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Combining Bias and Variane RedutionTehniques for RegressionYuk Lai Suen1, Prem Melville2, and Raymond J. Mooney31 Dept. of Eletrial and Computer Engr., Univ. of Texas at Austinsuen�ee.utexas.edu,2 Dept. of Computer Sienes, Univ. of Texas at Austinmelville�s.utexas.edu,3 mooney�s.utexas.eduAbstrat. Gradient Boosting and bagging applied to regressors anredue the error due to bias and variane respetively. Alternatively,Stohasti Gradient Boosting (SGB) and Iterated Bagging (IB) attemptto simultaneously redue the ontribution of both bias and varianeto error. We provide an extensive empirial analysis of these methods,along with two alternate bias-variane redution approahes | baggingGradient Boosting (BagGB) and bagging Stohasti Gradient Boosting(BagSGB). Experimental results demonstrate that SGB does not per-form as well as IB or the alternate approahes. Furthermore, resultsshow that, while BagGB and BagSGB perform ompetitively for low-bias learners, in general, Iterated Bagging is the most e�etive of thesemethods.1 IntrodutionThe deomposition of a learner's error into bias and variane terms providesa way of analyzing the behavior of di�erent learning algorithms [1℄. Variousmethods have been devised to redue either the bias or variane of a learner.Some methods, suh as Gradient Boosting [2℄, an redue bias by inreasingthe expressive power of the base learner. While other methods, suh as bagging[3℄, mainly redue variane by subsampling the training data. There have beensome attempts of ombining tehniques for bias and variane redution, both forlassi�ation [4; 5℄ and for regression [6; 7℄. For regression, Friedman [7℄ intro-dued Stohasti Gradient Boosting (SGB) as a method that redues the vari-ane of Gradient Boosting (GB) by inorporating randomization in the proess.Breiman [6℄ presented a related method, Iterated Bagging (IB) that attempts toredue the bias of bagging preditors. Despite their similarities, to our knowl-edge, there has been no diret experimental omparison of these two methods. Inthis paper, we present a detailed empirial analysis of SGB and IB. We show thatIB signi�antly outperforms SGB when applied to both pruned and unprunedregression trees.We also explored two alternate methods for ombining bias and variane re-dution tehniques for regression | bagging Gradient Boosting (BagGB) and



bagging Stohasti Gradient Boosting (BagSGB). Our experiments show thatthese methods also signi�antly outperform SGB. In omparison to IB, BagGBand BagSGB are equally e�etive when applied to unpruned regression trees.However, for pruned regression trees, whih have a higher bias, we observe thatIB is the most e�etive at error redution. This paper also presents a bias-variane analysis of the di�erent algorithms, whih provides a better under-standing of the relative e�etiveness of these methods.Setion 2 provides a brief bakground on the bias-variane deomposition oferror. In setion 3 we desribe all the algorithms disussed in this paper, andour main experimental results are presented in setion 4. In setion 5 we disussthe results of our bias-variane analysis; and setion 6 presents our future workand onlusions.2 Bias-Variane Deomposition of ErrorThe following formulation of the bias-variane (BV) deomposition is based on[8℄. Let us assume our data arose from a model y = F (x) + �, where the randomerror � has E(�) = 0 and V ar(�) = �2� . Then the expeted predition errorof a regression model F̂ (x) for a point x = xi using squared-error loss an beexpressed as:	(y; F̂ (xi)) = E[(y � F̂ (xi))2jx = xi= �2� + [E(F̂ (xi))� F (xi)℄2 +E[F̂ (xi)�E(F̂ (xi))℄2 (1)= �2� + bias2(F̂ (xi)) + variane(F̂ (xi))The �rst term is the irreduible error, whih is the variane of the targetfuntion around its true mean F (x). This error annot be avoided no matterhow well we model F (x). The seond term is the ontribution of squared biasto error, whih is the amount by whih the average of our estimates di�ers fromthe true mean. The last term is the ontribution of variane to error, whihis the expeted squared deviation of F̂ (xi) around its mean. For brevity, wewill refer to the ontribution of squared bias and variane to error as bias2and variane respetively. In general, more omplex models have lower bias andhigher variane; e.g., unpruned deision trees tend to have low bias and highvariane, while deision stumps have a very high bias but low variane.3 Algorithms3.1 Gradient Boosting and Stohasti Gradient BoostingGradient Boosting [2℄ (GB) is an iterative algorithm whih onstruts ad-ditive models by �tting a base learner to the urrent residue at eah iteration;where the residue is the gradient of the loss funtion being minimized withrespet to the model values at eah data point. In [9℄, Friedman introdued



