the mth stage,

a set of K bagging predictors {ﬂ(k7m)}kK:1 are generated by applying the base
learner £ to bootstrap samples of size N selected randomly, with replacement,
from the training instances {Z,,Yn m }_;. The target value y,, is treated as the
initial residue y, 1) for the nth instance. After training K bagging predictors,
IB updates the residue of each instance in the training set. The computation
of residues in IB is very similar to that of SGB using least squared error. The
residue y(,, m+1) of the nth instance at the (m + 1)th stage is the difference be-
tween the current residue y(,,,,,) and the average out-of-bag prediction on the
input z,, over the K bagging predictors learned at the mth stage:

K
Y(n,m+1) = Yn,m — Z/}:l 5(1;,m) (zn) /K

where 3(1} m) is one of the K bagging predictors that was not trained on z,,. The

method for computing the residues when K is 0 is not mentioned in [6]. We deal
with this case by updating the residue with the difference between the current
residue and the mean of the output on z,, over all bagging predictors in this
stage.

The IB algorithm keeps track of the minimum mean sum-of-squares of the
residues €7« in the M*th stage. If the mean sum-of-squares of the residues €,,11
for the (m + 1)th stage exceeds 7 - €pr+, then the algorithm stops and returns
the K bagging predictors in each of the M* iterations, where 7 is a user-defined
threshold parameter. The prediction on a test instance is given by summing up
the average of the predicted values across the K bagging predictors in the M*
stages:

y= o S Bl (2) /K

In general, bagging works well with high-variance base regression learners.
IB, on the other hand, improves over bagging and reduces both variance and
bias of the base learner [6].

3.3 Bagging GB and Bagging SGB

In addition to SGB and IB, we explored two alternative approaches to bias-
variance reduction — bagging Gradient Boosting (BagGB) and bagging Stochas-
tic Gradient Boosting (BagSGB). BagGB and BagSGB use GB and SGB, re-
spectively, as the base learners in each stage of building a bagging predictor. A
total of K bootstrap sets of training instances are randomly selected to train K
GB (or SGB) predictors. The output y of a test input z is predicted by averaging
the sum of predictions of the K base predictors.

BagGB should reduce the variance error of predictions by stabilizing the
predictions of the GB base learners. BagGB and IB are similar, as they both
possess two components: (1) a bagging predictor to stabilize the predictions of
the base learners by averaging the results of the predictors each trained with a
different bootstrap sample and (2) a greedy stage-wise training of base predictors
to minimize the residues. The difference between IB and BagGB is that IB

Datasets Attr.| Ins.|| Datasets Attr.| Ins.|| Datasets Attr.| Ins.
auto93 26| 93|| autoHorse 26| 205|| autoMpg 8| 398
autoPrice 26| 205|| bodyfat 15| 252|| breastTumor 9| 286
cholesterol 14| 303|| cleveland 14| 303|| cloud 6| 194
cpu 10| 209|| echoMonths 13| 132|| detroit 14| 13
fruitfly 5| 125|| fishcatch 8| 159|| housing 13| 506
hungarian 14| 294|| lowbwt 11| 189|| meta 22| 528
pbc 20| 418|| pharynx 13| 195|| pollution 15/ 60
pwLinear 10| 200|| sensory 11| 576|| servo 5| 167
strike 6| 625

Table 1. Summary of UCI datasets with the number of attributes and instances.

Algorithm |Description

IB 10 stages of IB with 10 stages of bagging each (M = 10, K = 10).
BagSGB |10 stages of bagging x 10 SGB iterations each (M = 10).
BagGB |10 stages of bagging x 10 GB iterations each (M = 10).

SGB 100 iterations (M = 100).

GB 100 iterations (M = 100).

Bagging |100 stages of bagging M5’ trees.

M5/ pruned or unpruned M5’ tree induction

Table 2. Experimental setup of each method.

performs greedy stage-wise training with a set of bagging predictors to stabilize
the predictions of their base learners, while BagGB stabilizes the predictions of
a set of base-predictors each of which performs greedy stage-wise training.

