
Copyright

by

John M. Zelle

1995

Using Inductive Logic Programming to Automate the

Construction of Natural Language Parsers

by

John M. Zelle, M.S., B.S.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Ful�llment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

August 1995

Using Inductive Logic Programming to Automate the

Construction of Natural Language Parsers

Approved by
Dissertation Committee:

To my parents who started me on the road, and to Lib, without whom I never

would have reached my destination.

Acknowledgments

I have been positively inuenced by many people during the tenure of this research.

I am deeply grateful for the signi�cant contributions of my advisor, Ray Mooney.

He has been a constant source of guidance and served as a perfect model of the

dedicated researcher and educator. I do not believe I could have had a better mentor.

I would also like to thank the other members of my committee: Risto Miikkulainen,

Bruce Porter, Benjamin Kuipers and William Cohen. I have also bene�ted from

contributions by a former committee member, the late Robert Simmons.

Many others have provided both ideas and moral support during my years

at the University of Texas, especially: Paul Ba�es, Je� Mahoney, Dan Clancy, Tara

Estlin, Dave Moriarty, Cindi Thompson, Ulf Hermjakob, Joshua Konvisser, Mary-

Elaine Cali�, Charles Calloway and James Lester. They have all been good friends

and colleagues; I am glad to have had the chance to get to know them.

I am also deeply indebted to my family, who have always been supportive of

my educational endeavors. I o�er a special thanks to my wife, Elizabeth Bingham,

whose love of learning brought me to Texas, and whose love and con�dence in me

kept me aoat when I wasn't sure I could make it. I am also thankful for my constant

computer-side companion during the writing of this dissertation, Grendel|if only he

would stay o� the keyboard.

v

Portions of this research were supported by the National Science Foundation

under grant IRI-9310819 and the Texas Advanced Research Program under grant

ARP-003658-114. The author was also partially supported by a fellowship from the

Schlumberger Corporation.

John M. Zelle

The University of Texas at Austin

August 1995

vi

Using Inductive Logic Programming to Automate the

Construction of Natural Language Parsers

Publication No.

John M. Zelle, Ph.D.

The University of Texas at Austin, 1995

Supervisor: Raymond J. Mooney

Designing computer systems to understand natural language input is a di�cult task.

In recent years there has been considerable interest in corpus-based methods for con-

structing natural language parsers. These empirical approaches replace hand-crafted

grammars with linguistic models acquired through automated training over language

corpora. A common thread among such methods to date is the use of propositional

or probabilistic representations for the learned knowledge. This dissertation presents

an alternative approach based on techniques from a sub�eld of machine learning

known as inductive logic programming (ILP). ILP, which investigates the learning of

relational (�rst-order) rules, provides an empirical method for acquiring knowledge

within traditional symbolic parsing frameworks.

This dissertation details the architecture, implementation and evaluation of

Chill, a computer system for acquiring natural language parsers by training over

corpora of parsed text. Chill treats language acquisition as the learning of search-

control rules within a logic program that implements a shift-reduce parser. Control

rules are induced using a novel ILP algorithm which handles di�cult issues arising

vii

in the induction of search-control heuristics. Both the control-rule framework and the

induction algorithm are crucial to Chill's success.

The main advantage of Chill over propositional counterparts is its exibility

in handling varied representations. Chill has produced parsers for various analyses

including case-role mapping, detailed syntactic parse trees, and a logical form suitable

for expressing �rst-order database queries. All of these tasks are accomplished within

the same framework, using a single, general learning method that can acquire new

syntactic and semantic categories for resolving ambiguities.

Experimental evidence from both arti�cial and real-world corpora demon-

strates that Chill learns parsers as well or better than previous arti�cial neural

network or probabilistic approaches on comparable tasks. In the database query do-

main, which goes beyond the scope of previous empirical approaches, the learned

parser outperforms an existing hand-crafted system. These results support the claim

that ILP techniques as implemented in Chill represent a viable alternative with

signi�cant potential advantages over neural-network, propositional, and probabilistic

approaches to empirical parser construction.

viii

Contents

Acknowledgments v

Abstract vii

Chapter 1 Introduction 1

1.1 Empirical NLP : 2

1.2 CHILL: An Empirical Parser Acquisition System : : : : : : : : : : : 4

1.3 Organization of Dissertation : 7

Chapter 2 Background 8

2.1 Control-Rule Learning : 8

2.1.1 Learning Search-Control in Logic Programs : : : : : : : : : : 10

2.2 Inductive Logic Programming : 13

2.2.1 The ILP Problem : 13

2.2.2 Top-Down ILP Algorithms : 14

2.2.3 Bottom-Up ILP Algorithms : : : : : : : : : : : : : : : : : : : 17

Chapter 3 Parser Induction with CHILL 20

3.1 Overview : 20

3.1.1 Shift-Reduce Parsing : 20

3.1.2 The Chill Architecture : 23

3.2 An Example Framework: Case-Role Mapping : : : : : : : : : : : : : 24

ix

3.2.1 The Mapping Problem : 24

3.2.2 Shift-Reduce Case-Role Parsing : : : : : : : : : : : : : : : : : 25

3.3 The Phases of Chill : 27

3.3.1 Parsing Operator Generation : : : : : : : : : : : : : : : : : : : 27

3.3.2 Example Analysis : 28

3.3.3 Control-Rule Induction : 32

3.3.4 Program Specialization : 33

3.4 Implementation : 34

Chapter 4 The CHILL Induction Algorithm 36

4.1 The Algorithm : 38

4.1.1 Top Level : 38

4.1.2 Constructing Generalizations : : : : : : : : : : : : : : : : : : : 39

4.1.3 Implementation : 48

4.2 Experimental Comparison with Other ILP Systems : : : : : : : : : : 49

4.2.1 Experimental Design : 50

4.2.2 Accuracy Results : 51

4.2.3 Timing Results : 57

4.3 An Extension: Learning Without Negative Examples : : : : : : : : : 58

4.3.1 Motivation : 58

4.3.2 Counting Implicit Negative Examples : : : : : : : : : : : : : : 59

4.3.3 Predicate Invention with Implicit Negative Examples : : : : : 62

Chapter 5 Experiments with Case-Role Parsing 63

5.1 Background : 63

5.2 Parsing the M & K Corpus : 65

5.2.1 Experimental Design : 65

5.2.2 Results : 66

5.3 Comparing to Connectionism : 69

x

5.4 A Database Query Domain : 71

Chapter 6 Experiments with Syntactic Parsing 74

6.1 Producing Syntactic Analyses : 74

6.1.1 The ATIS Corpus : 74

6.1.2 Using Chill for Syntactic Analyses : : : : : : : : : : : : : : : 76

6.2 Intial Experiments : 77

6.2.1 Experimental Method : 78

6.2.2 Results : 79

6.3 Improving the Results : 83

6.3.1 Specializing the Operators : 83

6.3.2 Results : 84

6.4 The Control-Rule Advantage : 87

Chapter 7 Experiments with Database-Query Parsing 90

7.1 Motivation : 90

7.2 Overview : 92

7.3 The Query Language, Geoquery : 94

7.3.1 Basic Constructs in Geoquery : : : : : : : : : : : : : : : : : : 94

7.3.2 Meta-Predicates in Geoquery : : : : : : : : : : : : : : : : : : 95

7.3.3 Discussion : 98

7.4 A Parsing Framework for Logical Queries : : : : : : : : : : : : : : : : 99

7.4.1 Overview : 99

7.4.2 Parsing Operators and Transparency : : : : : : : : : : : : : : 102

7.4.3 Training and Testing : 109

7.4.4 Discussion : 112

7.5 Experimental Results : 114

7.5.1 Building a Corpus : 114

7.5.2 Experiments : 115

xi

7.5.3 Discussion : 117

Chapter 8 Related Work 119

8.1 Early Research on Language Acquisition : : : : : : : : : : : : : : : : 119

8.2 Language Acquisition as Control-Rule Learning : : : : : : : : : : : : 120

8.3 Statistical Corpus-Based NLP : 122

8.4 Related ILP Work : 124

Chapter 9 Directions for Future Research 126

9.1 Enhancing the Induction Algorithm : : : : : : : : : : : : : : : : : : : 126

9.2 Corpus Engineering : 128

9.3 Language-Oriented Biases : 129

9.4 Soft Failure : 130

9.5 Extending Learning to Other Problems : : : : : : : : : : : : : : : : : 131

Chapter 10 Conclusion 133

Appendix A A Generator for the M&K Corpus 136

Appendix B Example CHILL Output 141

Appendix C Example Trace of CHILLIN 144

Appendix D Geoquery Corpus Questionnaire 164

Appendix E The Geoquery Corpus 166

Bibliography 182

Vita 192

xii

Chapter 1

Introduction

Computer understanding of natural (human) languages is one of the oldest and most

enduring challenges in the �eld of arti�cial intelligence. Fundamental to the problem

of computer understanding is the ability to translate or parse natural language inputs

into an internalmeaning representation language (MRL) that is suitable for computer

manipulation.

Traditional work in natural language processing (NLP) has pursued a ration-

alist approach to the parsing problem, searching for perspicuous, rule-based repres-

entations of the knowledge required for language processing. Over time, a myriad

of frameworks, from augmented transition networks to uni�cation grammars, have

been proposed for representing and computing with linguistic knowledge. (Allen,

1995; Gazdar & Mellish, 1989). Certainly, great progress has been made in under-

standing the fundamental issues involved in natural language understanding. Modern

representations allow grammarians to model many aspects of language elegantly and

facilitate the construction of grammars for domain-speci�c language processing ap-

plications.

Despite progress, traditional NLP has not yet succeeded in producing ac-

curate, robust, broad-coverage systems for understanding English or other natural

languages. Even the construction of \sub-language" applications is di�cult and time-

1

consuming, yielding systems which are often ine�cient and incomplete. Additionally,

successful systems often have an ad hoc quality and porting to new domains requires

essentially starting from scratch. In short, NLP, as traditionally practiced, su�ers

from a \knowledge acquisition bottleneck." Partially in response to these di�culties,

there has been increasing recent interest in empirical approaches to natural language

processing.

1.1 Empirical NLP

The empirical alternative replaces hand-generated rules with models obtained auto-

matically by training over language corpora. Corpus-based methods may be used to

augment the knowledge of a traditional parser, for example by acquiring new case-

frames for verbs (Manning, 1993) or acquiring models to resolve lexical or attachment

ambiguities (Lehman, 1994; Hindle & Rooth, 1993). More radical approaches attempt

to replace the hand-crafted components altogether, extracting all required linguistic

knowledge directly from suitable corpora. The more ambitious tack will be the main

focus of this dissertation, but much of the discussion applies equally well to the more

piecemeal approaches.

Empirical methods e�ectively divide the building of natural language systems

into two tasks: annotation (corpus building), and acquisition. The �rst task, an-

notation, is the province of human experts (perhaps with mechanical help). They

must devise a training corpus which demonstrates the type of NL analysis that is

required. For example, if the desired system is a broad-coverage syntactic parser,

then the required corpus is a large sampling of text paired with the desired syntactic

parse trees. Such a corpus is sometimes called a treebank (Marcus, Santorini, & Mar-

cinkiewicz, 1993). Although some systems have used raw (not annotated) text for

language acquisition, those employing annotations have proved more powerful (Peri-

era & Schabes, 1992). The second task, acquisition, is a machine learning problem.

Given a suitable training corpus, learning algorithms are employed to automatically

2

construct a parser that can map subsequent inputs into the desired representation.

With such an approach, the human burden is on engineering useful representations,

relegating the di�cult issue of constructing a parser for such representations to the

acquisition system.

Following in the footsteps of speech recognition research, corpus-based natural

language processing has concentrated primarily on statistical techniques (Charniak,

1993) applied to such problems as part-of-speech tagging (Merialdo, 1994; Charniak,

Hendrickson, Jacobson, & Perkowitz, 1993) and the induction of stochastic context-

free grammars (Periera & Schabes, 1992) or transition networks (Miller, Bobrow,

Ingria, & Schwartz, 1994). These methods eschew traditional, symbolic parsing in

favor of statistical and probabilistic methods. Although several current methods learn

some symbolic structures such as decision trees (Black, Jelineck, La�erty, Magerman,

Mercer, & Roukos, 1993; Magerman, 1994) and transformations (Brill, 1993), stat-

istical methods dominate.

A common thread in all of these approaches is that the acquired knowledge

is represented in a propositional form (perhaps with associated probabilities). This

means for example, a decision about how to label a node in a parse tree is made by

considering a �xed set of properties (e.g., syntactic category) about a �xed context of

surrounding nodes (e.g., parent and immediate left sibling). The exact conditions of

the rule(s) are determined by the acquisition algorithm but the context over which the

rules are formed, and the exact properties whichmay be tested are determined a priori

by the designer of the acquisition system. In machine learning, such approaches are

often called feature-vector representations, as each decision context can be speci�ed

by a �nite vector of atomic values associated with the pre-chosen features of interest.

One might expect these simple, unstructured models to be e�ective with

speech, an essentially linear phenomenon. However, it is somewhat surprising they

they have been relatively successful in areas such as syntactic analysis which tradition-

ally entail the construction and manipulation of inde�nitely-large, highly-structured

3

representations. There are probably two contributing factors to this success. First,

the designers of such systems have invested considerable e�ort to simplify these prob-

lems by hand-crafting appropriate feature sets, and carefully identifying relevant,

�nite contexts over which learning occurs. Second, these systems may be trained

on huge corpora, achieving accuracy by guaranteeing consistency across a far greater

number of sentences than their hand-constructed, rationalist counterparts. The know-

ledge may be much more complete, even if the representation is not as powerful.

Indeed, the chief weakness of traditional NLP has been the di�culty of engineering

consistent grammars for large corpora.

This dissertation considers an empirical approach utilizing a structured know-

ledge representation. Relational representations have long been a tool of traditional

NLP. Virtually all of this work has utilized hand-crafted grammars, as suitable meth-

ods for automating the construction of relational knowledge bases had not yet been

developed. Now, however, a growing sub�eld of machine learning research called In-

ductive Logic Programming (ILP) addresses the problem of learning �rst-order logic

descriptions (Prolog programs) (Lavra�c & D�zeroski, 1994; Muggleton, 1992). Due

to the expressiveness of �rst-order logic, ILP methods can learn relational and re-

cursive concepts that cannot be represented in the feature-based languages assumed

by most machine-learning algorithms. ILP methods have successfully induced small

programs for sorting and list manipulation (Quinlan & Cameron-Jones, 1993) as well

as produced encouraging results on important applications such as predicting protein

secondary structure (Muggleton, King, & Sternberg, 1992). The research in this dis-

sertation attempts to bridge the gap between the rational and empirical approaches

to NLP by applying ILP to the problem of parser acquisition.

1.2 CHILL: An Empirical Parser Acquisition System

Chill (Constructive Heuristics Induction for Language Learning) is a general ap-

proach to the problem of inducing natural language parsers. The learning problem

4

<Sentence, Meaning>

Training
Examples

Learning
 System Parser

Sentence

Meaning

Figure 1.1: The Parser Acquisition Problem

addressed is depicted in Figure 1.1. Given a suitably annotated corpus, Chill pro-

duces a parser for mapping subsequent sentences into representations. Chill is

unique among empirical approaches to date, in that it takes a broad view of the

notion of parsing.

Strictly speaking, the term \parsing" is often used to indicate translation into

a form which makes explicit the syntactic structure of a sentence as a hierarchy of

labeled constituents. For example a sentence such as: \The man threw the ball"

might be bracketed into its constituent noun- and verb-phrase as [S [NPThe man] [V P

threw [NP the ball]]]. Sometimes only the hierarchy itself is considered, resulting in

unlabeled bracketings.

However, parsing in this narrow sense represents only a small part of the

understanding problem. In practice, natural language systems are usually concerned

with deeper, semantically-oriented issues. At a very minimum these systems need the

ability to identify important relationships such as who did what to whom. Typically,

such systems have employed more semantically oriented MRLs such as case-role rep-

resentation, which exposes the argument structure of an utterance. For example, the

sentence above might be parsed as: [threw, agent:[the man], patient:[the ball]], indic-

ating that there was an act of throwing performed by a man acting on a ball. Other

systems, especially those for database applications may parse sentences into logical

formswhich are manipulated by automated deduction algorithms. A simple �rst-order

predicate calculus representation might be: man(m1) ^ ball(b1) ^ threw(m1,b1).

5

Parsing in Chill is taken in the broader sense of translating input sentences

into whatever MRL is convenient for the application at hand. Chill has been used

to learn parsers for syntactic parses, case-role parses, and �rst-order logical forms.

This exibility to learn using di�erent representations is one of the major advantages

of the approach.

Chill achieves this exibility by treating parser induction as the problem of

learning rules to control the actions of a shift-reduce parser expressed as a Prolog

program. Control rules are induced utilizing a novel ILP algorithm that has been

developed to handle the issues arising in the control-rule domain. The induction al-

gorithm itself is a very general concept learning system that has been demonstrated on

a wide-range of benchmark ILP problems. Given the power of �rst-order rules, there is

less need to hand-engineer appropriate features and contexts over which Chill learns,

as is required in propositional systems. The induction algorithm can automatically

extract the relevant portions of structured contexts and construct new predicates to

represent novel syntactic and/or semantic word and phrase categories that are neces-

sary to perform accurate parsing. Parsers for alternative representations are learned

by simply substituting new parsing frameworks; the learning component itself remains

unchanged.

The Chill approach has been evaluated on a number of problems using both

arti�cial and real-world corpora. Chill has been demonstrated by learning case-role

parsers for arti�cial corpora previously used to demonstrate the language processing

abilities of arti�cial neural networks and by\reverse-engineering" a semantic gram-

mar for a much larger corpus represented in a database query system for tourist

information. Syntactic parse-tree parsers have been learned from an existing tree-

bank concerning air-travel information, a corpus that has been used to demonstrate

previous statistical and transformational acquisition methods. These experiments

demonstrate that Chill learns parsers as well or better than previous, propositional

approaches on comparable tasks. Finally,Chill has been used to engineer a complete

6

demonstration application, producing parsers that map questions concerning United

States geography directly into executable database queries. On this problem, which

goes beyond the scope of previous empirical systems, the learned parsers signi�cantly

outperform an existing hand-crafted system.

1.3 Organization of Dissertation

The rest of this dissertation details and discusses an initial implementation of Chill.

The next chapter provides background information situating this work in relation

to previous work in machine learning concerning control-rule learning and inductive

logic programming. Chapter 3 gives a detailed description of Chill by way of a

simple case-role parsing example. Chapter 4 presents the details of the ILP induction

algorithm used in Chill. Chapter 5 presents experimental results demonstrating

Chill's performance on case-role mapping tasks, while chapter 6 contains exper-

iments concerning parsing the ATIS corpus from the Penn Treebank. Chapter 7

discusses experiments using Chill to develop a prototype database query front-end.

Chapter 8 outlines closely related research. Chapter 9 discusses open questions and

directions for future research, while Chapter 10 presents conclusions.

7

Chapter 2

Background

As mentioned in the introduction, Chill is based on ideas from two sub�elds of ma-

chine learning: control-rule learning and inductive logic programming. This chapter

presents an introduction to some of the background research from these areas. The

prupose of this material is to place Chill in its proper perspective against the back-

ground of other work in machine learning, and to lay the technical foundations re-

quired to understand the presentation of Chill in the following chapters.

2.1 Control-Rule Learning

Many AI problems may be usefully formalized as some type of search problem.

However, weak search methods such as means-ends analysis are usually not su�cient

to render complex real-world problems solvable. The control-rule learning sub�eld of

machine learning addresses this shortcoming. The basic idea of control-rule learning

is that, through experience, a problem solving system may improve its performance

by discovering and using heuristics that suggest which search paths are likely to solve

new problem instances. Learned search-control knowledge may improve both the

e�ciency and accruacy of knowledge-based systems. E�ciency is improved by elim-

inating search paths that do not lead to solutions. Such control rules act as heuristics

8

to allow more e�cient search in future problems. Accuracy can be improved by learn-

ing control rules which prune the search along paths leading to incorrect solutions.

These control rules may be viewed as preconditions that were previously omitted

from the search operators. Adding these preconditions results in a more accurate

problem solver.

The learning of search-control knowledge has been investigated primarily in

the context of STRIPS-like planners (Minton, 1988) and forward-chaining production

systems (Mitchell, 1983; Langley, 1985; Laird, Rosenbloom, & Newell, 1986). The

basic inputs to a control-rule learning system are an initial search-based problem

solver, and a set of training problems. The output is an improved problem-solver.

The learning process may be broken down into three basic phases. In the �rst phase,

the training problems are solved with a version of the initial problem-solver. Since

the original solver is weak, it may require guidance to solve the training problems.

This guidance might come in the form of providing a solution path to the system,

or perhaps providing a correct solution, from which a solution path can be inferred.

With this solution path in hand, the learning system analyzes those places where the

search process of the problem solver would have been led down erroneous paths. For

each decision-point, the context of the decision is saved as a positive control-example

for the option that lies on the solution path. This same context serves as a negative

control-example for options which deviate from the solution path.

Once the system has uncovered positive and negative control examples for a

given option, it must construct control-rules which characterize the correct option

for any given decision point. A control-rule is a kind of heuristic that can be used

to select the most useful option given the current context of a particular decision.

Some systems learn control rules by using inductive (Simliarity Based Learning, or

SBL) methods (Mitchell, Utgo�, & Banerji, 1983). An SBL learner would look at

the postive and negative control examples for a given option, call it X, and attempt

to induce a de�ntion of the concept such as \contexts in which X is useful." This

9

concept would cover the positive control examples for option X, but not the negative

ones. An alternative approach is to use analytic (Explanation Based Learning, or

EBL) methods (Mitchell, Keller, & Kedar-Cabelli, 1986; DeJong & Mooney, 1986).

An EBL learner would analyze positive control examples in the context of a trace of

the problem-solver to extract the speci�c features which contributed to the example's

success. Some systems have employed a combination of SBL and EBL to learn control-

rules (Mitchell, 1984; Cohen, 1990; Zelle & Mooney, 1993a).

In the �nal phase, the learned control rules must be integrated with the ini-

tial problem solver to produce an enhanced system. Intuitively, this means adding

an evaluation at each decision point to select which option (or options) should be

followed-up, based on the learned control-rules.

2.1.1 Learning Search-Control in Logic Programs

Some recent research has investigated the learning of search-control heuristics to

improve the e�ciency of problem solvers implemented as logic programs (Cohen,

1990; Zelle & Mooney, 1993a). A logic program is expressed using the de�nite clause

subset of �rst-order logic. A de�nite clause is a disjunction of literals having exactly

one unnegated literal, called the head. The negated literals comprise the clause body.

Computation in logic programs is performed using a resolution proof strategy on an

existentially quanti�ed goal.

Taking an example from Zelle and Mooney (1993a), a program to sort lists

might be expressed as a collection of de�nite clauses comprising a logical de�nition

of the two-place predicate, sort. A goal of the form sort(X,Y) is taken to be

true exactly when Y is a sorted version of the list represented by X. One possible

de�ntion for this predicate is shown in Figure 2.1. When using a logic program to do

computation, the arguments of the top-level goal are typically partitioned into input

and output argument sets. The program is executed by providing a goal which has its

input arguments instantiated. A theorem prover contructively proves the existence of

10

sort(X,Y) :- permutation(X,Y), ordered(Y).

permutation([],[]).

permutation([X|Xs],Ys) :- permutation(Xs,Ys1), insert(X,Ys1,Ys).

insert(X,Xs,[X|Xs]).

insert(X,[Y|Ys],[Y|Ys1]) :- insert(X,Ys,Ys1).

ordered([]).

ordered([X]).

ordered([X,Y|Ys]) :- X =< Y, ordered([Y|Ys]).

Figure 2.1: Sorting Program

a goal meeting these constraints and produces bindings for the output arguments. In

the sorting example, the �rst argumentmay be considered an input, and the second an

output. Given the de�nition of sort shown, proving the goal sort([9,1,5,3,4],Y)

produces the output binding: Y = [1,3,4,5,9].

Prolog provides a particular implementation of logic programming using a

very simple search strategy. Proofs are attempted by trying clauses in a depth-�rst

fashion with simple (chronological) backtracking. Multiple solutions may be found

for a given goal by asking the prover to backtrack and �nd alternative bindings for

the output arguments. The notion of search-control in a Prolog program can be

viewed as a clause selection problem (Cohen, 1990). Clause selection is the process

of deciding which of several applicable program clauses should be used to reduce

a particular subgoal during the course of a proof. If program clauses are always

applied appropriately, the program executes deterministically (without backtracking)

and produces only correct solutions.

In the sorting program shown, the default Prolog search strategy results in a

very ine�cient sorting algorithm. The program generates all possible permutations

of the input list until one is found that happens to be in order. Permutations of a

list are generated by �rst permuting the tail of the list and then inserting the head

11

Table 2.1: Examples of useful insert 1 from sort([9,1,5,3,4],X)

Positives Negatives
insert(9,[],A) insert(9,[5],A)

insert(1,[3,4,5],A) insert(9,[4,5],A)

insert(5,[],A) insert(9,[3,4,5],A)

insert(3,[4],A) insert(9,[1,3,4,5],A)

insert(4,[],A) insert(5,[4],A)

insert(5,[3,4],A)

of the list somewhere in the permuted tail. Notice that the only choice point in this

program occurs in the de�nition of insert/2.1 Any insert/2 subgoal with a non-

empty second argument will match with either clause of the de�nition. Prolog always

applies the �rst clause and only revises that choice upon backtracking caused by the

�nal list not meeting the ordered/1 condition.

The Dolphin system (Zelle & Mooney, 1993a) can automatically transform

this O(n!) sorting algorithm into one which runs in O(n2) time by learning from

a single top-level example. Table 2.1 shows some control examples characterizing

the usefulness of the �rst clause of insert; these control examples are generated by

analyzing a trace of the program solving the goal sort([9,1,5,3,4],X). The positive

control examples are subgoals to which the �rst clause of insert/2 was applied in

the found proof. The negative examples represent subgoals for which the �rst clause

was initially tried but later backtracked over in favor of the second clause. Dolphin,

which uses a combination of SBL and EBL methods, learns a two-clause control-rule

for this concept:

useful insert 1(insert(A,[],[A])) true

useful insert 1(insert(A,[BjC],[A,BjC]) A =< B

These rules indicate that the �rst clause of insert should be used to insert into an

empty list, or into a list having a �rst element that is larger than the item to be

inserted. Incorporating these control clauses in the original program produces an im-

1We use the standard notation hnamei/hnumberi to indicate the name and arity (number of
arguments) for a predicate.

12

insert(A, B, [A|B]) :- useful_insert_1(A,B,[A|B]).

insert(A, [B|C], [B|D]) :- insert(A, C, D).

useful_insert_1(A, [], [A]).

useful_insert_1(A, [B|C], [A,B|C]) :- A =< B.

Figure 2.2: Improved Insert Predicate

proved version of insert shown in Figure 2.2. Using this version of insert/2, causes

permutation/2 to produce only ordered lists. Executing the improved program un-

der the Prolog search strategy produces a version of the insertion sort algorithm,

resulting in a dramatic improvement in program e�ciency.

The control-rule learning framework of Chill is very similar to that of Dol-

phin. Chill learns rules to control the behavior of a shift-reduce parser expressed

as a Prolog program. A major di�erence, however, is that Chill learns control-rules

to improve the accuracy of the parser, rather than e�ciency per se. However, early

pruning of inappropriate paths also leads to very e�cient parsers. Another di�erence

is that Chill uses a purely inductive algorithm to learn control rules, although both

systems make extensive use of ILP.

2.2 Inductive Logic Programming

2.2.1 The ILP Problem

ILP research considers the problem of inducing a �rst-order, de�nite-clause logic

program from a set of examples and given background knowledge. As such, it stands

at the intersection of the traditional �elds of machine learning and logic programming.

As an example ILP task, consider learning the concept of list membership. The

input to the learning system consists of a number of positive and negative instances

of the predicate, member/2. Some positive instances might be: member(1, [1,2]),

member(2, [1,2]), member(1,[3,1]), etc. While instances such as member(1,[]),

13

member(2,[1,3]), would serve as negative examples. Additional information is

provided in the form background relations in terms of which the desired concept

is to be learned. In the case of list membership, this information might include a

de�nition of the concept, components/3 which decomposes a list into its component

head and tail. This type of \constructor" predicate is typically used, as many ILP

systems learn function-free clauses; using components/3 eliminates the need for list

constructions (e.g. [XjY]) within learned clauses. Given this input, an ILP system at-

tempts to construct a concept de�nition which entails the positive training examples,

but not the negatives. In this case, we hope to learn the correct de�nition of member,

namely:

member(X, List) :- components(List, X, Tail).

member(X, List) :- components(List, Head, Tail),

member(X, Tail).

ILP research has clustered around two basic induction methods, top-down and

bottom-up. Each of these approaches has it's strengths and weaknesses; the induction

algorithm employed in Chill attempts to draw on the strengths of both.

2.2.2 Top-Down ILP Algorithms

Top-down ILP algorithms learn program clauses by searching a space of possible

clauses from general to speci�c in a manner analogous to traditional machine-learning

approaches for inducing decision trees. Perhaps the best-known example is Quinlan's

Foil (Quinlan, 1990; Cameron-Jones & Quinlan, 1994) which uses an information

heuristic to guide search through the space of possible program clauses.

Foil learns a program one clause at a time using a greedy-covering algorithm

summarized in Figure 2.3. A clause is said to cover an example if the head of the

clause can be uni�ed with the example, and the body of the clause is subsequently

provable with the background relations. Foil continues to learn clauses until all of

the positive examples have been covered.

14

Let positives-to-cover = positive examples.

While positives-to-cover is not empty

Find a clause, C, that covers a preferably large subset of positives-to-cover
but covers no negative examples.

Add C to the developing de�nition.

Remove examples covered by C from positives-to-cover.

Figure 2.3: The Foil Covering Algorithm

The \�nd a clause" step is implemented by a general-to-speci�c hill-climbing

search that adds antecedents to the developing clause one at a time. At each step,

it evaluates possible literals that might be added and selects one that maximizes an

information-gain heuristic based on the sets of positive and negative tuples covered by

the clause. A tuple is simply an instantiation of the variables appearing in the clause

when it is used to cover an example. A single example may give rise to multiple tuples

if there are distinct proofs of the example producing di�erent variable bindings.

Foil considers adding literals for all possible variablizations of each predicate

as long as at least one of the arguments is an existing variable bound by the head or

a previous literal in the body. Literals are evaluated based on the number of positive

and negative tuples covered, preferring literals that cover many positives and few

negatives. Let T be the set of tuples covered by a clause, and T 0 the tuples overed

after extending the clause with a literal, L. Let T+ denote the number of positive

tuples in the set T and de�ne:

I(T) = � log2(T+=jT j): (2.1)

The chosen literal is then the one that maximizes:

gain(L) = s � (I(T)� I(T 0)); (2.2)

where s is the number of of tuples in T that have extensions in T 0 (i.e. the number

of current positive tuples covered by L).

15

As an illustration, consider learning the concept of member/2. Initially, positives-

to-cover contains all of the positive examples provided of list membership. Foil

starts with the most general clause: member(A,B) :- true. This clause covers all

of the positive and negative examples; Foil will attempt to make it more speci�c

by adding literals. Since the only background predicate provided is components/3,

Foil evaluates all possible literals which can be formed from this predicate and

also recursive literals using member/2. The possible literals for components take

the form: components(A, C, D), components(B, C, D), components(A, B, C),

components(B, A, C), etc. There are 26 unique variablizations to try for this predic-

ate. It is obvious that the literal, components(B, A, C) will show positive gain, since

it covers a number of positive examples (those asserting membership of the �rst ele-

ment of a list) and covers no negative examples. Hence, this literal may be chosen to

generate the clause, member(A,B) :- components(B, A, C). Since the clause covers

no negative examples, it is complete. Foil then uses this as the �rst clause of the

learned de�nition, and the covered examples are removed from positives-to-cover.

In the next iteration,Foil again starts with the clause, member(A,B) :- true

and examines all possible next literals. The previously chosen literal, components(B,

A, C), will have no gain since there are no longer any examples in positives-to-

cover which it can cover. However, components(B,C,D) will have some positive

gain. This gain comes from the fact that all positive examples must have a non-

empty list for B, but some of the negative examples will have empty lists or per-

haps non-lists in the second argument position. Hence, the literal covers all of the

positives, but excludes some of the negatives. Choosing this literal produces the

clause, member(A,B) :- components(B,C,D). Clearly this clause might still cover

many negative examples (e.g. member(1,[2])); Foil will continue to add literals.

Adding the literal member(A,C) makes the clause consistent with all examples in

positives-to-cover and excludes any negative examples. At this point, the desired

two-clause de�nition has been learned.

16

Foil also includes many additional features such as: heuristics for pruning

the space of literals searched, methods for including equality, negation as failure, and

useful literals that do not immediately provide gain (determinate literals), pre-pruning

and post-pruning of clauses to prevent over-�tting, and methods for ensuring that

induced programs will terminate. The papers referenced above should be consulted

for details on these and other features.

