
Copyright

by

Shobhit Chaurasia

2017

The Thesis Committee for Shobhit Chaurasia

certifies that this is the approved version of the following thesis:

Dialog for Natural Language to Code

Approved by
Supervising Committee:

Raymond J. Mooney, Supervisor

Milos Gligoric

Dialog for Natural Language to Code

by

Shobhit Chaurasia, B.Tech

Thesis

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in Computer Science

The University of Texas at Austin

May 2017

Acknowledgments

First and foremost, I would like to thank my adviser, Ray Mooney, for his

constant intellectual support throughout my thesis research. I would also

like to thank Milos Gligoric, who served on my advising committee, for his

support, especially for bringing in Software Engineering ideas to my research.

Discussions with both of them got me interested in the exciting intersection

of the fields of Natural Language Processing and Software Engineering.

I am grateful to my lab-mate Aishwarya Padmakumar for her tireless

efforts since the conception of this thesis. Some of my research would not have

been possible without her ideas and insights.

I am indebted to my family for creating an environment conducive of

learning since my childhood, something which shaped my interest in academia

and motivated me to pursue graduate studies, and for their emotional support

throughout my time away from home.

Special thanks to my utilitarian brother, Gaurav Chaurasia, with whom

I have the most useful relationship I could imagine. Without his invaluable

help, I would not have gotten a chance to explore my passion for research in

the first place.

Finally, I would like to thank my partner, Mahika Bhasin, and my sister,

iv

Ankita Chaurasia, without whom, admittedly, I could have done more work

in my research, but it would not have been fun.

This work was supported by a gift from Microsoft Research to Ray

Mooney.

Shobhit Chaurasia

The University of Texas at Austin

May 2017

v

Dialog for Natural Language to Code

Shobhit Chaurasia, MSCompSci

The University of Texas at Austin, 2017

Supervisor: Raymond J. Mooney

Generating computer code from natural language descriptions has been a long-

standing problem in computational linguistics. Prior work in this domain has

restricted itself to generating code in one shot from a single description. To

overcome this limitation, we propose a system that can engage users in a di-

alog to clarify their intent until it is confident that it has all the information

to produce correct and complete code. Further, we demonstrate how the di-

alog conversations can be leveraged for continuous improvement of the dialog

system. To evaluate the efficacy of dialog in code generation, we focus on

synthesizing conditional statements in the form of IFTTT recipes. IFTTT

(if-this-then-that) is a web-service that provides event-driven automation, en-

abling control of smart devices and web-applications based on user-defined

events.

vi

Contents

Acknowledgments iv

Abstract vi

List of Tables x

List of Figures xii

Chapter 1 Introduction and Related Work 1

1.1 Chapter Overview . 1

1.2 Code Generation . 1

1.3 Dialog Systems . 4

1.4 Thesis Outline . 5

Chapter 2 Task Overview 7

2.1 Chapter Overview . 7

2.2 IFTTT Domain . 7

2.2.1 Channels and Functions 8

2.2.2 Fields and Ingredients 9

vii

2.2.3 IFTTT Dataset . 11

2.3 Problem Statement . 12

Chapter 3 Dialog System 14

3.1 Chapter Overview . 14

3.2 Dialog Manager . 16

3.2.1 Belief State . 17

3.2.2 Static Dialog Policy . 17

3.3 Natural Language Understanding 21

3.3.1 Neural Model . 24

3.3.2 Input Preprocessing . 27

3.3.3 Training Details . 27

3.4 Natural Language Generation 28

3.5 Fields in the Dialog Setting 28

3.6 Retraining NLU using Dialog 30

Chapter 4 Experiments 33

4.1 Chapter Overview . 33

4.2 Experimental Setup . 34

4.3 Dialog Experiments . 35

4.3.1 Constrained User-Initiative 35

4.3.2 Free User-Initiative . 35

4.3.3 Results . 37

4.4 Parser Retraining . 39

viii

4.4.1 Results . 40

Chapter 5 Conclusion and Future Work 41

Appendix A 43

Bibliography 45

Vita 54

ix

List of Tables

2.1 Number of recipes in train, validation, and test sets of the orig-

inal IFTTT dataset and the one we were able to collect for this

work. 11

3.1 Example system utterances for confirmation requests leveraging

API documentation. 29

3.2 Example system utterances for requesting information about

specific slots. For functions, the utterance uses context from

the belief state in the form of value assigned to the associated

channel. 29

3.3 Training data for the four models extracted from the conversa-

tion in Figure 3.1. 32

4.1 Accuracy of recipe synthesis (Channel + Function) measured

on the gold subset. 37

4.2 Accuracy of recipe synthesis (Channel + Function) measured on

the gold subset before and after retraining the semantic parser. 37

x

4.3 Dialog length statistics measured in terms of number of user

utterances. 38

xi

List of Figures

2.1 A sample recipe represented as an Abstract Syntax Tree. . . . 10

3.1 Sample dialog between the system and a user over a recipe with

trigger channel flickr, trigger function new public photo tagged,

action channel email, and action function send me an email. 15

3.2 Average dialog length for different values of α and β against a

simulated user on IFTTT validation set. Average dialog length

is measured in terms of number of simulated user’s utterances. 22

3.3 Rate of dialog success for different values of α and β against a

simulated user on IFTTT validation set. 23

3.4 Network architecture. 24

4.1 The dialog interface showing a sample conversation over a recipe

with trigger any event starts on google calendar and action

send a notification on google glass. The recipe descrip-

tion along with details of trigger and action were presented to

the user alongside the dialog interface. 36

xii

Chapter 1

Introduction and Related Work

1.1 Chapter Overview

This chapter provides an introduction to the work presented in this thesis. It

describes the two main relevant areas, code generation through language and

dialog systems, and lists some of the related work in these areas. Finally, it

gives a brief overview of the goal of this work and describes where it fits in

the intersection of these two areas and how it relates to and departs from the

previous work.

1.2 Code Generation

Building natural language interface to programmatic tasks has long been a

goal of computational linguistics. Such an interface could break the barrier for

novice users to write simple programs to automate repetitive tasks without

1

requiring an exposure to programming languages. For example, it can aid

them in programming their digital devices, connect web-services, and ease

spreadsheet calculations. It can also speed up programming by professional

programmers by taking the burden off them with respect to syntactic details,

allowing them to focus on semantic and algorithmic details.

This has been explored in a plethora of Domain Specific Languages

(DSLs) (Zelle and Mooney, 1996; Berant et al., 2013; Yin et al., 2016; Yagh-

mazadeh et al., 2017; Manshadi et al., 2013; Kate et al., 2005; She et al., 2014;

Gulwani and Marron, 2014; Quirk et al., 2015; Dong and Lapata, 2016; Belt-

agy and Quirk, 2016; Liu et al., 2016) such as SQL and regular expressions, as

well as general-purpose programming languages (Lei et al., 2013; Ling et al.,

2016; Yin and Neubig, 2017) such as Python and C++.

In the realm of general-purpose programming languages, Lei et al.

(2013) proposed a method to generate code to parse inputs to a program

that have a fixed pattern or structure. The pattern is described in natural

language, such as “The first line of the input consists of two integers, n and

m. n lines follow, each containing a string.” Ling et al. (2016) introduced a

neural architecture to generate code for Trading Card Games. Their network

takes as input a mix of natural language description of a card’s effect when

it is played – such as “Draw cards until you have as many in hand as your

opponent” – and structured specification for that card – such as its name and

the cost of playing that card – and produces a computer code to emulate the

card. Yin and Neubig (2017) extended this by adding a probabilistic grammar

2

model, moving from Ling et al. (2016)’s approach of treating code generation

as a free-form language generation task to one informed by the prior knowledge

of the syntax of the target language.

Efforts directed towards DSLs include generating database queries from

natural language specification (Zelle and Mooney, 1996; Berant et al., 2013;

Yin et al., 2016; Yaghmazadeh et al., 2017), building regular expressions (Man-

shadi et al., 2013), commanding a robot (Kate et al., 2005; She et al., 2014),

programming on spreadsheets (Gulwani and Marron, 2014). Another do-

main that has seen recent interest is that of event-driven automation through

IFTTT1 (if-this-then-that) (Quirk et al., 2015; Dong and Lapata, 2016; Belt-

agy and Quirk, 2016; Liu et al., 2016). On IFTTT, users can create scripts to

automate tasks connecting web-services and smart devices. These scripts run

when a user-defined event occurs (for example, when someone is tagged in a

photograph on Facebook), and they perform a user-specified action (such as

saving the photograph on Dropbox).

