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t. Gradient Boosting and bagging applied to regressors 
anredu
e the error due to bias and varian
e respe
tively. Alternatively,Sto
hasti
 Gradient Boosting (SGB) and Iterated Bagging (IB) attemptto simultaneously redu
e the 
ontribution of both bias and varian
eto error. We provide an extensive empiri
al analysis of these methods,along with two alternate bias-varian
e redu
tion approa
hes | baggingGradient Boosting (BagGB) and bagging Sto
hasti
 Gradient Boosting(BagSGB). Experimental results demonstrate that SGB does not per-form as well as IB or the alternate approa
hes. Furthermore, resultsshow that, while BagGB and BagSGB perform 
ompetitively for low-bias learners, in general, Iterated Bagging is the most e�e
tive of thesemethods.1 Introdu
tionThe de
omposition of a learner's error into bias and varian
e terms providesa way of analyzing the behavior of di�erent learning algorithms [1℄. Variousmethods have been devised to redu
e either the bias or varian
e of a learner.Some methods, su
h as Gradient Boosting [2℄, 
an redu
e bias by in
reasingthe expressive power of the base learner. While other methods, su
h as bagging[3℄, mainly redu
e varian
e by subsampling the training data. There have beensome attempts of 
ombining te
hniques for bias and varian
e redu
tion, both for
lassi�
ation [4; 5℄ and for regression [6; 7℄. For regression, Friedman [7℄ intro-du
ed Sto
hasti
 Gradient Boosting (SGB) as a method that redu
es the vari-an
e of Gradient Boosting (GB) by in
orporating randomization in the pro
ess.Breiman [6℄ presented a related method, Iterated Bagging (IB) that attempts toredu
e the bias of bagging predi
tors. Despite their similarities, to our knowl-edge, there has been no dire
t experimental 
omparison of these two methods. Inthis paper, we present a detailed empiri
al analysis of SGB and IB. We show thatIB signi�
antly outperforms SGB when applied to both pruned and unprunedregression trees.We also explored two alternate methods for 
ombining bias and varian
e re-du
tion te
hniques for regression | bagging Gradient Boosting (BagGB) and



bagging Sto
hasti
 Gradient Boosting (BagSGB). Our experiments show thatthese methods also signi�
antly outperform SGB. In 
omparison to IB, BagGBand BagSGB are equally e�e
tive when applied to unpruned regression trees.However, for pruned regression trees, whi
h have a higher bias, we observe thatIB is the most e�e
tive at error redu
tion. This paper also presents a bias-varian
e analysis of the di�erent algorithms, whi
h provides a better under-standing of the relative e�e
tiveness of these methods.Se
tion 2 provides a brief ba
kground on the bias-varian
e de
omposition oferror. In se
tion 3 we des
ribe all the algorithms dis
ussed in this paper, andour main experimental results are presented in se
tion 4. In se
tion 5 we dis
ussthe results of our bias-varian
e analysis; and se
tion 6 presents our future workand 
on
lusions.2 Bias-Varian
e De
omposition of ErrorThe following formulation of the bias-varian
e (BV) de
omposition is based on[8℄. Let us assume our data arose from a model y = F (x) + �, where the randomerror � has E(�) = 0 and V ar(�) = �2� . Then the expe
ted predi
tion errorof a regression model F̂ (x) for a point x = xi using squared-error loss 
an beexpressed as:	(y; F̂ (xi)) = E[(y � F̂ (xi))2jx = xi= �2� + [E(F̂ (xi))� F (xi)℄2 +E[F̂ (xi)�E(F̂ (xi))℄2 (1)= �2� + bias2(F̂ (xi)) + varian
e(F̂ (xi))The �rst term is the irredu
ible error, whi
h is the varian
e of the targetfun
tion around its true mean F (x). This error 
annot be avoided no matterhow well we model F (x). The se
ond term is the 
ontribution of squared biasto error, whi