2.2.3 Bottom-Up ILP Algorithms

Bottom-up methods search for program clauses by starting with very speci�c clauses

and attempting to generalize them. In logic programs, general clauses may be used to

prove speci�c consequences through resolution theorem proving. Bottom-up induction

inverts the resolution process to derive general clauses from speci�c consequences.

The overall e�ect is a compression of the concept de�nition, replacing many speci�c

instances with a few general clauses from which the instances can be derived. A

successful representative of this class is Muggleton and Feng's Golem (Muggleton &

Feng, 1992).

Like Foil,Golem may be viewed as a greedy covering algorithm, except that

new clauses are hypothesized by considering least-general generalizations (LGGs) of

more speci�c clauses (Plotkin, 1970). The LGG of clauses C1 and C2 is the least

general clause which subsumes both C1 and C2. An LGG is easily computed by

\matching" compatible literals of the clauses; wherever the literals have di�ering

structure, the LGG contains a variable. When identical pairings of di�ering structures

occurs, the same variable is used for the pair in all locations.

For example, consider two speci�c clauses concerning the concept uncle in

the context of some known familial relationships:

uncle(john,deb) :-

sib(john,ron), sib(john,dave),

parent(ron,deb), parent(ron,ben),

male(john), male(dave), female(deb).

17

uncle(bill,jay):-

sib(bill,bruce)

parent(bruce,jay), parent(bruce,rach),

male(bill), male(jay).

The LGG of these clauses yields the rather complicated result:

uncle(A,B):-

sib(A,C), sib(A,D),

parent(C,B), parent(C,E), parent(C,F), parent(C,E)

male(A), male(G), male(H), male(I).

Here A replaces the pair hjohn,billi, B replaces hdeb,jayi, C replaces hron,brucei,
etc.

Note that the result contains four parent literals (two of which are duplicates)

corresponding to the four ways of matching the pairs of parent literals from the

original clauses. Similarly, there are four literals for male. In the worst case, the

result of an LGG operation may contain n2 literals for two input clauses of length

n. The example LGG contains no female literal since the second clause does not

contain a compatible literal. Straightforward simpli�cation of the result by removing

redundant literals yields:

uncle(A,B):-

sib(A,C) parent(C,B), male(A).

This is one of the two clauses de�ning the general concept, uncle/2.

Golem produces candidate clauses by considering Relative LGGs (RLGGS)

of positive examples with respect to the background knowledge. A positive example,

E, is represented by the clause: E :- hevery ground facti where hevery ground

facti is a conjunction of all true ground literals which can be derived from the

background relations. In the case of member/2, this would include facts such as

components([1],1,[]), components([1,2],1,[2]), components([2],2,[]), etc.

Of course, interesting background relations will give rise to an in�nite number of such

facts. Golem uses a �nite subset corresponding to the facts which can be derived

18

Let Pairs = random sampling of pairs of positive examples

Let RLggs = fC :he; e0i 2Pairs and C = RLGG(e; e0) and C consistentg
Let S be the set of the pair fe; e0g with best cover RLgg in RLggs
Do

Let Examples be a random sampling of positive examples

Let RLggs = fC: e0 2 Examples and C = RLGG(S
S
e0)) and C consistentg

Find e0 = which produces greatest cover in RLggs
Let S = S

S
e0

Let Examples = Examples � cover(RLGG(S))
While increasing-cover

Figure 2.4: The Golem Clause Construction Algorithm

through a �xed number of binary resolutions. The RLGG of two examples is simply

the LGG of the examples' representative clauses.

The greedy clause construction algorithm of Golem is shown in Figure 2.4.

Golem starts by taking a sampling of RLGGs of pairs of uncovered positive examples.

The RLGG that covers the most positive examples without covering any negatives

is then further generalized through RLGG with other random samplings of positive

examples. The process terminates when all subsequent RLGGs fail to cover more

examples consistently (i.e. without covering negative examples).

Like Foil,Golem includes a number of �ltering and clause{pruning heuristics

to make the search process more e�cient. The referenced paper describes these

enhancements.

19

Chapter 3

Parser Induction with CHILL

The easiest way to understand the parser acquisition process in Chill is to consider

a concrete example. This chapter details the operation of Chill by way of a simple

case-role mapping problem that has been previously used to demonstrate certain

language processing abilities of arti�cial neural networks (McClelland & Kawamoto,

1986; Miikkulainen & Dyer, 1991; Miikkulainen, 1993).

3.1 Overview

As described in the introduction, Chill treats parser acquisition as a control-rule

learning problem within a logic program that implements a suitable parser. The

parsers learned by Chill are based on basic a mechanism known as deterministic

shift-reduce parsing.

3.1.1 Shift-Reduce Parsing

The idea of shift-reduce parsing originates from the well-known equivalence between

the languages described by context-free grammars and languages recognized by push-

down automata. A shift-reduce parser uses two data structures: an input bu�er

to store words of a sentence that have not yet been examined, and a stack which

20

stores information concerning sentence constituents that have been recognized so

far. Initially, the stack is empty, and the input bu�er contains all of the words of

a sentence to be processed. Parsing proceeds by applying a sequence of shift and

reduce operations. A shift operation removes some items from the input bu�er and

pushes a corresponding item on the top of the stack, while a reduce operation pops

one or more elements from the top of the stack and replaces them with a new element.

A \recognizer" for the language of a particular context-free grammar (CFG)

is produced by translating each production of the grammar into a suitable parsing

operator. For example, a production of the form S ! NP V P is implemented as

an operator which pops V P followed by NP from the stack and pushes S in their

place. Productions which introduce terminal symbols (words) may be implemented

either by unary reduction operators, or by shift operators which remove a word (or

phrase) from the input bu�er and push the corresponding category onto the stack.

For example, DET ! the becomes an operator to remove the word, \the" from the

input bu�er and push DET on the stack. A sentence is \recognized" by the parser

if there is some sequence of operations which takes the parser from its initial state to

a �nal state where the stack contains a single item representing the start-symbol for

the CFG and the input bu�er is empty.

The notion of a shift-reduce recognizer may be generalized to a shift-reduce

parser (in the broad sense described in Section 1.2) by allowing the parsing operators

to employ structured representations as stack items. These stack items represent

pieces of the evolving structure, and reduce operations combine various pieces to form

larger structures. The result is translator from input sentences into MRL expressions.

In essence, a shift-reduce parser may be regarded as the operationalization of a phrase-

structure grammar augmented with operations for building meaning representations.

Notice that the process of parsing a sentence is a search problem. The parser

must �nd a sequence of operators that transforms the initial state into a �nal rep-

resentation. A parser that never retracts (backtracks over) an operator once it has

21

been applied is said to be deterministic (Marcus, 1980). Of course, natural languages

are rife with ambiguities: lexical-class ambiguity, attachment ambiguity, semantic

ambiguity, pronominal reference, etc. Given these ambiguities, choosing the correct

operator to apply at any given point during parsing requires a great deal of know-

ledge, from information about syntax, to domain-speci�c world-knowledge. It is this

knowledge that must be encoded into the search-control rules learned by Chill.

Although Chill produces deterministic parsers, this does not mean that the

resulting parsers are incapable of producing multiple analyses for a single sentence.

It may well be that a sentence in its given context is truly ambiguous and admits

multiple analyses. In this case, additional analyses may be found by backtracking.

The crucial point is that each applied operator leads to a correct analysis of the

sentence.

In principle, the general mechanisms of Chill could be used in conjunction

with any parsing mechanism suitably encoded as a logic program. However, de-

terministic shift-reduce parsing is a very attractive choice for a number of reasons.

First, it is one of the simplest, most constrained mechanisms that has promise for

parsing signi�cant portions of English (Marcus, 1980; Tomita, 1986). Second, it �ts

very well with the overall architecture of acquisition as control-rule learning. Cre-

ating a deterministic parser is basically an exercise in identifying relevant control

rules. Third, the resulting parsers are very e�cient, increasing their potential utility

for general NLP applications. Finally, the mechanism provides a principled control-

structure that is representation neutral. Di�erent styles of analysis may be produced

by simply inserting di�erent parsing operators. Nevertheless, certain general prop-

erties of language processing such as left-to-right scanning and compositionality are

always maintained.

22

Final

Example
Analysis

Control
Rule

Induction

Program
Specialization

Training
Examples

Control Examples

Control

Rules

Overly−General
 Parser

 Parsing
 Operator
Generator

Parser

<Sentence, Representation>

Prolog

Prolog

Figure 3.1: The Chill Architecture

3.1.2 The Chill Architecture

Figure 3.1 shows the basic components of Chill. The input is a set of training

instances consisting of sentences paired with the desired parses. The output is a

deterministic shift-reduce parser in Prolog which maps sentences into parses. Dur-

ing Parser Operator Generation, the training examples are analyzed to formulate an

overly-general shift-reduce parser that is capable of producing parses from sentences.

The initial parser is overly-general in that it produces a great many spurious analyses

for any given input sentence. In Example Analysis, the training examples are parsed

using the overly-general parser to extract contexts in which the various parsing op-

erators should and should not be employed. Control-Rule Induction then employs

a general ILP algorithm to learn rules that characterize these contexts. Finally,

Program Specialization \folds" the learned control-rules back into the overly-general

23

parser to produce the �nal parser.

The architecture shown here makes no commitment regarding the type of ana-

lysis which the learned parser is expected to produce. One of the strengths of Chill

is the ease with which it may be adapted for use with di�ering analyses. In theory,

Chill can learn parsers for any representation framework that meets certain tech-

nical criteria, namely operator transparency, derivation transparency, and training

tractability. Operator transparency means that a set of operators su�cient to parse

the training examples is inferable from the structure of the examples themselves.

Derivation transparency requires the ability to determine the correct sequence of op-

erator applications required to parse any given training example. Finally, tractability

requires that the training examples are parsable in a \reasonable" time-frame. The

following sections explain these criteria and the details of Chill in the context of

case-role mapping.

3.2 An Example Framework: Case-Role Mapping

3.2.1 The Mapping Problem

Among the most common meaning-representation languages for natural language sys-

tems are various incarnations of case-role analysis. Traditional case theory (Fillmore,

1968) decomposes a sentence into a proposition represented by the main verb and vari-

ous arguments such as agent, patient, and instrument, represented by noun phrases.

The basic mapping problem is to decide which sentence constituents �ll which roles.

Though case analysis is only a part of the overall task of sentence interpretation, the

problem is nontrivial even in simple sentences.

Consider these sentence/case-analysis examples from McClelland and Kawa-

moto (1986):

1. The boy hit the window. [hit agt:boy pat:window]

2. The hammer hit the window. [hit inst:hammer pat:window]

24

3. The hammer moved. [moved pat:hammer]

4. The boy ate the pasta with the cheese. [ate agt:boy

pat:[pasta accomp:cheese]]

5. The boy ate the pasta with the fork. [ate agt:boy pat:pasta inst:fork]

In the �rst sentence, the subject, boy, is an agent. In the second, the subject, hammer,

is an instrument. The role played by the subject must be determined on the grounds

that boys are animate and hammers are not. In the third sentence, the subject,

hammer, is interpreted as a patient, illustrating the importance of the relationship

between the surface subject and the verb. In the last two sentences, the prepositional

phrase could be attached to the verb (making fork an instrument of ate) or the

object (cheese is an accompaniment of pasta). Domain-speci�c semantic knowledge

is required to make the correct assignment. Obviously, the case-role assignment task

is a di�cult one, requiring many sources of knowledge, both syntactic and semantic.

3.2.2 Shift-Reduce Case-Role Parsing

Chill adopts a simple shift-reduce framework for case-role mapping similar to that

used by Simmons and Yu (1992). The parsing process is best illustrated by way of

example. Consider the sentence: \The man ate the pasta." Parsing begins with an

empty stack and an input bu�er containing the entire sentence. At each step of the

parse, either a word is shifted from the front of the input bu�er onto the stack, or the

top two elements on the stack are popped and combined via some case-role to form a

new element which is pushed back onto the stack. The sequence of actions and stack

states for the example sentence is shown in Figure 3.2. The action notation (x label),

indicates that the top two stack items are combined via the role, label, with the item

from stack position, x, being the head.

It is easy to see how this constrained frameworkmeets the criterion of operator

transparency. Any given training example requires a structure-building reduce action

for each unique case-role that appears in the analysis. The set of actions required to

25

Action Stack Contents
[]

(shift) [the]
(shift) [man, the]
(1 det) [[man, det:the]]
(shift) [ate, [man, det:the]]
(1 agt) [[ate, agt:[man, det:the]]]
(shift) [the, [ate, agt:[man, det:the]]]
(shift) [pasta, the, [ate, agt:[man, det:the]]]
(1 det) [[pasta, det:the], [ate, agt:[man, det:the]]]
(2 obj) [[ate, obj:[pasta, det:the], agt:[man, det:the]]]

Figure 3.2: Shift-Reduce Parsing of \The man ate the pasta."

produce a set of analyses is just the union of the actions required for each individual

analysis.

The second criterion, derivation transparency, is not quite as obvious. The

notion of the \correct" operator sequence is somewhat slippery since there may be

many potential sequences of operator applications which produce the correct parse

as a �nal result. For example, the sentence above could have been parsed by �rst

shifting every word in the sentence onto the stack and then performing the necessary

reductions. This is analogous to distinctions between leftmost and rightmost deriva-

tions in parsing context-free grammars. It is not critical which derivation sequence is

chosen, but it is imperative that the derivations be consistent so that similar examples

are all parsed in a similar way. This is most easily guaranteed operationally. When

searching for a successful parse, the operators are ordered to favor a certain type of

derivation; the �rst derivation found is then considered to be the correct sequence for

that example. More concretely, if reduce operators are always preferred over a shift,

parsing will follow an opportunistic derivation which minimizes stack growth.

The third criterion, training tractability, is assured during Example Analysis,

which will be discussed in Section 3.3.2.

26

3.3 The Phases of Chill

3.3.1 Parsing Operator Generation

A shift-reduce parser for this representation is easily encoded as a logic program.

The state of the parse is reected by the contents of the stack and input bu�er. Each

distinct parsing action becomes an operator that takes the current stack and input

and produces new ones. Figure 3.3 shows an overly-general program su�cient to

parse the above example. The parse/2 predicate takes a list of words represent-

ing a sentence and returns a case structure. The parse/4 predicate maps a stack

and input bu�er in its �rst two arguments into a new stack and bu�er in the third

and fourth arguments. The mapping is performed by zero or more applications of

simple actions represented by op/4. For example, the �rst clause of op/4 imple-

ments the (1 agt) action. The reduce/4 predicate simply attaches a value to a head

via some label to produce a new structure; it is used to allow for \bare" heads

as case �llers. Thus, it handles cases such as reduce(man,det,the,NewTop) and

reduce([ate,agt:[man,det:the]],patient,[pasta,det:the],NewTop)).

Extending the program to parse further examples is accomplished by adding

additional clauses to the op/4 predicate. However, knowing that a role, say \agt"

is used in the analysis does not indicate which of the two possible operators, (1

agt) and (2 agt) is actually needed. During operator generation, both are added

to the overly-general parser; thus insuring a su�cient set of operators for parsing

the training examples. Any unnecessary operator clauses will be removed from the

program during the subsequent specialization process.

Notice that each speci�c parsing operator has been encoded as a single clause

in the overly-general parser. Learning control information to render this parser de-

terministic requires learning clause-selection heuristics for the op/4 predicate. Thus,

we are faced with exactly the control-rule learning problem which was outlined in

Section 2.1.1.

27

parse(S, Parse) :- parse([], S, [Parse], []).

parse(Stack, Input, Stack, Input).

parse(Stack0, In0, Stack, In) :-

op(Stack0, In0, Stack1, In1), parse(Stack1, In1, Stack, In).

op([Top,Second|Rest],In,[NewTop|Rest],In) :-

reduce(Top,agt,Second,NewTop).

op([Top,Second|Rest],In,[NewTop|Rest],In) :-

reduce(Top,det,Second,NewTop).

op([Top,Second|Rest],In,[NewTop|Rest],In) :-

reduce(Second,obj,Top,NewTop).

op(Stack,[Word|Words],[Word|Stack],Words). % Shift operation.

reduce([Head|Slots],Role,Filler,[Head,Role:Filler|Slots]) :- !.

reduce(BareHead,Role,Filler,Result) :-

reduce([BareHead],Role,Filler,Result).

Figure 3.3: Overly-General Parser for \The man ate the pasta."

3.3.2 Example Analysis

The overly-general parser produces a great many spurious analyses for the training

sentences because there are no conditions specifying when it is appropriate to use

the various operators. Intuitively, we need to somehow classify the context in which

each operator is actually useful. Clearly, the information necessary for choosing an

operator must reside in the state of the parser; at any given point, an examination of

the contents of the stack and the remaining sentence should determine the appropriate

course of action.

Chill will specialize the parser by including control heuristics that guide the

application of operator clauses. For each clause of op/4,Chill constructs a de�nition

of the concept \subgoals for which this clause is useful." The de�nition of this concept

comprises a set of clauses which examine the stack and input bu�er and are satis�ed

by exactly those states to which the given operator should be applied. The job of

28

example analysis is to construct sets of positive and negative control examples from

which the appropriate control rules can be subsequently induced.

A control example is a \snapshot" of the subgoal to which a particular operator

clause may be applied in the course of parsing an example. For a given operator,

positive control examples represent parse states to which the operator should be

applied. Examples of correct operator applications are generated by �nding the �rst

correct parsing of each training pair with the overly-general parser; any subgoal

to which an operator is applied in this successful parse becomes a positive control

example for that operator.

The extraction of negative control examples (subgoals to which an operator

should not be applied) is performed under the assumption that the training corpus

is output complete. This means that the set of training examples includes a pair for

every correct parsing for each unique sentence appearing in the set. In other words,

if a sentence used in training is to be treated as having N di�erent readings, then

that sentence must appear N times in the training set, paired once with each possible

representation. Whether sentences should be allowed to have multiple parses is up to

the NLP system designer. If only the single, best parsing is preferred, then only one

pair per sentence should be provided. If, however, it is desired that the system be

able to produce multiple parsings for a given sentence, output completeness dictates

that all readings of the training sentences must be included in the training set.

The set of positive control examples along with the assumption of output

completeness implicitly de�nes a set of negative control examples. Knowing the set

of clauses which should be applied to a given subgoal identi�es other clauses as

those that should not be applied. The exact mechanism for generation of negative

control examples is dependent on whether the �nal parser is intended to produce

multiple parses. For parsers returning only a single parse, the positive examples for

a given operator clause are considered negative examples for all prior clauses which

do not have the same positive example. Since only one solution is being computed,

29

subsequent clauses will not have a chance to match against this particular subgoal,

and it need not be included in their negative example sets.

For multiple-output parsers, a positive example for one clause is considered

a negative example for all matching clauses that do not also have that subgoal as

a positive example. This is necessary because subsequent clauses may be matched

against this subgoal when backtracking for more solutions. These subsequent clauses

should not be applied unless they lead to a correct alternative parse (in which case

they will also have this subgoal as a positive control example extracted from the proof

of a di�erent training pair).

For the (1 agt) clause of op/4 and the example sentence,\the man ate the

pasta," Example Analysis would extract the single positive control example:

op([ate,[man,det:the]],[the,pasta],A,B). This is the only subgoal to which

the (1 agt) reduction is applied in the correct parsing of the sentence. Notice that A

and B are uninstantiated variables since they are outputs from the op/4 clause and are

not yet bound at the time the clause is being applied. Allowing for multiple parses,

all contexts where the �rst clause of op/4 were not applied would become negative

control examples. Thus, the following negative control examples would be generated

for this operator:

op([man,the],[ate,the,pasta], A, B)

op([the,[ate,agt:[man,det:the]]], [pasta], A,B)

op([pasta,the],[ate,agt:[man,det:the]], [], A, B)

op([pasta,det:the],[ate,agt:[man,det:the]], [], A, B)

Note that there are other parse states such as op([],[the,man,ate,the,pasta],

A, B) which do not appear in this list. This is because the (1 agt) clause of op/4

requires that its �rst argument be a list containing at least two items. Since the clause

cannot match these other subgoals, they will not be included as negative examples.

If only a single parsing of each sentence was desired, the set of negative control

examples might be smaller. For example, the operator op([man,the],[ate, the,

30

pasta], A, B) is a positive control example for the clause implementing the (1 det)

action. If this clause occurred before the (1 agt) clause, then this control example

would not appear as a negative example for the latter. If the (1 agt) clause were the

last operator, it would have no negative control examples at all, and it would serve

as a \default" operator when none of the prior clauses applied.

Example analysis is actually slightly more complicated than so far described.

The overly-general parser as shown above, even when presented with training ex-

amples (which have instantiated outputs) will take an exponential amount of time to

�nd the correct parse. Executing this speci�cation as a standard Prolog program res-

ults in a search through all operator sequences of length 0, 1, 2, etc., until a sequence

is found which produces the given parse. In order to insure training tractability,

a modi�ed version of the overly-general parser is used. This modi�ed version em-

ploys intermediate checks on the state of the parse to immediately reject those that

are obviously inconsistent with the �nal parse. The required sophistication of the

intermediate checks depends on how long one is willing to wait for a parse of the

training examples. For straight-forward case analyses, Chill simply checks that any

reduction operation produces a constituent which appears in the �nal result. While

this check does not guarantee that incorrect paths will not be tried, it is su�cient to

render the time required for example analysis insigni�cant compared to that required

for subsequent phases of the acquisition process, notably control-rule induction.

Devising a consistency checking scheme to insure training tractability may

sometimes require some ingenuity. Indeed, designing an appropriate checking scheme

was one of the most di�cult tasks in producing the database query analyses which

are the subject of Chapter 7. However, it does not seem to be a severe constraint

on the applicability of Chill. The tractability of verifying a parse as opposed to

�nding one is somewhat analogous to the ease with which a proof may be veri�ed,

even though constructing one from scratch is often intractable.

31

3.3.3 Control-Rule Induction

Once sets of positive and negative control examples have been extracted, the task

of the induction component is to generate a de�nite-clause concept de�nition which

covers the positive examples, but not the negative. This NLP task puts several

demands on an ILP algorithm. First, the algorithm must deal gracefully with highly

structured examples; the resulting rules are operating over arbitrarily large parse

states. Second, the algorithm must be able to invent new predicates to make the

distinctions that are necessary for accurate parsing in realistic domains. Experience

suggests that it is unlikely a hand-crafted feature set will be complete enough on

its own. Finally, the algorithm must be e�cient enough to deal with thousands of

examples. A single sentence gives rise to many control examples over which induction

is performed. Furthermore, each parsing operator gives rise to a control-rule induction

problem. Acquiring a parser over a corpus of even several hundred sentences gives

rise to dozens of induction problems over hundreds or thousands of examples.

A major contribution of this research is Chill's novel ILP algorithm which

combines elements of both top-down and bottom-up methods introduced in Sec-

tion 2.2. Rules are initially generated by forming LGGs of clause pairs. Overly-

general rules are then specialized by the addition of literals. In addition, the algorithm

includes demand-driven predicate invention which allows it to create new concepts

when necessary to discriminate the positive and negative examples. The details of

the algorithm will be taken up in the next chapter, for now we'll concentrate on the

results of the induction.

Given our example, a control rule that might be learned for the (1 agt) reduc-

tion is:

op([X,[Y,det:the]], [the|Z], A, B) :-

animate(Y).

animate(man). animate(boy). animate(girl)

Here the system has invented a new predicate to help explain the parsing

32

decisions. Of course, the new predicate would have a system generated name. It is

called \animate" here for clarity. This rule may be roughly interpreted as stating:

\the agent reduction applies when the stack contains two items, the second of which

is a completed noun phrase whose head is animate and the next word in the sentence

is `the'."

The output of the Control-Rule Induction phase is a suitable control-rule for

each clause of op/4. These control rules are then passed on to the Program Special-

ization phase.

3.3.4 Program Specialization

The �nal step is to \fold" the control information back into the overly-general parser.

Each operator clause in the overly-general parser is modi�ed by adding the learned

control knowledge so that attempts to use the operator inappropriately fail immedi-

ately. In this way, the search space of the overly-general parser is pruned to e�ciently

produce correct parses, e�ectively utilizing the learned control information without

incurring the overhead of a separate interpreter.

For non-disjunctive (single clause) control rules, the learned conditions are

simply placed into the program clause preceding the original conditions (if any), and

the clause head is uni�ed with the argument of the control rule. For disjunctive

control rules, a single new literal is added at the front of the program clause. This

new literal has the same arguments as the clause head. The de�nition of the new literal

comprises the clauses of the learned control rule with the head functors modi�ed to

match the name of the new literal. The de�nitions of any invented predicates are

simply appended to the program.

Given the program clause:

op([Top,Second|Rest],In,[NewTop|Rest],In) :-

reduce(Top,agt,Second,NewTop).

and the control rule:

33

op([X,[Y,det:the]], [the|Z], A, B) :- animate(Y).

animate(man). animate(boy). animate(girl)

the resulting clause is

op([A,[B,det:the]],[the|C],[D],[the|C]) :-

animate(B), reduce(A,agt,[B,det:the],D).

animate(man). animate(boy). animate(girl)

The �nal parser simply consists of the overly-general parser with each operator clause

suitably constrained.

3.4 Implementation

Chill was originally implemented in Quintus Prolog, and has since been rewritten in

SICStus Prolog, version 2.1.9. The core control-rule learning components including

the induction algorithm comprise about 4000 lines of code. The ability to parse with

di�ering representations is achieved by loading di�erent modules implementing the

overly-general parser, and parsing operator generation.

As discussed in the example-analysis section, the version of the overly-general

parser used in training is more elaborate than that used in the program specialization

phase. Using Chill for a given type of analysis involves writing a training module

that contains code for operator generation and parsing training examples, and a test-

ing module, which is a simple overly-general parser shell. Chill calls on predicates

in the training module to perform operator generation and perform parsing during

example analysis. Chill then creates a set of optimized operators which are used in

conjunction with the overly-general parser in the testing module to produce the �nal

parser.

So far, training and testing modules have been developed for three basic types

of analyses: case-role mapping, syntactic analysis, and logical database queries. In

each case, the testing module is trivial, comprising fewer than 30 lines of Prolog

34

code. The size of training modules is very dependent on the di�culty of parsing

training examples tractably. The training code for syntactic and case-role analysis

is not much more extensive than that required for their respective testing modules,

while the training component of the database query system contains about 400 lines

of code.

35

Chapter 4

The CHILL Induction Algorithm

As noted in Section 3.3.3, the learning of parser-control rules is a demanding induction

task. At the time Chill was being developed, no existing ILP system combined all

of the necessary features. The control-rule induction component of Chill employs

a new induction algorithm called Chillin1 (Zelle & Mooney, 1994a) for learning

relational concept de�nitions.

While the Golem and Foil systems presented in Chapter 2 have certainly

been successful, each has its weaknesses. As discussed in section 2.2.3, Golem is

based on the construction of relative least-general generalizations, RLGGs (Plotkin,

1970) which forces the background knowledge to be expressed extensionally as a set

of ground facts. This explicit model of background knowledge can be excessively

large, and the clauses constructed from such models can grow explosively. A partial

answer to the e�ciency problem is the restriction of hypotheses to the so-called

ij-determinate2 clauses, which reduces the class of of logic programs which can be

learned. A related problem is sensitivity to the distribution of the input examples.

If only a random sampling of positive examples is presented, the resulting model of

1for Chill INduction algorithm
2A literal is determinate if its output variables have at most one binding, given the bindings of

its inputs. A clause is ij-determinate if its body contains no literals with arity greater than j, all its
literals are determinate, and every variable appearing in the clause is \connected" to the head by a
chain of i or fewer literals.

36

the predicate to be learned is incomplete, and Golem may fail to create su�ciently

general hypotheses, resulting in diminished performance.

Foil also uses extensional background knowledge, but this is done for e�-

ciency reasons; top-down algorithms can easily use intentionally de�ned background

predicates to evaluate various competing hypotheses (as inChillin and others (Lavra�c

& D�zeroski, 1994; Cohen, 1992; Pazzani, Brunk, & Silverstein, 1991)). A more fun-

damental weakness is that Foil constructs clauses which are function-free. Any

functions (e.g. list structures) must be handled by including explicit constructor

predicates as part of the background knowledge. The proliferation of constructor

predicates can signi�cantly degrade Foil's performance. In addition, Foil su�ers

it's own version of the incomplete model problem when trying to learn recursive pre-

dicates. Recursive hypotheses are evaluated by using positive examples as a model

of the predicate being learned. When the examples are incomplete, they provide a

\noisy oracle" and Foil has di�culty learning even simple recursive concepts (Cohen,

1993).

Although speci�cally designed to deal with issues arising in the parser ac-

quisition problem, Chillin is itself a novel ILP system combining elements of both

top-down and bottom-up ILP methods. The use of bottom-up techniques allows

Chillin to deal gracefully with highly structured examples without requiring \con-

structor" predicates, while top-down specialization allows for e�cient induction in

the presence of intensionally de�ned background relations. In addition, Chillin in-

cludes mechanisms for demand-driven predicate invention, more e�cient learning of

recursive predicates from random examples, and induction without the use of explicit

negative examples. This chapter presents the details of Chillin and compares it with

the seminal ILP systems Foil and Golem.

37

4.1 The Algorithm

4.1.1 Top Level

The input to Chillin is a set of positive and negative examples of a concept (in the

case of Chill, parser{control examples) expressed as facts, and a set of background

predicates expressed as de�nite clauses. The output of the induction is a de�nite-

clause concept de�nition which entails the positive examples, but not the negative.

Chillin is at its heart a compaction algorithm that tries to construct a small,

simple program that covers the positive examples. The algorithm starts with a most

speci�c de�nition (the set of positive examples) and introduces generalizations which

make the de�nition more compact as determined by a simple measure of the syntactic

size of the program. The search for more general de�nitions is carried out in a hill-

climbing fashion. At each step, a number of possible generalizations are considered;

the one producing the greatest compaction is implemented, and the process repeats.

The metric for calculating program size is similar to the one used in Cigol

(Muggleton & Buntine, 1988). The size of a program is the sum of its clauses. Given

a clause, C of the form H :- B, the size of C is computed as follows:

size(C) = 1 + termsize(H) + termsize(B) (4.1)

termsize(T) =

8>>>>>><
>>>>>>:

1 if T is a variable

2 if T is a constant

2 +

arity(T)X
i=1

termsize(argi(T)) otherwise

(4.2)

Generalizations in Chillin are produced under the notion of empirical sub-

sumption. Intuitively, the algorithm attempts to construct a clause that, when added

to the current de�nition, renders other clauses superuous. The superuous clauses

are then eliminated to produce a more compact de�nition. Formally, we de�ne em-

pirical subsumption as follows: Given a set C of Clauses fC1,C2, : : :, CNg and a

set of positive examples E provable from C, a clause G empirically subsumes Ci i�

38

DEF := fE :- true j E 2 Posg
Repeat

PAIRS := a sampling of pairs of clauses from DEF
GENS := fG j G = build gen(Ci,Cj,DEF,Pos,Neg) for hCi; Cji 2 PAIRSg
G := Clause in GENS yielding most compaction
DEF := (DEF�(Clauses subsumed by G)) [G

Until no further compaction

Figure 4.1: Chillin Induction Algorithm

8e 2 E : [(C � Ci) [G ` e]. That is, all examples in E are still provable if Ci is re-

placed byG. Throughout this description of the induction algorithm, unless otherwise

noted, the term \subsumption" should be interpreted in this empirical sense.

Figure 4.1 shows the basic compaction loop. As in Golem, generalizations

are constructed from a random sampling of pairs of clauses in the current de�nition.

The best generalization from these pairs is used to reduce DEF. The reduction of the

de�nition is implemented as an e�cient approximation of empirical subsumption. G

is added at the top of the de�nition and then the standard Prolog proof strategy is

used to �nd the �rst proof of each positive example; any clause which is not used in

one of these proofs is then deleted from the de�nition. This process guarantees that

any clause which is empirically subsumed by G alone is removed from the de�nition;

however, it does not guarantee that the resulting de�nition is minimal. Some clauses

may be kept because they are the �rst to cover an example, even though the example

could also be covered with a subsequent clause.

4.1.2 Constructing Generalizations

The build gen algorithm is shown in Figure 4.2. There are three basic processes

involved. First is the construction of a simple LGG of the input clauses. If this

generalization covers no negative examples, it is returned. If the initial generalization

is too general, an attempt is made to specialize it by adding antecedents. If the

expanded clause is still too general, it is passed to a routine which invents a new

39

predicate that further specializes the clause so that it covers no negative examples.

These three processes are explained in detail and illustrated with a simple example

from parser acquisition in the following subsections.

Constructing an Initial Generalization

The initial generalization of the input clauses is computed by �nding the simple LGG

of the clauses. For example, when learning control rules for the agent reduction in a

case-role parsing system, some initial clauses might be the following:

op([ate,[man,det:the]], [the,pasta], A, B) :- true.

op([hit,[boy,det:the]], [the,man], A, B) :- true.

op([ate,[boy,det:the]], [the,chicken], A, B) :- true.