Code synthesis through other mediums such as examples of program

inputs along with desired outputs has also been explored (YWM, 2001; Gul-

wani, 2012; Raza et al., 2014). So and Oh (2017) integrated program synthesis

with static analysis to complete partially written imperative programs through

input-output examples. Wu and Knoblock (2015) investigated an iterative ap-

proach to program synthesis through examples. Departing from the traditional

approach of generating programs from scratch through a set of examples, they

1www.ifttt.com

3

www.ifttt.com

refined previously generated subprograms with additional inputs provided by

the user in an iterative fashion. Manshadi et al. (2013) augmented natural

language descriptions with examples to aid generation of regular expressions.

Raza et al. (2015) proposed a domain-agnostic program synthesis framework

that synthesizes programs based on compositional inputs in the form of de-

scriptions and examples.

The existing work in all these domains assumes that a working pro-

gram can be generated in one shot from a single natural language description,

possibly augmented with auxiliary inputs like structured specifications and

examples. However, in many cases, users omit important details that prevents

the generation of fully executable code from their initial description.

1.3 Dialog Systems

Another line of research that has recently garnered increasing attention is

that of dialog systems (Singh et al., 2002; Young et al., 2013). Dialog systems

have been employed for goal-directed tasks such as providing technical support

(Lowe et al., 2015) and travel information and booking (Williams et al., 2013),

as well as in non-goal oriented domains such as social-media chat-bots (Ritter

et al., 2011; Shang et al., 2015). The rapid progress in dialog systems has been

mirrored in a surge in interest in conversational agents and personal assistants

such as Microsoft’s Cortana, Apple’s Siri, and Amazon’s Alexa. Kenny et al.

(2008) demonstrated the use of virtual assistants in health-care, Harvey et al.

(2015) evaluated their utility in aiding education, and Gordon and Breazeal

4

(2015) designed a conversational interface to in-car entertainment systems.

Closer to the domain of web-services — which is the central theme of this

work — Azaria et al. (2016) proposed a system that can learn to perform

basic action sequences, such as sending an email to a contact, by asking the

user to demonstrate how to execute the action through a sequence of steps

using natural language.

1.4 Thesis Outline

In this work, we combine these two lines of research and propose a system that

engages the user in a dialog, asking questions to elicit additional information

until the system is confident that it fully understands the user’s intent and has

all of the details to produce correct and complete code. An added advantage

of the dialog setting is the possibility of continuous improvement of the un-

derlying semantic parser through conversations (Artzi and Zettlemoyer, 2013;

Thomason et al., 2015; Azaria et al., 2016; Weston, 2016), which could further

increase success rates for code generation and result in shorter dialogs. We fo-

cus on a restrictive, yet important class of programs that deal with conditions,

i.e., if-then statements. To this end, we use the IFTTT dataset released by

Quirk et al. (2015). To the best of our knowledge, this is the first attempt to

use dialog for code generation from language.

To evaluate the efficacy of dialog in code generation, we conducted

experiments in which users engaged in a dialog with the system to clarify

their intent and answer its questions. Our dialog approach achieved 10 − 15

5

percentage points higher accuracy on code generation as compared to the state-

of-the-art single-shot approach. We also demonstrate how data extracted from

conversations can be used for improving the system. In our experiments, we

were able to achieve a marginal improvement of 1.1 percentage points in success

rates for code generation, although with slightly longer dialogs.

The rest of the thesis is structures as follows. Chapter 2 provides the

background and sets the context for the work presented in this thesis. It goes

over the IFTTT domain in detail and formally presents the problem state-

ment. Chapter 3 explains the proposed dialog system in detail. Experiments

conducted to evaluate the efficacy of dialog in code generation and the possibil-

ity of continuous improvement through conversations are described in Chapter

4. It also presents and analyzes our observations. Finally, Chapter 5 concludes

this thesis and lists some ideas for future work.

6

Chapter 2

Task Overview

2.1 Chapter Overview

This chapter sets the context for the work presented in this thesis. It begins

with an overview of the IFTTT domain that is targeted in this work. The

IFTTT domain is used as a proxy for conditional statements in computer code.

This is followed by a description of the IFTTT dataset released by Quirk et al.

(2015). Finally, it presents the problem statement formally and motivates why

the proposed system — a dialog setting for synthesizing computer code in the

IFTTT domain — is a reasonable approach to solving that problem.

2.2 IFTTT Domain

IFTTT is a web-service that allows users to automate simple tasks by creating

short scripts, called recipes, through a GUI. They enable users to connect

7

web-services (such as Facebook, Dropbox, Weather Underground) and smart

devices (such as Phillips Hue lights, Wemo motion sensors). The type of

tasks that can be automated through IFTTT recipes is varied, ranging from

health monitoring (“Text me my daily exercise summary.”) to social-media

management (“Post my Facebook photos on Twitter.”) to home automation

(“Blink my lights when Texas Longhorns score.”) and much more.

2.2.1 Channels and Functions

A recipe consists of a trigger — an event which fires the recipe — and an

action — the task to be performed when the recipe is fired. Among other

things, a trigger is characterized by a trigger channel, which is the source of

the event, and a trigger function, which is the nature of the event; an action

is characterized by an action channel, which is the destination of the task to

be performed, and an action function, which is the nature of that task.

Users can share their recipes publicly with short descriptions of their

functionalities. Others can use the published recipes based on their descrip-

tions. For example, consider a recipe with the following description:

“Text me when I am tagged in a picture on Facebook.”

This recipe might have you are tagged in a photo as the trigger function as-

sociated with the facebook trigger channel and send me an sms as the action

function associated with the sms action channel.

8

2.2.2 Fields and Ingredients

In addition to channels and functions, recipes might also have fields, which are

arguments to functions. Most of the functions have fields that can take custom

values. For example, the action function send me an sms in the recipe above

has a field message which specifies the content of the text message to be sent

when the recipe fires. These values can either be fully specified by the users or

contain parameters called ingredients, which are properties of the event that

fired the recipe that can be utilized by the action function. For example, the

trigger function you are tagged in a photo exposes an ingredient photo url

which captures the URL of the photo that caused the recipe to fire, and which

can be used as part of the message field.

A small subset of functions have fields which can take values only from

a predefined list. For example, tomorrow’s forecast calls for trigger func-

tion — for monitoring changes in tomorrow’s forecasted weather conditions —

from weather channel has a field condition which can only take values from

a fixed set containing rain, snow, and sunny, among others.

Figure 2.1 illustrates how channels, functions, arguments, and param-

eters interact with each other and how a recipe can be represented as an

Abstract Syntax Tree (Quirk et al., 2015). For reasons discussed in Section

2.3, the experiments on recipe synthesis in this work focus only on channels

and functions.

9

Root

Trigger Action

Facebook

you_are_tagged_in_a_photo

Google Drive

upload_file_from_url

file_url file_name folder_path

[ImageSource] [Caption] "/pics/facebook"

Channels

Functions

Fields

Parameters

(an Ingredient) (an Ingredient) (a custom value)

"Download Facebook images I am tagged in to Dropbox"

Figure 2.1: A sample recipe represented as an Abstract Syntax Tree.

10

Train Validation Test

Original Ours Original Ours Original Ours

77, 495 66, 588 5, 171 3, 992 4, 294 3, 685

Table 2.1: Number of recipes in train, validation, and test sets of the original
IFTTT dataset and the one we were able to collect for this work.

2.2.3 IFTTT Dataset

Quirk et al. (2015) released the IFTTT dataset containing over 114k recipes.

The released dataset contains recipe URLS; recipe details and their descrip-

tions can be obtained by crawling the IFTTT website. Since the dataset was

released, many recipes have been taken down by their authors. Statistics of

the dataset are summarized in Table. 2.1.

In addition to recipe details, the test set also contains labels for channels

and functions assigned by humans when presented with the recipe descriptions.

A small subset of the test set, namely “gold” subset, was identified by Quirk

et al. (2015) on which at least three humans agreed with the true labels. The

gold subset consisted of 758 recipes, out of which only 550 are now available.

This subset consists of recipes which most of the humans could reconstruct

from their descriptions, and an automated system built to accomplish the same

goal should be able to achieve high rate of success on synthesizing recipes at

least in this subset. All prior work using the IFTTT dataset (Quirk et al.,

2015; Dong and Lapata, 2016; Beltagy and Quirk, 2016; Liu et al., 2016) have

evaluated their systems at least on the gold subset.

11

2.3 Problem Statement

Our goal is to synthesize IFTTT recipes from their natural language descrip-

tions. However, unlike previous work in this domain (Quirk et al., 2015; Dong

and Lapata, 2016; Beltagy and Quirk, 2016; Liu et al., 2016), which restrict

the system to synthesizing a recipe from a single description, we seek to enable

the system to interact with users by engaging them in a dialog to clarify their

intent when the system’s confidence in its inference is low. This is particu-

larly crucial when there are multiple channels or functions achieving similar

goals — the action in the example recipe above could also be performed by

send an sms action function of android messages channel — or when recipe

descriptions are vague — the example recipe above could be summarized by a

user as “Let me know when I am tagged in a picture on Facebook,” in which

case, it is unclear if the user wants to receive a text message, an email, or a

notification.