h is the amount by whi
h the average of our estimates di�ers fromthe true mean. The last term is the 
ontribution of varian
e to error, whi
his the expe
ted squared deviation of F̂ (xi) around its mean. For brevity, wewill refer to the 
ontribution of squared bias and varian
e to error as bias2and varian
e respe
tively. In general, more 
omplex models have lower bias andhigher varian
e; e.g., unpruned de
ision trees tend to have low bias and highvarian
e, while de
ision stumps have a very high bias but low varian
e.3 Algorithms3.1 Gradient Boosting and Sto
hasti
 Gradient BoostingGradient Boosting [2℄ (GB) is an iterative algorithm whi
h 
onstru
ts ad-ditive models by �tting a base learner to the 
urrent residue at ea
h iteration;where the residue is the gradient of the loss fun
tion being minimized withrespe
t to the model values at ea
h data point. In [9℄, Friedman introdu
ed



Algorithm 1 Sto
hasti
 Gradient BoostingGiven:M { maximum number of stagesfxn; yngNn=1 { training set of size Nf = ~NN ; 0 < ~N � N { fra
tion parameter that determines the size of subsample� { shrinkage parameterL { base learner1. For m = 1 to M do:2. Sele
t random subset fx~n; y(~n;m)g ~N~n=1 from fxn; y(n;m)gNn=13. Apply learner L to sample set fx~n; y(~n;m)g ~N~n=1 to produ
e predi
tor F̂m4. Repla
e residues of training set fxn; y(n;m)gNn=1 to form fxn; y(n;m+1)gNn=1,where y(n;m+1) = y(n;m) � � � F̂m(xn)Output: y =PMm=1 � � F̂m(x)Sto
hasti
 Gradient Boosting (SGB) whi
h improves the a

ura
y of GB byredu
ing its error due to varian
e.In SGB, at ea
h iteration a subsample of data is drawn uniformly at ran-dom, without repla
ement, from the full training set. This random subsample isused to train the base learner to produ
e a model for the 
urrent stage. Fried-man [7℄ states that the idea of using a random subset of the training set atea
h stages originates from bootstrap sampling in bagging, and has a similarvarian
e-redu
ing e�e
t on the 
ombined model.The SGB method is presented in Algorithm 1. GB 
an be viewed as a spe
ial
ase of this algorithm in whi
h the entire training set is used at ea
h iteration,i.e., f = 1:0. SGB pro
eeds in M stages, ea
h of whi
h learns a predi
tor F̂mto predi
t the 
urrent residues of the training set and updates the residues ofthe training set for the next stage. The learning in the mth stage starts withrandomly sele
ting ~N = N � f instan
es from the N initial training instan
esfxn; y(n;m)gNn=1, where f 2 (0 : : : 1℄ is a user-de�ned fra
tion value. The learnerL then uses this new training set fx~n; y(~n;m)g ~N~n=1 to learn a new predi
tor F̂mthat attempts to minimize the squared error (y � F̂ )2. SGB 
an be used tohandle other loss fun
tions, su
h as least absolute deviation, Huber loss andlogisti
 binomial log-likelihood [2; 7℄. However, this paper will only fo
us onleast squared error.The target value yn is treated as the initial residue y(n;1) for the nth instan
e.The SGB residue of a training instan
e in the next iteration is the di�eren
ebetween the 
urrent residue and the negative gradient of the loss fun
tion, i.e.,a partial di�erentiation of the loss fun
tion with respe
t to the predi
tor beinglearned in the 
urrent stage. The residue y(n;m+1) for the nth instan
e in the(m+ 1)th iteration is 
omputed as:y(n;m+1) = y(n;m) � � � F̂m(xn)



Algorithm 2 Iterated BaggingGiven:M { maximum number of stagesK { number of bagging predi
tors in ea
h stage� { threshold of mean sum-of-squares of residuesfxn; yngNn=1 { training set of size NL { base learner1. Initialize minimum residue, �M� =1;M� = 02. For m = 1 to M do:3. Learn a set of K bagging predi
tors f�(k;m)gKk=1 with learner Lapplied to bootstrap samples sele
ted from fxn; y(n;m)gNn=14. Cal
