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Abstract

Automating the construction of semantic gram-
mars is a difficult and interesting problem for
machine learning. This paper shows how the
semantic-grammar acquisition problem can be
viewed as the learning of search-control heuris-
tics in a logic program. Appropriate control rules
are learned using a new first-order induction algo-
rithm that automatically invents useful syntactic
and semantic categories. Empirical results show
that the learned parsers generalize well to novel
sentences and out-perform previous approaches
based on connectionist techniques.

Introduction

Designing computer systems to “understand” natu-
ral language input is a difficult task. The labori-
ously hand-crafted computational grammars support-
ing natural language applications are often inefficient,
incomplete and ambiguous. The difficulty in con-
structing adequate grammars is an example of the
“knowledge acquisition bottleneck” which has moti-
vated much research in machine learning. While nu-
merous researchers have studied computer acquisi-
tion of natural languages, most of this research has
concentrated on learning the syntax of a language
from example sentences [Wirth, 1989; Berwick, 1985;
Wolff, 1982] In practice, natural, language systems are
typically more concerned with extracting the meaning
of sentences, usually expressed in some sort of case-role
structure.

Semantic grammars, which uniformly incorporate
both syntactic and semantic constraints to parse sen-
tences and produce semantic analyses, have proven ex-
tremely useful in constructing natural language inter-
faces for limited domains [Allen, 1987]. Unfortunately,
new grammars must be written for each semantic do-
main, and the size of the grammar required for more
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general applications can make manual construction in-
feasible. An interesting question for machine learning
is whether such grammars can be automatically con-
structed from an analysis of examples in a given do-
main.

The semantic grammar acquisition problem presents
a number of difficult issues. First, there is little agree-
ment on what constitutes an “adequate” set of cases for
sentence analysis; different tasks may require differing
semantic representations. Therefore, the learning ar-
chitecture must be general enough to allow mapping to
(more or less) arbitrary meaning representations. Sec-
ond, domain specific semantic constraints must be au-
tomatically recognized and incorporated into the gram-
mar. This necessitates some form of constructive in-
duction to identify useful semantic word and phrase
classes. Finally, as in any learning system, it is crucial
that the resulting grammar generalize well to unseen
inputs. Given the generativity of natural languages,
it is unreasonable to assume that the system will be
trained on more than a small fraction of possible in-
puts.

In this paper we show how the problem of seman-
tic grammar acquisition can be considered as learning
control rules for a logic program. In this framework,
the acquisition problem can be attacked using the tech-
niques of inductive logic programming. We introduce
a new induction algorithm that incorporates construc-
tive induction to learn word classes and semantic re-
lations necessary to support the parsing process. Em-
pirical results show this to be a promising approach to
the language acquisition problem.

Learning Case-Role Mapping
The Mapping Problem

Traditional case theory decomposes a sentence into a
proposition represented by the main verb and various
arguments such as agent, patient, and instrument, rep-
resented by noun phrases. The basic mapping problem
is to decide which sentence constituents fill which roles.
Though case analysis is only a part of the overall task
of sentence interpretation, the problem is nontrivial
even in simple sentences.



Consider these sentences from [McClelland and
Kawamoto, 1986]:

1. The boy hit the window.

2. The hammer hit the window.

3. The hammer moved.

4. The boy ate the pasta with the cheese.
5. The boy ate the pasta with the fork.

In the first sentence, the subject, boy, is an agent.
In the second, the subject, hammer, is an instrument.
The role played by the subject must be determined
on the grounds that boys are animate and hammers
are not. In the third sentence, the subject, hammer, 1s
interpreted as a patient, illustrating the importance
of the relationship between the surface subject and
the verb. In the last two sentences, the prepositional
phrase could be attached to the verb (making fork an
instrument of ate) or the object (cheese is an accom-
paniment of pasta). Domain specific semantic knowl-
edge is required to make the correct assignment.

Previous Approaches

Recent research in learning the case-role assign-
ment task has taken place under the connectionist
paradigm [Miikkulainen and Dyer, 1991; McClelland
and Kawamoto, 1986). They argue that proper case-
role assignment is a difficult task requiring many inde-
pendent sources of knowledge, both syntactic and se-
mantic, and therefore well-suited to connectionist tech-
niques.