Algorithm 1 Stohasti Gradient BoostingGiven:M { maximum number of stagesfxn; yngNn=1 { training set of size Nf = ~NN ; 0 < ~N � N { fration parameter that determines the size of subsample� { shrinkage parameterL { base learner1. For m = 1 to M do:2. Selet random subset fx~n; y(~n;m)g ~N~n=1 from fxn; y(n;m)gNn=13. Apply learner L to sample set fx~n; y(~n;m)g ~N~n=1 to produe preditor F̂m4. Replae residues of training set fxn; y(n;m)gNn=1 to form fxn; y(n;m+1)gNn=1,where y(n;m+1) = y(n;m) � � � F̂m(xn)Output: y =PMm=1 � � F̂m(x)Stohasti Gradient Boosting (SGB) whih improves the auray of GB byreduing its error due to variane.In SGB, at eah iteration a subsample of data is drawn uniformly at ran-dom, without replaement, from the full training set. This random subsample isused to train the base learner to produe a model for the urrent stage. Fried-man [7℄ states that the idea of using a random subset of the training set ateah stages originates from bootstrap sampling in bagging, and has a similarvariane-reduing e�et on the ombined model.The SGB method is presented in Algorithm 1. GB an be viewed as a speialase of this algorithm in whih the entire training set is used at eah iteration,i.e., f = 1:0. SGB proeeds in M stages, eah of whih learns a preditor F̂mto predit the urrent residues of the training set and updates the residues ofthe training set for the next stage. The learning in the mth stage starts withrandomly seleting ~N = N � f instanes from the N initial training instanesfxn; y(n;m)gNn=1, where f 2 (0 : : : 1℄ is a user-de�ned fration value. The learnerL then uses this new training set fx~n; y(~n;m)g ~N~n=1 to learn a new preditor F̂mthat attempts to minimize the squared error (y � F̂ )2. SGB an be used tohandle other loss funtions, suh as least absolute deviation, Huber loss andlogisti binomial log-likelihood [2; 7℄. However, this paper will only fous onleast squared error.The target value yn is treated as the initial residue y(n;1) for the nth instane.The SGB residue of a training instane in the next iteration is the di�erenebetween the urrent residue and the negative gradient of the loss funtion, i.e.,a partial di�erentiation of the loss funtion with respet to the preditor beinglearned in the urrent stage. The residue y(n;m+1) for the nth instane in the(m+ 1)th iteration is omputed as:y(n;m+1) = y(n;m) � � � F̂m(xn)



Algorithm 2 Iterated BaggingGiven:M { maximum number of stagesK { number of bagging preditors in eah stage� { threshold of mean sum-of-squares of residuesfxn; yngNn=1 { training set of size NL { base learner1. Initialize minimum residue, �M� =1;M� = 02. For m = 1 to M do:3. Learn a set of K bagging preditors f�(k;m)gKk=1 with learner Lapplied to bootstrap samples seleted from fxn; y(n;m)gNn=14. Calulate the residue y(n;m+1) = yn;m �PK̂̂k=1 �(k̂;m)(xn)=K̂,where �(k̂;m) is one of the K̂ bagging preditors not trained on xn5. Replae residues of the training set to form fxn; y(n;m+1)gNn=16. Calulate the mean sum-of-squares of residues, �m =PNn=1 y(n;m+1)=N7. If �m < �M� then M� = m; �M� = �m8. Exit the loop if �m > � � �M�Output: y =PM�m=1PKk=1 �(k;m)(x)=Kwhere � is a user-de�ned shrinkage value to weigh and smooth the predition ateah stage.After M stages, SGB reates a ombined (additive) model, i.e., a set oftrained preditors fF̂mgMm=1. The predited output y for a test input x is givenby: y =PMm=1 � � F̂m(x)whih is a weighted sum of the outputs of the preditors in the ombined model.The performane of SGB is dependent on the fration parameter f whihdetermines the size of the training set at eah iteration. Although experimentalresults in [7℄ suggests that there is a weak orrelation between f and the error,there was no onlusive methodology provided for the seletion of f .3.2 Iterated BaggingBagging has been shown to redue the variane of preditors, while leavingthe bias largely unhanged [3℄. Iterated Bagging (IB) [6℄, also known as AdaptiveBagging [10℄, is an e�ort to redue the bias error of the low-variane baggingpreditors. Similar to SGB, it is a stage-wise algorithm that attempts to mini-mize the residue in eah stage. IB addresses bias and variane redution in twoways: (1) it uses low-variane bagging preditors to ompute residues and (2) itomputes unbiased estimates of residues using out-of-bag alulations [10℄. Theoutline of IB is presented in Algorithm 2.The algorithm proeeds inM stages, with eah stage learningK bagging pre-ditors and re-omputing the residues of all training instanes. At the mth stage,



a set of K bagging preditors f�(k;m)gKk=1 are generated by applying the baselearner L to bootstrap samples of size N seleted randomly, with replaement,from the training instanes fxn; yn;mgNn=1. The target value yn is treated as theinitial residue y(n;1) for the nth instane. After training K bagging preditors,IB updates the residue of eah instane in the training set. The omputationof residues in IB is very similar to that of SGB using least squared error. Theresidue y(n;m+1) of the nth instane at the (m+ 1)th stage is the di�erene be-tween the urrent residue y(n;m) and the average out-of-bag predition on theinput xn over the K bagging preditors learned at the mth stage:y(n;m+1) = yn;m �PK̂̂k=1 �(k̂;m)(xn)=K̂where �(k̂;m) is one of the K̂ bagging preditors that was not trained on xn. Themethod for omputing the residues when K̂ is 0 is not mentioned in [6℄. We dealwith this ase by updating the residue with the di�erene between the urrentresidue and the mean of the output on xn over all bagging preditors in thisstage.The IB algorithm keeps trak of the minimum mean sum-of-squares of theresidues �M� in the M�th stage. If the mean sum-of-squares of the residues �m+1for the (m + 1)th stage exeeds � � �M� , then the algorithm stops and returnsthe K bagging preditors in eah of the M� iterations, where � is a user-de�nedthreshold parameter. The predition on a test instane is given by summing upthe average of the predited values aross the K bagging preditors in the M�stages: y =PM�m=1PKk=1 �(k;m)(x)=KIn general, bagging works well with high-variane base regression learners.IB, on the other hand, improves over bagging and redues both variane andbias of the base learner [6℄.3.3 Bagging GB and Bagging SGBIn addition to SGB and IB, we explored two alternative approahes to bias-variane redution | bagging Gradient Boosting (BagGB) and bagging Stohas-ti Gradient Boosting (BagSGB). BagGB and BagSGB use GB and SGB, re-spetively, as the base learners in eah stage of building a bagging preditor. Atotal of K bootstrap sets of training instanes are randomly seleted to train KGB (or SGB) preditors. The output y of a test input x is predited by averagingthe sum of preditions of the K base preditors.BagGB should redue the variane error of preditions by stabilizing thepreditions of the GB base learners. BagGB and IB are similar, as they bothpossess two omponents: (1) a bagging preditor to stabilize the preditions ofthe base learners by averaging the results of the preditors eah trained with adi�erent bootstrap sample and (2) a greedy stage-wise training of base preditorsto minimize the residues. The di�erene between IB and BagGB is that IB



Datasets Attr. Ins. Datasets Attr. Ins. Datasets Attr. Ins.auto93 26 93 autoHorse 26 205 autoMpg 8 398autoPrie 26 205 bodyfat 15 252 breastTumor 9 286holesterol 14 303 leveland 14 303 loud 6 194pu 10 209 ehoMonths 13 132 detroit 14 13fruity 5 125 �shath 8 159 housing 13 506hungarian 14 294 lowbwt 11 189 meta 22 528pb 20 418 pharynx 13 195 pollution 15 60pwLinear 10 200 sensory 11 576 servo 5 167strike 6 625Table 1. Summary of UCI datasets with the number of attributes and instanes.Algorithm DesriptionIB 10 stages of IB with 10 stages of bagging eah (M = 10; K = 10).BagSGB 10 stages of bagging � 10 SGB iterations eah (M = 10).BagGB 10 stages of bagging � 10 