ulate the residue y(n;m+1) = yn;m �PK̂̂k=1 �(k̂;m)(xn)=K̂,where �(k̂;m) is one of the K̂ bagging predi
tors not trained on xn5. Repla
e residues of the training set to form fxn; y(n;m+1)gNn=16. Cal
ulate the mean sum-of-squares of residues, �m =PNn=1 y(n;m+1)=N7. If �m < �M� then M� = m; �M� = �m8. Exit the loop if �m > � � �M�Output: y =PM�m=1PKk=1 �(k;m)(x)=Kwhere � is a user-de�ned shrinkage value to weigh and smooth the predi
tion atea
h stage.After M stages, SGB 
reates a 
ombined (additive) model, i.e., a set oftrained predi
tors fF̂mgMm=1. The predi
ted output y for a test input x is givenby: y =PMm=1 � � F̂m(x)whi
h is a weighted sum of the outputs of the predi
tors in the 
ombined model.The performan
e of SGB is dependent on the fra
tion parameter f whi
hdetermines the size of the training set at ea
h iteration. Although experimentalresults in [7℄ suggests that there is a weak 
orrelation between f and the error,there was no 
on
lusive methodology provided for the sele
tion of f .3.2 Iterated BaggingBagging has been shown to redu
e the varian
e of predi
tors, while leavingthe bias largely un
hanged [3℄. Iterated Bagging (IB) [6℄, also known as AdaptiveBagging [10℄, is an e�ort to redu
e the bias error of the low-varian
e baggingpredi
tors. Similar to SGB, it is a stage-wise algorithm that attempts to mini-mize the residue in ea
h stage. IB addresses bias and varian
e redu
tion in twoways: (1) it uses low-varian
e bagging predi
tors to 
ompute residues and (2) it
omputes unbiased estimates of residues using out-of-bag 
al
ulations [10℄. Theoutline of IB is presented in Algorithm 2.The algorithm pro
eeds inM stages, with ea
h stage learningK bagging pre-di
tors and re-
omputing the residues of all training instan
es. At the mth stage,



a set of K bagging predi
tors f�(k;m)gKk=1 are generated by applying the baselearner L to bootstrap samples of size N sele
ted randomly, with repla
ement,from the training instan
es fxn; yn;mgNn=1. The target value yn is treated as theinitial residue y(n;1) for the nth instan
e. After training K bagging predi
tors,IB updates the residue of ea
h instan
e in the training set. The 
omputationof residues in IB is very similar to that of SGB using least squared error. Theresidue y(n;m+1) of the nth instan
e at the (m+ 1)th stage is the di�eren
e be-tween the 
urrent residue y(n;m) and the average out-of-bag predi
tion on theinput xn over the K bagging predi
tors learned at the mth stage:y(n;m+1) = yn;m �PK̂̂k=1 �(k̂;m)(xn)=K̂where �(k̂;m) is one of the K̂ bagging predi
tors that was not trained on xn. Themethod for 
omputing the residues when K̂ is 0 is not mentioned in [6℄. We dealwith this 
ase by updating the residue with the di�eren
e between the 
urrentresidue and the mean of the output on xn over all bagging predi
tors in thisstage.The IB algorithm keeps tra
k of the minimum mean sum-of-squares of theresidues �M� in the M�th stage. If the mean sum-of-squares of the residues �m+1for the (m + 1)th stage ex
eeds � � �M� , then the algorithm stops and returnsthe K bagging predi
tors in ea
h of the M� iterations, where � is a user-de�nedthreshold parameter. The predi
tion on a test instan
e is given by summing upthe average of the predi
ted values a
ross the K bagging predi
tors in the M�stages: y =PM�m=1PKk=1 �(k;m)(x)=KIn general, bagging works well with high-varian
e base regression learners.IB, on the other hand, improves over bagging and redu
es both varian
e andbias of the base learner [6℄.3.3 Bagging GB and Bagging SGBIn addition to SGB and IB, we explored two alternative approa
hes to bias-varian
e redu
tion | bagging Gradient Boosting (BagGB) and bagging Sto
has-ti
 Gradient Boosting (BagSGB). BagGB and BagSGB use GB and SGB, re-spe