Connectionist models, however, face a number of dif-
ficulties in handling natural language. Since the output
structures are “flat” (nonrecursive) it is unclear how
the embedded propositions in more sophisticated anal-
yses can be handled. The models are also limited to
producing a single output structure for a given input.
If an input sentence is truly ambiguous, the system
produces a single output that appears as a weighted
average of the possible analyses, rather than enumer-
ating the consistent interpretations. We believe that
symbolic techniques are more appropriate, and our ap-
proach does not suffer from these deficiencies. In ad-
dition, empirical results demonstrate that our system
trains faster and generalizes to novel inputs better than
its neural counterparts.

Shift-Reduce Case-Role Parsing

Variations of shift-reduce parsing have proven practi-
cal for many symbolic natural language applications
[Tomita, 1986]. Our system adopts a simple shift-
reduce framework for case-role mapping [Simmons and
Yu, 1992]. The process is best illustrated by way of ex-
ample.

Consider the sentence: “The man ate the pasta.”
Parsing begins with an empty stack and an input buffer
containing the entire sentence. At each step of the
parse, either a word is shifted from the front of the
input buffer onto the stack, or the top two elements

Action Stack Contents

(shift) [the
(shift) [man, the]
(1 det) [[man, det:the]]
(shift) [ate, [man, det:the]
(1 agt) [[ate, agt:[man, det:the]]
(shift) [the, [ate, agt:[man, det:the]]
(shift) [pasta, the, [ate, agt:[man, det:the]]
(1 det) [[pasta, det:the], [ate, agt:[man, det:the]]
(2 pat) [[ate, pat:[pasta, det:the], agt:[man, det:the]]

Figure 1: Parsing “The man ate the pasta.”

on the stack are popped and combined to form a new
element which is pushed back onto the stack. The se-
quence of actions and stack states for our simple exam-
ple is shown Figure 1. The action notation (z label),
indicates that the stack items are combined via the
role, label, with the item from stack position, z, being
the head.

An advantage of assuming such a constrained pars-
ing mechanism is that the form of structure building
actions is limited. The operations required to construct
a given case representation are directly inferable from
the representation. In general, a structure building ac-
tion is required for each unique case-role that appears
in the analysis. The set of actions required to produce
a set of analyses is the union of the actions required
for each individual analysis.

Overview of CHILL

Our system, CHILL, (Constructive Heuristics Induc-
tion for Language Learning) is a general approach to
semantic grammar acquisition. The input to the sys-
tem 1s a set of training instances consisting of sentences
paired with the desired case representations. The out-
put is a shift-reduce parser (in Prolog) which maps
sentences into case representations. The parser may
produce multiple analyses (on backtracking) for a sin-
gle input sentence, allowing for true ambiguity in the
training set.

The CHILL algorithm consists of two distinct tasks.
First, the training instances are used to formulate an
overly-general parser which is capable of producing
case structures from sentences. The initial parser 1s
overly-general in that 1t produces many spurious anal-
yses for any given input sentence. The parser is then
specialized by introducing search control heuristics.
These control heuristics limit the contexts in which
certain program clauses are used, eliminating the spu-
rious analyses. The following section details these two
processes.

The CHiLL Algorithm

Constructing an Overly-General Parser

A shift-reduce parser is easily represented as a logic
program. The state of the parse is reflected by the con-



tents of the stack and input buffer. Each distinct pars-
ing action becomes an operator clause that takes the
current stack and input and produces new ones. The
overly-general parser is built by translating each ac-
tion inferable from the training problems into a clause
which implements the action. For example, the clause
implementing the (7 agt) action is:
op([S1,52[SRest], Inp, [SNew|SRest], Inp) :-
combine(S1, agt, 52, SNew).

Building a program to parse a set of training examples
is accomplished by adding clauses to the op predicate.
Each clause is a direct translation of a required parsing
action. As mentioned above, the identification of the
necessary actions is straight-forward. A particularly
simple approach is to include two actions (e.g., (1 agt)
and (2 agt) ) for each role used in the training exam-
ples; any unnecessary operator clauses will be removed
from the program during the subsequent specialization
process.

Parser Specialization

General Framework The overly-general parser
produces a great many spurious analyses for the train-
ing sentences because there are no conditions specify-
ing when it is appropriate to use the various opera-
tors. The program must be specialized by including
control heuristics which guide the application of oper-
ator clauses. This section outlines the basic approach
used in CHILL. More detail on incorporating clause
selection information in Prolog programs can be found
in [Zelle and Mooney, 1993].