GB iterations eah (M = 10).SGB 100 iterations (M = 100).GB 100 iterations (M = 100).Bagging 100 stages of bagging M50 trees.M50 pruned or unpruned M50 tree indutionTable 2. Experimental setup of eah method.performs greedy stage-wise training with a set of bagging preditors to stabilizethe preditions of their base learners, while BagGB stabilizes the preditions ofa set of base-preditors eah of whih performs greedy stage-wise training.Although SGB already attempts to redue the variane of GB through ran-domization, we believe that bagging SGB may further enhane its variane redu-tion. Beause of the similarity between the algorithms, we would expet BagGB,BagSGB, and IB to demonstrate omparable performane.4 Experimental Evaluation4.1 MethodologyWe ran all our experiments on 25 datasets, with ontinuous lass (target) values,from the UCI repository [11℄. Table 1 gives a summary of these datasets. Theyvary in the number of attributes and the number of instanes, thus providing adiverse test bed for evaluating the performane of di�erent algorithms.We ompared the 7 di�erent regression methods listed in Table 2. The tableprovides the setup parameters for eah of the methods used. The performaneof most meta-learners (additive models) varies with the number of base modelsused. In order to make the omparison fair, we hose parameters suh that eahmethod produes 100 base models. In the ase of IB, this is an upper bound, sine



it an hoose to use fewer models. As a base learner for all the meta-learners weused M50 [12℄, whih is regression tree indution modi�ed based on [13℄ and [14℄.We ran separate sets of experiments on pruned M50 and unpruned M50. In prunedM50, the regression tree is pruned bak from the leaves, so long as the expetedestimated error dereases. All our results were averaged over 10 runs of 10-fold ross-validation. The di�erene in performane between two systems wasompared using a two-tailed paired t-test (p < 0:05).The performane of SGB and BagSGB is dependent on the fration param-eter f hosen for the experiment. Some values for f perform signi�antly betterthan others on the same dataset. In order to ompare with the best instanes ofSGB and BagSGB, we performed 10 runs of 10-fold ross-validation on SGB andBagSGB with di�erent values of f from f0:4; 0:5; 0:6; 0:7; 0:8; 0:9g and seletedthe f that produed the lowest error for eah dataset. Note that often the lowesterror is not statistially signi�antly di�erent from the error produed by othervalues of f .4.2 ResultsTables 3(a) and 3(b) summarize the results of our experiments using unprunedand pruned M50 base learners respetively. Eah ell in the tables report a om-parison between the algorithm in the row versus the algorithm in the olumn interms of win/draw/loss reords. The win/draw/loss reord presents three values,the number of data sets for whih algorithm A obtained better, equal, or worseperformane than algorithm B with respet to root-mean-squared error. A winor loss is only ounted if the di�erene in values is determined to be signi�antat the 0.05 level by a paired t-test. The last olumn of eah table presents theperentage redution of the root-mean-square error using di�erent algorithmsompared with using M50. This value is averaged over all the 25 datasets, andprovides an indiation of the magnitude of improvements one an expet onaverage.We also ran experiments (not presented in the table) omparing the baselearners | unpruned M50 with pruned M50. Our results showed that for ourdatasets, unpruned M50 far outperforms pruned M50. Unpruned M50 produessigni�antly lower errors in 23 datasets, while pruned M50 gives a lower error ononly 1 dataset. However, to study di�erent bias and variane settings, we presentresults on both pruned and unpruned M50.In the following subsetions we summarize the key omparisons from Table 3.IB vs. SGB: Our results show that IB signi�antly outperforms SGB, both interms of win/draw/loss reords and error redution. The di�erenes in perfor-mane are more dramati on pruned M50, where IB performs better than SGBon 23 of the 25 datasets, and produes twie the error redution on average. Themarked performane di�erene on pruned M50 an be attributed to IB's superiorbias-redution.