Although SGB already attempts to reduce the variance of GB through ran-
domization, we believe that bagging SGB may further enhance its variance reduc-
tion. Because of the similarity between the algorithms, we would expect BagGB,
BagSGB, and IB to demonstrate comparable performance.

4 Experimental Evaluation

4.1 Methodology

We ran all our experiments on 25 datasets, with continuous class (target) values,
from the UCI repository [11]. Table 1 gives a summary of these datasets. They
vary in the number of attributes and the number of instances, thus providing a
diverse test bed for evaluating the performance of different algorithms.

We compared the 7 different regression methods listed in Table 2. The table
provides the setup parameters for each of the methods used. The performance
of most meta-learners (additive models) varies with the number of base models
used. In order to make the comparison fair, we chose parameters such that each
method produces 100 base models. In the case of IB, this is an upper bound, since

it can choose to use fewer models. As a base learner for all the meta-learners we
used M5’ [12], which is regression tree induction modified based on [13] and [14].
We ran separate sets of experiments on pruned M5’ and unpruned M5’. In pruned
M5/, the regression tree is pruned back from the leaves, so long as the expected
estimated error decreases. All our results were averaged over 10 runs of 10-
fold cross-validation. The difference in performance between two systems was
compared using a two-tailed paired t-test (p < 0.05).

The performance of SGB and BagSGB is dependent on the fraction param-
eter f chosen for the experiment. Some values for f perform significantly better
than others on the same dataset. In order to compare with the best instances of
SGB and BagSGB, we performed 10 runs of 10-fold cross-validation on SGB and
BagSGB with different values of f from {0.4,0.5,0.6,0.7,0.8,0.9} and selected
the f that produced the lowest error for each dataset. Note that often the lowest
error is not statistically significantly different from the error produced by other
values of f.

4.2 Results

Tables 3(a) and 3(b) summarize the results of our experiments using unpruned
and pruned M5’ base learners respectively. Each cell in the tables report a com-
parison between the algorithm in the row versus the algorithm in the column in
terms of win/draw /loss records. The win/draw /loss record presents three values,
the number of data sets for which algorithm A obtained better, equal, or worse
performance than algorithm B with respect to root-mean-squared error. A win
or loss is only counted if the difference in values is determined to be significant
at the 0.05 level by a paired t-test. The last column of each table presents the
percentage reduction of the root-mean-square error using different algorithms
compared with using M5'. This value is averaged over all the 25 datasets, and
provides an indication of the magnitude of improvements one can expect on
average.

We also ran experiments (not presented in the table) comparing the base
learners — unpruned M5’ with pruned M5'. Our results showed that for our
datasets, unpruned M5’ far outperforms pruned M5'. Unpruned M5’ produces
significantly lower errors in 23 datasets, while pruned M5’ gives a lower error on
only 1 dataset. However, to study different bias and variance settings, we present
results on both pruned and unpruned M5'.

In the following subsections we summarize the key comparisons from Table 3.

IB vs. SGB: Our results show that IB significantly outperforms SGB, both in
terms of win/draw/loss records and error reduction. The differences in perfor-
mance are more dramatic on pruned M5', where IB performs better than SGB
on 23 of the 25 datasets, and produces twice the error reduction on average. The
marked performance difference on pruned M5’ can be attributed to IB’s superior
bias-reduction.

1B BagSGB BagGB SGB GB Bag M5’ %ErrRed

B - 13/1/11 10/6/9 10/12/3 18/4/3 16/1/8 17/1/7 16.44
BagSGB [11/1/13 - 10/8/7 16/5/4 15/5/5 18/4/3 21/2/2 16.35
BagGB |9/6/10 7/8/10 - 10/11/4 15/5/5 16/2/7 18/2/5 15.61
SGB [3/12/10 4/5/16 4/11/10 - 12/10/3 13/1/11 14/5/6 14.39
GB 3/4/18 5/5/15 5/5/15 3/10/12 - 13/0/12 13/1/11 7.45
Bag |8/1/16 3/4/18 7/2/16 11/1/13 12/0/13 - 17/5/3 1.98
M5 |7/1/17 2/2/21 5/2/18 6/5/14 11/1/13 3/5/17 - -
(a)Base learner: unpruned M5’