The �rst and third clauses yield an LGG as follows:

1) op([ate,[man,det:the]], [the,pasta], A, B) :- true.

3) op([ate,[boy,det:the]], [the,chicken], A, B) :- true.

LGG: op([ate,[X,det:the]],[the,Y], A, B):- true.

This LGG is a valid generalization (it covers no negative examples) and no further

processing is required. Of course, such generalizations are not always correct. Con-

sider the LGG of the �rst and second clauses:

1) op([ate,[man,det:the]], [the,pasta], A, B) :- true.

2) op([hit,[boy,det:the]], [the,man], A, B) :- true.

LGG: op([X,[Y,det:the]],[the,Z],A, B):- true.

This generalization covers potential negatives such as: op([hit,[hammer,det:the]],

[the, window], A, B) where hammer should be attached as an instrument rather

than an agent. The generalization requires further re�nement to prevent coverage of

such examples.

Although the initial de�nitions consist of unit clauses (the only antecedent

being true), as the de�nition becomes more compact, the clauses from which LGGs

40

Function build gen(Ci, Cj, DEF, Pos, Neg)
GEN := LGG(Ci,Cj)
CNEGS := Negatives covered by GEN
if CNEGS = fg return GEN

GEN := add antecedents(Pos, CNEGS, GEN)
CNEGS := negatives covered by GEN
if CNEGS = fg return GEN

REDUCED := DEF - (Clauses subsumed by GEN)
CPOS := fe j e 2 Pos ^ REDUCED 6` E g
LITERAL := invent predicate(CPOS, CNEGS, GEN)
GEN := GEN [LITERAL
return GEN

Figure 4.2: Build gen Algorithm

are constructed may contain non-trivial conditions. However, the construction of

clause LGGs is still straight-forward. Unlike the RLGGs used by Golem, the simple

LGGs in Chill are independent of any background knowledge and e�ciently com-

putable from the input clauses. At this point, GEN is guaranteed to be at least as

general as either input clause, but may also cover negative examples. This process

also e�ectively introduces relevant variables which decompose the functional struc-

tures appearing in the examples. These variables may then be constrained by adding

antecedents to the clause.

Adding Antecedents

As its name implies, add antecedents attempts to specialize GEN by adding new lit-

erals as antecedents. The goal is to minimize coverage of negative examples while

insuring that the clause still subsumes existing clauses. Add antecedents employs a

Foil-like mechanism which adds literals derivable either from background or previ-

ously invented predicates. Antecedents are added one at a time using a hill-climbing

process; at each step a literal is added that maximizes a heuristic gain metric.

The gain metric employed in Chill is a slight modi�cation of the Foil

41

information-theoretic gain metric. Good generalizations for Chill are those that

subsume many existing clauses. Therefore, the count of positive tuples (loosely, the

number of covered positive examples) in the Foil metric is replaced by an estim-

ate, S, of the number of clauses in DEF which are subsumed by GEN. This estimate

is obtained by a method analogous to the approximation of empirical subsumption

explained in Section 4.1.1. Each positive example is associated with the �rst clause in

DEF that covers it. If GEN covers all of the examples associated with any clause, that

clause is counted as subsumed by GEN. Let S be the estimate of clauses subsumed by

GEN and T� the count of negative examples covered by GEN. Let S0 and T 0

�
represent

the respective values for GEN extended by a literal, L. The gain of L is then:

gain(L) = S0 � (log2(S0=(S0 + T 0

�
))� log2(S=(S + T�)))

As an example of this process, consider learning the control rule for the (1

agt) reduction in the presence of suitable background relations regarding word cat-

egories such as person/1 and animate/1. Initially, DEF contains unit clauses rep-

resenting the positive control examples. Each example will be associated with the

unit clause which was constructed from it. A sampling of pairs of clauses would

then be used to construct LGGs. As illustrated above, one generalization might be:

op([ate,[X,det:the]],[the,Y], A, B):- true. This clause is not overly-general,

and no antecedents need to be added. If this were the best compacting generalization

found from the sampling, it would be added at the top of the de�nition, and all of the

more speci�c clauses subsumed by this generalization would be removed from DEF.

Of course, some unit clauses would remain to cover examples having verbs other than

\ate."

In the next cycle of the compaction loop, the LGG of two clauses may produce

op([X,[Y,det:the]], [the,Z], A, B) :- true. This clause is overly-general, and

must be specialized before it can be considered. The Foil-like component will con-

sider possible new antecedents such as person(X), person(Y), person(Z), etc. Try-

ing the literal, person(Y) produces the clause: op([X,[Y,det:the]], [the,Z], A,

42

B) :- person(Y). Presumably, this clause is consistent and will subsume numer-

ous unit clauses in the current de�nition; therefore, it will have some positive gain.

This clause, however, will not subsume the generalization found in the previous itera-

tion, as some of the examples associated with the "ate" generalization will have non-

person, animate agents (e.g., op([ate,[lion,det:the]], [the,sheep], A, B)).

In contrast, the clause: op([X,[Y,det:the]], [the,Z], A, B) :- animate(Y)

subsumes all of these example as well as those subsumed by person(Y). Hence,

animate(Y) is a superior literal according to the gain metric. When this clause is

added to DEF the previous generalization as well as the remaining unit clauses become

superuous. At this point, DEF collapses to this single clause, and the induction is

complete.

This discussion has assumed that add antecedents has predicates available

which will allow it to completely discriminate between the positive and negative ex-

amples; however, this is not always the case. In such situations, add antecedents

may or may not add a few antecedents before it is unable to extend the clause further

because no literal has positive gain. This partially completed clause is then passed

to invent predicate for completion.

Inventing New Predicates

A clause passed to invent predicate covers both some positive and some negative

examples. The purpose of inventing a new predicate is to constrain some of the

variables appearing in the clause so as to exclude the negative examples. Chillin uses

an approach similar to that ofChamp(Kijsirikul, Numao, & Shimura, 1992). The �rst

step in predicate invention is to identify a subset of clause variables, the instantiations

of which are su�cient to discriminate between the positive and negative examples

covered by the clause. The tuples produced by the projection of selected variables

provide positive and negative examples of the new concept. The top-level induction

algorithm is then called recursively with these examples to create a de�nition of the

43

new predicate.

Suppose that we are trying to learn the control rule for the (1 agt) reduction,

but do not have suitable background knowledge. Then add antecedents will be un-

able to specialize an LGG such as op([X,[Y,det:the]], [the,Z],A, B) :- true.

Using this clause to cover positive and negative examples might result in a set of

variable bindings shown here in tabular form:

Set X Y Z

Pos ate man pasta

hit boy sheep

moved girl fork

Neg hit hammer window

hit ball pasta

broke bat plate

Note that, while the domains of X and Z have certain values which appear

in both positive and negative examples, the values taken by Y are disjoint. A new

concept representing \values of Y that appear in positive examples" could be used to

specialize this clause so as to insure that it does not cover negative examples. Thus,

the projection consisting of the single variable, Y is su�cient to render the positive

and negative tuples disjoint. In general, separating the positive and negative examples

may require simultaneously constraining multiple variables. In the table above, The

tuples represented by the pair X and Z taken together do separate the examples even

though they do not do so individually.

Champ chooses a projection via a greedy process of elimination. Initially, the

projection contains all of the variables. Each variable is tested in turn to see whether

its removal from the projection would cause overlap between the positive and negative

tuples; variables that are not needed to insure disjointness are dropped from the

projection. Champ's algorithm guarantees that the resulting projection is minimal

in the sense that no other variable can be dropped and still maintain separation of

44

the examples; however, it does not guarantee a projection containing the minimum

number of variables required. Considering variables in a di�erent order may produce

a di�erent minimal projection having fewer variables. The greedy selection of some

minimal projection is used as an e�cient approximation to computing the minimum

projection.

The �nal criterion for acceptance of an invented predicate in Chillin is

whether the generalization that uses the new predicate produces compaction of the

current top-level de�nition. Obviously, a new predicate is more likely to be useful if it

has a small de�nition itself, since the size of the predicate's de�nition counts against

the compaction of the top-level predicate produced by the generalization. Ideally then,

Chillin should select a projection of clause variables that separates the positive and

negative examples while minimizing the size of the new predicate's de�nition. Of

course, selecting the projection having the smallest de�nition is even less tractable

then selecting a minimum projection. Chillin employs a greedy growth algorithm

in an e�ort to �nd a small projection which guarantees separation and at the same

time minimizes the number of unique positive tuples in the projection. This process

is based on the assumption that a concept with fewer positive examples will have a

simpler de�nite-clause de�nition. Although this is not true in general, it seems an

intuitive heuristic. In many cases Chillin is unable to achieve any compaction of

the positive examples for the new predicate and ends up \memorizing" the positive

examples, obviously the fewer, the better.

The search for a projection in Chill begins with an empty set of variables

and adds variables one at a time, preferring variables that eliminate overlap with

negative examples and minimize the number of unique positive tuples. At each step,

that variable is added which maximizes the ratio of negative examples eliminated

to positive tuples added. The search terminates when the overlap between positive

and negative tuples is empty. This process does not guarantee a minimal projection

in the Champ sense, but does prefer small projections; in practice, the resulting

45

projections are almost always minimal. If a minimality guarantee was desired, the

greedy growth algorithm of Chillin could be used to produce an initial projection

that is subsequently \minimalized" by the Champ elimination algorithm.

Once a projection has been chosen, the instantiations of these variables de-

termine sets of positive and negative examples for the new concept. The induction

algorithm is then recursively invoked with these examples to learn a de�nition of the

new concept. Returning to the example, invent predicatewill select the single vari-

able Y, since it alone is su�cient to discriminate the covered positives from the covered

negatives. The derived positive examples are p1(man), p1(boy) and p1(girl), and

the negative examples are p1(hammer), p1(ball), and p1(bat). Calling the top-

level induction algorithm on these examples produces no compaction, so the learned

de�nition of p1 will just be a listing of the positive examples. Finally, build gen

completes its clause by adding the �nal literal p1(Y) which is the newly invented pre-

dicate representing animate. Once a predicate has been invented and found useful

for compressing the de�nition, it is made available for use in further generalizations.

This enables the induction of clauses having multiple invented antecedents, something

which is not possible in the purely top-down framework of Champ.

Handling Recursion

When introducing clauses with recursive antecedents, care must be taken to avoid

unfounded recursion. Foil handles this issue by attempting to establish an ordering

on the arguments which may appear in a literal. Chill takes a much simpler ap-

proach based on structure reduction: each recursive literal must have an argument

that is a proper sub-term of the corresponding argument in the head of the clause.

For example, in the clause member(A, [B|C]) :- member(A,C), the second argu-

ment of the recursive literal is structure reducing, and any recursive chaining of this

clause must eventually \bottom-out." Well-founded recursion among multiple clauses

is guaranteed by ensuring that every recursive literal has at least one argument that

46

is structure reducing, and for all other recursive literals in the de�nition, the same

argument is a (possibly improper) sub-term of the corresponding argument in the

head of the containing clause. This property is maintained by dropping any unsound

recursive literals produced by the LGG operation and only considering addition of

recursive antecedents which meet the structure-reducing conditions. These restric-

tions on recursive de�nitions are more restrictive than those imposed by Foil, but

this simple approach works well on a large class of problems.

The evaluation of recursive clauses also requires some consideration. Testing

the coverage of a non-recursive clause is easily achieved by unifying the head of a

clause with an example and then attempting to prove the body of the clause using the

background theory. Evaluation of a recursive clause, however, requires a de�nition of

the concept being learned. Foil and Golem both rely on the extensional de�nition

provided by the positive examples, an approach which results in the \noisy oracle"

problem discussed in the introduction to this chapter. Chill, on the other hand, is

able to use the current de�nition of the predicate being learned, which is guaranteed

to be at least as general as the extensional de�nition. Coverage of recursive clauses is

tested by temporarily adding the clause to the existing de�nition and evaluating the

antecedents in the context of the background knowledge and the current (extended)

de�nition. In this way, generalization of the original examples (say the discovery of

the recursive base-case) can signi�cantly improve the coverage achieved by correct

recursive clauses. This approach gives Chillin a signi�cant advantage in learning

recursive concepts from random examples.

This approach to recursion has proven e�ective in practice, although it is not

without shortcomings. If a recursive clause is introduced and subsequent generaliz-

ations expand the coverage of the recursive call, the resulting de�nition could cover

negative training examples; the current implementation does not check to insure that

new generalizations maintain global consistency (although this would be easy to do).

Such undesirable ordering e�ects have not arisen in practice because recursive clauses

47

do not generally show high gain until adequate base-cases have been constructed.

4.1.3 Implementation

E�ciency Considerations

The actual implementation of Chill is somewhat more complicated than the abstract

description presented so far. As the above discussion indicates, the process of con-

structing a generalization involves three steps: form an LGG, add antecedents and

invent a new predicate. If this much e�ort was expended for a reasonable sampling

of clause pairs on every iteration of the compaction loop, the algorithm would be in-

tolerably slow. The current implementation provides two remedies for this problem.

First, the outer compaction loop is initially performed using only the LGG

construction process to �nd generalizations. When no more compaction is found using

simple LGGs, the more sophisticated re�nement mechanisms are tried. Signi�cant

compaction is often obtainable in the initial phase, reducing the size of the de�nition

on which the subsequent (more intensive) processing is done. This initial pass can

often reduce thousands of control examples to a de�nition containing only tens of

unit clauses.

A second conservation of e�ort is achieved by interleaving the building of gen-

eralizations. A given iteration of the compaction loop begins by gathering a sampling

of clause pairs from which LGGs are immediately constructed. These generalizations

form a pool of clauses which may need further re�nement. Chillin proceeds by

repeatedly removing the most promising clause and extending it with a single ante-

cedent. The resulting clause is then returned to the pool and the process continues.

If the selected clause is unextendable, it is set aside as a candidate for predicate in-

vention. Predicate invention is invoked only if the pool of clauses has been exhausted

without �nding a consistent generalization.

48

Parameters

As with all complex learning algorithms, the performance of Chillinmay be \tuned"

by setting a number of parameters. There are �ve major parameters which a�ect the

performance ofChillin. Sample size determines the number of pairs of clauses which

are considered for constructing generalizations on each iteration of the main compac-

tion loop. This value defaults to 15. E�ort determines the level of e�ort which

is used in searching for generalizations. Chillin may be restricted to just trying

LGGs, using LGGs plus top-down specialization without invention, or using LGGs,

specialization and invention. The last case is the default. In a similar spirit, a sep-

arate parameter, recursion is provided to disable or enable the learning of clauses

containing recursive literals. Since the evaluation of recursive clauses requires extra

work, turning o� recursion may signi�cantly speed up the induction process. Fail-

ures to exit is a parameter which determines how many compaction iterations which

result in no further compression are allowed before giving up. By default this value

is 3. Finally, there is a limit on the number of arguments that an invented predicate

may have; the default is 2, meaning that generalizations which require the invention

of predicates having more than 2 arguments are not followed up.

4.2 Experimental Comparison with Other ILP Systems

Obviously Chillin has been primarily used within the larger parser-acquisition

framework of Chill. However, a series of experiments was performed to compare

the performance of this ILP algorithm to Golem and Foil on some benchmark ILP

tasks. These systems were chosen for comparison because they are well-known, and

arguably the most mature and e�cient ILP platforms developed to date.

49

4.2.1 Experimental Design

There is, as yet, no standard approach to the evaluation of ILP systems. This

evaluation focuses on the ability of systems to perform relational concept-learning

tasks. The question of interest is how well a hypothesis learned from some (random)

sampling of examples characterizes the entire example space. Therefore, we have

adopted an experimental strategy, common in propositional learning, of randomly

splitting the example space into disjoint training and testing sets. The systems were

trained on progressively larger portions of the training examples and the perform-

ance of the learned rules assessed on the independent testing set. This process of

splitting, training and testing was repeated and the results averaged over 10 trials to

produce learning curves for each of the systems on several benchmark problems. It

is important to note that ILP systems are often tested using a set of complete3 or

carefully chosen positive examples. We would not necessarily expect the systems to

perform as well under the more di�cult conditions of random selection used here.

The number of training examples in successive training sets was chosen ex-

perimentally to highlight the interesting parts of the learning curves. Except where

indicated, enough training examples were provided so that the system having the

best accuracy achieved a perfect score on the majority of the runs. The distribu-

tion of positive examples in many relational domains is quite sparse, and a relatively

large number of positive examples are required for each of these ILP systems. In

order to insure a reasonable number of positive training examples, training sets were

always selected to be one-�fth positive and four-�fths negative examples. Testing

sets included an equal number of positive and negative examples to test the ability

of the resulting rules to recognize instances of the concept and reject non-instances.

This change in distribution from training to testing is somewhat non-standard, but

it was done in an e�ort to gauge empirically (by test-set coverage) whether or not

3In this case, all possible examples up to a given size are generated from a set of constants and
functors. Each example is then classi�ed as either a positive or negative instance.

50

the systems had learned a completely correct de�nition.

The experiments were performed using version 5.0 of Foil and version 1.0

� of Golem both of which are written in C. All of the algorithms were run with

default settings of the various parameters. No extra mode, type, or bias information

was provided besides the examples and background predicates. While all of the

algorithms can make use of additional constraints, they do not necessarily do so in

consistent ways; therefore, providing no extra information to any algorithm allows

for a more direct comparison.

4.2.2 Accuracy Results

Learning Recursive Programs

The �rst three learning problems tested the ability to learn simple recursive concepts.

Three problems widely used in the ILP literature were chosen: the list predicates

member and append and the arithmetic predicate multiply.

For the list predicates, the data consisted of all lists of length 0-3 de�ned

over three constants. The background information consisted of de�nitions of list

construction predicates, null which holds for an empty list and components which

decomposes a list into its head and tail. The results for these two problems were

approximately the same. The learning curves for member and append are presented

in Figures 4.3 and 4.4. Overall, with random examples, Chillin was able to learn

accurate de�nitions with fewer examples than the other systems, and without using

the background predicates. Foil did show a slight advantage on append for very

small training sets.

The domain for the multiply problem consisted of integers in the range from

zero to ten. The de�nition was to be learned in terms of background predicates:

plus, decrement, zero, and one. We expected Foil and Golem to do well on

this problem as it is a standard benchmark which both systems have been shown

capable of learning. Chillin, in its current form, is not able to formulate the correct

51

50

55

60

65

70

75

80

85

90

95

100

0 20 40 60 80 100 120

A
cc

ur
ac

y

Training Examples

Chillin
Foil

Golem

Figure 4.3: Accuracy on member

50

55

60

65

70

75

80

85

90

95

100

0 20 40 60 80 100 120 140 160 180 200

A
cc

ur
ac

y

Training Examples

Chillin
Foil

Golem

Figure 4.4: Accuracy on append

52

50

55

60

65

70

75

80

85

90

95

0 50 100 150 200 250

A
cc

ur
ac

y

Training Examples

Chillin
Foil

Golem

Figure 4.5: Accuracy on multiply

recursive de�nition for this predicate, since the required recursive clause does not

meet the structure-reducing conditions.

The learning curves, shown in Figure 4.5, turned out to be quite surprising.

None of the systems showed the ability to learn this concept accurately from random

examples. Chillin quickly converged to de�nitions that were 90 percent correct for

the limited domain, and was unable to improve. Its inaccurate de�nitions, however,

were much better than those found by either of the other systems. Further experi-

mentation showed that Foil kept improving as the training set grew, but it was only

reliable in generating correct de�nitions with nearly complete training sets. Golem

was unable to learn the correct de�nition without additional guidance such as mode

declarations.

53

50

60

70

80

90

100

0 20 40 60 80 100 120 140 160 180 200

A
cc

ur
ac

y

Training Examples

Chillin
Foil

Golem

Figure 4.6: Accuracy on uncle

Learning with Nondeterminate Literals

Another traditional test-bed for relational learners is the domain of family relation-

ships. We performed experiments with an extended family tree in which the target

predicate was either grandfather or uncle and the background consisted of facts

concerning the relations: parent, sibling, married, male and female. This do-

main is interesting because it requires the use of literals which violate determinacy

conditions used by Golem and other bottom-up ILP systems.

As expected, Chill and Foil do quite well on these problems, and Golem

is unable to learn any reasonable de�nitions. On the uncle problem, shown in Fig-

ure 4.6, both Foil andChill learned accurate de�nitions from 100 training examples,

with Foil having a slight edge on smaller training sets. Rather surprisingly, however,

Foil seemed to have more trouble on the simpler grandfather de�nition. As can be

seen in the learning curves in Figure 4.7, Foil's performance takes a mysterious dip

54

45

50

55

60

65

70

75

80

85

90

95

100

0 20 40 60 80 100 120 140 160 180

A
cc

ur
ac

y

Training Examples

Chillin
Foil

Golem

Figure 4.7: Accuracy on grandfather

at 75 training examples before catching up with Chill at 125 examples. Even at 175

examples where Chill succeeds in �nding a correct de�nition in all 10 trials, Foil is

only learning the correct de�nition half of the time. These experiments indicate that

Chill, like Foil is able to learn de�nitions containing nondeterminate literals.

Control-rule Learning

The previous experiments concerned learning well-de�ned concepts containing only

one or two clauses. The Chill induction algorithm was originally designed for learn-

ing control rules from structured examples where the de�nition of the correct concept

is not necessarily simple, and certainly is not known a priori. The last experiment

was attempted to compare the performance of these systems on this type of problem.

The problem chosen was a relatively simple task of determining when a shift-reduce

parser should perform a shift operation in parsing a simple, regular corpus of active

55

50

55

60

65

70

75

80

85

90

95

100

0 100 200 300 400 500 600

A
cc

ur
ac

y

Training Examples

Chillin
Chillin-npi

Golem

Figure 4.8: Accuracy for control rule (shift)

sentences.4 Chill typically learns a �ve or six clause de�nition for this concept.

The data for this problem was modi�ed slightly so that the only logical func-

tions appearing in the examples are list constructions. Golem and Chillin can both

handle these structures without explicit constructor predicates. Unfortunately, it is

not possible to run Foil on this data. Foil requires extensionally expressed con-

structor predicates; the components relation over lists of the required size (up to 8)

constructible from the set of 34 constants appearing in these examples would require

trillions of background facts. This illustrates the di�culties posed by the extensional

background requirement.5

The graph of Figure 4.8 shows the learning curves. On this problem Chillin

tends to invent new predicates. For direct comparison, we performed the experiments

4This data is derived from the case-role corpus of McClelland and Kawamoto (1986) which is
described in detail in Chapter 5.

5One possible \solution" to this di�culty is to provide only those component facts that can be
derived by decomposition of lists appearing in the training examples. This work-around was not
tried for these experiments.

56

0

1

2

3

4

5

6

7

8

9

10

0 20 40 60 80 100 120

L
e
a
r
n
i
n
g

T
i
m
e

Training Examples

Golem
Chillin

Foil

Figure 4.9: Time for member

with two versions of Chillin; the curve labeled \Chillin-npi" is Chillin with pre-

dicate invention turned o�. The learning curves show that Chillin rapidly converges

to very good de�nitions. Disabling predicate invention had only a minor impact (1%)

in accuracy with smaller training sets, and no di�erence was detectable for larger sets.

Golem, on the other hand, never achieves greater than 80% accuracy and displays

erratic learning behavior in this domain.

4.2.3 Timing Results

Given the di�erences in implementation, we expected Foil and Golem to be con-

siderably faster than Chillin. However, this was not the case. On all problems

where Golem was learning useful rules, it was signi�cantly slower than Chillin

often by a factor of 10 or more. While Foil tended to be faster than Chillin, the

learning times for the two systems were generally comparable. The timing curves

for the member experiments shown in Figure 4.9 are typical. This graph shows the

57

0

1

2

3

4

5

6

7

8

0 20 40 60 80 100 120 140 160 180

L
e
a
r
n
i
n
g

T
i
m
e

Training Examples

Chillin
Foil
Golem

Figure 4.10: Time for grandfather

CPU-time in seconds required to learn a set of rules as a function of training set

size. In the experiments where Foil had more di�culty learning accurate rules such

as multiply and grandfather, Chillin actually ran faster than Foil at some data

points. The graph in Figure 4.10 shows timing results for grandfather. Note that

the run-time for Golem is lower here because it is not learning a de�nition, but

rather, just memorizing the examples.

4.3 An Extension: LearningWithout Negative Examples

4.3.1 Motivation

Most ILP systems require both positive and negative examples of ground instances of

a predicate to be learned. However, explicit negative examples of a predicate are not

always readily available. A standard solution is to automatically produce a large set

of negative examples using a closed-world assumption, i.e. for an n-ary predicate, all

58

n-tuples of terms chosen from a �xed set are generated and the positive examples are

removed. However, it is frequently intractable to generate an adequate set of negative

examples using this brute-force approach. The domain of parser acquisition presents

such an example.

A naive alternative toChill's method of parser acquisition would be to simply

present a corpus of sentences paired with representations as positive examples to

an ILP system. For example, we might try to learn a de�nition of the concept

parse(Sentence,Rep). The induced logic program, might then be used to prove

goals having the second argument uninstantiated, e�ectively producing parses of sen-

tences provided as input. One problem with this approach is the lack of a con-

venient set of negative examples. Clearly, it is intractable to generate all possible

sentences paired with incorrect analyses as a set of negative examples. Even select-

ing a manageable{sized random subset of these negative examples is unlikely to be

su�cient, as such a sample is unlikely to include the many \near{miss" examples

which are crucial to learning good generalizations.

A version of Chillin has been implemented which exploits the notion of out-

put completeness (introduced in Section 3.3.2) to implicitly determine when a clause

is overly-general and to quantify the degree of over{generality by simply estimating

the number of negative examples covered. This extension of Chillin was used to

provide comparisons between Chill and the \naive" approach to parser acquisition.

The results of these comparisons are presented in Section 6.4, the remainder of this

section explains the techniques used for induction in the presence of implicit negative

examples.

4.3.2 Counting Implicit Negative Examples

Learning without explicit negatives requires an alternate method of evaluating the

utility of a clause. A mode declaration and an assumption of output completeness

together determine a set of implicit negative examples.

59

Consider the predicate, parse(Sentence,Representation). Providing the

mode declaration parse(+,-) indicates that the predicate should provide the cor-

rect representations when provided with the sentence. Assuming that the training

examples are output complete, determining if a clause is overly-general is straightfor-

ward. For each positive example, an output query is made to determine all outputs

for the given input (e.g. parse([the,man,ate], X)). The clause is then used to

prove the output query. If any outputs are generated that are not positive examples,

the clause still covers negative examples and requires further specialization.

When such specialization is needed, the gain metric employed by the top-down

component of Chillin must be able to compute the number of negative examples

covered. Clearly, each ground, incorrect answer to an output query counts as a single

negative example (e.g. parse([the, man, ate], [ate, pat:[man, det:the]])).

However, output queries will frequently produce answers with universally quanti-

�ed variables. For example, the clause, parse([the,A,B],[C, agt:D]) :- true

generates the output, [C, agt:D] which may cover a great number of potential neg-

ative examples (e.g. [hit, agt:[man, det:barbecue]]) . Similarly, the clause,

parse(X,Y) :- true produces entirely uninstantiated output, intuitively, we would

think that it covers even more negative examples than the previous result, even though

it contains fewer uninstantiated variables. What is needed is some method of estim-

ating the coverage of these (partially) uninstantiated results.

Quanti�cation of coverage employs a parameter u representing the cardinality

of the set of all examples of the concept being learned. Generally, relational concepts

are quite sparse over the universe of constructible terms, so u may be considered

to be some (very) large multiple of the count of positive examples. The count of

examples covered by a non-ground answer to an output is estimated by uniformly

distributing the probability of matching an example across all components of the

example. For example, the term parse(S,R) where S and R are uninstantiated must

cover all u possible examples. If we assume there are s possible sentences and r

60

possible representations, then u = s �r. Distributing these possibilities equally across
the two arguments suggests s = r =

p
u. A result such as parse([the, man, ate],

Rep), where Rep is uninstantiated, is estimated to cover
p
u examples, since that is

the number of di�erent values possible for Rep.

The case of the result parse([the, man, ate], [C, agt:D] is slightly more

complicated. The
p
u possibilities for the second argument are further restricted by

the structure appearing there. In this case, the argument starts with a list construction

functor, which has arity 2. To account for that particular functor's appearance as well

as the possible terms which could appear as its arguments, each argument is computed

to account for 3

qp
u possibilities. In general, the coverage for each argument of a term

with arity n is recursively calculated to be n+1
p
t where t is the number of possibilities

for the entire term. Following this strategy, we compute 6
p
u possibilities for C and

18
p
u terms possible for D. The entire term is therefore calculated to cover

18
p
u4 total

examples. Finally, the number of negative examples covered is calculated as the total

coverage of all examples minus the number of positive examples covered.

While these calculations employ assumptions which do not hold for any but

the most arti�cial of domains, they do embody certain intuitive properties. Most

importantly, the more instantiated a term is, the fewer examples it covers. This favors

specialization of clauses so that output arguments do not contain free variables; this is

essential to the induction of \constructive" programs (i.e. programs that produce fully

instantiated outputs when given fully instantiated inputs). This approach also favors

examples that are more instantiated at higher levels, since the estimate of coverage

decreases exponentially with term depth. This supports successively specializing

terms in a top-down fashion which is consistent with the overall approach of a Foil-

like learner.

61

4.3.3 Predicate Invention with Implicit Negative Examples

Replacing the count of covered explicit negatives with an estimate of negative cov-

erage as described above is a simple revision of Chillin's top-down specialization

component. However, the predicate invention mechanism also makes use of negative

examples and requires modi�cation.

There are two cases to consider when modifying predicate invention to use

implicit negative examples. The simpler case occurs when all output variables in the

head of the clause for which the predicate is being invented also appear in the body

of the current clause. In this situation, output queries always produce ground results

for the output arguments. The fact that the clause still covers negative examples

means that there are some queries for which the ground outputs are simply incorrect.

These incorrect outputs become a set of explicit negative examples for the normal

predicate invention algorithm, and the recursive invocation of the top-level algorithm

is made using explicit negative examples. The version of Chillin used for the exper-

iments reported in later chapters used only this mechanism for predicate invention.

Generalizations which still contained free variables were simply discarded.

When some of the output variables appearing in the clause head do not appear

in the clause body, it is impossible to generate a set of ground negative examples.

However, it is still possible to perform demand-driven predicate invention. Since

the remaining free output variables must be bound to prevent coverage of implicit

negatives, they must be included as output variables of the new predicate. The input

variables can be chosen by �nding a small subset of the bound variables that are

su�cient to functionally determine the values of these output variables when covering

the positive examples. Once chosen, the instantiations of these variables when the

clause is used to cover positive examples produce a set of derived tuples which can

be used as positive examples for the new predicate. The implicit negative version

of the induction algorithm can then be invoked using these examples and associated

mode declaration. Future versions of Chillin will implement this approach.

62

Chapter 5

Experiments with Case-Role

Parsing

The explanation of Chill in the previous two chapters has made use of simple ex-

amples from the domain of case-role parsing, a domain that served as one of the �rst

testing grounds for the ideas in Chill. This chapter discusses some of the experi-

ments which have been conducted with Chill for this type of representation, some

of which were �rst reported in (Zelle & Mooney, 1993b).

5.1 Background

Semantic case analyses have proven very useful in the construction of natural lan-

guage systems(Allen, 1995). However, the construction of parsers to produce such

representations is complicated by the need to use domain-speci�c semantic informa-

tion to resolve ambiguity and produce accurate analyses. While it is certainly possible

to manually construct parsers for limited domains, new systems must be written for

each semantic domain and the size of the rule-base required for more general applic-

ations can make manual construction infeasible. A natural response to this di�culty

is to apply machine learning techniques to help automate acquisition of the required

63

knowledge.

Recent research in learning the case-role mapping task has taken place under

the connectionist paradigm (Miikkulainen & Dyer, 1991; St. John & McClelland,

1990; McClelland & Kawamoto, 1986). It is argued that proper case-role assignment

is a di�cult task requiring many independent sources of knowledge, both syntactic

and semantic, and therefore well-suited to connectionist techniques.

The work of Miikkulainen and Dyer (1991), who used the case-role mapping

task to demonstrate their Fgrep method, is illustrative. Their model employs a re-

current network which allows words of an input sentence to be processed sequentially.

Following (McClelland & Kawamoto, 1986), the network output has �xed slots for

verb, agent, instrument, patient and modi�er (a slot for the modi�er of a patient such

as \cheese" in \pasta with cheese"). The network is trained using a modi�cation of

backpropagation that automatically develops distributed word encodings during the

training process. Words are presented to, and read out of, the network using these

learned encodings. The model was demonstrated using a set of 1475 sentence/case-

structure pairs originally from (McClelland & Kawamoto, 1986) (hereafter referred

to as the M & K Corpus).