Program specialization occurs in three phases. First,
the training examples are analyzed to construct pos-
itive and negative control examples for each operator
clause. Examples of correct operator applications are
generated by finding the first correct parsing of each
training pair with the overly-general parser; any sub-
goal to which an operator is applied in a successful
parse becomes a positive control example for that op-
erator. A positive control example for any operator is
considered a negative example for all operators that do
not have it as a positive example.

In the second phase, a general first-order induction
algorithm is employed to learn a control rule for each
operator. This control rule comprises a Horn-clause
definition that covers the positive control examples for
the operator but not the negative. The induction al-
gorithm used by CHILL is discussed in the following
subsection.

The final step is to “fold” the control information
back into the overly-general parser. A control rule is
easily incorporated into the overly-general program by
unifying the head of an operator clause with the head
of the control rule for the clause and adding the in-
duced conditions to the clause body. The definitions
of any invented predicates are simply appended to the
program. As an example, the (1 agt) clause of op is
typically modified to:

op([A,[B,det:the]l],C,[D],C) :-
animate(B), combine(A,agt,B,D).
animate(boy). animate(girl). ...

Here, a new predicate has been invented representing
the concept “animate.”' This rule may be roughly
interpreted as stating: “If the stack contains two items,
the second of which is a completed noun phrase whose
head is animate, then attach this phrase as the agent
of the top of stack.”

Inducing Control Rules The induction task is to
generate a Horn-clause definition which covers the pos-
itive control examples for an operator, but does not
cover the negative. There 1s a growing body of research
in inductive logic programming which addresses this
problem. Our algorithm implements a novel combi-
nation of bottom-up techniques found in systems such
as C1GoL [Muggleton and Buntine, 1988] and GoLEM
[Muggleton and Feng, 1992] and top-down methods
from systems like FoiL [Quinlan, 1990] and CHamp
[Kijsirikul et al., 1992].

Let Pos := Positive Examples

Let Neg := Negative Examples

Let Def := Positive examples as unit clauses.
Repeat

Let OldDef := Def
Let S be a sampling of pairs of clauses in OldDef
Let OldSize := TheorySize(OldDef)
Let CurrSize := OldSize
For each pair of clauses <C1, C2> in S
Find_Generalization(C1,C2,Pos,Neg, NewClause,NewPreds)
Reduce_Definition(Pos,OldDef NewClause, NewPreds,NewDef)
If TheorySize(NewDef) < CurrSize then
CurrSize := TheorySize(NewDef)
Def := NewDef
Until CurrSize = OldSize % No compaction achieved
Return Def

Figure 2: CHILL Induction Algorithm

Space does not permit a complete explanation of
the induction mechanism, but the general idea is sim-
ple. The intuition i1s that we want to find a small
(hence general) definition which discriminates between
the positive and negative examples. We start with a
most specific definition (the set of positive examples)
and introduce generalizations which make the defini-
tion more compact (as measured by a CraoL-like size
metric). The search for more general definitions is car-
ried out in a hill-climbing fashion. At each step, a
number of possible generalizations are considered; the
one producing the greatest compaction of the theory
is implemented, and the process repeats. The basic
algorithm is outlined in Figure 2.

The  heart of the algorithm is  the
Find_Generalization procedure. It takes two clauses in
the current definition and constructs a new clause that
(empirically) subsumes them and does not cover any

Invented predicates actually have system generated
names. They are renamed here for clarity.



negative examples. Reduce_Definition proves the pos-
itive examples using the current definition augmented
with the new generalized clause. Preferential treat-
ment is given to the new clause (it is placed at the
top of the Prolog definition) and any clauses which are
no longer used in proving the positive examples are
deleted to produce the reduced definition.

Find_Generalization employs three levels of effort to
produce a generalization. The first is construction of
the least general generalization (LGG) [Plotkin, 1970]
of the input clauses. If the LGG covers no negative ex-
amples, further refinement is unnecessary. Otherwise,
the clause is too general, and an attempt is made to
refine it using a FoiL-like mechanism which adds lit-
erals derivable either from background or previously
invented predicates. If the resulting clause is still too
general, it 1s passed to Inveni_Predicate which invents
a new predicate to discriminate the positive examples
from the negatives which are still covered.