IB BagSGB BagGB SGB GB Bag M50 %ErrRedIB - 13/1/11 10/6/9 10/12/3 18/4/3 16/1/8 17/1/7 16.44BagSGB 11/1/13 - 10/8/7 16/5/4 15/5/5 18/4/3 21/2/2 16.35BagGB 9/6/10 7/8/10 - 10/11/4 15/5/5 16/2/7 18/2/5 15.61SGB 3/12/10 4/5/16 4/11/10 - 12/10/3 13/1/11 14/5/6 14.39GB 3/4/18 5/5/15 5/5/15 3/10/12 - 13/0/12 13/1/11 7.45Bag 8/1/16 3/4/18 7/2/16 11/1/13 12/0/13 - 17/5/3 1.98M50 7/1/17 2/2/21 5/2/18 6/5/14 11/1/13 3/5/17 - -(a)Base learner: unpruned M50IB BagSGB BagGB SGB GB Bag M50 %ErrRedIB - 18/4/3 20/3/2 23/1/1 24/0/1 19/3/3 22/1/2 16.89BagSGB 3/4/18 - 9/9/7 19/6/0 18/6/1 19/4/2 22/3/0 11.82BagGB 2/3/20 7/9/9 - 18/7/0 17/7/1 21/2/2 22/2/1 11.85SGB 1/1/23 0/6/19 0/7/18 - 2/18/5 13/5/7 16/8/1 8.14GB 1/0/24 1/6/18 1/7/17 5/18/2 - 13/4/8 16/7/2 8.55Bag 3/3/19 2/4/19 2/2/21 7/5/13 8/4/13 - 16/7/2 2.59M50 2/1/22 0/3/22 1/2/22 1/8/16 2/7/16 2/7/16 - -(b)Base learner: pruned M50Table 3. Win/draw/loss reords of algorithms in rows ompared with algorithms inolumns. The last olumn presents the average perentage redution of error of thealgorithm in the row ompared with using M50.SGB, BagGB and BagSGB: BagGB performs signi�antly better than SGB,both for pruned and unpruned M50. Similarly to IB, the di�erenes are morepronouned on pruned M50, where BagGB wins over SGB on 18 of the datasets,with no signi�ant losses. The results suggest that applying bootstrap samplingto GB has a better variane-reduing e�et than the randomization inorporatedin SGB. In fat, applying bagging to SGB (BagSGB), an signi�antly drivedown the error of SGB, as an be seen for both M50 settings. BagSGB performsmarginally better than BagGB in terms of win/draw/loss reords, though theirerror redutions are quite omparable.IB vs. BagGB/BagSGB: On unpruned M50, BagGB and BagSGB performomparably to IB both in terms of win/draw/loss reords and error redution| all methods produing approximately a 16% redution in root-mean-squarederror. However, for pruned M50 trees, whih have higher bias, IB exhibits a sig-ni�ant advantage over BagGB and BagSGB. In this ase, it wins over BagGBand BagSGB on 20 and 18 datasets respetively. We also observe approximatelya 5% di�erene in error redution between IB and the other methods. IB's ef-fetiveness at debiasing learners makes it a lear winner in higher bias settings.SGB vs GB: Our results on unpruned M50, whih has high variane error,support the laim in [7℄ that SGB has a better variane-reduing e�et than



Friedman1 Friedman2 Friedman3(�10�4)Bias2 Var. Err. Bias2 Var. Err. Bias2 Var. Err.IB 0.94 0.65 1.59 126 127 253 2.9 1.2 4.2BagSGB 1.49 0.48 1.96 237 149 386 4.4 1.0 5.5BagGB 1.44 0.55 1.98 171 279 450 3.8 1.2 5.0SGB 1.04 1.90 2.94 201 582 784 3.3 2.2 5.5GB 0.97 1.31 2.28 136 322 458 2.9 2.4 5.3Bag 4.80 0.43 5.24 1087 144 1230 9.9 0.8 0.7M50 4.69 1.09 5.79 1056 398 1454 9.4 2.0 1.4Table 4. Bias-variane deompositions of mean squared error on syntheti data.GB. SGB on average redued 14.39% of the error of unpruned M50, while GBredued only 7.45%. However, SGB has signi�ant wins in only 12 datasets andties with GB in 10. Although, the error redution of SGB is quite good, thewin/draw/loss results do not suggest as signi�ant an advantage of SGB overGB as in [9℄. In fat, on pruned M50, the performane