Connectionist models face a number of di�culties in handling natural lan-

guage. Since the output structures are at (non-recursive) it is unclear how the

embedded propositions in more sophisticated analyses can be handled. The models

are also limited to producing a single output structure for a given input. If an input

sentence is truly ambiguous, the system produces a single output that appears as a

weighted average of the possible analyses, rather than enumerating the consistent in-

terpretations. The symbolic techniques of Chill do not su�er from these de�ciencies.

The crucial test of any learning system is how well it generalizes to handle

previously unseen cases. This is particularly important in the domain of parser

acquisition; given the generativity of natural languages, it is unreasonable to assume

that that a system will be trained on more than a small fraction of possible inputs.

64

Empirical results demonstrate thatChill trains faster and generalizes to novel inputs

better than its neural network counterparts.

5.2 Parsing the M & K Corpus

5.2.1 Experimental Design

The M & K Corpus comprises 1475 sentence/case-structure pairs. The pairs were

produced from a set of 19 sentence templates generating sentences/case-structure

pairs for sentences such as \The HUMAN ate the FOOD with the UTENSIL", where

the capitalized items are replaced with words of the given category. A complete

listing of the templates and �llers may be found in Appendix A. The sample actually

contains 1390 unique sentences, some of which admit two analyses. For example,

the sentence \The man hit the boy with the bat" is ambiguous as to whether \bat"

is an instrument of hitting or a possession. Since our parser is capable (through

backtracking) of generating all legal parses for an input, training was done considering

each unique sentence as a single example, and insuring that the training corpus was

output complete.

Training and testing followed the standard paradigm of �rst choosing a random

set of test examples (in this case 740) and then creating parsers using increasingly

larger subsets of the remaining examples. The reported results reect averages over

�ve trials. During testing, the parser was used to enumerate all analyses for a given

test sentence. Parsing of a sentence can fail in two ways: an incorrect analysis may

be generated, or a correct analysis may not be generated. In order to account for both

types of inaccuracy, a metric was introduced to calculate the \average correctness"

for a given test sentence as follows: Accuracy = (C
P
+ C

A
)=2 where P is the number

of distinct analyses produced, C is the number of the produced analyses which were

correct, and A is the number of correct analyses possible for the sentence. This

measure can be viewed as an average of the parser's precision and recall for a given

65

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700

A
cc

ur
ac

y

Training Examples

Chill

Figure 5.1: M&K Accuracy

sentence.

5.2.2 Results

Chill performs very well on this learning task as demonstrated by the learning

curve shown in Figure 5.1. The system achieves 92% accuracy on novel sentences

after seeing only 150 training sentences. Training on 650 sentences generated a set

of parsing operators comprising about 60 lines of Prolog code that achieved 98%

accuracy. The system also exhibits the desirable property that it tends to produce

very few inaccurate parses. The graph in Figure 5.2 shows the probability that a

produced parse is incorrect as a function of training set size.

This initial experiment, following the example in (Miikkulainen & Dyer, 1991),

did not use distinct tokens for di�erent senses of ambiguous words. However, one of

the original motivations for connectionist approaches was the ability to handle lexical

ambiguity (McClelland & Kawamoto, 1986; St. John & McClelland, 1990). The M

66

0

0.005

0.01

0.015

0.02

0.025

0.03

0 100 200 300 400 500 600 700

P
ro

ba
bi

lit
y

of
 S

pu
rio

us
 P

ar
se

Training Examples

Chill

Figure 5.2: M&K Percent Spurious Parses

& K Corpus was explicitly designed with two ambiguous lexical items, \bat" (ying

vs. baseball) and \chicken" (live-animal vs. dead-food). A second experiment was

carried out using distinct tokens for di�erent word senses in the case representations.

The parsing model was extended to include independent shift operators for each

sense of ambiguous words. Using this modi�cation, the experiment was repeated.

The results are shown in Figure 5.3. The curve is virtually identical to that of the

previous experiment showing that Chill can successfully incorporate simple lexical

disambiguation within the case-role mapping task.

One of the nice properties of the M & K Corpus is that it contains enough

complexity to be interesting, yet remains simple enough that the resulting rules are

amenable to inspection and analysis. Such analysis revealed that Chill consistently

invented interpretable word classes. For example, the invention of animate occurred

as illustrated in the algorithm discussion in Chapter 3. This concept is implicit in

the analyses presented to the system, since only animate objects are assigned to the

67

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700

A
cc

ur
ac

y

Training Examples

Chill

Figure 5.3: M&K Accuracy with Lexical Disambiguation

agent role. Other invented classes clearly picked up on the distribution of words in

the input sentences. The system regularly invented semantic classes such as human,

food, and possession which were used for noun generation in the M & K Corpus.

Phrase classes useful to making parsing distinctions were also invented. For

example, the structure instrumental phrase was invented as:

instr_phrase([]).

instr_phrase([with, the, X]) :- instrument(X).

instrument(fork). instrument(bat). ...

Where the class, instrument was itself an invented category. It was not necessary

in parsing to distinguish between instruments of di�erent verbs, hence instruments

of various verbs such as hitting and eating are grouped together. Where the semantic

relationship between words is required to make parsing distinctions, such relationships

can be learned. Chill created one such relation: can possess(X,Y) :- human(X),

possession(Y); which reects the distributional relationship between humans and

68

possessions present in the M &K Corpus. Notice that this invented rule itself contains

two invented word categories. These observations of the types of rules created by

Chill establish con�dence that the basic mechanisms are generating \reasonable" as

well as accurate generalizations over the training corpus.

5.3 Comparing to Connectionism

Direct comparison with connectionist results for the M & K Corpus is di�cult, as

the connectionist systems produced only a single parse for each sentence, and overall

sentence accuracy is often not reported. The closest comparison can be made with

the results in (Miikkulainen & Dyer, 1991) where an accuracy of 95% was achieved in

assigning words to case slots after training with 1439 of the 1475 pairs. In a similar

experiment (limiting Chill to a single parse and calculating case-slot assignment

accuracy), Chill achieved the same level of performance after training on only 650

examples. Of course, one of the advantages of Chill is the ability to produce multiple

parses, as the previous results demonstrate, Chill achieves better accuracy at the

full sentence level with far less training data. With respect to training time, the

creation of the parsers for the M & K Corpus required less than 30 minutes of CPU

time on a SPARCstation 2. This compares favorably with backpropagation training

times usually measured in hours or days.

As a further comparison to connectionist approaches, Chill was used to du-

plicate a generalization experiment reported by St. John and McClelland (1990).

This experiment used an arti�cial corpus created from ten actions and ten names

with sentences in either active (\John saw Mary") or passive voice (\Mary was seen

by John"), resulting in a total of 2000 such sentences. The task of the learned system

was to identify the verb, agent and patient of novel sentences. When trained with

1750 of the 2000 sentences, their neural network model processed the remaining 250

sentences with 97% accuracy. An average learning curve over �ve trials for Chill

is shown in the graph of Figure 5.4. The testing set in this case consisted of 1900

69

sentences. As can be seen from the graph, Chill signi�cantly outperforms its neural

counterpart, achieving 100% accuracy after training on only 90 examples.

0

20

40

60

80

100

0 20 40 60 80 100

A
cc

ur
ac

y

Training Examples

Chill

Figure 5.4: Active/Passive Corpus Accuracy

One must be cautious in making such comparisons as the types of inaccuracies

exhibited by Chill and neural approaches di�er substantially. Neural networks al-

ways produce an output many of which contain minor errors, whereas Chill tends

to produce a correct output or none at all. From an engineering standpoint, it seems

advantageous to have a system which \knows" when it fails; connectionists might be

more interested in failing \reasonably." Indeed, a major motivation for much work in

neural networks is the modeling of human cognitive function. For example, Miikku-

lainen (1995) has recently proposed a neural architecture called Spec for processing

recursive clause structure. A \feature" of this network is that it has di�culty learning

deep center embeddings 1 in the absence of strong semantic constraints: a property

1For example, people understand \The girl who the dog bit liked the boy," but have trouble with
deeper embeddings as in \The girl who the dog who the cat chased bit liked the boy."

70

that is well documented for humans. Experiments with the Spec corpus have proven

that Chill is a very e�cient learner in this limited domain, requiring fewer than 30

random examples to learn parsers with 100% accuracy on novel sentences. However,

Chill automatically generalizes to sentences with any level of center embedding, and

therefore fails to model this aspect of human language learning/processing mechan-

isms.

5.4 A Database Query Domain

These initial case-role parsing experiments were run with small, arti�cial corpora

speci�cally designed to illustrate the case mapping problem. As such, they do not ne-

cessarily reect the true di�culty of acquiring case-role parsers for natural language

applications. Further experiments were designed to test Chill on a more extensive

task, speci�cally, performing case-role parsing of natural language database quer-

ies. A more sophisticated approach to the database query task will be presented in

Chapter 7, where Chill is used to learn parsers which map English questions directly

into suitable formal queries. Here we are mainly concerned with further evaluation

of the ability to learn case-role parsers.

A corpus of examples was created by \lifting" a portion of a semantic gram-

mar from an extant prototype natural language database designed to support queries

concerning tourist information (Ng, 1988). The portion of the grammar used re-

cognized over 150,000 distinct sentences. A simple case grammar, which produced

labelings deemed useful for the database query task, was devised to generate case-

structure analyses. The example pair shown in Figure 5.5 illustrates the type of

sentences and analyses used. A corpus of examples was created automatically by

performing a random walk through the database grammar assigning equal likelihood

to the possibilities at choice-points.

A learning curve for this corpus is shown in Figure 5.6. The curve depicts a

�ve trial average of generalization results for 500 sentences which di�ered from any

71

Show me the two star hotels in downtown LA with double rates

below 65 dollars.

[show, theme:[hotels, det:the,

type:[star, mod:two],

loc:[la, casemark:in, mod:downtown],

attr:[rates, casemark:with, mod:double,

less:[nbr(65), casemark:below,

unit:dollars]]]

dative:me]

Figure 5.5: Case-structure Example from Tourist Domain

used in training. The results are very encouraging. With only 50 training examples,

the resulting parser achieved 93% accuracy on novel sentences. With 300 training

examples, accuracy is 99%. This suggests that the relative lack of ambiguity in this

sample task tends to compensate for the larger example space, resulting in excellent

generalization to unseen cases.

These results are certainly encouraging, but not surprising. The corpus is

still quite regular and stylized, having been produced by a semantic grammar. It

does however show the ability of Chill to easily \reverse engineer" simple case-role

grammars with very high accuracy. The next two chapter investigate the use of Chill

for much more sophisticated language processing tasks.

72

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300

A
cc

ur
ac

y

Training Examples

Chill

Figure 5.6: Tourist Domain Accuracy

73

Chapter 6

Experiments with Syntactic

Parsing

Most previous work in corpus-based NLP has not dealt with case structures, but

rather has concentrated on more surface-oriented issues such as word-class tagging

and syntactic parsing. In order to compare with these approaches, a series of experi-

ments was conducted using Chill to generate syntactic parsers. We selected as a test

corpus a portion of the ATIS dataset (speci�cally the �le ti tb) from a preliminary

version of the Penn Treebank (Marcus et al., 1993). One of the major motivations for

choosing this particular corpus is that it has been used in a number of recent studies

in automated parser acquisition (Brill, 1993; Periera & Schabes, 1992) which serve

as a convenient benchmark for evaluating the performance of Chill.

6.1 Producing Syntactic Analyses

6.1.1 The ATIS Corpus

The ATIS corpus contains queries regarding air-travel information. The original

questions were obtained using \Wizard of Oz" techniques, so they represent realistic

human-computer interaction. Syntactic analyses have been provided by the annotat-

74

ors of the Penn Treebank project. An example analysis of the sentence, \Show me

the ights that served lunch departing from San Francisco on April 25th" is shown in

Figure 6.1. The analysis is a fairly sophisticated syntactic parse tree representation.

As illustrated by this example, analyses may contain various types of empty constitu-

ents such as the implied subject of a command or the trace left by NP movement.

The full corpus used in these experiments contains contains 729 sentences with an

average length of 10.3 words.1

s:[np:[*],

vp:[show,

np:[me],

np:[np:[np:[the, flights],

sbar:[that,

s:[np:[t],

vp:[served,

np:[lunch]]]]],

vp:[departing,

pp:[from,

np:[san, francisco]],

pp:[on,

np:[april, '25th']]]]]]

Figure 6.1: Example Treebank analysis

One complication in using this data is that sentences are parsed only to the

phrase level, leaving the internal structure of NPs unanalyzed and allowing arbitrary-

arity constituents. Rather than forcing the parser to learn reductions for arbitrary

length constituents, Chill was restricted to learning binary-branching structures.

This simpli�es the parser and allows for a more direct comparison to previous ap-

proaches (Brill, 1993; Periera & Schabes, 1992) which use binary bracketings.

Making the treebank analyses compatible with the binary parser required

completion of the parses into binary-branching structures. This \binarization" was

1The preliminary version of the Treebank is far from perfect. A number of the parses contained
unbalanced bracketings or improper constructions. Sentences with questionably formed represent-
ations were dropped from the corpus for the purposes of these experiments.

75

accomplished automatically by introducing special internal nodes in a right-linear

fashion. For example, the noun-phrase, np:[the,big,orange,cat], would be bin-

arized to create: np:[the,int(np):[big, int(np):[orange, cat]]]. The special

labeling (int(np) for noun phrases, int(s) for sentences, etc.) permits restoration of

the original structure by merging internal nodes. Using this technique, the resulting

parses can be compared directly with treebank parses. All of the experiments repor-

ted below were done with automatically binarized training examples; control rules for

the arti�cial internal nodes were learned in exactly the same way as for the original

constituents.

6.1.2 Using Chill for Syntactic Analyses

The learning component of Chill remained exactly the same as in the case-role

experiments except that the initial Parsing Operator Generator and Example Analysis

was modi�ed for the for the syntactic analyses of the Penn Tree-bank. As in case-

role parsing, building an overly-general parser from a set of training examples is

accomplished by constructing clauses for the op/4 predicate. As an example, consider

a phrase, [np[npa trip] [ppto [np dallas]]]. The analysis is represented as a Prolog

term of the form: np:[np:[a, trip], pp:[to, np:[dallas]]]. The operations

and associated clauses required to parse the phrase are as follows (the notation,

reduce(N) Cat, indicates that the top N stack elements are combined to form a

constituent with label, Cat):

reduce(2) pp:

op([S1,S2|Ss], Words, [pp:[S2,S1]|Ss], Words).

reduce(2) np:

op([S1,S2|Ss], Words, [np:[S2,S1]|Ss], Words).

reduce(1) np:

op([S1|Ss], Words, [np:[S1]|Ss], Words).

shift: op(Stack, [Word|Words], [Word|Stack], Words).

76

Clearly, this representation meets the criterion of operator transparency. An

examination of the constituents in a parse directly reveals the reduction operators

which are required for its construction. In the case of analyses including empty

categories (detectable as lexical tokens that appear in the analyses, but not in the

sentence), each emptymarker produces an extra shift operator to introduce the marker

without consuming a word from the input bu�er.

As in the case-role parsing framework, derivation transparency was achieved

operationally. Since, the corpus only provides a single parse for each sentence, Chill

was applied in the single-parse mode. As explained above in Section 3.3.2, this means

that fewer negative control examples were generated. The operators were placed in

order of increasing frequency as indicated by the training set to allow for default

e�ects. The �rst correct parsing found for a sentence was taken to be the correct

derivation for the purpose of generating control examples.

To address the issue of training tractability, the version of the overly-general

parser used during training includes checks to insure that that the current state of the

parse is consistent with the �nal representation. The consistency checking process

is trivial in the case of these syntactic representations, as the order of elements in

the sentence is preserved in the frontier of the parse tree. The exact sequence of

states that the parser must follow can be derived by a post-order traversal of the

parse tree. Visiting a leaf results in a shift operation, while visiting interior nodes

results in a reduce operation for the node. By �rst computing the correct sequence

of parse states, it is then possible to \simulate" the action of the shift-reduce parser

deterministically, insuring that each operator application produces the correct next

state in the sequence.

6.2 Intial Experiments

Intial experiments (as reported in (Zelle & Mooney, 1994b)) were actually carried out

on four di�erent variations of the corpus. A subset of the corpus comprising sentences

77

of length less than 13 words was used to form a more tractable corpus for systematic

evaluation and to test the e�ect of sentence length on performance. The restricted

corpus contains 536 sentences averaging 7.9 words in length. A second dimension

of variation is the form of the input sentences and analyses. Previous experiments

in parser acquisition with this corpus have operated sentences and trees containing

lexical tags (parts-of-speech) rather than words. Since Chill has the ability to create

its own categories, it can use either sentences and trees with lexical tags (tagged trees)

or those with just words (untagged trees). In order to test the advantage gained by

tagging, we also ran experiments using both tagged and untagged trees for both the

full and restricted corpus.

6.2.1 Experimental Method

Obviously, the most stringent measure of accuracy is the proportion of test sentences

for which the produced parse tree exactly matches the treebanked parse for the sen-

tence. Sometimes, however, a parse can be useful even if it is not perfectly accurate;

the treebank itself is not entirely consistent in the handling of various structures.

To better gauge the partial accuracy of the parser, we adopted a procedure

for returning and scoring partial parses. If the parser runs into a \dead-end" while

parsing a test sentence, the contents of the stack at the time of impasse is returned

as a single, at constituent labeled S. Since the parsing operators are ordered and the

shift operator is invariably the most frequently used operator in the training set, shift

serves as a sort of default when no reduction action applies. Therefore, at the time of

impasse, all of the words of the sentence will be on the stack, and partial constituents

will have been built. The contents of stack reect the partial progress of the parser

in �nding constituents.

Partial scoring of trees is computed by determining the extent of overlap

between the computed parse and the correct parse as recorded in the treebank. Two

constituents are said to match if they span exactly the same words in the sentence.

78

If constituents match and have the same label, then they are identical. The overlap

between the computed parse and the correct parse is computed by trying to match

each constituent of the computed parse with some constituent in the correct parse.

If an identical constituent is found, the score is 1.0, a matching constituent with an

incorrect label scores 0.5. The sum of the scores for all constituents is the overlap

score for the parse. The accuracy of the parse is then computed as Accuracy =

(O
Found

+ O
Correct

)=2 where O is the overlap score, Found is the number of constituents

in the computed parse, and Correct is the number of constituents in the correct tree.

The result is an average of the proportion of the computed parse that is correct and

the proportion of the correct parse that was actually found.

Another accuracy measure, which has been used in evaluating systems that

bracket the input sentence into unlabeled constituents, is the proportion of constitu-

ents in the parse that do not cross any constituent boundaries in the correct tree

(Black, 1991). Of course, this measure only allows for direct comparison of systems

that generate binary-branching parse trees.2 By binarizing the output of the parser

in a manner analogous to that described above, we can compute the number of sen-

tences with parses containing no crossing constituents, as well as the proportion of

constituents which are non-crossing over all test sentences. This gives a basis of

comparison with previous bracketing results, although it should be emphasized that

Chill is designed for the harder task of actually producing labeled parses, and is not

directly optimized for the bracketing task.

6.2.2 Results

The results of these preliminary experiments are summarized in Figures 6.2 through

6.5. The �gures for the restricted length corpus in reect averages of three trials,

while the results on the full corpus are averaged over two trials. The curves depict

results for each of the four metrics outlined above. Correct is the percentage of test

2A tree containing a single, at constituent covering the entire sentence always produces a perfect
(non)crossing score.

79

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300

A
cc

ur
ac

y

Training Examples

Crossing %
Partial

0-cross
Correct

Figure 6.2: Preliminary ATIS: Restricted Corpus with Lexical Tags

0

10

20

30

40

50

60

70

80

90

0 50 100 150 200 250 300

A
cc

ur
ac

y

Training Examples

Crossing %
Partial

0-cross
Correct

Figure 6.3: Preliminary ATIS: Restricted Corpus with Words

80

0

10

20

30

40

50

60

70

80

0 50 100 150 200 250

A
cc

ur
ac

y

Training Examples

Crossing %
Partial

0-cross
Correct

Figure 6.4: Preliminary ATIS: Full Corpus with Lexical Tags

sentences with parses that matched the treebanked parse exactly. Partial is partial

correctness using the overlap metric. The remaining curves reect measures based

on re-binarizing the parser output. 0-Cross is the proportion of test sentences having

no constituents that cross constituents in the correct parsing. Crossing% reports the

percentage of (binarized) constituents that are consistent with the treebank (i.e. cross

no constituents in the correct parse).

These inital results, representing the simplest approach to construcing op-

erators for this domain were encouraging. While we know of no other results for

parsing accuracy of automatically constructed parsers on this corpus, the �gures of

33% completely correct using the tagged input and 17% on the untagged text seem

quite good for a relatively modest training set of 300 sentences. The �gures for 0-

cross and crossing% are about the same as those reported in studies of automated

bracketing for the unrestricted ATIS corpus (Brill (1993) reports 60% and 91.12%,

respectively). However, the Chill bracketing measures for the unrestricted corpus

81

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100 120 140 160

A
cc

ur
ac

y

Training Examples

Crossing %
Partial

0-cross
Correct

Figure 6.5: Preliminary ATIS: Full Corpus with Words

were not as good.

A comparison of Figures 6.2 and 6.3 shows considerable advantage is gained

by using word-class tags, rather than the actual words. This is to be expected as

tagging signi�cantly reduces the variety in the input. The results for raw-text use

no special mechanism for handling previously unseen words occurring in the testing

examples. Achieving 60% (partial) accuracy under these conditions seems promising,

if not spectacular. Statistical approaches relying on n-grams or probabilistic context-

free grammars would have di�culty due to the large number of terminal symbols

(around 400) appearing in the modest-sized training corpus. The data for lexical

selection would be too sparse to adequately train the pre-de�ned models. Likewise,

the transformational approach of (Brill, 1993) is limited to bracketing strings of lexical

classes, not words. A major advantage of the Chill approach is the ability of the

learning mechanism to automatically construct and attend to just those features of

the input that are most useful in guiding parsing.

82

Figures 6.4 and 6.5 shows results for the full corpus. As one might expect,

the results are not as good as for the restricted set. Chill did not do as well

on measures of bracketing performance as had been reported for previous systems.

Even though Chill was designed to perform a much more di�cult task (producing

complete labeled parse trees), this result was disappointing.

6.3 Improving the Results

6.3.1 Specializing the Operators

An examination of the rules produced by Chill suggested that a major problem was

that the complexity of the control rules was overwhelming the induction algorithm.

Chillin was having di�culty extracting generalizations from the control examples,

resulting in substantial memorization of speci�c contexts. Recall that the initial gen-

eralizations in Chillin are produced by considering a random sampling of example

pairs. If the concept de�nition to be learned has limited disjunction, it can be shown

that a relatively small sampling is likely to yield some pairs with examples that are

covered by a single clause of the desired de�nition. As the number of clauses in the

target concept increases, the pair sample-size must be increased.

One approach to learning better parsers then, would be to simply increase

the sample-size parameter in Chillin. Unfortunately, this approach caused Chillin

to run up against time and memory limits which prevented learning of parsers for

the unrestricted corpus. An alternative approach is to somehow reduce the degree

of \disjunctiveness" in the control rules being learned. Better results were obtained

by making the operators more speci�c, e�ectively increasing the number of operators,

but reducing the complexity of the control-rule induction task for each operator.

The basic idea was to index the operators based on some relevant portion of

the parsing context. For example, in the experiments where lexical tags were used, the

operators were indexed according to the syntactic category at the front of the input

bu�er. A single operator like op(Stack, [Word|Words], [Word|Stack], Words)

83

becomes multiple operators in slightly di�ering contexts such as:

op(Stack, [detjWs], [detjStack], Ws)

op(Stack, [nnjWs], [nnjStack], Ws)

op(Stack, [tojWs], [tojStack], Ws)

op(Stack, [npjWs], [npjStack], Ws)

In experiments without lexical categories, the operators were indexed according to

the top two phrase categories on the stack. Words which had not yet been reduced

to a phrase were indexed as having the category word.

6.3.2 Results

A second set of experiments was run to determine the bene�t of the operator in-

dexing scheme in learning with the unrestricted ATIS corpus. These experiments

were conducted with three versions of the unrestricted corpus: untagged, tagged and

tags-only. In the untagged corpus, words appeared in sentences without any attached

part-of-speech labeling. The tagged version associated part-of-speech tags with each

word. Finally, the tags-only version replaced words with their corresponding tags

(duplicating the experiments of previous bracketing systems).

The learning curves for these experiments are shown in Figures 6.6 and 6.7.

These curves represent averages over 5 di�erent splits of training and testing ex-

amples. The learning curves for the tagged and tags-only versions were not signi�c-

antly di�erent, so only the latter is shown.

These results show considerable improvement over the initial experiments with

the more general operators. After training on 525 sentences, Chill constructed

parsers comprising over 1500 lines of Prolog which averaged completely correct parses

for 41% of the novel testing sentences. Using the partial scoring metric, Chill's

parses garnered an average accuracy of over 84%.

The �nal �gures for 0-cross and crossing% compare very favorably with those

reported in studies of automated bracketing for the ATIS corpus. Brill (1993) reports

84

0

10

20

30

40

50

60

70

80

90

0 100 200 300 400 500 600

A
cc

ur
ac

y

Training Examples

Correct
Partial

0-Cross
Consistent

Figure 6.6: Indexed ATIS: Full Corpora with Lexical Tags

0

10

20

30

40

50

60

70

80

0 100 200 300 400 500 600

A
cc

ur
ac

y

Training Examples

Correct
Partial

0-Cross
Consistent

Figure 6.7: Indexed ATIS: Full Corpus without Lexical Tags

85

60% and 91.12%, respectively, while Periera and Schabes (1992) achieve 90.36% for

the crossing% measure. Chill scores higher on the percentage of sentences with

no crossing violations (64%) and slightly lower (90%) on the total percentage of

noncrossing constituents. This is understandable as Brill's transformation learner

tries to optimize the latter value, while Chill's preference for sentence accuracy

might tend to improve the former (since correctly parsed sentences are consistent).

It is interesting to note that all three systems approach similar assymptotic levels

of performance on the bracketing measures. There are some di�erences in terms

of learning e�ciency, however. Brill reaches this level after seeing only 150 training

sentences, while Periera and Schabes trained on 700 sentences. Chill lies in between

at 525 training sentences.

The results for the untagged version, as in the initial experiments are signi�c-

antly lower than for tags. However, the overall (partial) acuracy has increased from

60% to 72% due to operator indexing and absolute accuracy has more than doubled.

Basically, the indexing scheme has improved the results for the unrestricted corpus

to the level previously achieved on the restricted-length version. There are no com-

parable results from bracketing studies, as they were not run on untagged versions

of the copus.

New word categories were invented in both situations. In the untagged text ex-

periments,Chill regularly created categories for preposition, verb, form-of-be,

etc.. With tagged input, various tags were grouped into classes such as the verb and

noun forms. In both cases, the system also formed numerous categories and relations

that seemed to defy any simple linguistic explanation. Nevertheless, these categories

were helpful in parsing of new text. These results support the view that a practical

acquisition system should be able to create its own categories, as it is unlikely that

independently-crafted feature systems will capture all of the nuances necessary to do

accurate parsing in a reasonably complex domain.

Obviously, there is still considerable room for improvement in these results,

86

however it is noteworthy that Chill achieve results as good or better than state-

of-the-art empirical systems for bracketing constituents on this corpus. Clearly, the

technique of creating more specialized operators can signi�cantly enhance the per-

formance of Chill for real-world language processing. However, achieving the best

possible performance on this task is probably not all that important. It is not clear

that syntactic analysis per se is particularly useful, except that it may serve as a

component of a larger natural language application. Even expert linguists may have

disagreements about the proper structure to assign a sentence, the less careful ana-

lyses performed for treebanks have a surprisingly high level of inconsistency. On

the other hand, even linguistically naive speakers of natural languages seldom have

trouble determining the meaning of an utterance. Performance of this task is the one

which should be optimized. The next chapter investigates the use of Chill to induce

parsers parsers which directly produce semantically-oriented outputs without relying

on arti�cial intermediate analyses such as parse trees.

6.4 The Control-Rule Advantage

One question which has not yet been addressed is the extent to which Chill's success

depends on its general framework of acquisition as control-rule learning. Given the

ability of ILP systems to induce useful logic programs, it is reasonable to ask whether

Chillin's induction mechanism alone might be su�cient to produce the results seen

here. The simplest application of ILP to parser acquisition would be to simply

present postive examples for the parse(sentence, rep) relationship to the induction

algorithm and let it create a logic program de�ning this concept. Subsequent parsing

could be performed by presenting the learned program with goals having the second

argument uninstantiated, e�ectively producing parses of sentences provided as input.

The advantage gained by the control-rule framework can be assessed by comparing

Chill to the performance achieved by Chillin learning the parse relation directly.

Creating sets of positive examples for Chillin is trivial, we use the same top-

87

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700

A
cc

ur
ac

y

Training Examples

Chill
Induction-in

Figure 6.8: Chill vs. Induction on Simple Case-role Task

level examples as were used for training Chill. Creating negative examples is more

problematic; it is clearly intractable to generate all possible sentences paired with

all possible incorrect representations of those sentences; therefore, we used a mode

declaration parse(+,-) and Chillin's implicit negatives feature (see Section 4.3).

Using this technique of induction with implicit negatives, the experiments

with the simple M&K case-role representations were re-run. Figure 6.8 shows the

resulting accuracy compared to that achieved by Chill. The results show that the

induction algorithm alone does very well, performing slightly worse than Chill for

small examples sets, and becoming indistiguishable as the sample grows. Inspection

of the resulting programs showed that the induction algorithm was fairly accurately

re-creating the template-and-�ller style of program which was used to generate this

simple corpus. This provides strong evidence of the power of the ILP induction

algoritm for inducing programs from examples exhibiting regular structure.

However, on less-structured, real-world corpora, the advantage of the control-

88

0

10

20

30

40

50

60

70

80

90

0 100 200 300 400 500 600

A
cc

ur
ac

y

Training Examples

Chill
Induction-in

Figure 6.9: Chill vs. Induction on ATIS Tags-only

rule framework becomes readily apparent. Figure 6.9 shows the results for the partial

accuracy metric in the ATIS experiment with lexical tags. Here Chill has an over-

whelming advantage, achieving 85% accuracy compared to the 20% accuracy of in-

duction with implicit negatives. Clearly, providing the shift-reduce parsing framework

signi�cantly eases the task of the inductive component.

89

Chapter 7

Experiments with Database-Query

Parsing

7.1 Motivation

Evaluating empirical parser acquisition systems strictly on the basis of arti�cial met-

rics such as those presented in the previous chapters, though certainly valuable, is

open to a number of criticisms. While the metrics can provide rough comparisons of

relative capabilities, such comparisons must be made with caution. Often systems are

not run on identical corpora, and even when the corpora are the same, they may be

\cleaned up" in di�erent ways. Also it is not clear how one should compare systems

that are tuned for producing di�erent results (e.g. those that produce bracketings and

those that build labeled parse trees).

It is even less clear that these measures will accurately reect di�erences in

performance on real language-processing tasks. It is not necessarily the case that

a system scoring 80% on some parsing metric will actually produce better results

than one achieving 70%, unless the desired task is itself parsing, something that even

English teachers no longer seem to regard as particularly important. The acid test

is whether empirical approaches allow the construction of better natural language

90

systems, or perhaps allow designers to build comparable systems with less time and

expertise. Testing the true promise of Chill requires marrying the learning compon-

ent with a performance component that uses the learned parsers to actually solve a

natural language processing problem. To that end, this chapter reports on the exper-

ience of using Chill to engineer a natural language front-end for a simple database.

The choice of a database-query application was motivated by a number of con-

cerns. First, it is a signi�cant real-world language-processing problem. The database-

query task has long been a touchstone in NLP research. The potential of allowing

inexperienced users to retrieve useful information from huge computer archives was

recognized early-on as an important application of computer understanding. The

task has served as the test-bed for important NLP formalisms and approaches, from

early work in augmented transition networks (Woods, 1970) and semantic grammars

(Brown & Burton, 1975; Hendrix, Sagalowicz, & Slocum, 1978) to modern logic

grammars (Warren & Pereira, 1982; Abramson & Dahl, 1989). Current research on

the ATIS domain discussed in the previous chapter demonstrates the on-going interest

in this problem. Moreover, the need for natural language interfaces is likely to grow

as ever more information is made available online to naive users who desire access to

that information in familiar ways.

Second, database querying represents a language-processing task of tractable

size and scope for this evaluation. Since the understanding problem is limited by the

domain of the database and the information retrieval task, it is reasonable to hope

that good coverage can be obtained without having to compile a corpus containing

tens of thousands of sentences, a task beyond the scope of this work. On the other

hand, creating a system that performs well on novel sentences is a nontrivial task, as

any student who has done such a project in an AI class can attest.

Finally, and perhaps most importantly for the purposes of this dissertation,

a parser for database queries is easily evaluable. The gold standard is whether the

system produces the correct output for a given question, a determination which is

91

straight-forward for most database domains. There is no need to fret about partial

metrics or engage in philosophical debates over the usefulness of various intermediate

representations.