1B BagSGB BagGB SGB GB Bag M5’ %ErrRed
B - 18/4/3 20/3/2 23/1/1 24/0/1 19/3/3 22/1/2 16.89
BagSGB |3/4/18 - 9/9/7 19/6/0 18/6/1 19/4/2 22/3/0 11.82
BagGB [2/3/20 7/9/9 - 18/7/0 17/7/1 21/2/2 22/2/1 11.85
SGB [1/1/23 0/6/19 0/7/18 - 2/18/5 13/5/7 16/8/1 8.14
GB 1/0/24 1/6/18 1/7/17 5/18/2 - 13/4/8 16/7/2 8.55
Bag |3/3/19 2/4/19 2/2/21 7/5/13 8/4/13 - 16/7/2 2.59
M5 [2/1/22 0/3/22 1/2/22 1/8/16 2/7/16 2/7/16 - -

(b)Base learner: pruned M5’
Table 3. Win/draw/loss records of algorithms in rows compared with algorithms in
columns. The last column presents the average percentage reduction of error of the
algorithm in the row compared with using M5'.

SGB, BagGB and BagSGB: BagGB performs significantly better than SGB,
both for pruned and unpruned M5'. Similarly to IB, the differences are more
pronounced on pruned M5, where BagGB wins over SGB on 18 of the datasets,
with no significant losses. The results suggest that applying bootstrap sampling
to GB has a better variance-reducing effect than the randomization incorporated
in SGB. In fact, applying bagging to SGB (BagSGB), can significantly drive
down the error of SGB, as can be seen for both M5’ settings. BagSGB performs
marginally better than BagGB in terms of win/draw/loss records, though their
error reductions are quite comparable.

IB vs. BagGB/BagSGB: On unpruned M5’, BagGB and BagSGB perform
comparably to IB both in terms of win/draw/loss records and error reduction
— all methods producing approximately a 16% reduction in root-mean-squared
error. However, for pruned M5’ trees, which have higher bias, IB exhibits a sig-
nificant advantage over BagGB and BagSGB. In this case, it wins over BagGB
and BagSGB on 20 and 18 datasets respectively. We also observe approximately
a 5% difference in error reduction between IB and the other methods. IB’s ef-
fectiveness at debiasing learners makes it a clear winner in higher bias settings.

SGB vs GB: Our results on unpruned M5’, which has high variance error,
support the claim in [7] that SGB has a better variance-reducing effect than

Friedman1 Friedman2 Friedman3(x10~*%)
Bias® [Var. Err. Bias? [Var. Err. Bias® [Var. Err.
1B 0.94 0.65 1.59 126 127 253 2.9 1.2 4.2
BagSGB |[1.49 0.48 1.96 237 149 386 4.4 1.0 5.5
BagGB 1.44 0.55 1.98 171 279 450 3.8 1.2 5.0

SGB 1.04 1.90 2.94 201 582 784 3.3 2.2 5.5
GB 0.97 1.31 2.28 136 322 458 2.9 2.4 5.3
Bag 4.80 0.43 5.24 1087 |144 1230 9.9 0.8 0.7
M5’ 4.69 1.09 5.79 1056 |398 1454 9.4 2.0 14

Table 4. Bias-variance decompositions of mean squared error on synthetic data.

GB. SGB on average reduced 14.39% of the error of unpruned M5', while GB
reduced only 7.45%. However, SGB has significant wins in only 12 datasets and
ties with GB in 10. Although, the error reduction of SGB is quite good, the
win/draw/loss results do not suggest as significant an advantage of SGB over
GB as in [9]. In fact, on pruned M5, the performance of SGB and GB are tied
on 18 datasets, with SGB performing slightly worse on the other datasets.