Automating recipe synthesis through their descriptions equates to in-

voking methods and procedures based on conditions, an indispensable part

of computer programming, through natural language commands. The level

of abstraction that recipes provide lends this task to a convenient dialog set-

ting: The procedures to be invoked — “functions” in IFTTT parlance —

are described in terms of their high-level functionality, along with arguments

necessary for their invocation, without the need to prompt users, who are

likely to be non-programmers, about execution details, something that could

be overwhelming and almost akin to writing code.

12

By switching from a single-shot setting to a dialog setting allows the sys-

tem to elicit additional information to produce complete, correct code, thereby

potentially increasing success rates for recipe synthesis. An added advantage

of the dialog setting is the possibility of continuous improvement of the un-

derlying semantic parser through conversations (Artzi and Zettlemoyer, 2013;

Thomason et al., 2015; Azaria et al., 2016; Weston, 2016). Improvements in

semantic parser could boost the single-shot accuracy, further increase success

rates for code generation in the dialog setting, and result in shorter dialogs.

The dialog system we propose restricts itself to inferring channels and

functions. This is partly because, as argued by Beltagy and Quirk (2016)

and Liu et al. (2016), fields are not central to synthesizing a recipe, and more

often than not, they take custom values specified by users (such as path of

a dropbox folder where images should be saved, or an email id from which

received emails should be posted on facebook) which cannot be learned. The

main reason, however, is that field information is now available only for a

handful of recipes from the IFTTT dataset. Since the work by Quirk et al.

(2015) and Liu et al. (2016), it seems, IFTTT has made changes to its website

because of which field information can only be collected for a tiny subset of

recipes in an automated way. However, as argued in Section 3.5, the inclusion

of fields, either though explicit specification by the user or through automatic

inference, is straightforward in the proposed dialog system.

13

Chapter 3

Dialog System

3.1 Chapter Overview

We propose a text-based dialog system with which users can converse using

natural language to create recipes. A sample conversation between the system

and a user is shown in Figure 3.1. The dialog system consists of three compo-

nents, namely Dialog Manager, Natural Language Understanding (NLU), and

Natural Language Generation (Jurafsky, 2000).

This chapter describes the proposed dialog system in detail, going over

its main three components, with descriptions of the state- and action-space of

the dialog agent and the policy it follows. Further, this chapter argues how the

inclusion of fields, which are not taken into account in this work, in the dialog

setting is straightforward. Finally, it explains how we use the conversations to

continuously improve the dialog system.

14

Figure 3.1: Sample dialog between the system and a user over a recipe with
trigger channel flickr, trigger function new public photo tagged, action
channel email, and action function send me an email.

15

3.2 Dialog Manager

The dialog manager is responsible for tracking the state of the system and

determining its actions based on its state and the environment with which

the system is interacting. The state consists of all pieces of information that

is relevant to the dialog system. The actions could modify the environment,

which can in turn alter the state of the system.

In this work, the aim of the dialog system is to determine values of

channels and functions for the recipe that the user wants to create. We cast this

problem as a slot-filling task: Each piece of information needed to synthesize a

recipe is a slot that the system seeks to fill through its interaction with the user.

This is related to the idea of Sketching in program synthesis (Solar-Lezama,

2008), where a partial program is sketched at a high-level, leaving holes for

low-level details. The roles, however, are reversed: Slots, unlike holes, capture

high-level functionality through methods, procedures, or conditions (triggers

and actions in IFTTT) to be filled by the user, leaving the their low-level

implementation to a programmer.

The system engages in a dialog with the user until all slots are filled.

It maintains a belief state — its current estimates for all the slots — and

follows a hand-coded policy — a strategy of how to drive the conversation

— to update its belief state until it is confident that the belief state is same

as the user goal. The strategy is similar to the one used in Thomason et al.

(2015), in which there are three slots, action, patient, and recipient, for

their dialog system to fill for navigation- and delivery-related tasks.

16

3.2.1 Belief State

The belief state consists of four slots: trigger channel, action channel,

trigger function, and action function. As evident from Figure 2.1, slots

in the IFTTT domain naturally form a hierarchy: channels are above func-

tions and functions are above fields. Although triggers and actions are, in a

loose sense, at the same level in the hierarchy1, it is more natural to specify

triggers before actions, thereby inducing a complete hierarchy over slots. This

hierarchy is exploited in specifying a policy for the dialog system (see Section

3.2.2).

The system maintains a probability distribution over all possible values

for each slot. After each user utterance, the probability distribution for one or

more slots is updated based on the parse of the user utterance returned by the

utterance parser (see Section 3.3). The system follows a hand-coded dialog

policy over the discrete state-space obtained from the belief state by assigning

the values with highest probability — i.e., candidates with highest confidence

— to each slot.

3.2.2 Static Dialog Policy

At each step in the conversation, the system needs to decide which slot to

consider next and which action to take for that slot. Actions in our system

include an opening greeting, asking the user to describe the recipe; informa-

1Technically, the presence of ingredients — properties associated with trigger functions

that can be utilized by action functions — puts triggers above actions in the hierarchy.

17

tion request for a slot; confirmation request for a slot; and request to reword

previous user utterance.

The system follows a static, hand-coded policy. The dialog opens with

an open-ended user utterance in which the user is expected to describe the

recipe. Such a free-form user utterance is called user-initiative, because it is

the user who is driving the conversation through that utterance. The parse

of the user-initiative is used to update all of the slots in the belief state. The

system moves down the slot-hierarchy, one slot at a time, and picks the next

action based on the confidences of the top candidates for each slot. If the

confidence in the top candidate for a slot is above α, the parse is deemed

confident, and the candidate is assigned to that slot; the system then proceeds

to the next slot in the hierarchy, if available. If the confidence is below β, the

parse is rejected, and the system explicitly seeks information for that slot. Such

a slot-specific utterance from the system is called system-initiative, because it

is the dialog system which is driving the conversation through that utterance.

If the confidence is between the α and β, the system seeks a confirmation of

the candidate value for that slot; if the user affirms, the candidate is assigned

to the slot, otherwise the system requests information for that slot.

In our system, only the top candidate for each slot is taken into con-

sideration. Hence, confirmation is sought only for the top candidate for each

slot, if at all. Alternatively, we could move down the list of top-k candidate

values and seek confirmation for each until the user affirms. We chose k = 1 to

avoid overwhelming the user with confirmation requests and encourage them

18

to word their intentions in a more comprehensible manner so that the top

candidates are more likely to be the correct ones.

Value of α and β present a trade-off between dialog success, dialog

length, and overall user-engagement and user-satisfaction with the dialog sys-

tem. α directly affects dialog length and dialog success. Higher values of α

increase the rate of dialog success because it becomes increasingly unlikely for

the system to be stuck in an impasse when it mistakenly deems an incorrect

parse correct without confirmation. At the same time, higher values of α can

lead to longer dialogs because the system might seek confirmation more of-

ten before assigning a candidate value to a slot. β, on the other hand, affects

user-engagement and user-satisfaction during the conversation, while indirectly

affecting dialog success and dialog length. Higher values of β could prevent

the system from even seeking confirmation for a candidate value which might

actually be correct but whose confidence isn’t high enough, instead forcing the

user to reword their utterance, potentially leading to longer, less engaging di-

alogs. Lower values of β could overwhelm the user with confirmation requests

even for candidates with low confidence, not only leading to longer dialogs,

but also increasing user’s frustration with the system, which could result in

premature dialog termination by the user.

Setting values of α and β

To set values of α and β, we analyzed the performance of the dialog system on

the IFTTT validation set. Since conversations with humans are expensive and

19

time-consuming, we created a simulated user that interacted with the dialog

system with different values of α and β and measured dialog success rates

and lengths of dialogs. The conversations were over the recipes in the IFTTT

validation set.

In addition to recipe descriptions, the simulated user has access to the

true labels for channels and functions associated with each recipe which are

used to respond to system utterances. Its utterances are generated by combin-

ing template responses with the IFTTT API documentation for triggers and

functions. For example, for a recipe with true action function blink lights

of the hue action channel, the simulated user’s response to a system-initiative

for the action function slot would be: “briefly turn your hue lights off then

back on,” a phrase from the function’s API documentation.

The simulated user is similar to humans in that both have the knowledge

of channels and functions for the recipe over which they are conversing with

the system: simulated user by virtue of being given access to the true labels,

and humans by virtue of the goal of their interaction with the system, i.e.

their own understanding of the recipe that they want the system to create.