tively, as the base learners in ea
h stage of building a bagging predi
tor. Atotal of K bootstrap sets of training instan
es are randomly sele
ted to train KGB (or SGB) predi
tors. The output y of a test input x is predi
ted by averagingthe sum of predi
tions of the K base predi
tors.BagGB should redu
e the varian
e error of predi
tions by stabilizing thepredi
tions of the GB base learners. BagGB and IB are similar, as they bothpossess two 
omponents: (1) a bagging predi
tor to stabilize the predi
tions ofthe base learners by averaging the results of the predi
tors ea
h trained with adi�erent bootstrap sample and (2) a greedy stage-wise training of base predi
torsto minimize the residues. The di�eren
e between IB and BagGB is that IB



Datasets Attr. Ins. Datasets Attr. Ins. Datasets Attr. Ins.auto93 26 93 autoHorse 26 205 autoMpg 8 398autoPri
e 26 205 bodyfat 15 252 breastTumor 9 286
holesterol 14 303 
leveland 14 303 
loud 6 194
pu 10 209 e
hoMonths 13 132 detroit 14 13fruit
y 5 125 �sh
at
h 8 159 housing 13 506hungarian 14 294 lowbwt 11 189 meta 22 528pb
 20 418 pharynx 13 195 pollution 15 60pwLinear 10 200 sensory 11 576 servo 5 167strike 6 625Table 1. Summary of UCI datasets with the number of attributes and instan
es.Algorithm Des
riptionIB 10 stages of IB with 10 stages of bagging ea
h (M = 10; K = 10).BagSGB 10 stages of bagging � 10 SGB iterations ea
h (M = 10).BagGB 10 stages of bagging � 10 GB iterations ea
h (M = 10).SGB 100 iterations (M = 100).GB 100 iterations (M = 100).Bagging 100 stages of bagging M50 trees.M50 pruned or unpruned M50 tree indu
tionTable 2. Experimental setup of ea
h method.performs greedy stage-wise training with a set of bagging predi
tors to stabilizethe predi
tions of their base learners, while BagGB stabilizes the predi
tions ofa set of base-predi
tors ea
h of whi
h performs greedy stage-wise training.Although SGB already attempts to redu
e the varian
e of GB through ran-domization, we believe that bagging SGB may further enhan
e its varian
e redu
-tion. Be
ause of the similarity between the algorithms, we would expe
t BagGB,BagSGB, and IB to demonstrate 
omparable performan
e.4 Experimental Evaluation4.1 MethodologyWe ran all our experiments on 25 datasets, with 
ontinuous 
lass (target) values,from the UCI repository [11℄. Table 1 gives a summary of these datasets. Theyvary in the number of attributes and the number of instan
es, thus providing adiverse test bed for evaluating the performan
e of di�erent algorithms.We 
ompared the 7 di�erent regression methods listed in Table 2. The tableprovides the setup parameters for ea
h of the methods used. The performan
eof most meta-learners (additive models) varies with the number of base modelsused. In order to make the 
omparison fair, we 
hose parameters su
h that ea
hmethod produ
es 100 base models. In the 
ase of IB, this is an upper bound, sin
e



it 
an 
hoose to use fewer models. As a base learner for all the meta-learners weused M50 [12℄, whi
h is regression tree indu
tion modi�ed based on [13℄ and [14℄.We ran separate sets of experiments on pruned M50 and unpruned M50. In prunedM50, the regression tree is pruned ba
k from the leaves, so long as the expe
tedestimated error de
reases. All our results were averaged over 10 runs of 10-fold 
ross-validation. The di�eren
e in performan
e between two systems was
ompared using a two-tailed paired t-test (p < 0:05).The performan
e of SGB and BagSGB is dependent on the fra
tion param-eter f 
hosen for the experiment. Some values for f perform signi�
antly betterthan others on the same dataset. In order to 
ompare with the best instan
es ofSGB and BagSGB, we performed 10 runs of 10-fold 
