
Appears in Proceedings of the Fifth International Workshop on Inductive Logic Programming
(ILP-95), pp.403-416, Leuven, Belgium, September 1995

Inducing Logic Programs

without Explicit Negative Examples

John M. Zelle
Cynthia A. Thompson
Mary Elaine Cali�

Raymond J. Mooney

Department of Computer Sciences
University of Texas
Austin, TX 78712

(512) 471-9589, 471-9558
(zelle,cthomp,mecali�,mooney)@cs.utexas.edu

February 6, 1995

Abstract

This paper presents a method for learning logic programs with-
out explicit negative examples by exploiting an assumption of output
completeness. A mode declaration is supplied for the target predicate
and each training input is assumed to be accompanied by all of its
legal outputs. Any other outputs generated by an incomplete pro-
gram implicitly represent negative examples; however, large numbers
of ground negative examples never need to be generated. This method
has been incorporated into two ILP systems, Chillin and IFoil, both
of which use intensional background knowledge. Tests on two natural
language acquisition tasks, case-role mapping and past-tense learning,
illustrate the advantages of the approach.

1

1 Introduction

Inductive logic programming (ILP) is a growing subtopic of machine learn-
ing that studies the induction of Prolog programs from examples in the
presence of background knowledge (Muggleton, 1992; Lavra�c & D�zeroski,
1994). Most ILP systems require both positive and negative examples of
ground instances of a predicate. However, explicit negative examples of a
predicate are not always readily available. A standard solution is to au-
tomatically produce a large set of negative examples using a closed-world
assumption, i.e. for an n-ary predicate, all n-tuples of terms chosen from
a �xed set are generated and the positive examples are removed. However,
it is frequently intractable to generate an adequate set of negative exam-
ples using this brute-force approach. For example, if one wants to learn a
natural language parser from a corpus of realistic examples of the predicate
parse(Sentence, Representation), it is intractable to produce all possible
pairs of sentences and representations.

This paper presents a general method for learning logic programs without
explicit negative examples. An assumption of output completeness is used in-
stead to implicitly determine if a hypothesized clause is overly-general and,
if so, to quantify the degree of over-generality by simply estimating the num-
ber of negative examples covered. The target predicate is assumed to have
a known mode (e.g. parse(+,-)), and a training set of positive examples is
said to be output complete if for every set of inputs present in an example,
each of the correct outputs for this input is represented by an example in the
set. Therefore, any other outputs generated for an input can be assumed to
represent negative examples.

This paper describes how this assumption can be exploited to learn logic
programs without ever explicitly generating large sets of negative examples.
It also describes how this approach has been implemented in two ILP sys-
tems: Chillin (Zelle & Mooney, 1994), a system that combines top-down
and bottom-up methods and includes a method for inventing predicates,
and IFoil, a version of Foil (Quinlan, 1990) that employs intensional back-
ground knowledge. 1 Finally, we present results demonstrating the advantage
of this approach using two problems in natural language acquisition. Chillin

1
IFoil is derived from Foidl which learns �rst-order decision lists using intensional

background knowledge (Mooney & Cali�, 1995).

2

is tested on mapping sentences to case-role representations (McClelland &
Kawamoto, 1986; Zelle & Mooney, 1993), and IFoil on generating the past
tense of English verbs (Rumelhart & McClelland, 1986; Ling, 1994).

The remainder of the paper is organized as follows. Section 2 presents
the basic approach to learning without explicit negatives. Section 3 describes
how this approach has been implemented in IFoil and presents results on
the past-tense problem. Section 4 discusses how Chillin has been modi�ed
to incorporate implicit negatives and presents results on the case-mapping
problem. Section 5 reviews related work, Section 6 discusses future work,
and Section 7 presents our conclusions.

2 Learning with Implicit Negatives

2.1 Background: Foil

Since IFoil is based on Foil, this subsection presents a brief review of this
important ILP system; Quinlan (1990), Quinlan and Cameron-Jones (1993),
and Cameron-Jones and Quinlan (1994) provide a more complete descrip-
tion. Foil learns a function-free, �rst-order, Horn-clause de�nition of a tar-
get predicate in terms of itself and other background predicates. The input
consists of extensional de�nitions of these predicates as tuples of constants of
speci�ed types. Foil also requires negative examples of the target concept,
which can be supplied directly or computed using a closed-world assumption.

Given this input, Foil learns a program one clause at a time using a
greedy-covering algorithm that can be summarized as follows:

Let positives-to-cover = positive examples.

While positives-to-cover is not empty

Find a clause, C, that covers a preferably large subset of positives-to-cover
but covers no negative examples.

Add C to the developing de�nition.

Remove examples covered by C from positives-to-cover.

The \�nd a clause" step is implemented by a general-to-speci�c hill-
climbing search that adds antecedents to the developing clause one at a time.
At each step, it evaluates possible literals that might be added and selects one
that maximizes an information-gain heuristic. The algorithm maintains a set

3

of tuples that satisfy the current clause and includes bindings for any new
variables introduced in the body. The gain metric evaluates literals based on
the number of positive and negative tuples covered, preferring literals that
cover many positives and few negatives.