However, the simulated user is not a perfect simulation of real users since

it always describes a particular channel or function using the same words, it

cannot reword its utterances when the system fails to parse them — because

they are derived from the API documentation which has a single description

for each channel and function — and its utterances aren’t as noisy as those of

humans — humans often use telegraphic language and misspell words which

20

could be harder for the system to parse.

Despite these limitations, the simulated user provides a straightforward

way to grid-search over different values of α and β in an automated manner.

Results of this grid-search are summarized in Figure 3.2 and 3.3. In line with

our intuition, we observed that a high value of α with a low value of β boosts

rate of dialog success but leads to longer dialogs, while the opposite is true

for a low value of α with a high value of β. Based on these observations, the

values of α = 0.85 and β = 0.25 were chosen for all experiments in this work.

3.3 Natural Language Understanding

The Natural Language Understanding (NLU) component of the dialog system

is responsible for parsing user utterances. The parse returned by this com-

ponent is used by the Dialog Manager to update the system’s belief state,

which in turn determines its actions. We use the model proposed by Liu et al.

(2016), an LSTM-based classifier enhanced with a hierarchical, two-level at-

tention mechanism (Bahdanau et al., 2014). The model is described in detail

in the following section. In our system, the semantic parser is a set of four such

models, one for each slot. User initiatives are parsed by all four models, while

user responses to system-initiatives are parsed by the model corresponding to

the slot under consideration.

21

Figure 3.2: Average dialog length for different values of α and β against a
simulated user on IFTTT validation set. Average dialog length is measured
in terms of number of simulated user’s utterances.

22

Figure 3.3: Rate of dialog success for different values of α and β against a
simulated user on IFTTT validation set.

23

u

H

W1T A

s(1)

s(2)

W2

o

y

g1

g2

g3

gn

LSTM

h1

hn

Level-2 attention

Level-1 attention Matrix multiplication with softmax

Matrix multiplication

Figure 3.4: Network architecture.

3.3.1 Neural Model

The core of the NLU component uses the neural model proposed by Liu et al.

(2016). It is a bidirectional LSTM model enhanced with two layers of atten-

tion. The architecture is presented in Figure 3.4. Recurrent Neural Networks

(Zaremba et al., 2014), of which LSTM (Hochreiter and Schmidhuber, 1997)

is an example, enhanced with attention mechanism (Bahdanau et al., 2014)

has seen success in machine translation (Bahdanau et al., 2014), question an-

swering (Sukhbaatar et al., 2015), and syntactic parsing (Vinyals et al., 2015),

among others.

Input Representation The input to the model is a sequence of embeddings

of tokens extracted from the recipe description. The tokens come from a

vocabulary of size v. Let x1, . . . ,xn be the set of tokens represented as one-

24

hot encoded vectors. The input to the model is the set of d-dimensional

embeddings g1, . . . ,gn of these tokens, where

gi = Gxi (3.1)

G is a d × v trainable matrix which projects the sparse one-hot vectors for

tokens into a dense low-dimensional space.

The final representation of the input description is obtained by running

the embeddings, gi, of the tokens through a bidirectional LSTM network.

ht = L (gt) (3.2)

The function L represents the output of the bidirectional LSTM (see Appendix

A for details). Let H be a d× n matrix whose columns are h1, . . . ,hn.

Level-1 Attention The first-level attention scores are calculated as:

s(1) = softmax (Hᵀu) (3.3)

where u is a d-dimensional trainable vector.

Level-2 Attention The second-level attention scores are calculated as:

25

s(2) = As(1) (3.4)

where A = softmax (W1H) (3.5)

Here, W1 is an n × d trainable parameter matrix. The softmax operation in

Equation 3.5 is performed column-wise.

Output Representation The input embeddings are weighted by the second-

level attention scores to get the final representation, o ∈ Rd, of the input

description.

o = H

(
s(2)

||s(2)||

)
(3.6)

Prediction A softmax-layer is used to get the final predictions of the model.

ŷ = softmax (W2o) (3.7)

where W2 is a c×d trainable parameter matrix, c being the number of output

classes, such as the number of trigger functions.

In this work, we use an ensemble of ten models for each slot, following

the best performing system by Liu et al. (2016). The softmax predictions of

the models (Equation 3.7) are averaged together to get the final output of

the ensemble. Due to variance during training, ensembling can help boost the

overall performance because different instantiations of the same model, having

26

slightly different parameter settings, could help compensate for each other’s

mistakes.

3.3.2 Input Preprocessing

Like in Liu et al. (2016), the input recipe descriptions are preprocessed before

being fed to the neural model. Input sentences are converted to lowercase

and tokenized on punctuations. A vocabulary of size v is constructed from

(v − 2) most frequent tokens (including punctuation symbols) in the IFTTT

training set. The vocabulary contains two special tokens: UNK token to cap-

ture out-of-vocabulary tokens and PADDING token to pad sentences if needed.

Since the number of tokens that are input to the model are n, descriptions

which have fewer than n tokens are padded with the PADDING token; for longer

descriptions, n/2 tokens each are extracted from the beginning and the end.

3.3.3 Training Details

The neural models were trained on the IFTTT training set. Training strategy

and hyper-parameter settings were same as the one used by Liu et al. (2016).

The embedding size d was set to 50. The input size n was 25. A vocabulary

of v = 4000 tokens was used.

During training, gradients with L2 norm greater than 40 were scaled

down to have norm 40. The Adam optimizer (Kingma and Ba, 2014) with a

learning rate of 0.001 was used to train the models. Mini-batches of size 32

were used, and they were randomly shuffled. All trainable parameters were

27

randomly initialized uniformly in the range [−0.1, 0.1].

3.4 Natural Language Generation

The dialog system uses templates and IFTTT API documentation to translate

its actions to utterances. Snippets from API documentation of channels and

functions are used to translate the system’s belief state into a comprehensible

utterance. For example, to generate an utterance for requesting a confirmation

for a trigger function, the system uses the description of that trigger function

and the corresponding trigger channel from the API documentation. Examples

of system utterances are given in Table 3.1 and 3.2.

3.5 Fields in the Dialog Setting

A dialog approach to recipe synthesis is particularly well-suited for getting

fields’ information from the user, because fields generally take custom values,

such as path of a dropbox folder, or an email id, which users can conveniently

specify after a system-initiative for that slot. Inspection of the dataset revealed

that minute details such as information about fields are rarely present in recipe

descriptions, which is why it is nearly impossible for a single-shot system that

relies solely on the recipe descriptions to predict fields. This is why previous

work on recipe synthesis that take fields into account do not report accuracy of

full-recipe synthesis that includes fields (Quirk et al., 2015; Dong and Lapata,

2016). Such details can be easily furnished in the dialog setting; hence, a

28

Slot-value pair for
confirmation

System utterance

Slot:trigger channel
Value:weather

Do you want an event on the Weather Underground

service to trigger the applet?
Slot:trigger function
Value:sunrise

Do you want to trigger the applet within 15 minutes of

the sunrise in your location?
Slot:action channel
Value:hue

Do you want to use the Phillips Hue service to perform

the desired action every time the applet is triggered?
Slot:action function
Value:blink lights

Do you want to briefly turn your hue lights off then

back on every time the applet is triggered?

Table 3.1: Example system utterances for confirmation requests leveraging
API documentation.

Slot System utterance
trigger channel Which service should I use to look for an event

when you want the applet to run?
trigger function, given trig-
ger channel weather

Which event on the Weather Underground service

should cause the applet to run?
action channel Which service should I use to perform the desired

action every time the applet runs?
action function, given ac-
tion channel hue

What should I do on the Phillips Hue service every

time the applet runs?

Table 3.2: Example system utterances for requesting information about spe-
cific slots. For functions, the utterance uses context from the belief state in
the form of value assigned to the associated channel.

29

dialog approach makes full-recipe synthesis, or generating complete, correct

programs, possible.

For reasons discussed in Section 2.3, in this work, we take only channels

and functions into account for recipe synthesis. However, incorporating fields

is straightforward in the proposed dialog system. We can add a slot for each

field associated with the trigger function and the action function of a recipe.

Since fields are at the bottom of the slot-hierarchy, they will be taken up by

the Dialog Manager after the slot for the corresponding function is filled. For

fields that take custom values, user utterances corresponding to fields can be

directly assigned to the slot. For fields that take values from a predefined list,

a parser can be trained to map user utterances to values from that list.

3.6 Retraining NLU using Dialog

Another advantage of using a dialog approach to recipe synthesis is that it

unlocks the possibility of continuous improvement of the underlying semantic

parser through data extracted from the conversations (Artzi and Zettlemoyer,

2013; Thomason et al., 2015; Azaria et al., 2016; Weston, 2016). An improved

semantic parser could potentially lead to shorter dialogs and higher rate of

dialog success.