7.2 Overview

The database query parser produces analyses that are substantially di�erent from the

types presented so far. The previous representations have been syntactic or shallow

semantic structures. In the database-query task, the meaning of a sentence is rep-

resented operationally as a query in a suitable database query language. The query

language considered here is a logical form similar to the types of meaning represent-

ation typically produced from logic grammars(Warren & Pereira, 1982; Abramson &

Dahl, 1989). The semantics of the representation is grounded in a query interpreter

that executes queries and retrieves relevant information from a database.

The domain of the chosen database is United States geography. The choice

was motivated by the availability of an existing natural language interface for a simple

geography database. This system, called Geobase was supplied as an example ap-

plication with a commercial Prolog available for PCs, speci�cally Turbo Prolog 2.0

(Borland International, 1988). Having such an example provides a database already

coded in Prolog for which a front-end can be built; it also serves as a convenient

benchmark against which Chill's performance can be compared.

The Geobase data contains about 800 Prolog facts asserting relational tables

for basic information about U.S. states, including: population, area, capital city,

neighboring states, major rivers, major cities, and highest and lowest points along

with their elevation. The database also contains information concerning the lengths

of rivers and the population of cities.

Figure 7.1 shows a sampling of questions in English and the associated query

representations. The queries are expressed using the Prolog conventions of capitalized

identi�ers representing logical variables and commas representing conjunction.

92

What is the capital of the state with the largest population?
answer(C, (capital(S,C), largest(P, (state(S), population(S,P))))).

What are the major cities in Kansas?
answer(C, (major(C), city(C), loc(C,S), equal(S,stateid(kansas)))).

What state has the most rivers running through it?
answer(S, most(S, R, (state(S), river(R), traverse(R,S)))).

How many people live in Iowa?
answer(P, (population(S,P), equal(S,stateid(iowa)))).

Figure 7.1: Sample Database Queries

Development of the database application required work on two components: a

framework for parsing into the logical query representations, and a speci�c query lan-

guage for the geography database. The �rst component is domain-independent and

consists of algorithms for parsing operator generation and example analysis meet-

ing the technical criteria necessary for Chill. The resulting parsing framework is

quite general and could be used to generate parsers for a wide range of logic-based

representations.

The second component, which is domain speci�c, is a query language having

a vocabulary su�cient for expressing interesting questions about geography. The

database application itself comprises a parser produced by Chill coupled with an

interpreter for the query language. The speci�c query language for these experiments

(hereafter referred to as Geoquery) was initially developed by considering a sample of

50 sentences. A simple query interpreter was developed concurrently with the query

language, thus insuring that the representations were grounded in the database-query

task. Typically, a construct of the query language requires a single clause in the

interpreter to de�ne how it accesses facts from Geobase.

Once the query language and parsing framework were designed, a corpus of

sentence/query pairs was developed by having uninformed subjects generate sample

questions for the system. An analyst then constructed an appropriate query for each

93

Type Form Example

country countryid(CountryName) countryid(usa)

city cityid(CityName, StateAbbrev) cityid(austin,tx)

state stateid(StateName) stateid(texas)

river riverid(RiverName) riverid(colorado)

place placeid(PlaceName) placeid(pacific)

Figure 7.2: Basic Objects in Geoquery

question, resulting in a corpus of 250 pairs which was used to evaluate the performance

of Chill on this task.

As with the previous parsing frameworks, the parsing of database queries is

most easily described in terms of speci�c examples. To that end, the next section

describes the particular vocabulary of Geoquery before taking up the description of

the operators and algorithms used in learning parsers for this style of representation.

7.3 The Query Language, Geoquery

The query language considered here is basically a �rst-order logical form augmented

with some higher-order predicates or meta-predicates, for handling issues such as

quanti�cation over implicit sets. This general form of representation is useful for

many language processing tasks. The particular constructs of Geoquery, however,

were not designed around any notion of appropriateness for representation of natural

language in general, but rather as a direct method of compositionally translating

English sentences into unambiguous, logic-oriented database queries. Thus Geoquery

is an example of an task-speci�c MRL.

7.3.1 Basic Constructs in Geoquery

The most basic constructs of the query representation are the terms used to rep-

resent the objects referenced in the database and the basic relations between them.

The basic forms are listed in Figure 7.2. The objects of interest are states, cities,

rivers and places (either a high-point of low-point of a state). In �rst-order repres-

94

entations, such objects would typically be represented by unique constants; however,

it is easier to treat these objects as terms, for example using stateid(texas) to

represent the state of Texas. This has the e�ect of \typing" the basic objects and

making it easier to remember the representation for potentially ambiguous names

(e.g. stateid(missouri) vs. riverid(missouri)). Cities are represented using a

two argument term with the second argument containing the abbreviation of the state.

This is done to insure uniqueness, since di�erent states may have cities of the same

name (e.g. cityid(columbus,oh) vs. cityid(columbus,ga)). This convention also

allows a natural form for expressing partial information; a city known only by name

is given an uninstantiated variable for its second term. Analogous convention should

be used to di�erentiate rivers of the same name, but the information in Geobase is

insu�cient to make the necessary distinctions. Fortunately, there are few duplicate

rivers present.

The basic relations are shown in Figure 7.3. The meanings of these relations

should be self-evident. One possible exception is the relation equal/2. This predicate

really amounts to logical equality. It is used to indicate that a certain variable is bound

to a ground term representing an object in the database. For example, a phrase like

\the capital of Texas" translates to (capital(S,C), equal(S, stateid(texas)))

rather than the more traditional capital(stateid(texas),C). The use of equal

allows objects to be introduced at the point where they are actually named in the

sentence. The approach of using a single, special predicate to introduce ground

terms is also necessary for the uniform treatment of variable bindings in the parsing

framework for logical queries, which will be discussed in the next Section 7.4.

7.3.2 Meta-Predicates in Geoquery

Although the basic predicates provide most of the expressiveness of Geoquery, meta-

predicates are required to form complete queries. A list of the implemented meta-

predicates is shown in Figure 7.4. These predicates are distinguished in that they

95

Form Predicate

capital(C) C is a capital (city).
city(C) C is a city.
major(X) X is major.
place(P) P is a place.
river(R) R is a river.
state(S) S is a state.
capital(C) C is a capital (city).
area(S,A) The area of S is A.
capital(S,C) The capital of S is C.
equal(V,C) variable V is ground term C.
density(S,D) The (population) density of S is P
elevation(P,E) The elevation of P is E.
high point(S,P) The highest point of S is P.
higher(P1,P2) The elevation of P1 is greater than that of P2.
loc(X,Y) X is located in Y.
low point(S,P) The lowest point of S is P.
len(R,L) The length of R is L.
next to(S1,S2) S1 is next to S2.
size(X,Y) The size of X is Y.
traverse(R,S) R traverses S.

Figure 7.3: Basic Predicates in Geoquery

Form Explanation

answer(V,Goal) V is the variable of interest in Goal.

largest(V, Goal) Goal produces only the solution maximizing size of V
smallest(V,Goal) Analogous to largest.
highest(V,Goal) Analogous to largest (with elevation).
lowest(V,Goal) Analogous to highest.
longest(V,Goal) Analogous to largest (with length).
shortest(V,Goal) Analogous to longest.

count(D,Goal,C) C is count of bindings for D satisfying Goal.
most(X,D,Goal) Goal produces only the X maximizing count of D
fewest(X,D,Goal) Analogous to most.

Figure 7.4: Meta-Predicates in Geoquery

96

take completely-formed conjunctive goals as one of their arguments. The remaining

arguments are variables, as in the case of the basic predicates (except for equal/2).

The most important of the meta-predicates is answer/2. This predicate serves

as a \wrapper" for query goals indicating the variable whose binding is of interest

(i.e. answers the question posed). Executing a query of the form: answer(X,Goal)

where X is a variable appearing in Goal results in a listing of all the unique values

taken on by X for all possible proofs of Goal generated through backtracking. Many

queries do not require any other meta-predicates for their expression.

The next group of meta-predicates are used to select certain extremal elements

of sets implicitly de�ned by goals. For example, executing the query, largest(P,

(state(S), population(S,P))) binds S and P to values which maximize the size

of P over all solutions to the conjunction. In this case, the resultant bindings would

be: S = stateid(california) and P = <population of California>. The goal

in these queries is actually executed over independent dummy variables before the

resulting bindings are uni�ed with the variables given in the query. This insures

that the meta-predicate behaves \logically" in the sense that its position within a

conjunct does not a�ect the meaning of the conjunct. The query (capital(S,C),

largest(P, (state(S), population(S,P)))) produces exactly the same bindings

for S and P as before.

The �nal group of meta-predicates operate on the cardinality of implicit sets.

Count/3 simply counts the number of unique bindings for its dummy variable D which

occur in solutions to Goal. It is used in some questions about number as in \How

many states border Texas," which translates to: answer(C, (count(S,(state(S),

next to(S,S1), equal(S1,stateid(texas)))))). The �nal two meta-predicates

bind indices for implicit sets with extremal cardinalities. For example, the phrase,

\the state with the fewest rivers" translates to fewest(S, R,(state(S), loc(R,

S), river(R))). Note that S is the only variable which is bound by executing this

goal, all other arguments are treated as internal dummy variables over which quan-

97

ti�cation is performed.

7.3.3 Discussion

Obviously, Geoquery does not represent a general solution to the problem of rep-

resenting the meanings of natural language utterances. It does, however, provide a

simple language for expressing a great number of interesting queries about geography.

A similar approach could be taken for other domains by de�ning a suitable set of ba-

sic predicates. Many of the meta-predicates in Geoquery would be useful beyond the

geography domain, but query languages for other domains would almost certainly ne-

cessitate extension and modi�cation. Given the lack of agreement on a general MRL

for natural language, it seems likely that engineering these sorts of problem-speci�c

representations will remain a modus operandi of NLP for some time to come.

It should be emphasized that no part of Geoquery was speci�cally designed to

simplify the learning of parsing control rules. The general framework for parsing into

logical representations requires only that the representation be composed of predicates

and meta-predicates, and that ground terms are introduced using equal/2. The

design of similar domain-speci�c MRLs could easily proceed by analogy to Geoquery,

requiring little understanding of the general parsing framework that produces these

representations.

One notable de�ciency in the current implementation of the Geoquery inter-

preter is that queries may execute very ine�ciently. This is not a problem for the

limited database used in these experiments, but would require attention in moving to

larger applications. This is not really a natural language issue, but rather a matter

of database-query optimization. Once questions have been translated into an unam-

biguous logical form, they are amenable to optimization or, perhaps, translation into

more common query representations such as SQL. Domain independent optimization

methods allow the design of the query language to be based on expressiveness and

simplicity, rather than worrying about implementation issues. This is the approach

98

taken in CHAT-80 (Warren & Pereira, 1982).

7.4 A Parsing Framework for Logical Queries

Although the logical representations of Geoquery look very di�erent from parse-trees

or case-structures, they are amenable to the same general parsing scheme as that

used for the shallower representations. Adapting Chill to work with this represent-

ation requires only the identi�cation and implementation of suitable operators for the

construction of Geoquery-style analyses.

7.4.1 Overview

As before, we have adopted a simple shift-reduce parsing framework for producing

database queries. The parser is again implemented by translating parsing actions

into operator clauses. One cosmetic change from the previous examples is that the

stack and input components of the of the parse state have been packaged into a single

unit using the functor ps/2. This was done purely for the convenience of passing

complete parse states as a single parameter in the code implementing the training

module. Operators are thus expressed as a two-place predicate that transforms an

input context into an output context.

The construction of logical queries involves three di�erent types of operators.

Initially, a word or phrase at the front of the input bu�er suggests that a certain

structure should be part of the result. The appropriate structure is pushed onto the

stack. For example, the word \capital" might cause the capital/2 predicate to be

pushed on the stack. This type of operation is performed by an introduce operator.

Initially, such structures are introduced with new (not co-referenced) variables. These

variables may be uni�ed with variables appearing in other stack items through a

co-reference operator. For example, the �rst argument of the capital/2 structure

may be uni�ed with the argument of a previously introduced state/1 predicate.

Finally, a stack item may be embedded into the argument of another stack item to

99

form conjunctive goals inside of meta-predicates; this is performed by a conjoin

operation.

During the course of parsing, logical variables in queries are treated as ground

terms. It is bene�cial that variables which have not yet been uni�ed with other vari-

ables be automatically identi�able, they are represented with the constant freevar.

Shared variables take the form pvar(n) where n is an integer that \tags" the vari-

able. Tags are assigned according to the order in which freevars are co-referenced

in the course of a parse, starting with 0. The treatment of parse variables as ground

terms is required so that the portions of the parse state over which induction is per-

formed in Chillin are initially ground. An added bene�t of this scheme is that it

provides a single correct naming of query variables, so that deducing the equivalence

of structures reduces to a simple equality check.

Figure 7.5 shows the sequence of states the parser goes through in parsing the

sentence, \What is the capital of Texas?" The individual stack items are shown one

per line, and the state of the input bu�er is on the last line of each parse state. Each

stack item contains a portion of the query structure being built and a list of the words

that have been shifted from the input while the stack item has been at the top of the

stack. This is done so that the actual words used to introduce various structures are

available to serve as context for forming control rules. The word list is maintained

in reverse order and packaged with the query structure via the :/2 functor.

The query extracted from state 14 is: answer(pvar(0), (capital(pvar(1),

pvar(0)), equal(pvar(1), stateid(texas)))). This is turned into a valid Geoquery

representation by replacing the parse variables with \live" Prolog variables, producing

the �nal result: answer(A, (capital(B, A), equal(B, stateid(texas)))).

The parse sequence illustrates all of the basic operation types that are used to

construct queries from sentences. The initial state consists of the answer/2 structure

on the stack and the input bu�er containing the sentence.

The most common operation is a shift, which simply transfers a word from

100

Parse State Operation Type

1. ps([answer(freevar,freevar):[]],

[what,is,the,capital,of,texas,?]) shift

2. ps([answer(freevar,freevar):[what]],

[is,the,capital,of,texas,?]) shift

3. ps([answer(freevar,freevar):[is,what]],

[the,capital,of,texas,?]) shift

4. ps([answer(freevar,freevar):[the,is,what]],

[capital,of,texas,?]) introduce

5. ps([capital(freevar,feevar):[],

answer(freevar,freevar):[the,is,what]],

[capital,of,texas,?]) co-reference

6. ps([capital(freevar,pvar(0)):[],

answer(pvar(0),freevar):[the,is,what]],

[capital,of,texas,?]) shift

7. ps([capital(freevar,pvar(0)):[capital],

answer(pvar(0),freevar):[the,is,what]],

[of,texas,?]) shift

8. ps([capital(freevar,pvar(0)):[of,capital],

answer(pvar(0),freevar):[the,is,what]],

[texas,?]) shift/introduce

9. ps([equal(freevar,stateid(texas)):[texas],

capital(freevar,pvar(0)):[of,capital],

answer(pvar(0),freevar):[the,is,what]],

[?]) co-reference

10. ps([equal(pvar(1),stateid(texas)):[texas],

capital(pvar(1),pvar(0)):[of,capital],

answer(pvar(0),freevar):[the,is,what]],

[?]) conjoin

11. ps([equal(pvar(1),stateid(texas)):[texas],

answer(pvar(0),capital(pvar(1),pvar(0))):[the,is,what]],

[?]) shift

12. ps([equal(pvar(1),stateid(texas)):[?,texas],

answer(pvar(0),capital(pvar(1),pvar(0))):[the,is,what]],

[]) shift

13. ps(['$$EOI',

equal(pvar(1),stateid(texas)):[texas],

answer(pvar(0),capital(pvar(1),pvar(0))):[the,is,what]],

[]) conjoin

14. ps(['$$EOI',

answer(pvar(0),(capital(pvar(1),pvar(0)),

equal(pvar(1),stateid(texas)))):[the,is,what]],

[])

Figure 7.5: Sequence of Parse States for \What is the capital of Texas?"

101

the input bu�er to the word list of the top item on the stack. This operation accounts

for the results in states 2, 3, 4, 7, 8, 12, and 13 of the example parse. In the case of state

13, an attempt to shift from an empty input bu�er puts a special end-of-input marker,

'$$EOI', on the stack. Query structures are introduced at the point where their

presence is indicated by lexical items at the front of the input bu�er. For example,

state 5 shows the result of the word \capital" introducing the capital/2 structure.

State 9 results from a special operator combining a shift with an introduce to

handle the state-name at the front of the bu�er. Parsing variables are uni�ed via

co-referencing operators, as demonstrated in states 6 and 10. The conjoin operator

embeds one stack item into the argument of another. If the argument is not a freevar,

the new structure is conjoined with the existing argument. States 11 and 14 are the

product of conjoin operations.

7.4.2 Parsing Operators and Transparency

Using Chill to produce a parser for logical query representations requires suitable

algorithms for operator generation and example analysis, which are described in this

section. Recall that operator transparency requires that the overly-general Geoquery

operators be automatically deducible from training examples. As in the previous

parsers, each required operator will produce a single overly-general clause for the

op predicate. Building on the lessons learned from the experiments with the ATIS

corpus, the operators for parsing task were designed to be relatively speci�c. Each

class of operation, introduce, co-reference and conjoin, will give rise to multiple

speci�c op clauses as dictated by the representations appearing in a training corpus.

Introduce: Generating Pieces of Structure

An introduce operation generates a stack item corresponding the some substructure

of the complete parse. The introduced substructures are at the level of simple terms,

with arguments �lled initially by freevar. In general, an introduce operator is

102

required for each functor appearing the the �nal query (except for answer/2 which

is already in the initial state). The overly-general clause which implements a speci�c

introduce operator takes the form, op(S0,S1) :- introduce(Term, Phrase, S0,

S1) which states that Phrase introduces the structure Term into state S0 yielding

state S1. More concretely, the example parse above requires an operator of the form

op(S0,S1) :- introduce(capital(freevar,freevar),[capital],S0,S1) to in-

troduce the capital/2 structure appearing in the query.

The Phrase argument of introduce/4 may be interpreted as a kind of pre-

condition for the applicability of the operation. The words speci�ed in the Phrase

list must be at the front of the input bu�er. It is easy to give a logical speci�cation

of introduce as follows:

introduce(Term, Phrase, S0, S1) :-

ps_input(S0, Words),

append(Phrase,_,Words),

ps_stack(S0, Stack0),

ps_stack(S1, [Term:[]|Stack0]),

ps_input(S1,Words).

The ps input/2 and ps stack/2 predicates select the input bu�er and stack por-

tions, respectively, of a parse state. Append/3 is the \standard" predicate for list

concatenation, here it is used to insure that Phrase is indeed a pre�x of the words in

the input bu�er.

Obviously the Term argument for an introduce operation is determined by

the appearance of a particular term in the query of a training example. Determining

a proper Phrase argument requires an extra source of information in the form of a

lexicon. The lexicon indicates which words or phrases correspond to various semantic

structures appearing in queries. It is implemented as a simple table of lexical entries

having the form: lex entry(Phrase, Term). Currently the lexicon is constructed by

an analyst with some automated help. The issue of lexicon construction is discussed

103

in more detail in Section 7.4.4.

A closely related issue concerns the introduction of database objects, which

are handled specially. Following an approach similar to that used for other terms

would suggest having a separate operator for each object that appears in the training

examples. Such an approach would have obvious generalization problems. It would

only be able to answer questions about objects that had actually been seen in training

examples, even though the existence of comparable objects is a direct consequence

of the database query task. For example, if the training examples did not contain

any questions about Kalamazoo, no subsequent question about Kalamazoo could be

answered for lack of an operator to introduce the relevant object. Obviously, it is

unreasonable to assume that every object in the database will be mentioned in the

training examples. As an alternative, special operators are included for introducing

each class of objects in the database.

As an example of a special operator, consider the operator which was applied

to produce state 9 in the example parse. This operator applies any time the phrase at

the front of the input bu�er corresponds to a known state name from the database.

A logical speci�cation of this operator is as follows:

op(S0,S1) :-

ps_input(S0,Input0),

state_name(Input0,Input1,Name),

ps_stack(S0,Stack0),

ps_input(S1,Input1),

ps_stack(S1,[equal(freevar,stateid(Name)):[Name]|Stack0]))).

Here state name/3 holds when Name is an atom comprising the words of a state's

name and Input1 is the tail of Input0 after the words corresponding to the state's

name has been stripped. For example, one clause of the relation is state name([new,

mexico| Tail], Tail, 'new mexico'). Those familiar with de�nite-clause gram-

mars will recognize this standard form for \parsing" a constituent from a sentence

104

represented as a di�erence list. The de�nitions for predicates such as state name

used in special operators are generated directly from information contained in Geo-

base.

Similar special operators are included in the overly-general parser to intro-

duce equal terms for rivers, cities, places, and countries (to handle various ways of

expressing the concept \United States"). Cities are a particularly interesting case.

Recall that city objects are represented using a term of the form cityid(CityName,

StateAbbrev). Sometimes cities are referred to only by name. The special operator

for this case introduces the structure with the StateAbbrev argument left uninstan-

tiated. A separate operator comes into play if the city name is immediately followed

by a state name. In this case, both names are parsed and a completely instantiated

structure is introduced.

These special operators generalize the notion of lexicon by directly using in-

formation in the database to generate appropriate overly-general rules for introducing

various database objects. Although they are engineered speci�cally from the database

at hand, their construction is straightforward and they provide a very general mech-

anism for handling large classes of similar objects; a condition which nearly de�nes

the notion of a database.

Co-reference: Binding Variables

Co-reference operations cause two parse variables to be \uni�ed." If both variables

are freevar they are both replaced with a parse variable having the next available

tag. If only one of the variables is freevar, it is replaced with the other variable. In

the case that both variables are previously co-referenced, they must have the same

numeric tag for the operation to succeed.

Recognition of the need for a particular co-reference operator is straight-

forward. The need for a co-reference operator is signalled by multiple appearances

of a variable in a query. A variable which appears n times in a query of a training

105

example gives rise to n � 1 co-reference operators. A co-reference operator has the

form: op(S0, S1) :- coref(F1, N1, I1, F2, N2, I2, S0, S1). The coref re-

lation holds when S0 is a parse state with the structure on the top of the stack (call

it top) having the functor F1/N1 and a subsequent stack item (call it item) having

the functor F2/N2, and S1 is S0 with the I1th argument of top co-referenced with

the I2th argument of item. In the example parse, the �rst argument of answer/2

was co-referenced with the second argument of capital/2. The clause for this this

general action would be: op(S0, S1) :- coref(capital, 2, 2, answer, 2, 1,

S0, S1).

A couple of technicalities are worth noting. A formal speci�cation of coref/8

is somewhat messy in that this it is not a strictly logical operator; the tagging of new

parse variables has the side-e�ect of updating the tag counter. The speci�cation is

also complicated by allowing the second functor speci�ed in coref to be at any stack

location beneath top. A sequential search is employed, and the operation is performed

on the �rst matching stack item only. Finally, knowing that two variables must be

co-referenced does not, by itself, determine the exact operator which is required, since

it it unknown which of the two variable-containing structures will be on the top of the

stack when the co-referencing is performed. This issue is handled analogously to the

head identi�cation problem in case-role parsing by generating both potential operators

and determining the correct derivation operationally during example analysis.

Conjoin: Building Goals

Conjoin operations cause a stack item to be \dropped" into another stack item rep-

resenting a meta-predicate. The speci�c conjoin operations required for parsing a

training example are inferred by locating query structures (other than equal/2) that

contain arguments that are not variables. Each conjunct of such an argument must

have been inserted by an appropriate conjoin operation.

Once an item has been conjoined to another, it is deleted from its former

106

stack position and is no longer accessible to other items for co-reference; therefore, an

item may not be conjoined until any necessary co-references have been established.

Obviously, this dictates that an item may not be conjoined as long as it contains

freevar. More subtly, an item may not be embedded if it contains the only available

(not embedded) reference to a variable to which some freevar must eventually be

co-referenced. This latter case occurs commonly as \chains" of references. In the

example parse above, capital/2 cannot be dropped into answer/2 (state 11) until

its �rst argument has been co-referenced with the �rst argument of the equal for

Texas (state 10).

In order to facilitate this chaining process, conjoin actions operate on the

second item of the stack rather than the top. The second item is either dropped into

the item below, or the item below is lifted into the second item. Any pending co-

references for the item on the top of the stack will be completed before attempting

conjoin operations with the second item. In a sense, this process implements a one

constituent look-ahead, insuring that the top item is complete with respect to refer-

ences to variables in previous items before those previous items become unavailable.

This look-ahead allows the construction of complex queries without requiring oper-

ators that look inside arbitrarily nested terms to establish co-references. The case of

conjoin operations concerning the �nal constituents of a sentence is handled by the

'$$EOI' marker which occupies the top stack position, placing the �nal constituents in

the second stack position where any necessary conjoin operations can be performed.

As this discussion indicates, the conjoin operation comes in two avors, de-

pending on whether the second stack item is the one being embedded or the one being

embedded into. The former case is implemented by an operator of the form: op(S0,

S1) :- drop conj(F1, N1, F2, N2, I2, S0, S1) where drop conj/7 holds when

S0's stack's second item (call it item) has the functor F1/N1 and F2/N2 is the functor

of the next item (call it meta) and S1 is the state that results from right-conjoining

item with the I2th argument of meta. If the I2th argument of meta is freevar, the

107

right-conjoin operation simply replaces it, otherwise item is conjoined on the right of

the existing argument. Conjoining on the right preserves the relative ordering of con-

stituents as they were introduced from the sentence. More formally, the drop conj

operation may be speci�ed as follows:

drop_conj(F1, N1, F2, N2, I2, S0, S1) :-

ps_stack(S0, [Top,Item:_,Meta:Ws|PostMeta]),

functor(Item, F1, N1),

functor(Meta, F2, N2),

arg(I2, Meta, Conjunction),

conjoin_right(Item, Conjunction, NewArg),

change_arg(Meta, I2, NewArg, NewMeta),

ps_stack(S1, [Top,NewMeta:Ws|PostMeta]),

ps_input(S0, Input),

ps_input(S1, Input).

Here functor/3 and arg/3 are used in the standard Prolog sense. The former checks

the name and arity of the principle functor of a term, and the latter accesses a speci�ed

argument of a term. The change arg/4 predicate produces a copy of a term with a

speci�ed argument replaced by another term.

The alternative conjoin operator, lift conj/7 applies when a meta-predicate

is the second stack item, and the item below is \lifted" into it. The operator clause

is analogous to that for drop conj/7. The operator implementation is speci�ed as

follows:

lift_conj(F1, N1, F2, N2, I2, S0, S1) :-

ps_stack(S0, [Top,Meta:Ws,Item:_|PostItem]),

functor(Item,F1,N1),

functor(Meta, F2, N2),

arg(I2, Meta, Conjunction),

108

conjoin_left(Item, Conjunction, NewArg),

change_arg(Meta, I2, NewArg, NewMeta),

ps_stack(S1, [Top, NewMeta:Ws| PostItem]),

ps_input(S0, Input),

ps_input(S1, Input).

Notice that the stack item is left-conjoined in this case. Since it is lower on the stack,

it must have occurred earlier in the sentence.

As with co-reference operations, identifying the need for a conjoin does not

strictly determine what operator is required. That is, the conjoin required by a given

query may have been produced by either a lift or a drop. Again, the solution to this

indeterminacy is simple to generate both operators and allow the derivation found

during example analysis to determine which is correct.

7.4.3 Training and Testing

As for the previous parsing frameworks, the Geoquery parser is incorporated into

Chill by providing appropriate training and testing modules. The implementation

of these modules is signi�cantly more complicated than their syntactic counterparts

due to the richness of the operators employed. To begin with, the operators themselves

make use of predicates de�ned in the database; therefore, portions of the database

itself must be included in these modules. Additionally, as the mapping between

sentences and representations becomes less obvious, more processing is required to

insure the tractability of both training and testing.

The Training Module

As for previous frameworks, the main concern of the training module is in implement-

ing a version of the overly-general parser that �nds correct derivations of the training

examples in tractable time. This task is considerably more di�cult for the Geoquery

parser than for the case-role or syntactic parsing considered in previous chapters. As

109

before, the main addition to the general parsing framework is an algorithm for con-

sistency checking. After each operator application, the current parse state is analyzed

to insure that it remains consistent with the required eventual output.

The di�culty in checking the consistency of the current parse state is that

there is no strict ordering relation between the structures that appear in a query

and the order in which those structures are introduced by the sentence. The corpus

for Geoquery follows the convention that basic predicates appear in the same order

in which the words that introduce them appear in the sentence. However, meta-

predicates often play the role of quanti�ers and may \oat" according to the scoping

requirements of the sentence. For example, the phrase \state with the largest pop-

ulation, " generates a query fragment having the meta-predicate largest/2 as its

principle functor; however, the only reasonable introducer for this structure is the

word \largest," which appears near the end of the phrase.

In general, a query may be viewed as a tree rooted in an answer/2 node. In-

ternal nodes represent meta-predicates and have a child for each conjunct appearing

in its embedded goal. The leaves of this tree are the basic predicates used in the query

and will appear in order according to the appearance of words or phrases which intro-

duce them in the sentence. Meta-predicates may be introduced at any point within

the frontier that they dominate, including immediately before or immediately after.

In the previous example, largest/2 dominates state/1 and population/2 and is

introduced between them. In the case of the phrase \the largest state by population"

largest/2 again dominates state/1 and population/2, but is introduced before

either. These observations motivate the basic consistency checking algorithm used

in the Geoquery parser. The sequence of items on the stack is checked to insure it

represents a pre�x of a valid traversal of the query tree. A valid traversal is simply

one that visits the leaves in order and visits each internal node exactly once at some

point during the traversal of the frontier dominated by the node.

The Geoquery training module also incorporates a slight modi�cation of the

110

Chill architecture to improve training e�ciency. Recall that the initial phases of

Chill are Operator Generation and Example Analysis. In Operator Generation,

Chill analyzes all of the training examples to construct a complete set of operators

for an initial overly-general parser. This overly-general parser is then used to perform

Example Analysis which builds control examples for each operator. The Geoquery

module interleaves these two phases of Chill. A single example is considered at a

time: a set of operators is generated, and the example is parsed and control examples

extracted from the parse using just the operators for that example. As each training

example is analyzed, its control examples are merged into a global pool of control

examples. Using this technique, the search for a correct parse derivation is limited to

applications of just those operators which might be relevant to the example at hand,

resulting in signi�cant speed-up.

The Testing Module

The testing module for the Geoquery parser is relatively straight-forward. The basic

parsing shell is the same as in the previous parsing frameworks. The parse proceeds

by applying operators until a �nal state is reached or the parser comes to a dead-end.

The former occurs when the stack contains exactly two items, with the top item being

'$$EOI'. The latter occurs when a state is reached for which none of the learned

operators applies. This simple parsing loop along with the support predicates for the

operators comprise the basic test parser.

One complication of the Geoquery parsing operators is that the introduce

operations increase the amount of structure on the parse stack without decreasing the

size of the input bu�er. It is possible (in fact likely) that an introduce operator may

be learned with an overly-general control-rule. During the course of a subsequent

parse, this may lead to a situation in which the same operator is applied over and

over in an in�nite regress leading to a stack overow. In order to prevent this, the

implementation of the operators in the test module is slightly altered. Cycling is

111

prevented by keeping track of what structures have been introduced since the last

shift operation. A given structure not allowed to be introduced more than once

without some input being consumed. This prevents pathological growth of the stack

while insuring that correct parse sequences are una�ected.

7.4.4 Discussion

The operators presented here are su�cient for producing virtually any Geoquery ex-

pression. However, there are certain types of constructions, notably those involving

duplicated structures which are not handled. For example, the conjunction in \What

states border Texas and Oklahoma" requires two instances of next to/2 which are

both introduced by the word \border." In general, satisfactory handling of conjunc-

tions often requires special considerations in NLP systems (Dahl & McCord, 1983),

and no e�ort has been made to solve these problems in the context of Geoquery.

The framework outlined here also does not allow the use of disjunction within

queries to handle a sentence such as \What states border Iowa or Missouri." Dis-

junction can be handled analogously to conjunction; however, this was not done as

the sample queries on which Geoquery was based did not contain disjunctive quer-

ies. Similarly, explicit mention of numbers are not handled, as for example in \How

many cities have more than 1,000,000 people?" Again, these sorts of queries did

not appear in the initial corpus. Clearly, handling explicit numbers in a general way

would involve the de�nition of special operators such as those which introduce data-

base objects, but they do not seem to present any particular di�culty for the general

approach. A similar situation exists for ordinal references as in \What is the second

largest city in Texas?" which are also not supported in the current version.

Finally, the integration between the parsing framework for logical queries and

the actual constructs of Geoquery deserves examination. As indicated above, most of

the operators required to generate appropriate parses are directly inferable from the

training examples. All of the speci�c co-reference and conjoin operators required

112

to parse the training examples may be inferred without further knowledge. However,

operators which initially map words into structures require additional information.