Predicate invention is carried out in a manner anal-
ogous to CHAMP. The first step is to find a minimal-
arity projection of the clause variables such that the
set of ground tuples generated by the projection when
using the clause to prove the positive examples is dis-
joint with the ground tuples generated in proving the
negative examples. These ground tuples form positive
and negative example sets for the new predicate, and
the top-level induction algorithm is recursively invoked
to create a definition of the predicate.

Experimental Results

The crucial test of any learning system is how well the
learned concept generalizes to new input. CHILL has
been tested on a number of case-role assignment tasks.

Comparison with Connectionism

In the first experiment, CHILL was tried on the baseline
task reported in [Miikkulainen and Dyer, 1991] using
1475 sentence/case-structure examples from [McClel-
land and Kawamoto, 1986] (hereafter referred to as
the M & K corpus). The corpus was produced from a
set of 19 sentence templates generating sentences/case-
structure pairs for sentences like those illustrated
above. The sample actually comprises 1390 unique sen-
tences, some of which allow multiple analyses. Since
our parser is capable (through backtracking) of gener-
ating all legal parses for an input, training was done
considering each unique sentence as a single example.
If a particular sentence was chosen for inclusion in a
training or testing set, the pairs representing all correct
analyses of the sentence were included in that set.
Training and testing followed the standard paradigm
of first choosing a random set of test examples (in this
case 740) and then creating parsers using increasingly
larger subsets of the remaining examples. All reported
results reflect averages over five trials. During test-
ing, the parser was used to enumerate all analyses for
a given test sentence. Parsing of a sentence can fail

in two ways: an incorrect analysis may be generated,
or a correct analysis may not be generated. In order
to account for both types of inaccuracy, a metric was
introduced to calculate the “average correctness” for a
given test sentence as follows: Accuracy = (% + §)/2
where P is the number of distinct analyses produced,
C' 1s the number of the produced analyses which were
correct, and A i1s the number of correct analyses pos-
sible for the sentence.

CHILL performs very well on this learning task as
demonstrated by the learning curve shown in Figure 3.
The system achieves 92% accuracy on novel sentences
after seeing only 150 training sentences. Training on
650 sentences produces 98% accuracy.
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Figure 3: M & K corpus Accuracy

Direct comparison with previous results is difficult,
as connectionist learning curves tend to be expressed
in terms of low level measures such as “number of cor-
rect output bits.” The closest comparison can be made
with the results in [Miikkulainen and Dyer, 1991] where
an accuracy of 95% was achieved at the “word level”
training with 1439 of the 1475 pairs from the M & K
corpus. Since the output contains five slots, assum-
ing independence of errors gives an estimate of 0.95°
or 78% completely correct parses. Interestingly, the
types of inaccuracies differ substantially between sys-
tems. Neural networks always produce an output many
of which contain minor errors, whereas CHILL tends to
produce a correct output or none at all. From an en-
gineering standpoint, it seems advantageous to have
a system which “knows” when it fails; connectionists
might be more interested in failing “reasonably.”

With respect to training time, the induction algo-
rithm employed by CHILL is a prototype implemented
in Prolog. Running on a SparcStation 2, the creation of



the parsers for the examples in this paper required from
a few minutes to half an hour of CPU time. This com-
pares favorably with backpropagation training times
usually measured in hours or days.

It is also noteworthy that CHILL consistently in-
vented interpretable word classes. One example, the
invention of animate, has already been presented. This
concept is implicit in the analyses presented to the sys-
tem, since only animate objects are assigned to the
agent role. Other invented classes clearly picked up
on the distribution of words in the input sentences.
The system regularly invented semantic classes such
as human, food, and possession which were used for
noun generation in the M & K corpus.

Phrase classes useful to making parsing distinc-
tions were also invented. For example, the structure
instrumental phrase was invented as:

instr_phrase([]).
instr_phrase([with, the, X]) :- instrument(X).
instrument (fork). instrument(bat). ...

It was not necessary in parsing the M & K corpus
to distinguish between instruments of different verbs,
hence instruments of various verbs such as hitting and
eating are grouped together. Where the semantic re-
lationship between words is required to make pars-
ing distinctions, such relationships can be learned.
CHILL created one such relation: can_possess(X,Y)
:— human(X), possession(Y); which reflects the dis-
tributional relationship between humans and posses-
sions present in the M & K corpus. Notice that this
invented rule itself contains two invented word cate-
gories.