To this end, we extract training data from the dialogs. Opening user

utterances and user utterances for each slot after a system-initiative (i.e. a

request for a slot) in successful dialogs are paired with inferred slot values to

retrain the models. For example, Table 3.3 shows the training data extracted

30

from the conversation in Figure 3.1. Note that the labels that are paired with

the descriptions in the extracted data are the ones that the dialog system

inferred from the conversation and were affirmed by the user either after a

confirmation request or by confirming dialog success at the end.

Analysis of models’ predictions on the validation set revealed that the

attention mechanism was rather good at attending to relevant parts of an ut-

terance; the models failed because they often couldn’t pick the correct channel

or function among the similar ones. Therefore, we chose to tune only the

non-attention parameters during retraining, keeping the attention-related pa-

rameters constant. This strategy is similar to the one employed by Liu et al.

(2016) when they propose improving their models’ performance on recipes that

employ newly released channels and functions on IFTTT for which training

data is scarce. Note that the goal of retraining in our system isn’t limited

to improving system’s ability to parse utterances corresponding to only un-

common channels and functions. Through retraining, we hope to improve its

general parsing performance, and in particular, as discussed in Section 4.4, on

channels and functions for which the existing parser’s confidences are low.

31

Description Label

i want to be receive emails
about flickr photos of me

trigger channel : flickr

i want to be receive emails
about flickr photos of me

trigger function: new public photo tagged

if there’s a flickr photo of
me

trigger function: new public photo tagged

someone uploads a photo in
which i am tagged

trigger function: new public photo tagged

i want to be receive emails
about flickr photos of me

action channel : email

i want to be receive emails
about flickr photos of me

action function: send me an email

Table 3.3: Training data for the four models extracted from the conversation
in Figure 3.1.

32

Chapter 4

Experiments

4.1 Chapter Overview

This chapter describes the experiments conducted to evaluate the proposed

dialog system and compare it with the single-shot approach to recipe synthesis.

Further, it discusses an experiment to test our hypothesis of higher dialog

success rates and shorter dialogs as a result of continuous parser improvement

through conversations.

In all the experiments, we trained our parser on the training set of the

IFTTT corpus. We evaluated our system on the gold subset of the IFTTT

test set, consisting of recipes on which at least three humans presented with

the recipe descriptions agreed with the true labels for triggers and actions.

This subset contains 550 (out of the original 758) recipes. We chose to restrict

ourselves to this subset because our experiments involved humans interacting

with the dialog system to describe the recipe and answer its questions, and

33

it was crucial that they themselves have a clear understanding of the recipe,

something that might not be true for other recipes in the test set, which

includes many recipes with unintelligible and non-English descriptions.

4.2 Experimental Setup

We used Amazon Mechanical Turk1 to conduct our experiments. Users in-

teracted with the system through a web-interface. They were provided with

recipe descriptions from the IFTTT corpus to give them an understanding of

the recipe. However, since they were not the original authors of the recipes,

and since recipe descriptions could often be vague, we also explicitly provided

them the details of channels and functions associated with the recipe to make

sure that the recipe was clear to them.

As noted by Thomason et al. (2015), who used a similar interface to

let users chat with a robot for performing navigation- and delivery-related

tasks, information presented using words could linguistically prime the users.

They avoided priming completely by presenting the information pictorially.

However, in our domain, it is unclear how to succinctly describe a recipe to

a user without using words. To avoid linguistic bias as much as possible, we

used keywords used to identify channels and functions on IFTTT website (such

as hue, any event starts, and blink lights), which usually contain only

content words necessary to give an indication of their functionality, but are

somewhat distant from natural language. Additionally, we encouraged users to

1https://www.mturk.com/mturk/welcome

34

https://www.mturk.com/mturk/welcome

use their own words based on their understanding of the recipe and restricted

direct usage of these keywords. The interface used for the experiments, along

with a sample dialog, is shown in Figure 4.1.

4.3 Dialog Experiments

We conducted two experiments to evaluate the efficacy of dialog in synthesizing

recipes from natural language. In both the experiments, the benchmark used

is the best-performing model from Liu et al. (2016) which is currently the

state-of-the-art on this task.

4.3.1 Constrained User-Initiative

To evaluate our system directly on the test set, we constrained the users to use

the original recipe descriptions as their first utterance (i.e. the user-initiative)

when they were asked by the system to describe the recipe. The users drove

the rest of the conversations themselves, answering the system’s questions

based on their own understanding, using in their own words. This way, we can

compare our results with previous work which use this set for evaluation.

4.3.2 Free User-Initiative

To emulate a more realistic setting in which users drive the entire conversation,

including the user-initiative, we allowed the users to provide the initial recipe

descriptions themselves based on their understanding of the recipe. Users

35

Figure 4.1: The dialog interface showing a sample conversation over
a recipe with trigger any event starts on google calendar and action
send a notification on google glass. The recipe description along with
details of trigger and action were presented to the user alongside the dialog
interface.

36

were encouraged to describe the recipe in their own words, but they weren’t

restricted from using the original recipe description itself as their opening

utterance. To provide a fair comparison, we evaluated the benchmark model,

which takes a single natural language description to synthesize a recipe, on

the descriptions provided in the conversations (i.e. the first user utterances).

Experiment Liu et al. (2016) Ours

Constrained User-Initiative 85.282 95.28

Free User-Initiative 66.0 81.45

Table 4.1: Accuracy of recipe synthesis (Channel + Function) measured on
the gold subset.

Experiment Liu et al. (2016) Ours

Free User-Initiative before retraining 66.0 81.45

Free User-Initiative after retraining 66.0 82.55

Table 4.2: Accuracy of recipe synthesis (Channel + Function) measured on
the gold subset before and after retraining the semantic parser.

4.3.3 Results

The results are summarized in Table 4.1. The dialog setting boosts the accu-

racy of recipe synthesis considerably over the single-shot setting in both the

experiments: 10 point increase with constrained user-initiative and over 15

2The accuracy reported in Liu et al. (2016) is 87.5%; however, our implementation of

their system was able to achieve only 85.28% accuracy. The discrepancy could be because

of smaller training set (they had 68k recipes), a smaller test set (they had 584 recipes in

gold subset), or randomness during training.

37

Experiment Dialog length

Avg. Min. Max. Median

Constrained User-Initiative 2.55 2.0 15.0 2.0

Free User-Initiative before retraining 4.04 2.0 22.0 4.0

Free User-Initiative after retraining 4.08 2.0 22.0 4.0

Table 4.3: Dialog length statistics measured in terms of number of user utter-
ances.

point increase with free user-initiative. This shouldn’t be surprising because

the dialog setting gives the system an opportunity to query the user for clar-

ification when the initial description wasn’t clear enough. For example, the

model doesn’t correctly parse “From Facebook to Flickr” possibly because it is

not explicitly mentioned in the description that a photo from Facebook needs

to be posted to Flickr (a service on which only photos are posted). Similarly,

the description “Blog post ==> Tweeted” doesn’t specify which of the two

blogging channels, Blogger and WordPress, to use as the trigger channel. Our

dialog system explicitly asks the user for such missing or ambiguous informa-

tion.

Surprisingly, the accuracy of both the single-shot approach and the

dialog approach fell dramatically in the free user-initiative experiment. We

contend that the reason behind this reduction is the difference between the

two settings in which the recipe descriptions were created: The Constrained

User-Initiative experiment used original descriptions which were written by

the authors of the recipes with the aim of summarizing their recipes so that

their functionality can be easily understood by others without any assistance or

38

clarification from the author. The descriptions used in the Free User-Initiative

experiment were provided by humans with the aim of describing the recipe to

a system with the knowledge that the system can ask clarification questions.

The former are expected to be more descriptive and self-contained than the

latter, which hurts the performance of a single-shot approach more than that

of the dialog approach. The larger average dialog length in the Free User-

Initiative experiment corroborates this point (see Table 4.3). Additionally,

the user utterances in the conversations are noisy, which further explains the

reduction in accuracy of the two systems, especially our dialog system.

4.4 Parser Retraining

In addition to improving the accuracy of recipe synthesis, another advantage

of the dialog setting is that it unlocks the possibility of continuous parser

improvement through data extracted from the conversations.

Parser retraining would be most helpful when the data is extracted

from conversations that involve channels and functions for which the existing

parser’s confidences are low. Therefore, we randomly sampled 100 recipes from

an unused portion of the test set (whose descriptions were guaranteed to be in

English and not totally incomprehensible) on which the confidence of existing

parser is below β for at least two slots. About 130 data-points were extracted

from the conversations with humans over these recipes, and the four models

were retrained as described in Section 3.6.

For a direct comparison, the dialog system with retrained models was

39

evaluated using the user utterances from conversations in the Free User-Initiative

experiment, except when its actions deviated from the original ones (due to an

improved NLU component) in which case new user utterances were obtained.