In the case of introduce operators, this extra information is supplied by the lexicon

which is used in operator generation. While the construction of the lexicon does

require human expertise, it turns out to be a relatively minor burden, at least for

the types of queries for which Geoquery has been used. Lexicon development was

facilitated through use of an automated tool. Given a training corpus, this tool

processes each example to insure that all of the structures present in the query could

be introduced by some word or phrase in the corresponding sentence according to

the relations given in the lexicon. The program then interactively prompts for trigger

words or phrases for any as yet unmotivated structure. The provided phrase is then

recorded in a new lexical entry. In this fashion, it is easy to quickly build a lexicon

su�cient for parsing a corpus.

The other domain-speci�c portion of the framework concerns the special op-

erators for introducing database objects in equal predicates. These operators were

produced by hand-written code which retrieved the relevant lexical items from the

database and produced the relevant operators. These operators were then included

with those produced by the automated operator generation algorithm for use in pars-

ing the training examples.

Given the need for some domain-speci�c information in the parsing framework,

it seems appropriate to view the overall framework as a \shell" for the creation of

database query applications. Once relevant lexical information is provided, the oper-

ator generation algorithm automatically creates most of the necessary clauses of op/2.

While the current research has concentrated on the application of machine learning

techniques for acquiring the essential grammar required for NLP applications, the

use of machine learning techniques to completely automate the construction of the

lexicon-related operators is a fruitful area for future research.

113

7.5 Experimental Results

7.5.1 Building a Corpus

Sample questions in English were obtained by distributing a questionnaire to students

in undergraduate German classes. The questionnaire provided the basic information

from the online tutorial supplied for Geobase, including a verbatim list of the type

of information in the database, and sample questions that the system could answer.

The students were then asked to write down �fteen questions that they expected the

system to be capable of answering. A sample questionnaire is shown in Appendix D.

A total of 50 subjects were involved in the corpus collection process. From

these subjects, a total of 484 questions were gathered. Of these, 284 were discarded,

resulting in corpus of 250 questions with an average length of 7.8 words. Of the

284 questions discarded, 261 were either unanswerable from the information provided

in the database (e.g. \What is the most polluted river?"), or were exact duplicates

of included questions. The remaining 23 sentences were potentially answerable, but

required queries outside the scope of the Geoquery representation. By far the most

common of these were questions including speci�c numbers, which as explained above,

are not handled by the current version of Geoquery.

An automated tool was developed to help in developing analyses for the corpus.

As queries were entered, they were executed by the Geoquery interpreter so that the

analyst could con�rm the accuracy of the result. The example pair was then passed

to the lexicon development tool to insure that any necessary entries were added to the

lexicon. Finally, the example pair was parsed by the training module to insure that

it contained a valid ordering of constituents. Using this automated system, the �rst

sentences were annotated at a rate of about 10 sentences per hour. As the analyst

became more familiar with the representations and the lexicon neared completion

this rate increased to around 30 sentences an hour. The complete lexicon for the

250 sentence corpus contains a total of 72 entries. The creation of the annotated

114

corpus and lexicon was completed over a period of �ve days, although no detailed

time-accounting was performed, the annotation e�ort probably required no more than

20 person-hours of e�ort.

7.5.2 Experiments

For these experiments, the corpus was split into training sets of 225 examples with

the remaining 25 held-out for testing. The default parameters for Chillin were used

as in the previous experiments. However, unlike the previous experiments, some

background predicates were provided to the induction component. This background

consisted of the predicates which were used in Chill's special operators for recog-

nizing state, city and river names.

Testing employed the most stringent standard for accuracy, namely whether

the application produced the correct answer to a question. Each test sentence was

parsed to produce a query. This query was then executed to extract an answer from

the database. The extracted answer was then compared to the answer produced by

the correct query associated with the test sentence. Identical answers were scored as a

correct parsing, any discrepancy resulted in a failure. Figure 7.6 shows the accuracy

of Chill's parsers over a 10 trial average. The line labeled \Geobase" shows the

average accuracy of the Geobase system on these 10 testing sets of 25 sentences. The

curves show thatChill outperforms the existing system when trained on 175 or more

examples. In the best trial, Chill's induced parser comprising 1100 lines of Prolog

code achieved 84% accuracy in answering novel queries.

In this application, it is important to distinguish between twomodes of failure.

The system could either fail to parse a sentence entirely, or it could produce a query

which retrieves an incorrect answer. The former case represents a \softer" failure,

since the application can be smart enough to indicate the sentence was unparsable

and request a paraphrase. In general, it is desirable that the rate of spurious parsings

be kept to a minimum. Happily, as in the previous experiments, the parsers learned

115

0

10

20

30

40

50

60

70

0 50 100 150 200 250

A
cc

ur
ac

y

Training Examples

Chill
Geobase

Figure 7.6: Geoquery: Accuracy

by Chill for Geoquery also produced few spurious parses. Figure 7.7 shows the

probability that a test sentence will produce a spurious parse as a function of training

set size. Again, for training sets of 175 examples or more, Chill outperforms the

original Geobase interface.

The training time required to achieve these results was relatively small. The

speci�city of the operators kept the control-rule induction problems small (the largest

having only hundreds of examples) andChill was able to learn parsers for the largest

trials in less than 25 minutes of CPU time on a SPARCstation 5. Interestingly, the

testing time was also minimal. While no hard statistics were recorded, the parsers

produced by Chill generated queries virtually instantaneously, due to the determin-

istic framework.

116

2

3

4

5

6

7

8

0 50 100 150 200 250

P
er

ce
nt

 S
pu

rio
us

 P
ar

se
s

Training Examples

Chill
Geobase

Figure 7.7: Geoquery: Percentage of Spurious Parses

7.5.3 Discussion

While the Geobase system probably does not represent a state-of-the-art standard

for natural language database query systems, neither is it a \straw-man." Geobase

uses a semantics-based parser which scans for words corresponding to the entities

and relationships encoded in the database. Rather than relying on extensive syn-

tactic analysis, the system attempts to match sequences of entities and associations

in sentences with an entity-association network describing the schemas present in the

database. The result is a relatively robust parser, since many words can simply be

ignored.

Clearly the performance of Geobase could be improved by investing time in

improving its recognition grammar. The usual methodology for improving such sys-

tems is to collect a sample of sentences for which the current system fails to generate

correct answers, and then attempt to modify the system to rectify the failures. Of

117

course, changes which allow correct results for new sentences might have deleteri-

ous e�ects on sentences which previously parsed correctly. This leads to a sort of

grammar-tweaking/regression-testing cycle attempting to insure that overall progress

is being made. In a sense, the end e�ect is that of an empirical approach where new

knowledge is induced and entered by a human analyst.

Using Chill to construct a natural language application certainly does not

eliminate the initial need for human expertise. The design of the query language is a

nontrivial task and portions of the parsing \shell" must be �lled-in with information

from the database at hand. However, the design of these components relies largely

on the local considerations which arise in parsing analyzing examples. The problem

of devising rules which are consistent across many examples is placed entirely on

the learning component. Thus, the analyst is freed to concentrate on issues such as

expressiveness of the representation rather than implementation. This initial e�ort is

probably signi�cantly less than that invested in constructing an initial grammar by

traditional methods.

As for expanding the coverage of the parser, the learning curves for Chill

clearly suggest that training on larger corpora will improve Chill's parsers. Im-

proving a parser using Chill technology requires the same investment of e�ort in

collecting examples as traditional techniques, but automates the step of improving the

parser to account for the new examples. The time and e�ort that would otherwise be

put into debugging grammars can instead be invested in the collection and analysis of

even more examples. The real promise of empirical techniques is that they allow for

the construction of parsers that are consistent across a much larger range of natural

language than could be achieved with hand-crafted rules. Although the principle has

been demonstrated before for \arti�cial" problems such as word-class tagging and

syntactic analysis, this is the �rst demonstration of the same result at the level of a

complete NL application.

118

Chapter 8

Related Work

The work reported in this dissertation touches on numerous sub�elds of arti�cial

intelligence, particularly work in machine learning and natural language processing.

Much of this related research has been discussed extensively in previous chapters to

motivate and explain the choices made in the development of Chill. Although it

would be impossible to discuss in detail all of the other research that has links to

Chill, certain closely related work deserves mention.

8.1 Early Research on Language Acquisition

There is a long tradition of machine learning research on the language acquisition

problem. Langley and Carbonell (1985) present a nice discussion of this work and

the relationship between machine learning and language acquisition research in gen-

eral. Early work in this tradition concentrated on grammar induction, the problem

of learning a recognition or generation procedure for the strings of a language (So-

lomono�, 1959; Knowlton, 1962). More recent approaches to the grammar induction

problem are described by Wol� (1982), VanLehn and Ball (1987) and Berwick and

Pilato (1987).

The formulation of language acquisition as the problem of learning mappings

119

from sentences into meaning representations (or vice-versa) was �rst investigated by

Siklossy (1972) and Klein and Kuppin (1970), and has since become the \standard"

paradigm for acquisition research within the AI community (Reeker, 1976; Ander-

son, 1977; Selfridge, 1981; Sembugamoorthy, 1981; Langley, 1982). Much of this work

is similar to Chill in that it combines inductive techniques with language-speci�c

constraints on grammars or architectures in an e�ort to make the language-learning

task tractable. For example, the LAS system of Anderson (1977) learned an augmen-

ted transition network (ATN) to map simple sentences into propositional meaning

representations. In addition to imposing a simple ATN architecture, meaning rep-

resentations were constrained by the so-called \graph deformation condition." This

condition enforced a certain form of compositionality, dictating that a tree that maps

meaning representations to the order in which words occurred in the original sentence

could not have crossing edges. Such restrictions are similar in spirit to Chill's shift-

reduce parsing architecture and the requirements of operator transparency, derivation

transparency and derivation tractability.

These early approaches di�er from Chill primarily in scope. They have em-

ployed simple propositional and, in many cases, language-speci�c learning algorithms;

whereas, Chill adopts a very general, �rst-order induction algorithm. These systems

were also not systematically evaluated on realistic, large-scale corpora. Instead, the

experiments had more of a \demonstration of idea" avor. The emphasis in this dis-

sertation on mechanisms robust enough to be of use in real natural language applic-

ations is more in line with current work under the rubric of empirical (corpus-based)

NLP.

8.2 Language Acquisition as Control-Rule Learning

Chill is not the �rst system to treat the problem of language acquisition as the learn-

ing of search-control heuristics. Langley (1982) and Anderson (1983) have independ-

ently posited acquisition mechanisms based on learning search-control in production

120

systems. However, both of these systems focused on cognitive issues, and they were

demonstrated on the problem of language generation rather than parser induction.

Neither was demonstrated on corpora of any signi�cant size or coverage.

The work of Berwick (1985) may be viewed as an instance of control-rule

learning for parser acquisition. His system learns grammar rules for a Marcus-style

deterministic parser. When the system came to a parsing impasse, a new rule was

created by inferring the correct parsing action and then creating a rule using certain

properties of the current parser state as trigger conditions for its application. As

additional rules having the same action were created, the preconditions of the rules

were generalized using a simple propositional most-speci�c-generalization algorithm.

The motivation for this work was primarily to provide a learning mechanism to sup-

port certain approaches to generative linguistics. The system was not evaluated for

generalization using any extensive corpus, but justi�ed on the grounds that it learned

a large percentage of the rules from a target grammar of a core subset of English.

In a similar vein, Simmons and Yu (1992) controlled a simple shift-reduce

parser by storing example contexts consisting of the syntactic categories of a �xed

number of stack and input bu�er locations. New sentences were parsed by matching

the current parse state to the stored examples and performing the action corres-

ponding to the best matching previous context. The shift-reduce parsing framework

adopted by Chill was directly inspired by this work. However, this system depends

on an analyst to provide appropriate word classi�cations and requires detailed interac-

tion to guide the parsing of training examples. Although the approach was evaluated

on a relatively extensive corpus, the generalization results were quite weak, and it is

unclear how it compares with currently popular statistical approaches.

It should be emphasized that both of these approaches di�er from Chill

in that they employ propositional representations. The context over which control

rules were learned were �xed, pre-determined, and integrally connected with the

particular style of syntactic analysis performed by the parsers. Neither system has

121

the ability to create new word or phrase categories or examine more context in order to

resolve di�cult ambiguities. Similarly, they are limited to producing surface-oriented

analyses for which their pre-de�ned features are most useful.

8.3 Statistical Corpus-Based NLP

Although there has been a substantial amount of research in empirical approaches

to language acquisition, much of this work is not directly comparable to Chill.

One major di�erence is the type of analysis provided. Chill learns parsers that

produce complete, labeled parse trees; other systems have learned to produced simple

bracketings of input sentences (Periera & Schabes, 1992; Brill, 1993), or probabilistic

language models which assign sentences probabilities (Charniak & Carroll, 1994).

Another dimension of variation is the type of input provided to the learning system.

While Chill requires only a suitably annotated corpus, other approaches have utilized

an existing, complex, hand-crafted grammar that over-generates (Black et al., 1993;

Black, La�erty, & Roukaos, 1992). Chill's ability to invent new categories also

allows the use of actual words to make parsing decisions, whereas many systems are

limited to representing sentences as strings of lexical categories (Brill, 1993; Charniak

& Carroll, 1994).

The approach of Magerman (1994) is more similar to Chill. His Spatter

system produces parsers from annotated corpora of sentences paired with syntactic

representations. Parsing is treated as a problem of statistical pattern recognition.

This involves the coding of parse-tree topography with a �nite set of construction

features. Associated with each feature is a �xed set of parse-tree context informa-

tion that is examined to determine the feature's value for a given node. The actual

assignment of trees to sentences is performed by heuristic search through the space

of possible parse-tree derivations guided by learned probabilistic decision trees. The

learned models were shown to signi�cantly outperform hand-crafted counterparts on

a real-world parsing task involving text from technical manuals. Chill di�ers from

122

this approach mainly in its exibility. Magerman's system is hand-engineered for the

particular representation being produced. As an example, the parse-tree encoding

scheme includes a feature for conjunction which was speci�cally introduced to im-

prove the performance of the system. The system also includes a set of hand-generated

rules for determining what properties a node in the parse tree will inherit from other

nodes. Given this hand-crafting of features and rules, it is unclear how easily the

approach could be adapted to di�ering representation schemes, for example the more

meaning-oriented case-role and database-query representations on which Chill has

been demonstrated.

One approach that learns more semantically oriented representations is the

hidden understanding models of Miller et al. (1994). This system learns to parse

into tree-structured meaning representations. These representations are similar to

syntactic parse trees except that the nodes may be labeled by conceptual categories

as in the analyses produced by semantic grammars. The statistical model employs

a separate component for determining what is said (the ordering of concepts) and

how it is said (the choice of words). Each of these components is modeled with

a probabilistic transition network. These networks are trained using extensions of

standard statistical estimate-maximize algorithms. With a bootstrapping procedure

which utilized the acquisition system to help annotate portions of the ATIS corpus, a

single annotator was able to produce 200 annotated sentences a day. Training on 900

of these sentences produced a parser which achieved 61% exact-match accuracy on the

remaining 100 sentences. While a direct comparisonwith Chill is impossible without

running both systems on identical corpora, there are some general di�erences worth

noting. The hidden understanding model utilizes a propositional approach which

forces it to make certain Markov-like assumptions. Thus, it is incapable of modeling

phenomena requiring nonlocal references, a situation that does not hold for Chill,

which may examine any aspect of the parse context. A related limitation is that the

ordering of concepts in tree-structured representations must match the order of words

123

in the sentence (essentially the graph-deformation condition proposed by Anderson

(1977)). This makes it awkward to handle some forms of linguistic movement. In

theory, Chill can work with any representation which meet operator transparency

and tractability criteria. Finally, it should be noted that Chill produces knowledge

structures more similar to those of traditional parsers which may be advantageous in

some situations.

8.4 Related ILP Work

Obviously, the ILP induction algorithm, Chillin, draws heavily on the insights of

Foil,Golem and Champ discussed in Chapter 4. Research in the area ILP has been

expanding rapidly, and many other ILP systems have addressed issues of concern in

Chillin.

Like Chillin, Series (Wirth & O'Rorke, 1991) and, later Indico (Stahl,

Tausend, & Wirth, 1993) make use of LGGs of examples to construct clause heads

containing functions. However, both of these systems pre-compute a set of clause

heads for which bodies are subsequently induced. The approach taken by Chil-

lin interleaves the bottom-up and top-down mechanisms, handling a larger class of

concepts.

A number of recent investigations have considered the noisy-oracle problem

in the induction of recursive de�nitions (Cohen, 1993; Lapointe & Matwin, 1992;

Muggleton, 1992). However, the proposed mechanisms either severely limit the class

of learnable programs (e.g. to single clause, linearly recursive) or rely on computation-

ally expensive matching of sub-terms, or both. None has yet been implemented and

tested in a system for large-scale induction over hundreds or thousands of examples.

Predicate invention is also an area of considerable interest. Like Chillin

and Champ, Series and Indico employ demand-driven predicate invention. These

systems di�er signi�cantly in the heuristics used to select arguments for the new

predicate. Another approach to invention is the use of the intra{construction operator

124

of inverse-resolution (Muggleton & Buntine, 1988; Wirth, 1988; Rouveirol, 1992;

Banerji, 1992). In this approach, new predicates are invented through a restructuring

of an existing de�nition, usually to make it more compact. Many of these systems

require intervention in the form of an \oracle" to approve and name new concepts.

Unfortunately, we are not aware of any work that has systematically evaluated the

competing approaches or the practical utility of predicate invention in general.

Finally, it should be noted that Wirth (1989) has done some experiments using

ILP techniques for the grammar induction problem. His system learns recognizers

expressed as de�nite clause grammars. However, the presented results were rather

preliminary, and no generalization experiments on larger-scale corpora have been

reported. Given the results in Section 6.4, it is hard to imagine that purely inductive

techniques can learn parsers which produce useful representations as e�ciently as the

control-rule learning framework of Chill.

125

Chapter 9

Directions for Future Research

Obviously, there is still much room for improvement in the results reported in this

dissertation, as well as interesting possibilities for further applications of the basic

learning techniques.

9.1 Enhancing the Induction Algorithm

Enhancements to Chillin could make signi�cant progress in several ways. Improving

the accuracy of learned control rules may signi�cantly improve the performance of

the resulting parsers. Another way of achieving greater accuracy is through the

use of larger training sets which necessitates improvements in the e�ciency of the

induction algorithm as well. Both of these are on-going research e�orts within the

ILP community.

The top-down component ofChillin is a very basic version of Foil, and many

of Foil's advanced features both for extending the search horizon and for pruning

fruitless search have not been implemented. Clearly, Chillin could make use of any

of the various tweaks and optimizations which have proven useful in Foil.

Similarly, Chillin in its present form does not include mechanisms for hand-

126

ling noisy-examples.1 Noise in control-examples can arise from corpora that contain

inconsistent annotations or that do not obey the output-completeness criterion. It

might also be the case that some parsing frameworks may allow for only approxim-

ate derivation-transparency. A few incorrect parse derivations during training could

introduce noise into the control-example sets even with a awless training corpus. A

simple technique for allowing learned de�nitions to cover a small number of negative

examples was implemented in Chillin, but did not seem to improve the results. In-

corporating more sophisticated techniques for handling noisy examples might prove

a worthwhile extension of the basic induction algorithm (Quinlan, 1986, 1990; Lavra�c

& D�zeroski, 1994).

One particular weakness of the current control-rule learning framework is

that each control rule is learned in isolation from the others. It is often the case that

concepts which are useful in making control decisions for one operator are also useful

in making decisions for others. For example, the concept of animate is potentially

useful in making a number of decisions during natural language parsing. The current

system is forced to re-invent this concept in all the places where it might be useful.

This results not only in duplicated e�ort, but may a�ect how well the resulting parser

generalizes to new inputs. Di�erent control rules for animate may \see" slightly

di�erent sets of examples. For instance, if the word, \dog" never appears as the

agent of a sentence, then the resulting animate concept for the agent rule will not

include \dog." If a novel sentence uses \dog" as an agent, it may not parse correctly.

This is despite the fact that \dog" could have appeared as animate in another control

rule such as for the patient of certain verbs like \kill." A single concept for animate

would include all of the words that were used in either place, thus creating a more

general parser. In general, pooling examples to learn a shared concept results in more

accurate rules. Implementing a mechanism for the invention of such shared predicates

might signi�cantly improve the resulting parsers.

1A training set is said to contain noise if some of its examples are mis-classi�ed.

127

Finally, making empirical techniques practical in real applications probably re-

quires the development of techniques for incrementally updating learned knowledge.

The induction algorithm in Chill shares the weakness of other empirical approaches

in that it uses batch processing, where grammars are acquired and re�ned using huge

numbers of training examples. In practice, it would be preferable to have an incre-

mental system wherein the parser could be extended and updated as more examples

became available, without requiring induction from \scratch". The development of in-

cremental algorithms for parser acquisition and maintenance seems a fruitful avenue

for future research.

9.2 Corpus Engineering

The learning curves from experiments with the Geoquery corpus clearly indicate

that more training data is likely to produce more accurate parsers. Enlarging the

corpus would be an interesting experiment. Further data could be collected through

questionnaires, but a more novel approach would be to actually collect the data from

a prototype system. As new sentences were encountered, they could be stored and

annotated so that Chill could be periodically re-run to generate new parsers. One

could envision making such a system available to a wide audience via an interactive

demonstration over the Internet on the world-wide web. As part of the data collection

project, statistics could be maintained to get a �rm indication of the coverage provided

by the current version of Geoquery and what extensions of the parsing framework

might be most useful.

Another interesting question is whether the parsers created by Chill could

be improved by corpus \manufacturing." The case-role parsing experiments demon-

strate that Chill performs very well in situations where a corpus contains many

similar sentences from which generalizations are easily drawn. \Real" corpora of the

size amenable to learning in Chill are unlikely to exhibit such high levels of regu-

larity. Since an initial corpus must be annotated by hand, one method of increasing

128

regularity would be to allow the annotator to introduce similar sentences. A process

of introducing several paraphrases of each example sentence, or of providing sentences

with similar structure but di�erent referents might allow the induction of more ro-

bust parsers from less \real" data. Although this approach would require some extra

e�ort from the annotator, it would be far easier than annotating an equal number of

random sentences, and there is reason to hope that it would actually produce better

results.

9.3 Language-Oriented Biases

Beyond improvements to the induction algorithm itself, another way to enhance the

induction of parsers in Chill is by incorporating stronger natural-language learning

biases into the surrounding system. The shift-reduce framework of the current system

is a rather weak bias compared to the types of restrictions which might be found

in more of a \principles-and-parameters" based approach. A distinct advantage of

ILP approaches is that they allow learning within a traditional NLP representation

framework. This initial research has focused on how much can be accomplished

by placing most of the burden on a very general learning component. A tighter

integration of linguistic insights with ILP methods could probably create more e�cient

learning systems for language tasks.

Another avenue for improving the linguistic \savvy" of the learning system

would be to provide language-oriented background knowledge as additional context

for Chillin. Background information such as syntactic knowledge could be provided

by predicates which classify words by possible lexical category. More speci�c lex-

ical information could be directly inserted into the input by using a statistical tagger

in a pre-processing step. Likewise, control rules might be able to use existing se-

mantic information such as that provided by an ontological hierarchy (e.g. WordNet

(Beckwith, Fellbaum, Gross, & Miller, 1991)). In principle, any relevant background

knowledge should improve the performance of the system. Unfortunately, additional

129

knowledge has the side-e�ect of signi�cantly slowing the search for specializations in

the top-down induction component. Making use of signi�cant background knowledge

would require modi�cation of the search techniques used in adding literals to clauses.

It is possible that providing background information in the form of tree-structured

hierarchies might allow for branch-and-bound type pruning of the literal-space based

on some variant of the information-gain metric used in Foil.

9.4 Soft Failure

Experiments withChill have shown that the learned parsers tend to be quite accurate

on test sentences for which parses are produced. Increasing the overall accuracy

becomes a problem of providing enough training examples to get signi�cant coverage

(in terms of the percentage of test sentences which are actually parsed). If a sentence

is not parsed, it may indicate that some learned control knowledge is overly-speci�c.

A possible extension to Chill parsers might be a mechanism to search for parses

which succeed by ignoring a small number of control constraints. One can conceive of

a parsing process which searches for the parse that requires the violation of the fewest

constraints. This would be very similar to the least-deviant-�rst parsing proposed

by Lehman (1992) for constructing adaptive parsers.

One problem with this scheme is that there are likely to be many possible

parses requiring the lifting of only a few constraints. Some general mechanism for

assessing the probability of various derivations would be needed to pick the most

likely parsing. Such an approach would require the collection of statistics tracking

the likelihood of various derivation sequences. The result might be a marriage of

the Chill approach with techniques from statistical NLP. While it is unclear exactly

what form such a hybrid might take, it could potentially o�er a framework utilizing

the representational power of ILP while still o�ering the preference selecting behavior

exhibited by statistical approaches.

130

9.5 Extending Learning to Other Problems

Finally, there are many interesting directions for extending the methods of Chill to

deal with a broader range of NLP issues. One possibility is the extension of ILP

techniques to the learning of word morphology. The parsers learned by the present

version of Chill treat words as unanalyzed atomic units. Being able to recognize the

similarities between words having similar roots or resulting from similar derivations

might lead to better generalization. Some initial work along these lines has applied

ILP to the problem of learning to form the past tense of English verbs (Mooney &

Cali�, 1995).

At the lexical level, automated techniques for lexicon construction could broaden

the applicability of Chill. Thompson (1995) has demonstrated an initial approach

to corpus-based acquisition of lexical mapping rules suitable for use with Chill-style

parser acquisition systems. The basic idea is to �nd a small set of mappings from

words to fragments of meaning structure such that all of the semantic structure ap-

pearing in any given training example is motivated by the words or phrases in the

example sentence. Although the technique has only been used with case-role type

representations, variations might also be useful for the type of lexicon required by

the database-query task.

ILP techniques might also be usefully applied in learning larger discourse

structures (Litman, 1994) and in information extraction tasks (Soderland & Lehnert,

1994). Larger discourse units might be described in terms of scripts in a suitable

logic-oriented MRL. ILP could then be used to learn rules for script-selection and

role-binding using techniques similar to those used in the database-query framework

in Chill. Given such a representation, one could also imagine a system to generate

natural language outputs from scripts. A generation algorithm with relevant choices

encoded as clause-selection decisions would be amenable to acquisition in a manner

analogous to parser acquisition in Chill. Combining parsing and generation com-

ponents might make possible the induction of complete translation systems from a

131

dual-language corpora annotated with a logic-based inter-lingua.

While is is di�cult to envision the details of how such approaches may be

implemented, it it clear that relational learning holds great promise in the domain of

natural language understanding. Chill should be viewed as a mere starting point in

the investigation of the usefulness of relational learning techniques for NLP in general.

132

Chapter 10

Conclusion

The research presented in this dissertation may be viewed as complementing recent

results in statistical NLP. The primary strength of corpus-based methods does not lie

in the particular approach or type of parser employed (e.g. statistical, connectionist

or symbolic), but rather with the fact that large amounts of real data may be used

to automatically construct complex parsers. The experimental results presented here

suggest thatChill performs as well or better than previous approaches on comparable

tasks.

The primary advantage of an approach based on control-rule learning and

inductive logic programming is the resulting exibility. Chill may be used to learn

parsers for any representation scheme that meets the criteria of operator transparency,

derivation transparency and derivation tractability. The generality of these criteria

has been empirically demonstrated by using Chill to learn parsers for case-role rep-

resentations, sophisticated syntactic parse-trees and logic-oriented database queries.

No other empirical parser acquisition system has been evaluated on such a wide-

variety of tasks or corpora. Chill is able to learn using highly structured contexts

and can automatically create new predicates necessary to support accurate parsing.

These abilities reduce the need for feature-engineering required in propositional ap-

proaches. A further attraction of Chill's ILP approach is the ease with which it

133

may be integrated with traditional, symbolic parsing methods. Indeed, experimental

results demonstrate that the traditional shift-reduce framework employed by Chill

is fundamental to Chill's success in learning realistic language processing tasks.

In experiments with case-role mapping, Chill's parsers were shown to out-

perform those learned by previous techniques based on arti�cial neural networks

on identical arti�cial corpora. Further experiments with a much larger corpus de-

rived from a database query task showed that Chill could reverse-engineer a hand-

constructed semantic grammar for case-role parsing to a high degree of accuracy with

relatively little training data.

Experiments with learning syntactic parsers from the ATIS corpus of the Penn

Treebank showed that Chill compares favorably with state-of-the-art systems for

learning unlabeled bracketings. However, Chill is able to go beyond these previous

approaches, producing completely labeled parse-trees for sophisticated syntactic rep-

resentations including markers for empty constituents. Chill is also able to learn

parsers from corpora without associated lexical tags: a task requiring Chill's ability

to selectively attend to important features of structured contexts and invent new word

and phrase categories.

Finally, Chill was used to learn a parser that maps sentences directly into

useful database queries without requiring intermediate syntactic representations. No

other empirical approach has been demonstrated to directly learn such deep semantic

representations. Chill's parsers were integrated into a complete a natural language

database interface for answering questions about U.S. geography. The resulting sys-

tem was shown to outperform an existing hand-crafted program in parsing novel

sentences and producing correct answers from the database. To our knowledge, this

is the �rst demonstration of the utility of empirical techniques over hand-crafted

counterparts at the level of a complete natural language application.

Chill stands as an existence proof of the utility of modern machine learning

techniques in corpus-based parser construction. It must be emphasized, however,

134

that Chill represents only a starting point. Statistical techniques already have a

relatively long history of success in the arena of speech processing. Not surprisingly,

the �eld of empirical parser construction has developed with a bias toward similar

techniques. It is important to realize that there are alternatives to learning strategies

which \simply gather statistics." Relational learning algorithms can o�er signi�cant

advantages in some domains; NLP systems requiring deep semantic representations

appear to be a likely candidate. Hopefully, these preliminary investigations in will

stimulate further research in this direction.

135

Appendix A

A Generator for the M&K Corpus

Examples for the M&K corpus are generated from the pattern/3 predciate which

has the form: pattern(PatternNumber, Sentence, Rep).

pattern(1, [the, Human, ate],

[ate, agt:[Human, det:the]]) :-

human(Human).

pattern(2, [the, H, ate, the, F],

[ate, agt:[H, det:the],

pat:[F, det:the]]) :-

human(H), food(F).

pattern(3, [the, H, ate, the, F1, with, the, F2],

[ate, agt:[H, det:the],

pat:[F1, det:the, accomp:[F2, prep:with, det:the]]]) :-

human(H), food(F1), food(F2).

pattern(4, [the, H, ate, the, F, with, the, U],

[ate, agt:[H, det:the],

pat:[F, det:the],

136

inst:[U, prep:with, det:the]]) :-

human(H), food(F), utensil(U).

pattern(5, [the, A, ate],

[ate, agt:[A, det:the]]) :-

animal(A).

pattern(6, [the, Pred, ate, the, Prey],

[ate, agt:[Pred, det:the],

pat:[Prey, det:the]]) :-

predator(Pred), prey(Prey).

pattern(7, [the,H,broke,the,FO],

[broke, agt:[H, det:the],

pat:[FO, det:the]]) :-

human(H), fragileobj(FO).

pattern(8, [the,H,broke,the,FO,with,the,BR],

[broke, agt:[H, det:the],

pat:[FO, det:the],

inst:[BR, prep:with, det:the]]) :-

human(H), fragileobj(FO), breaker(BR).

pattern(9, [the,BR,broke,the,FO],

[broke, inst:[BR, det:the],

pat:[FO, det:the]]):-

fragileobj(FO), breaker(BR).

pattern(10, [the,A,broke,the,FO],

[broke, agt:[A, det:the],

pat:[FO, det:the]]) :-

animal(A), fragileobj(FO).

137

pattern(11, [the,FO, broke],

[broke, pat:[FO, det:the]]) :-

fragileobj(FO).

pattern(12, [the, H, hit, the, T],

[hit, agt:[H, det:the],

pat:[T, det:the]]) :-

human(H), thing(T).

pattern(13, [the, H1, hit, the, H2, with, the, P],

[hit, agt:[H1, det:the],

pat:[H2, det:the, accomp:[P, prep:with, det:the]]]) :-

human(H1), human(H2), posession(P).

pattern(14, [the, H, hit, the, T, with, the, Htr],

[hit, agt:[H, det:the],

pat:[T, det:the],

inst:[Htr, prep:with, det:the]]):-

human(H), thing(T), hitter(Htr).

pattern(15, [the, Htr, hit, the, T],

[hit, inst:[Htr, det:the],

pat:[T, det:the]]):-

hitter(Htr), thing(T).

pattern(16, [the, H, moved],

[moved, agt:[H, det:the],

pat:[H, det:the]]) :-

human(H).

pattern(17, [the, H, moved, the, O],

138

[moved, agt:[H, det:the],

pat:[O, det:the]]) :-

human(H), object(O).

pattern(18, [the, H, moved],

[moved, agt:[H, det:the],

pat:[H, det:the]]) :-

animal(H).

pattern(19, [the, O, moved],

[moved, pat:[O, det:the]]) :-

object(O).

human(H) :- member(H, [man, woman, boy, girl]).

animal(X) :- member(X, [bat, chicken, dog,

sheep, wolf, lion]).

predator(X) :- member(X, [wolf, lion]).

prey(X) :- member(X, [chicken, sheep]).

food(X) :- member(X, [chicken, cheese, pasta, carrot]).

utensil(X) :- member(X, [fork, spoon]).

fragileobj(X) :- member(X, [plate, window, vase]).

hitter(X) :- member(X, [bat, ball, hammer, hatchet,

vase, paperweight, rock]).

breaker(X) :- member(X, [bat, ball, hatchet, hammer, paperweight, rock]).