of SGB and GB are tiedon 18 datasets, with SGB performing slightly worse on the other datasets.Bias-variane redution vs. bias or variane redution: GB and baggingfous solely on reduing the bias and variane of learners respetively. On theother hand, IB, SGB, BagGB and BagSGB attempt to redue both the ontribu-tion of bias and variane to error. For brevity, we will refer to these four methodsas BV-methods. Our results show that in general, the BV-methods have a sig-ni�ant advantage over GB and bagging, even when using the same number ofbase models. When ompared to GB, BV-methods perform signi�antly betteron at least 12 datasets and lose on at most 5 datasets. The only exeption isSGB using pruned M50, whih loses to GB by a margin of 3 datasets. Even whenompared to bagging, SGB is less e�etive than the other BV-methods. It winsby a margin of 2 (13 wins vs. 11 losses) and 6 (13 wins vs. 7 losses) when usingunpruned M50 and pruned M50 respetively. The other BV-methods win by atleast 16 datasets and lose on at most 8 datasets when ompared to bagging. Theresults learly indiate that ombining tehniques for bias and variane redutionis more e�etive than fousing on either bias or variane alone.5 Bias-Variane AnalysisWe explain most of our results based on how the di�erent learners e�et the biasand variane omponents of the error. To support our onjetures, we ran addi-tional experiments to expliitly measure the bias and variane reduing e�etsof the methods presented. We performed BV deompositions on three synthetidatasets, as done in [15℄. We do not introdue noise in these datasets, so thatthe evaluation of the bias and variane redution apability of a learner is not



Friedman1 Friedman2 Friedman3Bias2 Var. Err. Bias2 Var. Err. Bias2 Var. Err.IB Bag IB IB IB IB IB Bag IBGB BagSGB BagSGB GB Bag BagSGB GB BagSGB BagGBSGB BagGB BagGB BagGB BagSGB BagGB SGB IB GBBagGB IB GB SGB BagGB GB BagGB BagGB BagSGBBagSGB M50 SGB BagSGB GB SGB BagSGB M50 SGBM50 GB Bag M50 M50 Bag M50 SGB BagBag SGB M50 Bag SGB M50 Bag GB M50Table 5. Methods in order of inreasing bias, variane and overall error.onfounded with its ability to handle noise. The target funtions for the threedatasets is given below:Friedman1 : y = 10sin(�x1x2) + 20(x3 � 0:5)2 + 10x4 + 5x5Friedman2 : y = (x21 + (x2x3 � (1=x2x4))2)1=2Friedman3 : y = tan�1(x2x3�(1=x2x4)x1 )The �rst dataset, Friedman1, has 10 input variables x1; :::; x10, whih are uni-formly distributed over [0; 1℄. The other two datasets, Friedman2 and Friedman3,have 4 inputs x1; x2; x3; x4, whih are uniformly distributed over the ranges:0 � x1 � 10020 � (x2=2�) � 2800 � x3 � 11 � x4 � 11To estimate bias and variane we used the method proposed by Kohavi andWolpert [16℄, appropriately modi�ed for regression (as opposed to lassi�ation).Eah dataset was divided into two halves, D and E. D was used to draw oursample of training sets from, and E was used to estimate the terms in the BVdeomposition. We generated 50 training sets from D sampled uniformly atrandom without replaement. Eah training set of size 200 was seleted fromthe pool of 400 examples in D. Eah learning algorithm was run on eah of thetraining sets and the squared bias and variane terms were alulated on set Ebased on equation 