Bias-variance reduction vs. bias or variance reduction: GB and bagging
focus solely on reducing the bias and variance of learners respectively. On the
other hand, IB, SGB, BagGB and BagSGB attempt to reduce both the contribu-
tion of bias and variance to error. For brevity, we will refer to these four methods
as BV-methods. Our results show that in general, the BV-methods have a sig-
nificant advantage over GB and bagging, even when using the same number of
base models. When compared to GB, BV-methods perform significantly better
on at least 12 datasets and lose on at most 5 datasets. The only exception is
SGB using pruned M5', which loses to GB by a margin of 3 datasets. Even when
compared to bagging, SGB is less effective than the other BV-methods. It wins
by a margin of 2 (13 wins vs. 11 losses) and 6 (13 wins vs. 7 losses) when using
unpruned M5’ and pruned M5’ respectively. The other BV-methods win by at
least 16 datasets and lose on at most 8 datasets when compared to bagging. The
results clearly indicate that combining techniques for bias and variance reduction
is more effective than focusing on either bias or variance alone.

5 Bias-Variance Analysis

We explain most of our results based on how the different learners effect the bias
and variance components of the error. To support our conjectures, we ran addi-
tional experiments to explicitly measure the bias and variance reducing effects
of the methods presented. We performed BV decompositions on three synthetic
datasets, as done in [15]. We do not introduce noise in these datasets, so that
the evaluation of the bias and variance reduction capability of a learner is not

Friedman1 Friedman2 Friedman3
Bias® Var. Err. Bias® Var. Err. Bias® Var. Err.
IB Bag IB 1B 1B IB 1B Bag IB
GB BagSGB|BagSGB||GB Bag BagSGB||GB BagSGB|BagGB
SGB BagGB |BagGB ||BagGB |BagSGB|BagGB ||SGB 1B GB
BagGB |IB GB SGB BagGB |GB BagGB |BagGB |BagSGB
BagSGB|M5' SGB BagSGB|GB SGB BagSGB|M5' SGB
M5’ GB Bag M5’ M5’ Bag M5’ SGB Bag
Bag SGB M5’ Bag SGB M5’ Bag GB M5’

Table 5. Methods in order of increasing bias, variance and overall error.

confounded with its ability to handle noise. The target functions for the three
datasets is given below:

Friedmanl: y = 10sin(nz1z2) + 20(z3 — 0.5)? + 10z4 + 525

Friedman2: y = (22 + (7223 — (1/932934))2)1/2

zow3—(1/z224)
3 —)

Friedman3: y = tan~*(

The first dataset, Friedmanli, has 10 input variables z1, ..., z10, which are uni-
formly distributed over [0, 1]. The other two datasets, Friedman2 and Friedman,
have 4 inputs z1, 3, 3, 4, which are uniformly distributed over the ranges:

0 <z; <100
20 < (zp/2m) < 280
OSIgSl
1<z <11

To estimate bias and variance we used the method proposed by Kohavi and
Wolpert [16], appropriately modified for regression (as opposed to classification).
Each dataset was divided into two halves, D and E. D was used to draw our
sample of training sets from, and E was used to estimate the terms in the BV
decomposition. We generated 50 training sets from D sampled uniformly at
random without replacement. Each training set of size 200 was selected from
the pool of 400 examples in D. Each learning algorithm was run on each of the
training sets and the squared bias and variance terms were calculated on set F
based on equation 1. These values were averaged over all 50 train-test cycles.

Table 4 presents the overall error, bias? and variance terms for all algorithms
applied to unpruned M5’ trees. The results for pruned trees were qualitatively
similar, though in general the errors were higher for all methods. For SGB and
BagSGB, we used a fraction f = 0.6; which is roughly equivalent to drawing
bootstrap samples at each iteration. Table 5 presents the different algorithms in
the order of increasing bias, variance and overall error on each dataset.