Although there is no a prior: reason to suppose
CHILL must invent interpretable categories, the nat-
uralness of the invented concepts supports the empiri-
cal results indicating that CHILL is making the “right”
generalizations.

A More Realistic Domain

The M & K corpus was designed specifically to illus-
trate the case mapping problem. As such, it does
not necessarily reflect the true difficulty of semantic
grammar acquisition for natural language applications.
Another experiment was designed to test CHILL on a
more realistic task. A portion of a semantic gram-
mar was “lifted” from an extant prototype natural
language database designed to support queries con-
cerning tourist information [Ng, 1988]. The portion
of the grammar used recognized over 150,000 distinct
sentences. A simple case grammar, which produced
labellings deemed useful for the database query task,
was devised to generate a sample of sentence/case-
structure analyses. The example pair shown in Fig-
ure 4 illustrates the type of sentences and analyses
used.

An average learning curve for this domain is shown
in Figure 5. The curve shows generalization results on

Show me the two star hotels in downtown LA with double rates
below 65 dollars.

[show, theme:[hotels, det:the,
type:[star, mod:two],
loc:[la, casemark:in, mod:downtown],
attr:[rates, casemark:with, mod:double,
less:[nbr(65), casemark:below,
unit:dollars]]]
dative:me]

Figure 4: Example from Tourist Domain

500 sentences which differed from any used in train-
ing. The results are very encouraging. With only 50
training examples, the resulting parser achieved 93%
accuracy on novel sentences. With 300 training exam-
ples, accuracy is 99%.
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Figure 5: Tourist Domain Accuracy

Related Work

As noted in the introduction, most Al research in lan-
guage acquisition has not focused on the case-role map-
ping problem. However, a number of language acqui-
sition systems may be viewed as the learning of search
control heuristics. Langley and Anderson [Langley,
1982; Anderson, 1983] have independently posited ac-
quisition mechanisms based on learning search control
in production systems. These systems were cognitively
motivated and addressed the task of language genera-
tion rather than the case-role analysis task examined
here.

Berwick’s LPARSIFAL [Berwick, 1985] acquired
syntactic parsing rules for a type of shift-reduce parser.
His system was linguistically motivated and incorpo-
rated many constraints specific to the theory of lan-



guage assumed. In contrast, CHILL uses induction
techniques to avoid commitment to any specific model
of grammar.

More recently an exemplar-based acquisition system
for the style of case grammar used in CHILL is de-
scribed in [Simmons and Yu, 1992]. Unlike CHILL,
their system depends on an analyst to provide appro-
priate word classifications and requires detailed inter-
action to guide the parsing of training examples.

Recent corpus-based natural-language research has
addressed some 1ssues in automated dictionary con-
struction [Lehnert et al., 1992; Brent and Berwick,
1991]. These systems use manually constructed parsers
to “bootstrap” mnew patterns from analyzable text.
They do not employ machine learning techniques to
generalize the acquired templates or construct new fea-
tures which support parsing decisions. In contrast,
CHILL is a first attempt at applying modern machine
learning methods to the more fundamental task of con-
structing efficient parsers.

Future Research

The generalization results in the experiments so far un-
dertaken are quite encouraging; however, further test-
ing on larger, more realistic corpora is required to de-
termine the practicality of these techniques. Another
avenue of research is “deepening” the analyses pro-
duced by the system. Applying our techniques to ac-
tually construct natural language systems will require
either modifying the parser to produce final represen-
tations (e.g., database queries) or adding additional
learning components which map the intermediate case
structures into final representations.

Conclusion

Methods for learning semantic grammars hold the po-
tential for substantially automating the development of
natural language interfaces. We have presented a sys-
tem that employs inductive logic programming tech-
niques to learn a shift-reduce parser that integrates
syntactic and semantic constraints to produce case-
role representations. The system first produces an
overly-general parser which it then constrains by in-
ductively learning search-control heuristics that elim-
inate spurious parses. When learning heuristics, con-
structive induction is used to automatically generate
useful semantic and syntactic classes of words and
phrases. Experiments on two reasonably large cor-
pora of sentence/case-role pairs demonstrate that the
system learns accurate parsers that generalize well to
novel sentences. These experiments also demonstrate
that the system trains faster and produces more ac-
curate results than previous, connectionist approaches
and creates interesting and recognizable syntactic and
semantic concepts.
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