139

posession(X) :- member(X, [ball, bat, hatchet, hammer, vase, dog, doll]).

object(X) :- member(X,[bat,ball,hatchet, hammer,vase,plate,window,

fork, spoon, pasta, cheese, chicken, carrot,

desk, doll, curtain, paperweight,rock]).

thing(X) :- member(X, [man,woman,boy,girl,

bat,chicken,dog,sheep,wolf,lion,

ball,hatchet,hammer,vase,plate,window,

fork, spoon, pasta, cheese, carrot,

desk, doll, curtain, paperweight,rock]).

140

Appendix B

Example CHILL Output

The following set of specialized operators was produced from a run using 550 training

examples from the M&K corpus.

%---

op([A,[B,det:the]],C,[D],C) :-

pred788(B), pred790(B,A), reduce(A,agt,[B,det:the],D).

pred788(bat). pred788(boy). pred788(dog). pred788(girl).

pred788(lion). pred788(man). pred788(sheep). pred788(woman).

pred790(A,broke). pred790(bat,[moved,obj:[bat,det:the]]).

pred790(boy,moved). pred790(bat,ate).

%---

op([A,[B,det:the]],[the,C],[D],[the,C]) :-

pred793(B), reduce(A,inst,[B,det:the],D).

pred793(ball). pred793(bat). pred793(paperweight).

pred793(hatchet). pred793(rock). pred793(vase). pred793(hammer).

%---

141

op([A,[B,det:the]],[],[C],[]) :-

pred799(B), reduce(A,obj,[B,det:the],C).

pred799(ball). pred799(doll). pred799(hatchet). pred799(plate).

pred799(rock). pred799(spoon). pred799(vase). pred799(window).

%---

op([A,the|B],C,[D|B],C) :- reduce(A,det,the,D).

%---

op([[A,B:C|D],[E,F:[G,det:the]]],H,[I],H) :-

pred801(H), reduce([E,F:[G,det:the]],obj,[A,B:C|D],I).

pred801([]).

pred801([with,the,A]) :- pred802(A).

pred802(ball). pred802(bat). pred802(fork). pred802(hammer).

pred802(hatchet). pred802(rock). pred802(spoon). pred802(vase).

pred802(paperweight).

%---

op([[A,det:the],B,[C,D:E|F]|G],[],[H|G],[]) :-

reduce([C,D:E|F],B,[A,det:the],H).

%---

op([moved,[A,det:the]],[],[B,[A,det:the]],[]) :-

pred809(A), reduce(moved,obj,[A,det:the],B).

pred809(dog). pred809(sheep).

%---

op([[A,det:the],[B,agt:[C,det:the]]],[with,the,D],[accomp,[A,det:the],

142

[B,agt:[C,det:the]]],[the,D]) :- pred861(A,D).

pred861(A,B) :- pred862(B), pred873(A).

pred862(ball). pred862(bat). pred862(carrot). pred862(vase).

pred862(cheese). pred862(pasta). pred862(dog). pred862(doll).

pred862(hammer). pred862(hatchet). pred862(chicken).

pred873(boy). pred873(girl). pred873(man). pred873(woman).

%---

op([[A,obj:[B,det:the],agt:[C,det:the]]],[with,the,D],

[inst,[A,obj:[B,det:the],agt:[C,det:the]]],[the,D]).

%---

op(A,[B|C],[B|A],C) :- pred897(A).

pred897([A|B]) :- pred899(A).

pred897([]).

pred897([[A,B:C]]).

pred899(accomp). pred899(inst). pred899(the).

143

Appendix C

Example Trace of CHILLIN

What follows is two traces of output fromChillin learning a de�nition of the concept

uncle/2. The �rst trace shows how the de�nition is learned when provided with the

necesary background knowledge: wed/2, sibling/2, male/1 and female/1. In the

second trace, male/1 is not provided and must be invented. The traces have been

augmented with comments (bracketed with **") to help explain what is happening.

** Begin trace with all background predicates **

| ?- top(uncle).

** First compile the background predicates **

% compiling file /tmp_mnt/v/sally/v6/zelle/ilp/induce/uncle.i

% uncle.i compiled in module thetheory, 1.416 sec 14,756 bytes

Inducing concept: uncle/2 from 50 positives and 100 negatives

** Initial compaction via LGGs of examples, no consistent gen found **

** so the initial definition is just the 50 examples **

Unit Clause Count: 50

Unit Definition:

144

uncle(art,m11).

uncle(calvin,f23).

uncle(calvin,f26).

uncle(calvin,f28).

uncle(calvin,m24).

uncle(calvin,m27).

uncle(carlos,f23).

uncle(carlos,f25).

uncle(carlos,m24).

uncle(david,art).

uncle(david,umo).

uncle(david,wendy).

uncle(eric,frederick).

uncle(eric,jonas).

uncle(eric,melvin).

uncle(eric,prissie).

uncle(fred,frederick).

uncle(fred,jane).

uncle(fred,prissie).

uncle(fred,umo).

uncle(frederick,m24).

uncle(george,art).

uncle(george,cornelia).

uncle(george,frederick).

uncle(george,nancy).

uncle(george,wendy).

uncle(harry,melvin).

uncle(harry,umo).

uncle(jack,f26).

uncle(jack,f28).

uncle(jack,m27).

uncle(james,angela).

145

uncle(karl,rachel).

uncle(karl,susan).

uncle(leon,janet).

uncle(leon,nero).

uncle(leon,susan).

uncle(mark,janet).

uncle(mark,paul).

uncle(melvin,f20).

uncle(neil,m17).

uncle(nero,christy).

uncle(paul,f2).

uncle(paul,m1).

uncle(peter,f23).

uncle(umo,f14).

uncle(umo,m11).

uncle(umo,m13).

uncle(walt,f14).

uncle(walt,m13).

New Compaction loop

Current Size: 350

Abstract Foil

FOIL Initial Clauses: ** All pair Lggs sampled gave same result **

uncle(A,B).

** This single clause goes on the heap **

** Each group here shows removing a single clause and searching for **

** the best single literal extension. **

Current Clause: uncle(_78383,_78384):-true

146

Trying Predicate: male/1

Trying Predicate: female/1

Trying Predicate: sibling/2

Trying Predicate: wed/2

Found Better: wed(_83573,_78383) Gain = 13.44

Trying Predicate: parent/2

Current Clause: uncle(_78383,_78384):-wed(_83573,_78383)

Trying Predicate: male/1

Trying Predicate: female/1

Trying Predicate: sibling/2

Found Better: sibling(_89289,_83573) Gain = 9.94

Trying Predicate: wed/2

Trying Predicate: parent/2

Current Clause: uncle(_78383,_78384):-wed(_83573,_78383),

sibling(_89289,_83573)

Trying Predicate: male/1

Trying Predicate: female/1

Found Better: female(_78384) Gain = 3.16

Trying Predicate: sibling/2

Trying Predicate: wed/2

Trying Predicate: parent/2

Found Better: parent(_89289,_78384) Gain = 18.67

** Adding the parent literal results in a consistent clause. **

** There are no negative examples forcing A to be male. **

Foil Done: [0] ** Bracketed number is count of partial clauses **

Clause:

uncle(A,B) :-

wed(C,A),

147

sibling(D,C),

parent(D,B).

Partials: ** These are the clauses which were given up on as **

** unextendable. (There aren't any in this case) **

** The FOIL component found a consistent clause, it is returned as the **

** only modification to try **

Trying 1 Mods

uncle(A,B) :-

wed(C,A),

sibling(D,C),

parent(D,B).

** This clause does compress the definition, so it is implemented. **

** Roughly half of the unit clauses are eliminated by this mod. **

Modification Implemented

Size: 220

New Compaction loop

Current Size: 220

Abstract Foil

FOIL Initial Clauses: ** Same single seed clause as last time **

uncle(A,B).

Current Clause: uncle(_117732,_117733):-true

Trying Predicate: male/1

Trying Predicate: female/1

Trying Predicate: sibling/2

Found Better: sibling(_119618,_117732) Gain = 10.83

Trying Predicate: wed/2

148

Trying Predicate: parent/2

** wed/2 does not give gain this time, since it covers mostly xs **

** that were handled by the first clause. The gain metric gives **

** preference to covering lots of _differing_ clauses. **

Current Clause: uncle(_117732,_117733):-sibling(_119618,_117732)

Trying Predicate: male/1

Found Better: male(_119618) Gain = 2.35

Trying Predicate: female/1

Found Better: female(_119618) Gain = 7.03

Trying Predicate: sibling/2

Trying Predicate: wed/2

Found Better: wed(_129303,_119618) Gain = 20.80

Trying Predicate: parent/2

Found Better: parent(_119618,_117733) Gain = 46.40

Current Clause: uncle(_117732,_117733):-sibling(_119618,_117732),

parent(_119618,_117733)

Trying Predicate: male/1

Found Better: male(_117732) Gain = 4.12

** Search is aborted ar this point, as a "perfect" literal was found **

Foil Done: [0]

Clause:

uncle(A,B) :-

sibling(C,A),

parent(C,B),

male(A).

Partials:

149

** The second clause has been found, and is implemented. **

Trying 1 Mods

uncle(A,B) :-

sibling(C,A),

parent(C,B),

male(A).

Modification Implemented

Size: 33

New Compaction loop

Current Size: 33

Abstract Foil

FOIL Initial Clauses: ** This is the clause LGG of the **

uncle(A,B) :- ** current definition. **

parent(C,B).

Current Clause: uncle(_139239,_139240):-parent(_139242,_139240)

Trying Predicate: male/1

Trying Predicate: female/1

Trying Predicate: sibling/2

Found Better: sibling(_139239,_139242) Gain = 3.67

Trying Predicate: wed/2

Trying Predicate: parent/2

Current Clause: uncle(_139239,_139240):-parent(_139242,_139240),

sibling(_139239,_139242)

Trying Predicate: male/1

150

Found Better: male(_139239) Gain = 2.00

Foil Done: [0] ** An equivalent clause is found. **

Clause:

uncle(A,B) :-

parent(C,B),

sibling(A,C),

male(A).

Partials:

Trying 1 Mods ** no compaction (since it's already there) **

uncle(A,B) :-

parent(C,B),

sibling(A,C),

male(A).

Induction Time: 12.483000 ** CPU seconds on a SPARC 2 **

uncle(A,B) :-

wed(C,A),

sibling(D,C),

parent(D,B).

uncle(A,B) :-

sibling(C,A),

parent(C,B),

male(A).

%---

** Background edited to remove male/1 **

| ?- top(uncle).

151

% compiling file /tmp_mnt/v/sally/v6/zelle/ilp/induce/uncle.i

% uncle.i compiled in module thetheory, 1.417 sec 14,036 bytes

Inducing concept: uncle/2 from 50 positives and 100 negatives

Unit Clause Count: 50

Unit Definition:

uncle(art,m11).

uncle(calvin,f23).

uncle(calvin,f26).

uncle(calvin,f28).

uncle(calvin,m24).

uncle(calvin,m27).

uncle(carlos,f23).

uncle(carlos,f25).

uncle(carlos,m24).

uncle(david,art).

uncle(david,umo).

uncle(david,wendy).

uncle(eric,frederick).

uncle(eric,jonas).

uncle(eric,melvin).

uncle(eric,prissie).

uncle(fred,frederick).

uncle(fred,jane).

uncle(fred,prissie).

uncle(fred,umo).

uncle(frederick,m24).

uncle(george,art).

uncle(george,cornelia).

uncle(george,frederick).

uncle(george,nancy).

152

uncle(george,wendy).

uncle(harry,melvin).

uncle(harry,umo).

uncle(jack,f26).

uncle(jack,f28).

uncle(jack,m27).

uncle(james,angela).

uncle(karl,rachel).

uncle(karl,susan).

uncle(leon,janet).

uncle(leon,nero).

uncle(leon,susan).

uncle(mark,janet).

uncle(mark,paul).

uncle(melvin,f20).

uncle(neil,m17).

uncle(nero,christy).

uncle(paul,f2).

uncle(paul,m1).

uncle(peter,f23).

uncle(umo,f14).

uncle(umo,m11).

uncle(umo,m13).

uncle(walt,f14).

uncle(walt,m13).

New Compaction loop

Current Size: 350

Abstract Foil

FOIL Initial Clauses:

uncle(A,B).

uncle(A,art).

153

Current Clause: uncle(_94768,_94769):-true

Trying Predicate: female/1

Trying Predicate: sibling/2

Trying Predicate: wed/2

Found Better: wed(_99231,_94768) Gain = 13.44

Trying Predicate: parent/2

Current Clause: uncle(_94768,_94769):-wed(_99231,_94768)

Trying Predicate: female/1

Trying Predicate: sibling/2

Found Better: sibling(_104290,_99231) Gain = 9.94

Trying Predicate: wed/2

Trying Predicate: parent/2

Current Clause: uncle(_94768,_94769):-wed(_99231,_94768),

sibling(_104290,_99231)

Trying Predicate: female/1

Found Better: female(_94769) Gain = 3.16

Trying Predicate: sibling/2

Trying Predicate: wed/2

Trying Predicate: parent/2

Found Better: parent(_104290,_94769) Gain = 18.67

** First Clause is learned exactly as in the previous trace. **

Foil Done: [0]

Clause:

uncle(A,B) :-

wed(C,A),

sibling(D,C),

parent(D,B).

154

Partials:

Trying 1 Mods

uncle(A,B) :-

wed(C,A),

sibling(D,C),

parent(D,B).

Modification Implemented

Size: 220

New Compaction loop

Current Size: 220

Abstract Foil

FOIL Initial Clauses:

uncle(A,B).

uncle(eric,A).

Current Clause: uncle(_132128,_132129):-true

Trying Predicate: female/1

Trying Predicate: sibling/2

Found Better: sibling(_133367,_132128) Gain = 10.83

Trying Predicate: wed/2

Trying Predicate: parent/2

Current Clause: uncle(_132128,_132129):-sibling(_133367,_132128)

Trying Predicate: female/1

Found Better: female(_133367) Gain = 7.03

Trying Predicate: sibling/2

Trying Predicate: wed/2

Found Better: wed(_142261,_133367) Gain = 20.80

155

Trying Predicate: parent/2

Found Better: parent(_133367,_132129) Gain = 46.40

Current Clause: uncle(_132128,_132129):-sibling(_133367,_132128),

parent(_133367,_132129)

Trying Predicate: female/1

Trying Predicate: sibling/2

Trying Predicate: wed/2

Trying Predicate: parent/2

** The developing clause: uncle :- sibling, parent, was not extendable **

** However, the next clause retrieved from the heap was consistent. **

Foil Done: [1]

Clause:

uncle(eric,A).

Partials: ** Ignored, because a complete clause found **

uncle(A,B) :-

sibling(C,A),

parent(C,B).

Trying 1 Mods

uncle(eric,A).

** It does give a bit of compaction, but a great number of **

** unit clauses must still be in this definition. **

Modification Implemented

Size: 205

New Compaction loop

156

Current Size: 205

Abstract Foil

FOIL Initial Clauses:

uncle(A,B).

Current Clause: uncle(_160033,_160034):-true

Trying Predicate: female/1

Trying Predicate: sibling/2

Found Better: sibling(_161221,_160033) Gain = 10.20

Trying Predicate: wed/2

Trying Predicate: parent/2

Current Clause: uncle(_160033,_160034):-sibling(_161221,_160033)

Trying Predicate: female/1

Found Better: female(_161221) Gain = 6.69

Trying Predicate: sibling/2

Trying Predicate: wed/2

Found Better: wed(_171009,_161221) Gain = 19.90

Trying Predicate: parent/2

Found Better: parent(_161221,_160034) Gain = 43.09

Current Clause: uncle(_160033,_160034):-sibling(_161221,_160033),

parent(_161221,_160034)

Trying Predicate: female/1

Trying Predicate: sibling/2

Trying Predicate: wed/2

Trying Predicate: parent/2

** The FOIL component comes up dry, so CHILLIN turns to the **

** partial clauses to see if invention can help. **

Foil Done: [1]

157

Clause:

empty.

Partials:

uncle(A,B) :-

sibling(C,A),

parent(C,B).

Inventing for:

uncle(A,B) :-

sibling(C,A),

parent(C,B).

** The trace does not show the loop for selecting variables. **

** A alone is chosen. **

New Predicate Arity: 1

New Predicate Arity OK ** Only limited arity preds are pursued **

** Now the inductive component is called recursively. **

Inducing concept: ipred1/1 from 13 positives and 3 negatives

Unit Clause Count: 13

Unit Definition:

ipred1(art).

ipred1(calvin).

ipred1(david).

ipred1(eric).

ipred1(frederick).

ipred1(harry).

ipred1(jack).

ipred1(karl).

158

ipred1(mark).

ipred1(melvin).

ipred1(nero).

ipred1(paul).

ipred1(umo).

New Compaction loop

Current Size: 65

Abstract Foil

FOIL Initial Clauses:

ipred1(A).

Current Clause: ipred1(_188051):-true

Trying Predicate: female/1

Trying Predicate: sibling/2

Trying Predicate: wed/2

Trying Predicate: parent/2

Foil Done: [1]

Clause:

empty.

Partials:

ipred1(A).

** Obviously, this invention is vacuous, but this is dicovered **

** within the invention routines, so we get this trace info. **

Inventing for:

ipred1(A).

New Predicate Arity: 1

New Predicate Arity OK

** Discovered cirularity of this invention and failed out without **

159

** proposing any potential generalization. The positive examples **

** are memorized. **

Trying 0 Mods

Successfully Invented: ipred1(_160033)

** The newly invented predicate completes the partial clause. **

Trying 1 Mods

uncle(A,B) :-

sibling(C,A),

parent(C,B),

ipred1(A).

Modification Implemented

Size: 104

New Compaction loop

Current Size: 104

Abstract Foil

FOIL Initial Clauses:

uncle(A,B).

uncle(A,B) :-

parent(C,B).

Current Clause: uncle(_197230,_197231):-true

Trying Predicate: female/1

Trying Predicate: ipred1/1

Found Better: ipred1(_197230) Gain = 2.49

Trying Predicate: sibling/2

Trying Predicate: wed/2

160

Trying Predicate: parent/2

** Now the other clause looks better, it is extended. **

Current Clause: uncle(_197204,_197205):-parent(_197207,_197205)

Trying Predicate: female/1

Trying Predicate: ipred1/1

Found Better: ipred1(_197204) Gain = 2.49

Trying Predicate: sibling/2

Found Better: sibling(_197204,_197207) Gain = 3.10

Trying Predicate: wed/2

Trying Predicate: parent/2

** And back to the first clause... **

Current Clause: uncle(_197230,_197231):-ipred1(_197230)

Trying Predicate: female/1

Trying Predicate: ipred1/1

Trying Predicate: sibling/2

Trying Predicate: wed/2

Trying Predicate: parent/2

** Couldn't extend it, back to the other one. **

Current Clause: uncle(_197204,_197205):-parent(_197207,_197205),

sibling(_197204,_197207)

Trying Predicate: female/1

Trying Predicate: ipred1/1

Found Better: ipred1(_197204) Gain = 2.00

** Just as in the first trace, a previously found clause re-discovered **

Foil Done: [1]

161

Clause:

uncle(A,B) :-

parent(C,B),

sibling(A,C),

ipred1(A).

Partials:

uncle(A,B) :-

ipred1(A).

Trying 1 Mods

uncle(A,B) :-

parent(C,B),

sibling(A,C),

ipred1(A).

** No compaction **

** Post Pruning of the clause set eliminates the uneeded clause. **

** This is done by dropping each clause in turn and seeing if all **

** the examples can still be proved. The trace doesn't show this. **

Induction Time: 18.100000 ** CPU seconds on SPARC 2 **

ipred1(art).

ipred1(calvin).

ipred1(david).

ipred1(eric).

ipred1(frederick).

ipred1(harry).

ipred1(jack).

ipred1(karl).

162

ipred1(mark).

ipred1(melvin).

ipred1(nero).

ipred1(paul).

ipred1(umo).

uncle(A,B) :-

wed(C,A),

sibling(D,C),

parent(D,B).

uncle(A,B) :-

sibling(C,A),

parent(C,B),

ipred1(A).

yes

| ?-

163

Appendix D

Geoquery Corpus Questionnaire

This questionnaire was distributed to undergraduates to generate questions for the

Geoquery corpus discussed in Chapter 7.

Asking a Computer about US Geography

You are invited to participate in generating data for a research project involving

human-computer interaction. We wish to construct a list of questions that people

might ask of a computer system that knows about US geography. The system is

called Geobase and contains the following information:

Information about states:

� Area of the state in square kilometers

� Population of the state in citizens

� Capital of the state

� Which states border a given state

� Major rivers in the state

� Major cities in the state

164

� Highest and lowest point in the state in meters

Information about rivers:

� Length of river in kilometers

Information about cities:

� Population of the city in citizens

This information is accessible by asking questions in normal English. Here are some

sample inquiries:

Give me the cities in California.

What is the biggest city in California?

What is the longest river in the USA?

Which rivers are longer than 1000 kilometers?

What is the name of the state with the lowest point?

Which states border Alabama?

Which rivers do not run through Texas?

Which rivers run through states that border the state with the capital Austin?

On the following pages, please write down 15 questions that you would expect this

system to be able to answer. If you can't think of 15, just write down as many as

you can.

165

Appendix E

The Geoquery Corpus

The 250 sentences and associated queries of the Geoquery corpus are listed here. The

sentences are printed out as unquoted Prolog literals. Thus, there is no capitalization,

and �nal punctuation is separated from the last word of the sentence.

what is the capital of the state with the largest population ?

answer(C, (capital(B,C),largest(A,(state(B),population(B,A))))).

what are the major cities in kansas ?

answer(B, (major(B),city(B),loc(B,A),equal(A,stateid(kansas)))).

what is the population of the major cities in wisconsin ?

answer(C, (population(B,C),major(B),city(B),loc(B,A),equal(A,stateid(wisconsin)))).

what is the combined area of all 50 states ?

answer(C, sum(B,(area(A,B),state(A)),C)).

what is the capital of the state with the highest point ?

answer(C, (capital(B,C),highest(A,(state(B),high point(B,A))))).

what states border ohio ?

answer(B, (state(B),next to(B,A),equal(A,stateid(ohio)))).

what is the highest point of the state with the largest area ?

answer(C, (high point(B,C),largest(A,(state(B),area(B,A))))).

what is the lowest point of the state with the largest area ?

answer(C, (low point(B,C),largest(A,(state(B),area(B,A))))).

what is the combined population of all 50 states ?

166

answer(C, sum(B,(population(A,B),state(A)),C)).

what is the population density of texas ?

answer(B, (density(A,B),equal(A,stateid(texas)))).

how many people live in california ?

answer(B, (population(A,B),equal(A,stateid(california)))).

how many people live in new york ?

answer(B, (population(A,B),equal(A,stateid('new york')))).

how long is the rio grande river ?

answer(B, (len(A,B),equal(A,riverid('rio grande')))).

how many states does the colorado river run through ?

answer(C, count(B,(state(B),equal(A,riverid(colorado)),traverse(A,B)),C)).

how many major cities are in orida ?

answer(C, count(B,(major(B),city(B),loc(B,A),equal(A,stateid(orida))),C)).

what is the biggest city in texas ?

answer(B, largest(B,(city(B),loc(B,A),equal(A,stateid(texas))))).

which states border colorado ?

answer(B, (state(B),next to(B,A),equal(A,stateid(colorado)))).

what is the lowest point in the state of texas ?

answer(B, (low point(A,B),state(A),equal(A,stateid(texas)))).

what is the lowest point in the state of california ?

answer(B, (low point(A,B),state(A),equal(A,stateid(california)))).

what is the longest river in the united states ?

answer(A, longest(A,river(A))).

what is the population of arizona ?

answer(B, (population(A,B),equal(A,stateid(arizona)))).

what is the population of idaho ?

answer(B, (population(A,B),equal(A,stateid(idaho)))).

what are the major cities in ohio ?

answer(B, (major(B),city(B),loc(B,A),equal(A,stateid(ohio)))).

which states border new york ?

answer(B, (state(B),next to(B,A),equal(A,stateid('new york')))).

what is the capital of maine ?

answer(B, (capital(A,B),equal(A,stateid(maine)))).

which states border kentucky ?

answer(B, (state(B),next to(B,A),equal(A,stateid(kentucky)))).

167

what rivers run through the states that border the state with the capital atlanta ?

answer(D, (river(D),traverse(D,C),state(C),next to(C,B),state(B),capital(B,A),

equal(A,cityid(atlanta,)))).

what are the major cities in california ?

answer(B, (major(B),city(B),loc(B,A),equal(A,stateid(california)))).

how many people live in kalamazoo ?

answer(B, (population(A,B),equal(A,cityid(kalamazoo,)))).

which state is kalamazoo in ?

answer(B, (state(B),equal(A,cityid(kalamazoo,)),loc(A,B))).

what states have cities named dallas ?

answer(B, (state(B),loc(A,B),city(A),equal(A,cityid(dallas,)))).

what state is des moines located in ?

answer(B, (state(B),equal(A,cityid('des moines',)),loc(A,B))).

how long is the shortest river in the usa ?

answer(B, (len(A,B),shortest(A,river(A)))).

what are the rivers in alaska ?

answer(B, (river(B),loc(B,A),equal(A,stateid(alaska)))).

how large is the largest city in alaska ?

answer(C, (size(B,C),largest(B,(city(B),loc(B,A),equal(A,stateid(alaska)))))).

what states border orida ?

answer(B, (state(B),next to(B,A),equal(A,stateid(orida)))).

what is the smallest state in the usa ?

answer(A, smallest(A,state(A))).

what states have cities named plano ?

answer(B, (state(B),loc(A,B),city(A),equal(A,cityid(plano,)))).

how many people live in the capital of texas ?

answer(C, (population(B,C),capital(A,B),equal(A,stateid(texas)))).

how many rivers does colorado have ?

answer(C, count(B,(river(B),equal(A,stateid(colorado)),loc(B,A)),C)).

how many rivers does alaska have ?

answer(C, count(B,(river(B),equal(A,stateid(alaska)),loc(B,A)),C)).

what is the biggest city in the usa ?

answer(A, largest(A,city(A))).

what is the population density of the smallest state ?

answer(B, (density(A,B),smallest(A,state(A)))).

168

what is the total population of the states that border texas ?

answer(D, sum(C,(population(B,C),state(B),next to(A,B),equal(A,stateid(texas))),D)).

what rivers run through colorado ?

answer(B, (river(B),traverse(B,A),equal(A,stateid(colorado)))).

what is the largest city in states that border california ?

answer(C, largest(C,(city(C),loc(C,B),state(B),next to(B,A),equal(A,stateid(california))))).

what is the population of illinois ?

answer(B, (population(A,B),equal(A,stateid(illinois)))).

what rivers do not run through tennessee ?

answer(B, (river(B), not(traverse(B,A),equal(A,stateid(tennessee))))).

what is the biggest city in louisiana ?

answer(B, largest(B,(city(B),loc(B,A),equal(A,stateid(louisiana))))).

what states border indiana ?

answer(B, (state(B),next to(B,A),equal(A,stateid(indiana)))).

what is the population of boston massachusetts ?

answer(B, (population(A,B),equal(A,cityid(boston,ma)))).

what is the longest river in mississippi ?

answer(B, longest(B,(river(B),loc(B,A),equal(A,stateid(mississippi))))).

how many citizens in alabama ?

answer(B, (population(A,B),equal(A,stateid(alabama)))).

what is the area of maine ?

answer(B, (area(A,B),equal(A,stateid(maine)))).

how many rivers in washington ?

answer(C, count(B,(river(B),loc(B,A),equal(A,stateid(washington))),C)).

what is the largest city in wisconsin ?

answer(B, largest(B,(city(B),loc(B,A),equal(A,stateid(wisconsin))))).

what is the capital of georgia ?

answer(B, (capital(A,B),equal(A,stateid(georgia)))).

rivers in new york ?

answer(B, (river(B),loc(B,A),equal(A,stateid('new york')))).

what states border rhode island ?

answer(B, (state(B),next to(B,A),equal(A,stateid('rhode island')))).

what is the population of montana ?

answer(B, (population(A,B),equal(A,stateid(montana)))).

169

what is the total area of the usa ?

answer(B, (area(A,B),equal(A,countryid(usa)))).

where is the lowest spot in iowa ?

answer(B, (low point(A,B),equal(A,stateid(iowa)))).

how long is the north platte river ?

answer(B, (len(A,B),equal(A,riverid('north platte')))).

what is the highest point of the usa ?

answer(B, (high point(A,B),equal(A,countryid(usa)))).

what states border new jersey ?

answer(B, (state(B),next to(B,A),equal(A,stateid('new jersey')))).

what is the longest river ?

answer(A, longest(A,river(A))).

what is the highest point in the state with the capital des moines ?

answer(C, (high point(B,C),loc(C,B),capital(B,A),equal(A,cityid('des moines',)))).

what is the most populated state bordering oklahoma ?

answer(C, largest(B,(population(C,B),state(C),next to(C,A),equal(A,stateid(oklahoma))))).

which state has the smallest population density ?

answer(B, smallest(A,(state(B),density(B,A)))).

what state has the largest population density ?

answer(B, largest(A,(state(B),density(B,A)))).

what states capital is dover ?

answer(B, (state(B),capital(B,A),equal(A,cityid(dover,)))).

what capital is the largest in the us ?

answer(A, largest(A,capital(A))).

how large is alaska ?

answer(B, (size(A,B),equal(A,stateid(alaska)))).

how many people live in hawaii ?

answer(B, (population(A,B),equal(A,stateid(hawaii)))).

where is the lowest point in the us ?

answer(B, (low point(A,B),equal(A,countryid(usa)))).

how many cities are in montana ?

answer(C, count(B,(city(B),loc(B,A),equal(A,stateid(montana))),C)).

which states have points higher than the highest point in colorado ?

answer(D, (state(D),high point(D,C),higher(C,B),high point(A,B),equal(A,stateid(colorado)))).

170

how many people live in rhode island ?

answer(B, (population(A,B),equal(A,stateid('rhode island')))).

what city has the most people ?

answer(B, largest(A,(city(B),population(B,A)))).

what is the population of spring�eld missouri ?

answer(B, (population(A,B),equal(A,cityid(spring�eld,mo)))).

what is the length of the colorado river ?

answer(B, (len(A,B),equal(A,riverid(colorado)))).

what states does the missouri run through ?

answer(B, (state(B),equal(A,riverid(missouri)),traverse(A,B))).

what are the major cities in wyoming ?

answer(B, (major(B),city(B),loc(B,A),equal(A,stateid(wyoming)))).

what is the lowest point in oregon ?

answer(B, (low point(A,B),equal(A,stateid(oregon)))).

what is the area of alaska ?

answer(B, (area(A,B),equal(A,stateid(alaska)))).

what is the population of texas ?

answer(B, (population(A,B),equal(A,stateid(texas)))).

what is the population of san antonio ?

answer(B, (population(A,B),equal(A,cityid('san antonio',)))).

what is the highest point in kansas ?

answer(B, (high point(A,B),equal(A,stateid(kansas)))).

what is the longest river in the us ?

answer(A, longest(A,river(A))).

what length is the mississippi ?

answer(B, (len(A,B),equal(A,riverid(mississippi)))).

what states border hawaii ?

answer(B, (state(B),next to(B,A),equal(A,stateid(hawaii)))).

what is the lowest point in louisiana ?

answer(B, (low point(A,B),equal(A,stateid(louisiana)))).

how high is the highest point in america ?

answer(C, (elevation(B,C),high point(A,B),equal(A,countryid(usa)))).

what is the smallest city in hawaii ?

answer(B, smallest(B,(city(B),loc(B,A),equal(A,stateid(hawaii))))).