We observe that GB performs very well at reducing bias, but does not perform
well at variance reduction. In fact, on Friedman! and Friedman3, GB actually
increases the variance of the base learner. Analogously, bagging can increase the
bias of the learner, but performs very well in terms of variance reduction. By

combining the power of bagging and GB, BagGB produces a lower overall error
than each of its components. Similarly, BagSGB improves on the bias reduction
of bagging and the variance reduction of SGB, and as a result produces a lower
overall error than both component algorithms. IB shows the best performance
on overall error, and it appears to be quite effective in reducing both bias and
variance. In fact, IB also performs the best in terms of bias reduction on all three
datasets.

6 Future Work and Conclusion

We compared four approaches to combining bias and variance reduction tech-
niques — Stochastic Gradient Boosting, Iterated Bagging, bagging Gradient
Boosting and bagging Stochastic Gradient Boosting. Our results demonstrate
that methods for combining bias and variance reduction (BV-methods) are more
effective than methods that focus either on bias or variance in isolation. We also
showed that while SGB often improves on GB, it is not very consistent and is
easily outperformed by the other BV-methods. Experimental results show that
for unpruned trees, which are low-bias learners, BagGB and BagSGB perform
somewhat comparably to IB. However, IB, being a more effective bias-reduction
method, performs much better compared to other algorithms when applied to
pruned trees.

In our study, we restricted our methods to building at most 100 models
each. Typically, the performance of these ensemble methods (or additive mod-
els) improve with ensemble size. In future work, we would like to explore the
relationship between the number of models used and the effectiveness of each
method. Experimenting with base learners other than decision trees, such as
neural networks and support vector machines would also be very useful.

7 Acknowledgements

We would like to thank Horris Tse for assistance with running some of the
experiments. Prem Melville and Raymond Mooney were supported by DARPA
grant HR0011-04-1-007.

References

[1] Geman, S., Bienenstock, E., Dorsat, R.: Neural networks and the bias/variance
dilemma. Neural Computation 4 (1992) 1-58

[2] Friedman, J.: Greedy function approximation: a gradient boosting machine. Tech-
nical report, Stanford University Statistics Department (1999)

[3] Breiman, L.: Bagging predictors. Machine Learning 24 (1996) 123-140

[4] Valentini, G., Dietterich, T.G.: Low bias bagged support vector machines. In:
Proceedings of 20th International Conference on Machine Learning (ICML-2003),
Washington, DC (2003) 752-759

[10]
[11]
[12]
[13]
[14]
[15]

[16]

Webb, G.: Multiboosting: A technique for combining boosting and wagging. Ma-
chine Learning 40 (2000) 159-196

Breiman, L.: Using iterated bagging to debias regressions. Machine Learning 45
(2001) 261-277

Friedman, J.: Stochastic gradient boosting. Technical report, Stanford University
Statistics Department (1999)

Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning.
Springer Verlag, New York (2001)

Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical
view of boosting. Technical report, Stanford University Statistics Department
(2000)

Breiman, L.: Using adaptive bagging to debias regressions. Technical report, UC
Berkeley Statistics Department (1999)

Blake, C.L., Merz, C.J.: UCI repository of machine learning databases.
http://www.ics.uci.edu/ “mlearn/MLRepository.html (1998)

Wang, Y., Witten, I.: Inducing model trees for continuous classes. ECML Poster
Papers (1997) 128-137

Quinlan, J.: Learning with continuous classes. In: Proceedings of 5th Australian
Joint Conference on Artificial Intelligience. (1992) 343-348

Breiman, L., Friedman, J.H., Olshen, R., Stone, C.: Classification and Regression
Trees. Wadsworth and Brooks, Monterey, CA (1984)

Friedman, J.H.: Multivariate adaptive regression splines. The Annals of Statistics
19 (1991) 1-141

Kohavi, R., Wolpert, D.H.: Bias plus variance decomposition for zero-one loss
functions. In Saitta, L., ed.: Proceedings of the Thirteenth International Confer-
ence on Machine Learning (ICML-96), Morgan Kaufmann (1996)