4.4.1 Results

The accuracy of retrained models is summarized in Table 4.2. While the

retrained models didn’t improve the single-shot accuracy, there was a marginal

improvement of 1.1 point in the dialog setting. Analysis of the conversations

revealed that this was because the retrained model had lower confidence for

some channels and functions for which it initially had high priors (possibly

due to their abundance in the training set).

On one hand, this helped the system avoid getting stuck in an impasse

when it assigns an incorrect value to a slot with high confidence, without

confirmation, and without any chance of recovery. On the other hand, this

pessimism led to a slight increase in dialog lengths, contrary to our expectation

that retraining would result in shorter dialogs (see Table 4.3).

40

Chapter 5

Conclusion and Future Work

In this work, we demonstrated the efficacy of using dialog for mapping natural

language to short, executable computer code. We evaluated this idea in the

domain of IFTTT recipes. The dialog system was able to engage the user in a

dialog, asking questions to elicit additional information until it was confident

in its inference, increasing the accuracy on this task over the state-of-the-

art models that are restricted to synthesizing recipes in one shot by 10 − 15

percentage points. Additionally, we demonstrated how data extracted from

the conversations can be used for continuous parser learning.

In this work, we focus only on conditionals and, to some extent, proce-

dure invocations. A natural extension would be to consider other programming

constructs such as loops and sequence of execution. A slot-based dialog system

could be used for loops or more extensive procedure invocations because the

pieces of information needed for these primitive programming constructs can

usually be predetermined. However, a slot-based approach to dialog might not

41

be feasible for, say, generating the body of a procedure that involves decla-

ration and manipulation of multiple variables. Hand-engineered features for

the state space of the dialog system or a hand-coded policy might not scale

to general-purpose code generation. Neural dialog systems and end-to-end di-

alog systems (Serban et al., 2015; Li et al., 2017) that can learn both code

generation and dialog strategy from data could be used in such domains.

More elaborate techniques for parser retraining can also be explored.

In this work, we paired user utterances with candidate slot-values that were

eventually affirmed by the user to generate new training data. In addition, one

could also extract negative training data from conversations by pairing user

utterances with candidate slot-values that were denied by the user and train

the neural models on these negative data-points with a modified loss function.

Parser learning through dialog has an unintended side-effect of inducing

non-stationarity in the environment with respect to the Dialog Manager. A

dialog policy built for the parser trained on the initial dataset might become

sub-optimal after it has been retrained on data extracted from conversations.

To account for this, online policy learning through dialog can be integrated

with parser learning (Padmakumar et al., 2017).

42

Appendix A

An RNN processes a set of inputs x1, . . . ,xn sequentially yielding at time t a

d-dimensional vector ht, computed as:

ht = tanh (Wxhxt + Whhht−1 + bh) (A.1)

Long Short-Term Memory (LSTM) is a type of RNN having sophisti-

cated dynamics that aid in memorizing information for a longer period. Its

dynamics are governed by the following set of equations, borrowing notation

from Zaremba et al. (2014)



i

f

o

g


=



sigmoid

sigmoid

sigmoid

tanh


T2n,4n

 hl−1
t

hl
t−1

 (A.2)

43

clt = f � clt−1 + i� g (A.3)

hlt = o� tanh(clt) (A.4)

Here, Tn,m : Rn → Rm represents an affine transformation Wx + b for some

W and b, and cl
t is the state of the memory cell at level l at timestep t. The

network stores memory in these cells.

44

Bibliography

2001. Your Wish is My Command: Programming by Example. Morgan Kauf-

mann Publishers Inc.

Yoav Artzi and Luke Zettlemoyer. 2013. Weakly supervised learn-

ing of semantic parsers for mapping instructions to actions. Trans-

actions of the Association for Computational Linguistics 1(1):49–62.

https://homes.cs.washington.edu/ lsz/papers/az-tacl13.pdf.

Amos Azaria, Jayant Krishnamurthy, and Tom M. Mitchell. 2016. Instructable

intelligent personal agent. In Proceedings of the Thirtieth AAAI Confer-

ence on Artificial Intelligence. AAAI Press, AAAI’16, pages 2681–2689.

http://dl.acm.org/citation.cfm?id=3016100.3016277.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural

machine translation by jointly learning to align and translate. CoRR

abs/1409.0473. http://arxiv.org/abs/1409.0473.

I. Beltagy and Chris Quirk. 2016. Improved semantic parsers for

if-then statements. In Proceedings of the 54th Annual Meeting

45

https://homes.cs.washington.edu/~lsz/papers/az-tacl13.pdf
https://homes.cs.washington.edu/~lsz/papers/az-tacl13.pdf
https://homes.cs.washington.edu/~lsz/papers/az-tacl13.pdf
http://dl.acm.org/citation.cfm?id=3016100.3016277
http://dl.acm.org/citation.cfm?id=3016100.3016277
http://dl.acm.org/citation.cfm?id=3016100.3016277
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://www.aclweb.org/anthology/P16-1069
http://www.aclweb.org/anthology/P16-1069

of the Association for Computational Linguistics (Volume 1: Long

Papers). Association for Computational Linguistics, pages 726–736.

http://www.aclweb.org/anthology/P16-1069.

J. Berant, A. Chou, R. Frostig, and P. Liang. 2013. Semantic parsing on Free-

base from question-answer pairs. In Empirical Methods in Natural Language

Processing (EMNLP). http://www.aclweb.org/anthology/D13-1160.

Li Dong and Mirella Lapata. 2016. Language to logical form with neural atten-

tion. In Proceedings of the 54th Annual Meeting of the Association for Com-

putational Linguistics (Volume 1: Long Papers). Association for Compu-

tational Linguistics, pages 33–43. http://www.aclweb.org/anthology/P16-

1004.

Michal Gordon and Cynthia Breazeal. 2015. Designing a virtual assistant for

in-car child entertainment. In Proceedings of the 14th International Con-

ference on Interaction Design and Children. ACM, IDC ’15, pages 359–362.

http://doi.acm.org/10.1145/2771839.2771916.

Sumit Gulwani. 2012. Synthesis from examples: Interaction mod-

els and algorithms. In Proceedings of the 2012 14th Interna-

tional Symposium on Symbolic and Numeric Algorithms for Scien-

tific Computing . IEEE Computer Society, SYNASC ’12, pages 8–14.

http://dx.doi.org/10.1109/SYNASC.2012.69.

Sumit Gulwani and Mark Marron. 2014. Nlyze: Interactive program-

ming by natural language for spreadsheet data analysis and manipula-

46

http://www.aclweb.org/anthology/P16-1069
http://www.aclweb.org/anthology/D13-1160
http://www.aclweb.org/anthology/D13-1160
http://www.aclweb.org/anthology/D13-1160
http://www.aclweb.org/anthology/P16-1004
http://www.aclweb.org/anthology/P16-1004
http://www.aclweb.org/anthology/P16-1004
http://www.aclweb.org/anthology/P16-1004
http://doi.acm.org/10.1145/2771839.2771916
http://doi.acm.org/10.1145/2771839.2771916
http://doi.acm.org/10.1145/2771839.2771916
http://dx.doi.org/10.1109/SYNASC.2012.69
http://dx.doi.org/10.1109/SYNASC.2012.69
http://dx.doi.org/10.1109/SYNASC.2012.69
http://doi.acm.org/10.1145/2588555.2612177
http://doi.acm.org/10.1145/2588555.2612177
http://doi.acm.org/10.1145/2588555.2612177

tion. In Proceedings of the 2014 ACM SIGMOD International Con-

ference on Management of Data. ACM, SIGMOD ’14, pages 803–814.

http://doi.acm.org/10.1145/2588555.2612177.

Pirkko H Harvey, Edward Currie, Padma Daryanani, and Juan C Augusto.

2015. Enhancing student support with a virtual assistant. In Inter-

national Conference on E-Learning, E-Education, and Online Training .

Springer, pages 101–109. https://link.springer.com/chapter/10.1007/978-

3-319-28883-3 13.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long

short-term memory. Neural computation 9(8):1735–1780.

http://bioinf.jku.at/publications/older/2604.pdf.

Dan Jurafsky. 2000. Speech & language processing . Pearson Education India.

Rohit J. Kate, Yuk Wah Wong, and Raymond J. Mooney. 2005. Learning to

transform natural to formal languages. In Proceedings of the 20th National

Conference on Artificial Intelligence - Volume 3 . AAAI Press, AAAI’05,

pages 1062–1068. http://dl.acm.org/citation.cfm?id=1619499.1619504.

Patrick Kenny, Thomas Parsons, Jonathan Gratch, and Albert Rizzo.