171

how many people live in minneapolis minnesota >

answer(B, (population(A,B),equal(A,cityid(minneapolis,mn)))).

how many people live in austin ?

answer(B, (population(A,B),equal(A,cityid(austin,)))).

how long is the ohio river ?

answer(B, (len(A,B),equal(A,riverid(ohio)))).

give me the largest state ?

answer(A, largest(A,state(A))).

what is the lowest point of the us ?

answer(B, (low point(A,B),equal(A,countryid(usa)))).

what is the population density of maine ?

answer(B, (density(A,B),equal(A,stateid(maine)))).

what is the population of new york city ?

answer(B, (population(A,B),equal(A,cityid('new york',)))).

what is the capital of new hampshire ?

answer(B, (capital(A,B),equal(A,stateid('new hampshire')))).

what is the population of south dakota ?

answer(B, (population(A,B),equal(A,stateid('south dakota')))).

which states border south dakota ?

answer(B, (state(B),next to(B,A),equal(A,stateid('south dakota')))).

which states have cities named austin ?

answer(B, (state(B),loc(A,B),city(A),equal(A,cityid(austin,)))).

how high is the highest point in montana ?

answer(C, (elevation(B,C),high point(A,B),equal(A,stateid(montana)))).

which state is the city denver located in ?

answer(B, (state(B),equal(A,cityid(denver,)),loc(A,B))).

where is the highest point in montana ?

answer(B, (high point(A,B),equal(A,stateid(montana)))).

what is the lowest point in the united states ?

answer(B, (low point(A,B),equal(A,countryid(usa)))).

which state has the longest river ?

answer(B, longest(A,(state(B),loc(A,B),river(A)))).

which state has the largest city ?

answer(B, largest(A,(state(B),loc(A,B),city(A)))).

172

what state has the greatest population density ?

answer(B, largest(A,(state(B),density(B,A)))).

what is the lowest point in texas ?

answer(B, (low point(A,B),equal(A,stateid(texas)))).

how many people live in riverside ?

answer(B, (population(A,B),equal(A,cityid(riverside,)))).

what states border delaware ?

answer(B, (state(B),next to(B,A),equal(A,stateid(delaware)))).

what states does the ohio river go through ?

answer(B, (state(B),equal(A,riverid(ohio)),traverse(A,B))).

how long is the delaware river ?

answer(B, (len(A,B),equal(A,riverid(delaware)))).

what state has the city int ?

answer(B, (state(B),loc(A,B),city(A),equal(A,cityid(int,)))).

what is the shortest river ?

answer(A, shortest(A,river(A))).

which states capital city is the largest ?

answer(B, largest(A,(state(B),capital(B,A)))).

which state is the smallest ?

answer(A, smallest(A,state(A))).

what states does the delaware river run through ?

answer(B, (state(B),equal(A,riverid(delaware)),traverse(A,B))).

what is the population of hawaii ?

answer(B, (population(A,B),equal(A,stateid(hawaii)))).

what are the major cities in alaska ?

answer(B, (major(B),city(B),loc(B,A),equal(A,stateid(alaska)))).

what is the highest point in the country ?

answer(B, (high point(A,B),equal(A,countryid(usa)))).

what is the longest river in orida ?

answer(B, longest(B,(river(B),loc(B,A),equal(A,stateid(orida))))).

what is the largest state capital in population ?

answer(B, largest(A,(capital(B),population(B,A)))).

how long is the missouri river ?

answer(B, (len(A,B),equal(A,riverid(missouri)))).

173

what state contains the highest point in the us ?

answer(C, (state(C),loc(B,C),high point(A,B),equal(A,countryid(usa)))).

how large is texas ?

answer(B, (size(A,B),equal(A,stateid(texas)))).

what is the population of erie pennsylvania ?

answer(B, (population(A,B),equal(A,cityid(erie,pa)))).

how long is the colorado river ?

answer(B, (len(A,B),equal(A,riverid(colorado)))).

which states does the mississippi run through ?

answer(B, (state(B),equal(A,riverid(mississippi)),traverse(A,B))).

how many rivers are there in idaho ?

answer(C, count(B,(river(B),loc(B,A),equal(A,stateid(idaho))),C)).

what is the population of tempe arizona ?

answer(B, (population(A,B),equal(A,cityid(tempe,az)))).

what is the capital of iowa ?

answer(B, (capital(A,B),equal(A,stateid(iowa)))).

what is the lowest point in california ?

answer(B, (low point(A,B),equal(A,stateid(california)))).

which state borders orida ?

answer(B, (state(B),next to(B,A),equal(A,stateid(orida)))).

which state borders hawaii ?

answer(B, (state(B),next to(B,A),equal(A,stateid(hawaii)))).

how many rivers are in new york ?

answer(C, count(B,(river(B),loc(B,A),equal(A,stateid('new york'))),C)).

what state borders michigan ?

answer(B, (state(B),next to(B,A),equal(A,stateid(michigan)))).

what is the length of the mississippi river ?

answer(B, (len(A,B),equal(A,riverid(mississippi)))).

what is the largest river in washington state ?

answer(B, largest(B,(river(B),loc(B,A),equal(A,stateid(washington))))).

what is the population of seattle washington ?

answer(B, (population(A,B),equal(A,cityid(seattle,wa)))).

what are the major cities of texas ?

answer(B, (major(B),city(B),loc(B,A),equal(A,stateid(texas)))).

174

what is the area of south carolina ?

answer(B, (area(A,B),equal(A,stateid('south carolina')))).

where is the highest point in hawaii ?

answer(B, (high point(A,B),equal(A,stateid(hawaii)))).

what is the lowest point in arkansas ?

answer(B, (low point(A,B),equal(A,stateid(arkansas)))).

what is the capital of utah ?

answer(B, (capital(A,B),equal(A,stateid(utah)))).

what states surround kentucky ?

answer(B, (state(B),next to(B,A),equal(A,stateid(kentucky)))).

what is the biggest city in wyoming ?

answer(B, largest(B,(city(B),loc(B,A),equal(A,stateid(wyoming))))).

how long is the mississippi river ?

answer(B, (len(A,B),equal(A,riverid(mississippi)))).

what are the major rivers in ohio ?

answer(B, (major(B),river(B),loc(B,A),equal(A,stateid(ohio)))).

what is the population of the capital of the smallest state ?

answer(C, (population(B,C),capital(A,B),smallest(A,state(A)))).

how big is texas ?

answer(B, (area(A,B),equal(A,stateid(texas)))).

what is the area of idaho ?

answer(B, (area(A,B),equal(A,stateid(idaho)))).

what state has the capital salem ?

answer(B, (state(B),capital(B,A),equal(A,cityid(salem,)))).

which state borders most states ?

answer(B, most(B,A,(state(B),next to(B,A),state(A)))).

what is the highest point in iowa ?

answer(B, (high point(A,B),equal(A,stateid(iowa)))).

what is the population of utah ?

answer(B, (population(A,B),equal(A,stateid(utah)))).

how many rivers are in colorado ?

answer(C, count(B,(river(B),loc(B,A),equal(A,stateid(colorado))),C)).

what state has the highest elevation ?

answer(B, highest(A,(state(B),high point(B,A)))).

175

what is the biggest city in the us ?

answer(A, largest(A,city(A))).

what states border montana ?

answer(B, (state(B),next to(B,A),equal(A,stateid(montana)))).

what is the highest point in colorado ?

answer(B, (high point(A,B),equal(A,stateid(colorado)))).

what is the smallest city in washington ?

answer(B, smallest(B,(city(B),loc(B,A),equal(A,stateid(washington))))).

what is the biggest city in oregon ?

answer(B, largest(B,(city(B),loc(B,A),equal(A,stateid(oregon))))).

what is the population of portland maine ?

answer(B, (population(A,B),equal(A,cityid(portland,me)))).

what is the biggest river in illinois ?

answer(B, largest(B,(river(B),loc(B,A),equal(A,stateid(illinois))))).

what is the area of wisconsin ?

answer(B, (area(A,B),equal(A,stateid(wisconsin)))).

what is the highest point in montana ?

answer(B, (high point(A,B),equal(A,stateid(montana)))).

what rivers are in utah ?

answer(B, (river(B),loc(B,A),equal(A,stateid(utah)))).

what is the population of tucson ?

answer(B, (population(A,B),equal(A,cityid(tucson,)))).

what is the biggest city in georgia ?

answer(B, largest(B,(city(B),loc(B,A),equal(A,stateid(georgia))))).

what is the capital of north dakota ?

answer(B, (capital(A,B),equal(A,stateid('north dakota')))).

what is the lowest point in massachusetts ?

answer(B, (low point(A,B),equal(A,stateid(massachusetts)))).

give me the cities in virginia .

answer(B, (city(B),loc(B,A),equal(A,stateid(virginia)))).

what is the population of oregon ?

answer(B, (population(A,B),equal(A,stateid(oregon)))).

what is the highest point in wyoming ?

answer(B, (high point(A,B),equal(A,stateid(wyoming)))).

176

what is the capital of vermont ?

answer(B, (capital(A,B),equal(A,stateid(vermont)))).

which rivers ow through alaska ?

answer(B, (river(B),traverse(B,A),equal(A,stateid(alaska)))).

what is the longest river in texas ?

answer(B, longest(B,(river(B),loc(B,A),equal(A,stateid(texas))))).

what states border kentucky ?

answer(B, (state(B),next to(B,A),equal(A,stateid(kentucky)))).

what is the most populous state ?

answer(B, largest(A,(population(B,A),state(B)))).

what is the area of the smallest state ?

answer(B, (area(A,B),smallest(A,state(A)))).

what is the area of the largest state ?

answer(B, (area(A,B),largest(A,state(A)))).

which state has the highest elevation ?

answer(B, highest(A,(state(B),high point(B,A)))).

which states does the missouri river run through ?

answer(B, (state(B),equal(A,riverid(missouri)),traverse(A,B))).

which state has the highest peak in the country ?

answer(B, highest(A,(state(B),high point(B,A)))).

how many people live in spokane washington ?

answer(B, (population(A,B),equal(A,cityid(spokane,wa)))).

how many major rivers cross ohio ?

answer(C, count(B,(major(B),river(B),traverse(B,A),equal(A,stateid(ohio))),C)).

what is the capital of washington ?

answer(B, (capital(A,B),equal(A,stateid(washington)))).

which state has the highest population density ?

answer(B, largest(A,(state(B),density(B,A)))).

what is the smallest city in the usa ?

answer(A, smallest(A,city(A))).

what is the shortest river in the us ?

answer(A, shortest(A,river(A))).

how many square kilometers in the us ?

answer(B, (area(A,B),equal(A,countryid(usa)))).

177

what is the city with the smallest population ?

answer(B, smallest(A,(city(B),population(B,A)))).

what is the smallest city in alaska ?

answer(B, smallest(B,(city(B),loc(B,A),equal(A,stateid(alaska))))).

what is the largest city in rhode island ?

answer(B, largest(B,(city(B),loc(B,A),equal(A,stateid('rhode island'))))).

how many cities are there in the us ?

answer(B, count(A,city(A),B)).

what is the shortest river in iowa ?

answer(B, shortest(B,(river(B),loc(B,A),equal(A,stateid(iowa))))).

what is the highest point in the usa ?

answer(B, (high point(A,B),equal(A,countryid(usa)))).

which state border kentucky ?

answer(B, (state(B),next to(B,A),equal(A,stateid(kentucky)))).

what are all the rivers in texas ?

answer(B, (river(B),loc(B,A),equal(A,stateid(texas)))).

which state borders the most states ?

answer(B, most(B,A,(state(B),next to(B,A),state(A)))).

which states border texas ?

answer(B, (state(B),next to(B,A),equal(A,stateid(texas)))).

through which states does the mississippi run ?

answer(B, (state(B),equal(A,riverid(mississippi)),traverse(A,B))).

which river runs through the most states ?

answer(B, most(B,A,(river(B),traverse(B,A),state(A)))).

what is the highest mountain in the us ?

answer(B, (high point(A,B),equal(A,countryid(usa)))).

what are the high points of states surrounding mississippi ?

answer(C, (high point(B,C),next to(B,A),equal(A,stateid(mississippi)))).

what is the highest point in states bordering georgia ?

answer(C, highest(C,(high point(B,C),next to(B,A),equal(A,stateid(georgia))))).

which rivers run through states bordering new mexico /

answer(C, (river(C),traverse(C,B),next to(B,A),equal(A,stateid('new mexico')))).

what are the major cities in oklahoma ?

answer(B, (major(B),city(B),loc(B,A),equal(A,stateid(oklahoma)))).

178

what is the capital of new jersey ?

answer(B, (capital(A,B),equal(A,stateid('new jersey')))).

what is the lowest point in nebraska in meters ?

answer(B, (low point(A,B),equal(A,stateid(nebraska)))).

what is the highest point in nevada in meters ?

answer(B, (high point(A,B),equal(A,stateid(nevada)))).

what major rivers run through illinois ?

answer(B, (major(B),river(B),traverse(B,A),equal(A,stateid(illinois)))).

what states border arkansas ?

answer(B, (state(B),next to(B,A),equal(A,stateid(arkansas)))).

how many people live in washington ?

answer(B, (population(A,B),equal(A,stateid(washington)))).

what is the shortest river in the usa ?

answer(A, shortest(A,river(A))).

what are the populations of states through which the mississippi river runs ?

answer(C, (population(B,C),state(B),traverse(A,B),equal(A,riverid(mississippi)))).

name the rivers in arkansas .

answer(B, (river(B),loc(B,A),equal(A,stateid(arkansas)))).

how many states does the mississippi river run through ?

answer(C, count(B,(state(B),equal(A,riverid(mississippi)),traverse(A,B)),C)).

which state has the highest point ?

answer(B, highest(A,(state(B),high point(B,A)))).

what state has the highest population ?

answer(B, largest(A,(state(B),population(B,A)))).

which states does the mississippi river run through ?

answer(B, (state(B),equal(A,riverid(mississippi)),traverse(A,B))).

what is the highest elevation in new mexico ?

answer(B, (high point(A,B),equal(A,stateid('new mexico')))).

what is the biggest city in arizona ?

answer(B, largest(B,(city(B),loc(B,A),equal(A,stateid(arizona))))).

what states border georgia ?

answer(B, (state(B),next to(B,A),equal(A,stateid(georgia)))).

what are the major cities in rhode island ?

answer(B, (major(B),city(B),loc(B,A),equal(A,stateid('rhode island')))).

179

what are the major cities in texas ?

answer(B, (major(B),city(B),loc(B,A),equal(A,stateid(texas)))).

what is the population of dallas ?

answer(B, (population(A,B),equal(A,cityid(dallas,)))).

what is the smallest city in the us ?

answer(A, smallest(A,city(A))).

what state has highest elevation ?

answer(C, largest(B,(state(C),high point(C,A),elevation(A,B)))).

name all the rivers in colorado .

answer(B, (river(B),loc(B,A),equal(A,stateid(colorado)))).

what is the largest city in minnesota by population ?

answer(C, largest(B,(city(C),loc(C,A),equal(A,stateid(minnesota)),population(C,B)))).

what is the population density of wyoming ?

answer(B, (density(A,B),equal(A,stateid(wyoming)))).

what states border new hampshire ?

answer(B, (state(B),next to(B,A),equal(A,stateid('new hampshire')))).

what rivers run through new york ?

answer(B, (river(B),traverse(B,A),equal(A,stateid('new york')))).

what rivers run through west virginia ?

answer(B, (river(B),traverse(B,A),equal(A,stateid('west virginia')))).

whats the largest city ?

answer(A, largest(A,city(A))).

what is the smallest state by area ?

answer(B, smallest(A,(state(B),area(B,A)))).

what is the highest point in the us ?

answer(B, (high point(A,B),equal(A,countryid(usa)))).

which state has the greatest population ?

answer(B, largest(A,(state(B),population(B,A)))).

how long is the mississippi ?

answer(B, (len(A,B),equal(A,riverid(mississippi)))).

what is the highest point in rhode island ?

answer(B, (high point(A,B),equal(A,stateid('rhode island')))).

how many citizens live in california ?

answer(B, (population(A,B),equal(A,stateid(california)))).

180

which states border arizona ?

answer(B, (state(B),next to(B,A),equal(A,stateid(arizona)))).

what state is columbus the capital of ?

answer(B, (state(B),equal(A,cityid(columbus,)),capital(B,A))).

what is the state with the lowest population ?

answer(B, smallest(A,(state(B),population(B,A)))).

181

Bibliography

Abramson, H., & Dahl, V. (1989). Logic Grammars. Springer-Verlag, New York.

Allen, J. F. (1995). Natural Language Understanding. Benjamin/Cummings, Menlo

Park, CA.

Anderson, J. R. (1977). Induction of augmented transition networks. Cognitive

Science, 1, 125{157.

Anderson, J. R. (1983). The Architecture of Cognition. Harvard University Press,

Cambridge, MA.

Banerji, R. B. (1992). Learning theoretical terms. In Muggleton, S. (Ed.), Inductive

Logic Programming, pp. 93{110. Academic Press, New York, NY.

Beckwith, R., Fellbaum, C., Gross, D., & Miller, G. (1991). Wordnet: A lexical

database organized on psycholinguistic principles. In Zernik, U. (Ed.), Lexical Ac-

quisition: Exploiting On-Line Resources to Build a Lexicon, pp. 211{232. Lawrence

Erlbaum, Hillsdale, NJ.

Berwick, B. (1985). The Acquisition of Syntactic Knowledge. MIT Press, Cam-

bridge, MA.

Berwick, R. C., & Pilato, S. (1987). Learning syntax by automata induction.Machine

Learning, 2 (1), 9{38.

182

Black, E., Jelineck, F., La�erty, J., Magerman, D., Mercer, R., & Roukos, S. (1993).

Towards history-based grammars: Using richer models for probabilistic parsing.

In Proceedings of the 31st Annual Meeting of the Association for Computational

Linguistics, pp. 31{37 Columbus, Ohio.

Black, E., La�erty, J., & Roukaos, S. (1992). Development and evaluation of a

broad-coverage probabilistic grammar of English-language computer manuals. In

Proceedings of the 30th Annual Meeting of the Association for Computational Lin-

guistics, pp. 185{192 Newark, Delaware.

Black, E. e. (1991). A procedure for quantitatively comparing the syntactic coverage

of English grammars.. In Proceedings of the Fourth DARPA Speech and Natural

Language Workshop, pp. 306{311.

Borland International (1988). Turbo Prolog 2.0 Reference Guide. Borland Interna-

tional, Scotts Valley, CA.

Brill, E. (1993). Automatic grammar induction and parsing free text: A

transformation-based approach. In Proceedings of the 31st Annual Meeting of the

Association for Computational Linguistics, pp. 259{265 Columbus, Ohio.

Brown, J. S., & Burton, R. R. (1975). Multiple representations of knowledge for

tutorial reasoning. In Bobrow, D., & Collins, A. (Eds.), Representation and Under-

standing. Academic Press, New York.

Cameron-Jones, R. M., & Quinlan, J. R. (1994). E�cient top-down induction of

logic programs. SIGART Bulletin, 5 (1), 33{42.

Charniak, E. (1993). Statistical Language Learning. MIT Press.

Charniak, E., & Carroll, G. (1994). Context-sensitive statistics for improved gram-

matical language models. In Proceedings of the Twelfth National Conference on

Arti�cial Intelligence Seattle, WA.

183

Charniak, E., Hendrickson, C., Jacobson, N., & Perkowitz, M. (1993). Equations

for part-of-speech tagging. In Proceedings of the Eleventh National Conference on

Arti�cial Intelligence, pp. 784{789 Washington, D.C.

Cohen, W. W. (1990). Learning approximate control rules of high utility. In Pro-

ceedings of the Seventh International Conference on Machine Learning, pp. 268{276

Austin, TX.

Cohen, W. W. (1993). Pac-learning a resticted class of recursive logic programs.

In Proceedings of the Eleventh National Conference on Arti�cial Intelligence, pp.

86{92 Washington, D.C.

Cohen, W. (1992). Compiling prior knowledge into an explicit bias. In Proceedings

of the Ninth International Conference on Machine Learning, pp. 102{110 Aberdeen,

Scotland.

Dahl, V., & McCord, M. C. (1983). Treating coordination in logic grammars. Amer-

ican Journal of Computational Linguistics, 9 (2), 69{91.

DeJong, G. F., & Mooney, R. J. (1986). Explanation-based learning: An alternative

view. Machine Learning, 1 (2), 145{176.

Fillmore, C. J. (1968). The case for case. In Bach, E., & Harms, R. T. (Eds.),

Universals in Linguistic Theory. Holt, Reinhart and Winston, New York.

Gazdar, G., & Mellish, C. (1989). Natural Language Processing in Prolog. Adison-

Wesley Publishing Company, New York.

Hendrix, G. G., Sagalowicz, E. S. D., & Slocum, J. (1978). Developing a natural

language interface to complex data. ACM Transactions on Database Systems, 3 (2),

105{147.

Hindle, D., & Rooth, M. (1993). Structural ambiguity and lexical relations. Com-

putational Linguistics, 19 (1), 103{120.

184

Kijsirikul, B., Numao, M., & Shimura, M. (1992). Discrimination-based constructive

induction of logic programs. In Proceedings of the Tenth National Conference on

Arti�cial Intelligence, pp. 44{49 San Jose, CA.

Klein, S., & Kuppin, M. A. (1970). An interactive, heuristic program for learning

transformational grammars. Tech. rep. TR-97, Computer Sciences Department,

Univeristy of Wisconsin, Madison, Madison, WI.

Knowlton, K. (1962). Sentence Parsing with a Self-Organizing Heuristic Program.

Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.

Laird, J., Rosenbloom, P., & Newell, A. (1986). Chunking in Soar: The anatomy of

a general learning mechanism. Machine Learning, 1 (1).

Langley, P. (1982). Language acquisition through error recovery. Cognition and

Brain Theory, 5.

Langley, P. (1985). Learning to search: From weak methods to domain speci�c

heuristics. Cognitive Science, 9 (2), 217{260.

Langley, P., & Carbonell, J. (1985). Language acquisition and machine learn-

ing. In MacWhinney, B. (Ed.), Mechanisms of Language Acquisition, pp. 115{155.

Lawrence Erlbaum Associates, Inc/, Hillsdale, NJ.

Lapointe, S., & Matwin, S. (1992). Sub-uni�cation: A tool for e�cient induction

of recursive programs. In Proceedings of the Ninth International Conference on

Machine Learning, pp. 273{281 Aberdeen, Scotland.

Lavra�c, N., & D�zeroski, S. (Eds.). (1994). Inductive Logic Programming: Techniques

and Applications. Ellis Horwood.

Lehman, J. F. (1992). Adaptive Parsing. Kluwer Academic Publishers, Boston.

185

Lehman, J. F. (1994). Toward the essential nature of satistical knowledge in sense

resolution. In Proceedings of the Twelfth National Conference on Arti�cial Intelli-

gence Seattle, WA.

Litman, D. J. (1994). Classifying cue phrases in text and speech using machine

learning. In Proceedings of the Twelfth National Conference on Arti�cial Intelligence

Seattle, WA.

Magerman, D. M. (1994). Natrual Lagnuage Parsing as Statistical Pattern Recog-

nition. Ph.D. thesis, Stanford University.

Manning, C. D. (1993). Automatic acquisition of a large subcategorization dictionary

from corpora. In Proceedings of the 31st Annual Meeting of the Association for

Computational Linguistics, pp. 235{242 Columbus, Ohio.

Marcus, M. (1980). A Theory of Syntactic Recognition for Natural Language. MIT

Press, Cambridge, MA.

Marcus, M., Santorini, B., & Marcinkiewicz, M. (1993). Building a large annotated

corpus of English: The Penn treebank. Computational Linguistics, 19 (2), 313{330.

McClelland, J. L., & Kawamoto, A. H. (1986). Mechanisms of sentence processing:

Assigning roles to constituents of sentences. In Rumelhart, D. E., & McClelland, J. L.

(Eds.),Parallel Distributed Processing, Vol. II, pp. 318{362.MIT Press, Cambridge,

MA.

Merialdo, B. (1994). Tagging English text with a probabilistic model. Computational

Linguistics, 20 (2), 155{172.

Miikkulainen, R., & Dyer, M. G. (1991). Natural language processing with modular

PDP networks and distributed lexicon. Cognitive Science, 15, 343{399.

Miikkulainen, R. (1993). Subsymbolic Natural Language Processing: An Integrated

Model of Scripts, Lexicon, and Memory. MIT Press, Cambridge, MA.

186

Miikkulainen, R. (1995). Subsymbolic case-role analysis of sentences with embedded

clauses. Cognitive Science. in press.

Miller, S., Bobrow, R., Ingria, R., & Schwartz, R. (1994). Hidden understanding

models of natural language. In Proceedings of the 32nd Annual Meeting of the

Association for Computational Linguistics, pp. 25{32.

Minton, S. (1988). Quantitative results concerning the utility of explanation-based

learning. In Proceedings of the Seventh National Conference on Arti�cial Intelli-

gence, pp. 564{569 St. Paul, MN.

Mitchell, T. (1983). Learning and problem solving. In Proceedings of the Eighth

International Joint Conference on Arti�cial Intelligence, pp. 1139{1151 Karlsruhe,

West Germany.

Mitchell, T., Utgo�, T., & Banerji, R. (1983). Learning problem solving heuristics

by experimentation. In Michalski, R., Mitchell, T., & Carbonell, J. (Eds.),Machine

Learning: An Arti�cial Intelligence Approach. Morgan Kaufmann, Palo Alto, CA.

Mitchell, T. M. (1984). Toward combining empirical and analytic methods for learn-

ing heuristics. In Elithorn, A., & Banerji, R. (Eds.), Human and Arti�cial Intelli-

gence. North-Holland, Amsterdam.

Mitchell, T. M., Keller, R. M., & Kedar-Cabelli, S. T. (1986). Explanation-based

generalization: A unifying view. Machine Learning, 1 (1), 47{80.

Mooney, R. J., & Cali�, M. E. (1995). Induction of �rst-order decision lists: Res-

ults on learning the past tense of English verbs. Journal of Arti�cial Intelligence

Research, in press.

Muggleton, S. (1992). Inverting implication. In Proceedings of the Second Interna-

tional Workshop on Inductive Logic Programming Tokyo, Japan.

187

Muggleton, S., & Buntine, W. (1988). Machine invention of �rst-order predicates

by inverting resolution. In Proceedings of the Fifth International Conference on

Machine Learning, pp. 339{352 Ann Arbor, MI.

Muggleton, S., & Feng, C. (1992). E�cient induction of logic programs. In

Muggleton, S. (Ed.), Inductive Logic Programming, pp. 281{297. Academic Press,

New York.

Muggleton, S., King, R., & Sternberg, M. (1992). Protein secondary structure

prediction using logic-based machine learning. Protein Engineering, 5 (7), 647{657.

Muggleton, S. H. (Ed.). (1992). Inductive Logic Programming. Academic Press,

New York, NY.

Ng, H. T. (1988). A computerized prototype natural language tour guide. Tech.

rep. AI88-75, Arti�cial Intelligence Laboratory, University of Texas, Austin, TX.

Pazzani, M., Brunk, C., & Silverstein, G. (1991). A knowledge-intensive approach

to learning relational concepts. In Proceedings of the Eighth International Workshop

on Machine Learning, pp. 432{436 Evanston, IL.

Periera, F., & Schabes, Y. (1992). Inside-outside reestimation from partially brack-

eted corpora. In Proceedings of the 30th Annual Meeting of the Association for

Computational Linguistics, pp. 128{135 Newark, Delaware.

Plotkin, G. D. (1970). A note on inductive generalization. In Meltzer, B., & Michie,

D. (Eds.), Machine Intelligence (Vol. 5). Elsevier North-Holland, New York.

Quinlan, J. R. (1986). The e�ect of noise on concept learning. In Michalski, R. S.,

Carbonell, J. G., & Mitchell, T. M. (Eds.), Machine Learning: An Arti�cial Intel-

ligence Approach, Volume II, pp. 149{166. Morgan Kaufman.

Quinlan, J. R., & Cameron-Jones, R. M. (1993). FOIL: A midterm report. In

Proceedings of the European Conference on Machine Learning, pp. 3{20 Vienna.

188

Quinlan, J. (1990). Learning logical de�nitions from relations. Machine Learning,

5 (3), 239{266.

Reeker, L. H. (1976). The computational study of language acquisition. In Yovits,

M., & Rubino�, M. (Eds.), Advances in Computers, Vol. 15. Academic Press, New

York.

Rouveirol, C. (1992). Extensions of inversion of resolution applied to theory com-

pletion. In Muggleton, S. (Ed.), Inductive Logic Programming, pp. 63{86. Academic

Press, New York, NY.

Selfridge, M. (1981). A computer model of child language acquisition. In Proceedings

of the Seventh International Joint Conference on Arti�cial Intelligence, pp. 106{108

Vancouver, B.C.

Sembugamoorthy, V. (1981). A paradigmatic language acquisition system. In Pro-

ceedings of the Seventh International Joint Conference on Arti�cial Intelligence, pp.

106{108 Vancouver, B.C.

Siklossy, L. (1972). Natural language learning by computer. In Simon, H. A.,

& Siklossy, L. (Eds.), Representation and meaning: Experiments with Information

Processsing Systems. Prentice Hall, Englewood Cli�s, NJ.

Simmons, R. F., & Yu, Y. (1992). The acquisition and use of context dependent

grammars for English. Computational Linguistics, 18 (4), 391{418.

Soderland, S., & Lehnert, W. (1994). Corpus-driven knowledge acquisition for dis-

course analysis. In Proceedings of the Twelfth National Conference on Arti�cial

Intelligence Seattle, WA.

Solomono�, R. (1959). A new method for discovering the grammars of phrase struc-

ture languages. In Proceedings of the International Conference on Information Pro-

cessing.

189

St. John, M. F., & McClelland, J. L. (1990). Learning and applying contextual

constraints in sentence comprehension. Arti�cial Intelligence, 46, 217{257.

Stahl, I., Tausend, B., & Wirth, R. (1993). Two methods for improving inductive

logic programming systems. In Machine Learning: ECML-93, pp. 41{55 Vienna.

Thompson, C. A. (1995). Acquisition of a lexicon from semantic representations of

sentences. In Proceeding of the 33rd Annual Meeting of the Association for Compu-

tational Linguistics, pp. 335{337 Boston, MA.

Tomita, M. (1986). E�cient Parsing for Natural Language. Kluwer Academic

Publishers, Boston.

VanLehn, K., & Ball, W. (1987). A version space approach to learning context-free

grammars. Machine Learning, 2 (1), 39{74.

Warren, D. H. D., & Pereira, F. C. N. (1982). An e�cient easily adaptable sys-

tem for interpreting natural language queries. American Journal of Computational

Linguistics, 8 (3-4), 110{122.

Wirth, R., & O'Rorke, P. (1991). Constraints on predicate invention. In Proceedings

of the Eighth International Workshop on Machine Learning, pp. 457{461 Evanston,

IL.

Wirth, R. (1988). Learning by failure to prove. In Proceedings of EWSL 88, pp.

237{51. Pitman.

Wirth, R. (1989). Completing logic programs by inverse resolution. In Proceedings

of the European Working Session on Learning, pp. 239{250 Montpelier, France.

Pitman.

Wol�, J. G. (1982). Language acquisition, data compression, and generalization.

Language and Communication, 2, 57{89.

190

Woods, W. A. (1970). Transition network grammars for natural language analysis.

Communications of the Association for Computing Machinery, 13, 591{606.

Zelle, J. M., & Mooney, R. J. (1993a). Combining FOIL and EBG to speed-up

logic programs. In Proceedings of the Thirteenth International Joint Conference on

Arti�cial intelligence, pp. 1106{1111 Chambery, France.

Zelle, J. M., & Mooney, R. J. (1993b). Learning semantic grammars with construct-

ive inductive logic programming. In Proceedings of the Eleventh National Conference

on Arti�cial Intelligence, pp. 817{822 Washington, D.C.

Zelle, J. M., & Mooney, R. J. (1994a). Combining top-down and bottom-up meth-

ods in inductive logic programming. In Proceedings of the Eleventh International

Conference on Machine Learning New Brunswick, NJ.

Zelle, J. M., & Mooney, R. J. (1994b). Inducing deterministic Prolog parsers from

treebanks: A machine learning approach. In Proceedings of the Twelfth National

Conference on Arti�cial Intelligence, pp. 748{753 Seattle, WA.

191

Vita

John Marvin Zelle was born in Waterloo, Iowa, on May 24, 1962, the son of Marie

Gertrude (Meyer) Zelle and Marvin John Zelle. After completing his work atWaverly-

Shell Rock Senior High School, Waverly, Iowa, in 1980, he entered Iowa State Uni-

versity in Ames, Iowa. He received the degree Bachelor of Science from Iowa State

University in 1984, and the degree Master of Science from Iowa State University in

1986. During the following years he was employed as Assistant Professor of Com-

puter Science and Mathematics at Wartburg College in Waverly, Iowa. In September

of 1990 he entered the Graduate School of the University of Texas.

Permanent Address: 700 McNeil Rd. #521

Round Rock, TX 78681

This dissertation was typeset with LATEX2"1 by the author.

1LATEX2" is an extension of LATEX. LATEX is a collection of macros for TEX. TEX is a trademark
of the American Mathematical Society. The macros used in formatting this dissertation were written
by Dinesh Das, Department of Computer Sciences, The University of Texas at Austin.

192