ross-validation on SGB andBagSGB with di�erent values of f from f0:4; 0:5; 0:6; 0:7; 0:8; 0:9g and sele
tedthe f that produ
ed the lowest error for ea
h dataset. Note that often the lowesterror is not statisti
ally signi�
antly di�erent from the error produ
ed by othervalues of f .4.2 ResultsTables 3(a) and 3(b) summarize the results of our experiments using unprunedand pruned M50 base learners respe
tively. Ea
h 
ell in the tables report a 
om-parison between the algorithm in the row versus the algorithm in the 
olumn interms of win/draw/loss re
ords. The win/draw/loss re
ord presents three values,the number of data sets for whi
h algorithm A obtained better, equal, or worseperforman
e than algorithm B with respe
t to root-mean-squared error. A winor loss is only 
ounted if the di�eren
e in values is determined to be signi�
antat the 0.05 level by a paired t-test. The last 
olumn of ea
h table presents theper
entage redu
tion of the root-mean-square error using di�erent algorithms
ompared with using M50. This value is averaged over all the 25 datasets, andprovides an indi
ation of the magnitude of improvements one 
an expe
t onaverage.We also ran experiments (not presented in the table) 
omparing the baselearners | unpruned M50 with pruned M50. Our results showed that for ourdatasets, unpruned M50 far outperforms pruned M50. Unpruned M50 produ
essigni�
antly lower errors in 23 datasets, while pruned M50 gives a lower error ononly 1 dataset. However, to study di�erent bias and varian
e settings, we presentresults on both pruned and unpruned M50.In the following subse
tions we summarize the key 
omparisons from Table 3.IB vs. SGB: Our results show that IB signi�
antly outperforms SGB, both interms of win/draw/loss re
ords and error redu
tion. The di�eren
es in perfor-man
e are more dramati
 on pruned M50, where IB performs better than SGBon 23 of the 25 datasets, and produ
es twi
e the error redu
tion on average. Themarked performan
e di�eren
e on pruned M50 
an be attributed to IB's superiorbias-redu
tion.



IB BagSGB BagGB SGB GB Bag M50 %ErrRedIB - 13/1/11 10/6/9 10/12/3 18/4/3 16/1/8 17/1/7 16.44BagSGB 11/1/13 - 10/8/7 16/5/4 15/5/5 18/4/3 21/2/2 16.35BagGB 9/6/10 7/8/10 - 10/11/4 15/5/5 16/2/7 18/2/5 15.61SGB 3/12/10 4/5/16 4/11/10 - 12/10/3 13/1/11 14/5/6 14.39GB 3/4/18 5/5/15 5/5/15 3/10/12 - 13/0/12 13/1/11 7.45Bag 8/1/16 3/4/18 7/2/16 11/1/13 12/0/13 - 17/5/3 1.98M50 7/1/17 2/2/21 5/2/18 6/5/14 11/1/13 3/5/17 - -(a)Base learner: unpruned M50IB BagSGB BagGB SGB GB Bag M50 %ErrRedIB - 18/4/3 20/3/2 23/1/1 24/0/1 19/3/3 22/1/2 16.89BagSGB 3/4/18 - 9/9/7 19/6/0 18/6/1 19/4/2 22/3/0 11.82BagGB 2/3/20 7/9/9 - 18/7/0 17/7/1 21/2/2 22/2/1 11.85SGB 1/1/23 0/6/19 0/7/18 - 2/18/5 13/5/7 16/8/1 8.14GB 1/0/24 1/6/18 1/7/17 5/18/2 - 13/4/8 16/7/2 8.55Bag 3/3/19 2/4/19 2/2/21 7/5/13 8/4/13 - 16/7/2 2.59M50 2/1/22 0/3/22 1/2/22 1/8/16 2/7/16 2/7/16 - -(b)Base learner: pruned M50Table 3. Win/draw/loss re
ords of algorithms in rows 
ompared with algorithms in
olumns. The last 
olumn presents the average per
entage redu
tion of error of thealgorithm in the row 
ompared with using M50.SGB, BagGB and BagSGB: BagGB performs signi�
antly better than SGB,both for pruned and unpruned M50. Similarly to IB, the di�eren
es are morepronoun
ed on pruned M50, where BagGB wins over SGB on 18 of the datasets,with no signi�
ant losses. The results suggest that applying bootstrap samplingto GB has a better varian
e-redu
ing e�e
t than the randomization in
orporatedin SGB. In fa
t, applying bagging to SGB (BagSGB), 
an signi�
antly drivedown the error of SGB, as 
an be seen for both M50 settings. BagSGB performsmarginally better than BagGB in terms of win/draw/loss re
ords, though theirerror redu
tions are quite 