2008. Virtual humans for assisted health care. In Proceedings

of the 1st International Conference on PErvasive Technologies Re-

lated to Assistive Environments . ACM, PETRA ’08, pages 6:1–6:4.

http://doi.acm.org/10.1145/1389586.1389594.

47

http://doi.acm.org/10.1145/2588555.2612177
http://doi.acm.org/10.1145/2588555.2612177
http://doi.acm.org/10.1145/2588555.2612177
https://link.springer.com/chapter/10.1007/978-3-319-28883-3_13
https://link.springer.com/chapter/10.1007/978-3-319-28883-3_13
https://link.springer.com/chapter/10.1007/978-3-319-28883-3_13
http://bioinf.jku.at/publications/older/2604.pdf
http://bioinf.jku.at/publications/older/2604.pdf
http://bioinf.jku.at/publications/older/2604.pdf
http://dl.acm.org/citation.cfm?id=1619499.1619504
http://dl.acm.org/citation.cfm?id=1619499.1619504
http://dl.acm.org/citation.cfm?id=1619499.1619504
http://doi.acm.org/10.1145/1389586.1389594
http://doi.acm.org/10.1145/1389586.1389594

Diederik Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980 https://arxiv.org/abs/1412.6980.

Tao Lei, Fan Long, Regina Barzilay, and Martin Rinard. 2013. From natural

language specifications to program input parsers. In Proceedings of the 51st

Annual Meeting of the Association for Computational Linguistics (Volume

1: Long Papers). Association for Computational Linguistics, pages 1294–

1303. http://www.aclweb.org/anthology/P13-1127.

Xuijun Li, Yun-Nung Chen, Lihong Li, and Jianfeng Gao. 2017. End-to-end

task-completion neural dialogue systems. arXiv preprint arXiv:1703.01008

https://arxiv.org/abs/1703.01008.

Wang Ling, Phil Blunsom, Edward Grefenstette, Karl Moritz Hermann,

Tomáš Kočiský, Fumin Wang, and Andrew Senior. 2016. Latent pre-

dictor networks for code generation. In Proceedings of the 54th An-

nual Meeting of the Association for Computational Linguistics (Volume 1:

Long Papers). Association for Computational Linguistics, pages 599–609.

http://www.aclweb.org/anthology/P16-1057.

Chang Liu, Xinyun Chen, Eui Chul Shin, Mingcheng Chen, and Dawn Song.

2016. Latent attention for if-then program synthesis. In Advances in

Neural Information Processing Systems 29 , Curran Associates, Inc., pages

4574–4582. http://papers.nips.cc/paper/6284-latent-attention-for-if-then-

program-synthesis.pdf.

Ryan Lowe, Nissan Pow, Iulian Serban, and Joelle Pineau. 2015. The ubuntu

48

https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
http://www.aclweb.org/anthology/P13-1127
http://www.aclweb.org/anthology/P13-1127
http://www.aclweb.org/anthology/P13-1127
https://arxiv.org/abs/1703.01008
https://arxiv.org/abs/1703.01008
https://arxiv.org/abs/1703.01008
http://www.aclweb.org/anthology/P16-1057
http://www.aclweb.org/anthology/P16-1057
http://www.aclweb.org/anthology/P16-1057
http://papers.nips.cc/paper/6284-latent-attention-for-if-then-program-synthesis.pdf
http://papers.nips.cc/paper/6284-latent-attention-for-if-then-program-synthesis.pdf
http://papers.nips.cc/paper/6284-latent-attention-for-if-then-program-synthesis.pdf
http://aclweb.org/anthology/W15-4640
http://aclweb.org/anthology/W15-4640

dialogue corpus: A large dataset for research in unstructured multi-turn

dialogue systems. In Proceedings of the 16th Annual Meeting of the Special

Interest Group on Discourse and Dialogue. Association for Computational

Linguistics, pages 285–294. http://aclweb.org/anthology/W15-4640.

Mehdi Manshadi, Daniel Gildea, and James Allen. 2013. Inte-

grating programming by example and natural language program-

ming. In Proceedings of the Twenty-Seventh AAAI Conference

on Artificial Intelligence. AAAI Press, AAAI’13, pages 661–667.

http://dl.acm.org/citation.cfm?id=2891460.2891552.

Aishwarya Padmakumar, Jesse Thomason, and Raymond J. Mooney. 2017. In-

tegrated learning of dialog strategies and semantic parsing. In Proceedings of

the 15th Conference of the European Chapter of the Association for Com-

putational Linguistics (EACL 2017). http://www.cs.utexas.edu/users/ai-

lab/pub-view.php?PubID=127615.

Chris Quirk, Raymond Mooney, and Michel Galley. 2015. Language to

Code: Learning Semantic Parsers for If-This-Then-That Recipes. Pro-

ceedings of the 53rd Annual Meeting of the Association for Computa-

tional Linguistics and the 7th International Joint Conference on Nat-

ural Language Processing (Volume 1: Long Papers) (July):878–888.

http://www.aclweb.org/anthology/P15-1085.

Mohammad Raza, Sumit Gulwani, and Natasa Milic-Frayling.

2014. Programming by example using least general generaliza-

49

http://aclweb.org/anthology/W15-4640
http://aclweb.org/anthology/W15-4640
http://aclweb.org/anthology/W15-4640
http://aclweb.org/anthology/W15-4640
http://dl.acm.org/citation.cfm?id=2891460.2891552
http://dl.acm.org/citation.cfm?id=2891460.2891552
http://dl.acm.org/citation.cfm?id=2891460.2891552
http://dl.acm.org/citation.cfm?id=2891460.2891552
http://www.cs.utexas.edu/users/ai-lab/pub-view.php?PubID=127615
http://www.cs.utexas.edu/users/ai-lab/pub-view.php?PubID=127615
http://www.cs.utexas.edu/users/ai-lab/pub-view.php?PubID=127615
http://www.cs.utexas.edu/users/ai-lab/pub-view.php?PubID=127615
http://www.aclweb.org/anthology/P15-1085
http://www.aclweb.org/anthology/P15-1085
http://www.aclweb.org/anthology/P15-1085
http://dl.acm.org/citation.cfm?id=2893873.2893919
http://dl.acm.org/citation.cfm?id=2893873.2893919

tions. In Proceedings of the Twenty-Eighth AAAI Conference

on Artificial Intelligence. AAAI Press, AAAI’14, pages 283–290.

http://dl.acm.org/citation.cfm?id=2893873.2893919.

Mohammad Raza, Sumit Gulwani, and Natasa Milic-Frayling. 2015.

Compositional program synthesis from natural language and ex-

amples. In Proceedings of the 24th International Conference on

Artificial Intelligence. AAAI Press, IJCAI’15, pages 792–800.

http://dl.acm.org/citation.cfm?id=2832249.2832359.

Alan Ritter, Colin Cherry, and William B. Dolan. 2011. Data-driven

response generation in social media. In Proceedings of the Con-

ference on Empirical Methods in Natural Language Processing . Asso-

ciation for Computational Linguistics, EMNLP ’11, pages 583–593.

http://dl.acm.org/citation.cfm?id=2145432.2145500.

Iulian Vlad Serban, Alessandro Sordoni, Yoshua Bengio, Aaron C. Courville,

and Joelle Pineau. 2015. Hierarchical neural network generative models for

movie dialogues. CoRR abs/1507.04808. http://arxiv.org/abs/1507.04808.

Lifeng Shang, Zhengdong Lu, and Hang Li. 2015. Neural responding ma-

chine for short-text conversation. In Proceedings of the 53rd Annual Meet-

ing of the Association for Computational Linguistics and the 7th Inter-

national Joint Conference on Natural Language Processing (Volume 1:

Long Papers). Association for Computational Linguistics, pages 1577–1586.

http://www.aclweb.org/anthology/P15-1152.

50

http://dl.acm.org/citation.cfm?id=2893873.2893919
http://dl.acm.org/citation.cfm?id=2893873.2893919
http://dl.acm.org/citation.cfm?id=2893873.2893919
http://dl.acm.org/citation.cfm?id=2832249.2832359
http://dl.acm.org/citation.cfm?id=2832249.2832359
http://dl.acm.org/citation.cfm?id=2832249.2832359
http://dl.acm.org/citation.cfm?id=2145432.2145500
http://dl.acm.org/citation.cfm?id=2145432.2145500
http://dl.acm.org/citation.cfm?id=2145432.2145500
http://arxiv.org/abs/1507.04808
http://arxiv.org/abs/1507.04808
http://arxiv.org/abs/1507.04808
http://www.aclweb.org/anthology/P15-1152
http://www.aclweb.org/anthology/P15-1152
http://www.aclweb.org/anthology/P15-1152

Lanbo She, Shaohua Yang, Yu Cheng, Yunyi Jia, Joyce Chai, and

Ning Xi. 2014. Back to the blocks world: Learning new actions

through situated human-robot dialogue. In Proceedings of the 15th

Annual Meeting of the Special Interest Group on Discourse and Dia-

logue (SIGDIAL). Association for Computational Linguistics, pages 89–97.

http://www.aclweb.org/anthology/W14-4313.