1. These values were averaged over all 50 train-test yles.Table 4 presents the overall error, bias2 and variane terms for all algorithmsapplied to unpruned M50 trees. The results for pruned trees were qualitativelysimilar, though in general the errors were higher for all methods. For SGB andBagSGB, we used a fration f = 0:6; whih is roughly equivalent to drawingbootstrap samples at eah iteration. Table 5 presents the di�erent algorithms inthe order of inreasing bias, variane and overall error on eah dataset.We observe that GB performs very well at reduing bias, but does not performwell at variane redution. In fat, on Friedman1 and Friedman3, GB atuallyinreases the variane of the base learner. Analogously, bagging an inrease thebias of the learner, but performs very well in terms of variane redution. By



ombining the power of bagging and GB, BagGB produes a lower overall errorthan eah of its omponents. Similarly, BagSGB improves on the bias redutionof bagging and the variane redution of SGB, and as a result produes a loweroverall error than both omponent algorithms. IB shows the best performaneon overall error, and it appears to be quite e�etive in reduing both bias andvariane. In fat, IB also performs the best in terms of bias redution on all threedatasets.6 Future Work and ConlusionWe ompared four approahes to ombining bias and variane redution teh-niques | Stohasti Gradient Boosting, Iterated Bagging, bagging GradientBoosting and bagging Stohasti Gradient Boosting. Our results demonstratethat methods for ombining bias and variane redution (BV-methods) are moree�etive than methods that fous either on bias or variane in isolation. We alsoshowed that while SGB often improves on GB, it is not very onsistent and iseasily outperformed by the other BV-methods. Experimental results show thatfor unpruned trees, whih are low-bias learners, BagGB and BagSGB performsomewhat omparably to IB. However, IB, being a more e�etive bias-redutionmethod, performs muh better ompared to other algorithms when applied topruned trees.In our study, we restrited our methods to building at most 100 modelseah. Typially, the performane of these ensemble methods (or additive mod-els) improve with ensemble size. In future work, we would like to explore therelationship between the number of models used and the e�etiveness of eahmethod. Experimenting with base learners other than deision trees, suh asneural networks and support vetor mahines would also be very useful.7 AknowledgementsWe would like to thank Horris Tse for assistane with running some of theexperiments. Prem Melville and Raymond Mooney were supported by DARPAgrant HR0011-04-1-007.Referenes[1℄ Geman, S., Bienenstok, E., Dorsat, R.: Neural networks and the bias/varianedilemma. Neural Computation 4 (1992) 1{58[2℄ Friedman, J.: Greedy funtion approximation: a gradient boosting mahine. Teh-nial report, Stanford University Statistis Department (1999)[3℄ Breiman, L.: Bagging preditors. Mahine Learning 24 (1996) 123{140[4℄ Valentini, G., Dietterih, T.G.: Low bias bagged support vetor mahines. In:Proeedings of 20th International Conferene on Mahine Learning (ICML-2003),Washington, DC (2003) 752{759
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