omparable.IB vs. BagGB/BagSGB: On unpruned M50, BagGB and BagSGB perform
omparably to IB both in terms of win/draw/loss re
ords and error redu
tion| all methods produ
ing approximately a 16% redu
tion in root-mean-squarederror. However, for pruned M50 trees, whi
h have higher bias, IB exhibits a sig-ni�
ant advantage over BagGB and BagSGB. In this 
ase, it wins over BagGBand BagSGB on 20 and 18 datasets respe
tively. We also observe approximatelya 5% di�eren
e in error redu
tion between IB and the other methods. IB's ef-fe
tiveness at debiasing learners makes it a 
lear winner in higher bias settings.SGB vs GB: Our results on unpruned M50, whi
h has high varian
e error,support the 
laim in [7℄ that SGB has a better varian
e-redu
ing e�e
t than



Friedman1 Friedman2 Friedman3(�10�4)Bias2 Var. Err. Bias2 Var. Err. Bias2 Var. Err.IB 0.94 0.65 1.59 126 127 253 2.9 1.2 4.2BagSGB 1.49 0.48 1.96 237 149 386 4.4 1.0 5.5BagGB 1.44 0.55 1.98 171 279 450 3.8 1.2 5.0SGB 1.04 1.90 2.94 201 582 784 3.3 2.2 5.5GB 0.97 1.31 2.28 136 322 458 2.9 2.4 5.3Bag 4.80 0.43 5.24 1087 144 1230 9.9 0.8 0.7M50 4.69 1.09 5.79 1056 398 1454 9.4 2.0 1.4Table 4. Bias-varian
e de
ompositions of mean squared error on syntheti
 data.GB. SGB on average redu
ed 14.39% of the error of unpruned M50, while GBredu
ed only 7.45%. However, SGB has signi�
ant wins in only 12 datasets andties with GB in 10. Although, the error redu
tion of SGB is quite good, thewin/draw/loss results do not suggest as signi�
ant an advantage of SGB overGB as in [9℄. In fa
t, on pruned M50, the performan
e of SGB and GB are tiedon 18 datasets, with SGB performing slightly worse on the other datasets.Bias-varian
e redu
tion vs. bias or varian
e redu
tion: GB and baggingfo
us solely on redu
ing the bias and varian
e of learners respe
tively. On theother hand, IB, SGB, BagGB and BagSGB attempt to redu
e both the 
ontribu-tion of bias and varian
e to error. For brevity, we will refer to these four methodsas BV-methods. Our results show that in general, the BV-methods have a sig-ni�
ant advantage over GB and bagging, even when using the same number ofbase models. When 
ompared to GB, BV-methods perform signi�
antly betteron at least 12 datasets and lose on at most 5 datasets. The only ex
eption isSGB using pruned M50, whi
h loses to GB by a margin of 3 datasets. Even when
ompared to bagging, SGB is less e�e
tive than the other BV-methods. It winsby a margin of 2 (13 wins vs. 11 losses) and 6 (13 wins vs. 7 losses) when usingunpruned M50 and pruned M50 respe
tively. The other BV-methods win by atleast 16 datasets and lose on at most 8 datasets when 
ompared to bagging. Theresults 
learly indi
ate that 
ombining te
hniques for bias and varian
e redu
tionis more e�e
tive than fo
using on either bias or varian
e alone.5 Bias-Varian
e AnalysisWe explain most of our results based on how the di�erent learners e�e
t the biasand varian
e 
omponents of the error. To support our 
onje
tures, we ran addi-tional experiments to expli
itly measure the bias and varian
e redu
ing e�e
tsof the methods presented. We performed BV de
ompositions on three syntheti
datasets, as done in [15℄. We do not introdu
e noise in these datasets, so thatthe evaluation of the bias and varian
e redu
tion 
apability of a learner is not



Friedman1 Friedman2 Friedman3Bias2 Var. Err. Bias2 Var. Err. Bias2 Var. Err.IB Bag IB IB IB IB IB Bag IBGB BagSGB BagSGB GB Bag BagSGB GB BagSGB BagGBSGB BagGB BagGB BagGB BagSGB BagGB SGB IB GBBagGB IB GB SGB BagGB GB BagGB BagGB BagSGBBagSGB M50 SGB BagSGB GB SGB BagSGB M50 SGBM50 GB Bag M50 M50 Bag M50 SGB BagBag SGB M50 Bag SGB M50 Bag GB M50Table 5. Methods in order of in
reasing bias, varian
e and overall error.