Satinder Singh, Diane Litman, Michael Kearns, and Marilyn Walker. 2002.

Optimizing dialogue management with reinforcement learning: Experiments

with the njfun system. Journal of Artificial Intelligence Research 16:105–

133. https://www.jair.org/media/859/live-859-1983-jair.pdf.

Sunbeom So and Hakjoo Oh. 2017. Synthesizing imperative programs

for introductory programming assignments. CoRR abs/1702.06334.

http://arxiv.org/abs/1702.06334.

Armando Solar-Lezama. 2008. Program synthesis by sketching . University of

California, Berkeley.

Sainbayar Sukhbaatar, arthur szlam, Jason Weston, and Rob Fergus.

2015. End-to-end memory networks. In Advances in Neural Informa-

tion Processing Systems 28 , Curran Associates, Inc., pages 2440–2448.

http://papers.nips.cc/paper/5846-end-to-end-memory-networks.pdf.

Jesse Thomason, Shiqi Zhang, Raymond Mooney, and Peter Stone.

2015. Learning to interpret natural language commands through

51

http://www.aclweb.org/anthology/W14-4313
http://www.aclweb.org/anthology/W14-4313
http://www.aclweb.org/anthology/W14-4313
https://www.jair.org/media/859/live-859-1983-jair.pdf
https://www.jair.org/media/859/live-859-1983-jair.pdf
https://www.jair.org/media/859/live-859-1983-jair.pdf
http://arxiv.org/abs/1702.06334
http://arxiv.org/abs/1702.06334
http://arxiv.org/abs/1702.06334
http://papers.nips.cc/paper/5846-end-to-end-memory-networks.pdf
http://papers.nips.cc/paper/5846-end-to-end-memory-networks.pdf
http://dl.acm.org/citation.cfm?id=2832415.2832516
http://dl.acm.org/citation.cfm?id=2832415.2832516

human-robot dialog. In Proceedings of the 24th International Confer-

ence on Artificial Intelligence. AAAI Press, IJCAI’15, pages 1923–1929.

http://dl.acm.org/citation.cfm?id=2832415.2832516.

Oriol Vinyals, L ukasz Kaiser, Terry Koo, Slav Petrov, Ilya Sutskever, and

Geoffrey Hinton. 2015. Grammar as a foreign language. In Advances

in Neural Information Processing Systems 28 , Curran Associates, Inc.,

pages 2773–2781. http://papers.nips.cc/paper/5635-grammar-as-a-foreign-

language.pdf.

Jason E Weston. 2016. Dialog-based language learning. In Advances in Neural

Information Processing Systems 29 , Curran Associates, Inc., pages 829–837.

http://papers.nips.cc/paper/6264-dialog-based-language-learning.pdf.

Jason Williams, Antoine Raux, Deepak Ramachandran, and Alan Black.

2013. The dialog state tracking challenge. In Proceedings of the SIGDIAL

2013 Conference. Association for Computational Linguistics, pages 404–413.

http://www.aclweb.org/anthology/W13-4065.

Bo Wu and Craig A. Knoblock. 2015. An iterative approach to synthesize

data transformation programs. In Proceedings of the 24th International

Conference on Artificial Intelligence. AAAI Press, IJCAI’15, pages 1726–

1732. http://dl.acm.org/citation.cfm?id=2832415.2832489.

Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, and Thomas Dillig. 2017.

Type- and Content-Driven Synthesis of {SQL} Queries from Natural Lan-

guage. CoRR abs/1702.01168. http://arxiv.org/abs/1702.01168.

52

http://dl.acm.org/citation.cfm?id=2832415.2832516
http://dl.acm.org/citation.cfm?id=2832415.2832516
http://dl.acm.org/citation.cfm?id=2832415.2832516
http://papers.nips.cc/paper/5635-grammar-as-a-foreign-language.pdf
http://papers.nips.cc/paper/5635-grammar-as-a-foreign-language.pdf
http://papers.nips.cc/paper/5635-grammar-as-a-foreign-language.pdf
http://papers.nips.cc/paper/6264-dialog-based-language-learning.pdf
http://papers.nips.cc/paper/6264-dialog-based-language-learning.pdf
http://www.aclweb.org/anthology/W13-4065
http://www.aclweb.org/anthology/W13-4065
http://dl.acm.org/citation.cfm?id=2832415.2832489
http://dl.acm.org/citation.cfm?id=2832415.2832489
http://dl.acm.org/citation.cfm?id=2832415.2832489
http://arxiv.org/abs/1702.01168
http://arxiv.org/abs/1702.01168
http://arxiv.org/abs/1702.01168

Pengcheng Yin, Zhengdong Lu, Hang Li, and Ben Kao. 2016.

Neural enquirer: Learning to query tables in natural language.

In Proceedings of the Twenty-Fifth International Joint Conference

on Artificial Intelligence. AAAI Press, IJCAI’16, pages 2308–2314.

http://dl.acm.org/citation.cfm?id=3060832.3060944.

Pengcheng Yin and Graham Neubig. 2017. A syntactic neural

model for general-purpose code generation. In The 55th An-

nual Meeting of the Association for Computational Linguistics (ACL).

https://arxiv.org/pdf/1704.01696.pdf.

Steve Young, Milica Gašić, Blaise Thomson, and Jason D Williams. 2013.

Pomdp-based statistical spoken dialog systems: A review. Proceedings of the

IEEE 101(5):1160–1179. http://ieeexplore.ieee.org/document/6407655/.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. 2014. Recur-

rent neural network regularization. arXiv preprint arXiv:1409.2329

https://arxiv.org/abs/1409.2329.

John M. Zelle and Raymond J. Mooney. 1996. Learning to

parse database queries using inductive logic programming. In

AAAI/IAAI . AAAI Press/MIT Press, Portland, OR, pages 1050–1055.

http://www.cs.utexas.edu/users/ai-lab/?zelle:aaai96.

53

http://dl.acm.org/citation.cfm?id=3060832.3060944
http://dl.acm.org/citation.cfm?id=3060832.3060944
https://arxiv.org/pdf/1704.01696.pdf
https://arxiv.org/pdf/1704.01696.pdf
https://arxiv.org/pdf/1704.01696.pdf
http://ieeexplore.ieee.org/document/6407655/
http://ieeexplore.ieee.org/document/6407655/
https://arxiv.org/abs/1409.2329
https://arxiv.org/abs/1409.2329
https://arxiv.org/abs/1409.2329
http://www.cs.utexas.edu/users/ai-lab/?zelle:aaai96
http://www.cs.utexas.edu/users/ai-lab/?zelle:aaai96
http://www.cs.utexas.edu/users/ai-lab/?zelle:aaai96

Vita

Shobhit Chaurasia was born in 1993 in Rajasthan, India. He completed his

high school from SRDAV Public School, Delhi. He received his Bachelor of

Technology degree from Indian Institute of Technology, Guwahati in Computer

Science in 2015. He joined The University of Texas at Austin in Fall 2015 to

pursue his Master of Science degree, focusing on Machine Learning in general,

and Natural Language Processing and Information Retrieval in particular. He

has done internships at Adobe Research Labs, Noida, India and BloomReach,

Mountain View, California. After graduation, he will be returning to work

full-time at BloomReach.

Address: sc.shobhit@gmail.com

This thesis was typeset with LATEX 2ε
1 by the author.

1LATEX2ε is an extension of LATEX. LATEX is a collection of macros for TEX. TEX is

a trademark of the American Mathematical Society. The macros used in formatting this

thesis were written by Dinesh Das, Department of Computer Sciences, The University of

Texas at Austin, and extended by Bert Kay, James A. Bednar, and Ayman El-Khashab.

54

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Chapter Introduction and Related Work
	Chapter Overview
	Code Generation
	Dialog Systems
	Thesis Outline

	Chapter Task Overview
	Chapter Overview
	IFTTT Domain
	Channels and Functions
	Fields and Ingredients
	IFTTT Dataset

	Problem Statement

	Chapter Dialog System
	Chapter Overview
	Dialog Manager
	Belief State
	Static Dialog Policy

	Natural Language Understanding
	Neural Model
	Input Preprocessing
	Training Details

	Natural Language Generation
	Fields in the Dialog Setting
	Retraining NLU using Dialog

	Chapter Experiments
	Chapter Overview
	Experimental Setup
	Dialog Experiments
	Constrained User-Initiative
	Free User-Initiative
	Results

	Parser Retraining
	Results

	Chapter Conclusion and Future Work
	Appendix
	Bibliography
	Vita