onfounded with its ability to handle noise. The target fun
tions for the threedatasets is given below:Friedman1 : y = 10sin(�x1x2) + 20(x3 � 0:5)2 + 10x4 + 5x5Friedman2 : y = (x21 + (x2x3 � (1=x2x4))2)1=2Friedman3 : y = tan�1(x2x3�(1=x2x4)x1 )The �rst dataset, Friedman1, has 10 input variables x1; :::; x10, whi
h are uni-formly distributed over [0; 1℄. The other two datasets, Friedman2 and Friedman3,have 4 inputs x1; x2; x3; x4, whi
h are uniformly distributed over the ranges:0 � x1 � 10020 � (x2=2�) � 2800 � x3 � 11 � x4 � 11To estimate bias and varian
e we used the method proposed by Kohavi andWolpert [16℄, appropriately modi�ed for regression (as opposed to 
lassi�
ation).Ea
h dataset was divided into two halves, D and E. D was used to draw oursample of training sets from, and E was used to estimate the terms in the BVde
omposition. We generated 50 training sets from D sampled uniformly atrandom without repla
ement. Ea
h training set of size 200 was sele
ted fromthe pool of 400 examples in D. Ea
h learning algorithm was run on ea
h of thetraining sets and the squared bias and varian
e terms were 
al
ulated on set Ebased on equation 1. These values were averaged over all 50 train-test 
y
les.Table 4 presents the overall error, bias2 and varian
e terms for all algorithmsapplied to unpruned M50 trees. The results for pruned trees were qualitativelysimilar, though in general the errors were higher for all methods. For SGB andBagSGB, we used a fra
tion f = 0:6; whi
h is roughly equivalent to drawingbootstrap samples at ea
h iteration. Table 5 presents the di�erent algorithms inthe order of in
reasing bias, varian
e and overall error on ea
h dataset.We observe that GB performs very well at redu
ing bias, but does not performwell at varian
e redu
tion. In fa
t, on Friedman1 and Friedman3, GB a
tuallyin
reases the varian
e of the base learner. Analogously, bagging 
an in
rease thebias of the learner, but performs very well in terms of varian
e redu
tion. By




ombining the power of bagging and GB, BagGB produ
es a lower overall errorthan ea
h of its 
omponents. Similarly, BagSGB improves on the bias redu
tionof bagging and the varian
e redu
tion of SGB, and as a result produ
es a loweroverall error than both 
omponent algorithms. IB shows the best performan
eon overall error, and it appears to be quite e�e
tive in redu
ing both bias andvarian
e. In fa
t, IB also performs the best in terms of bias redu
tion on all threedatasets.6 Future Work and Con
lusionWe 
ompared four approa
hes to 
ombining bias and varian
e redu
tion te
h-niques | Sto
hasti
 Gradient Boosting, Iterated Bagging, bagging GradientBoosting and bagging Sto
hasti
 Gradient Boosting. Our results demonstratethat methods for 
ombining bias and varian
e redu
tion (BV-methods) are moree�e
tive than methods that fo
us either on bias or varian
e in isolation. We alsoshowed that while SGB often improves on GB, it is not very 
onsistent and iseasily outperformed by the other BV-methods. Experimental results show thatfor unpruned trees, whi
h are low-bias learners, BagGB and BagSGB performsomewhat 
omparably to IB. However, IB, being a more e�e
tive bias-redu
tionmethod, performs mu
h better 
ompared to other algorithms when applied topruned trees.In our study, we restri
ted our methods to building at most 100 modelsea
h. Typi
ally, the performan
e of these ensemble methods (or additive mod-els) improve with ensemble size. In future work, we would like to explore therelationship between the number of models used and the e�e
tiveness of ea
hmethod. Experimenting with base learners other than de
ision trees, su
h asneural networks and support ve
tor ma
hines would also be very useful.7 A
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