2.2 Counting Implicit Negatives

Learning without explicit negatives requires an alternate method of evaluat-
ing the utility of a clause. A mode declaration and an assumption of output
completeness together determine a set of implicit negative examples.

Consider the predicate, past(Present,Past) which holds when Past is
the past-tense form of a verb whose present tense is Present. Providing the
mode declaration past(+,-) indicates that the predicate should provide the
correct past-tense when provided with the present-tense form. Assuming the
past form of a verb is unique, any set of positive examples of this predicate
will be output complete. However, output completeness can also be applied
to non-functional cases such as append(-,-,+), meaning that all possible
pairs of lists that can be appended together to produce a list are included in
the training set (e.g. append([],[a,b],[a,b]), append([a],[b],[a,b]),
append([a,b],[],[a,b])).

Given these assumptions, determining if a clause is overly-general is straight-
forward. For each positive example, an output query is made to determine all
outputs for the given input (e.g. past([a,c,t], X)). If any outputs are gen-
erated that are not positive examples, the clause still covers negative exam-
ples and requires further specialization. When such specialization is needed, a
computation must be done of the number of negatives covered. Each ground,
incorrect answer to an output query clearly counts as a single negative ex-
ample (e.g. past([a,c,h,e], [a,c,h,e,e,d])). However, output queries
will frequently produce answers with universally quanti�ed variables. For ex-
ample, given the overly-general clause past(A,B) :- append(C,D, A)., the
query, parse([a,c,t], X), generates the answer past([a,c,t], Y). This
implicitly represents coverage of an in�nite number of negative examples.

In order to quantify negative coverage, we employ a parameter u rep-
resenting the total number of possible terms in the universe. The negative
coverage represented by a non-ground answer to an output query is then
estimated as uv � p, where v is the number of uninstantiated output argu-
ments in the answer and p is the number of positive examples with which

4

the answer uni�es. The uv term is an estimate of number of unique ground
outputs represented by the answer and from this the number of these that
represent positive examples is subtracted. This allows the coverage of large
numbers of implicit negative examples to be quanti�ed without ever explicitly
constructing them.

This reasoning can be extended to handle the case of partially instantiated
output arguments. For example, both clauses

past(A,B) :- append(C,D,A).

past(A,B) :- append(A,C,B).

produce outputs containing a single free variable for the output query past([a,c,t],
X). The �rst produces the answer past([a,c,t], Y), and the second pro-
duces the answer past([a,c,t], [a,c,t | Y]). However, the second clause
is clearly better since it at least requires input to be part of the output. Since
there are presumably more words total than there are words that start with
\a-c-t" (assuming the total number of words is �nite), the �rst clause should
be considered to cover more negative examples. Therefore, arguments that
are partially instantiated, such as [a,c,t | Y], are counted as only a frac-
tion of a variable when calculating v. Speci�cally, a partially instantiated
output argument is scored as the fraction of its subterms that are variables,
e.g. [a,c,t | Y] counts as only 1=4 of a variable argument. Therefore, the
�rst clause above is scored as covering u implicit negatives and the second as
covering only u1=4. Given reasonable values for u and the number of positives
covered by each clause, the literal append(A,C,B) will be preferred.

3 IFOIL

3.1 Implementation of IFOIL

IFoil is closely related to Foil, following a similar top-down, greedy special-
ization guided by an information-gain heuristic. However, the algorithm is
modi�ed to allow the use of intensional background and output completeness
as a substitute for explicit negative examples.

Using intensional background in IFoil is straightforward. Instead of
matching a literal against a set of tuples to determine whether or not it
covers an example, a theorem prover is used in an attempt to prove that the

5

literal can be satis�ed using the intensional de�nitions. IFoil's specialization
algorithm, incorporating implicit negatives, is:

Initialize T to contain the examples in positives-to-cover and output queries for all

positive examples.

While T contains output queries

Find the best literal L to add to the clause.

Let T 0 be the positive examples in T that can still be proved as instances

of the target concept using the specialized clause, plus the output queries in T
that still produce incorrect answers.

Replace T by T 0.

The information-gain heuristic for picking the best literal is identical to the
Foil metric except that the counts of covered positive and negative tuples
are replaced with the count of covered positive examples and the estimate of
implicit negative examples.

3.2 Learning the English Past Tense

The problem of learning the English past tense has been to test connectionist
systems (Rumelhart & McClelland, 1986; MacWhinney & Leinbach, 1991) or
decision tree induction (Ling & Marinov, 1993; Ling, 1994). All of this work
encodes the problem as �xed-length pattern association and fails to capture
the generativity and position-independence of the true regular rules such
as \add `ed'," instead producing several position-dependent rules. Recently,
ILP methods have also been applied to the task, with some success (Quinlan,
1994; Mooney & Cali�, 1995).

The past-tense problem is valuable for demonstrating the value of implicit
negatives since it is very di�cult to supply an appropriate set of explicit
negative examples for this problem. Accuracy for this domain should be
measured by the ability to actually generate correct output for novel inputs,
rather than the ability to correctly classify novel ground examples. Using
a closed-world assumption to produce all pairs of words in the training set
where the second is not the past-tense of the �rst tends to produce clauses
such as:

past(A,B) :- split(B,A,C).

6

which is useless for producing the past tense of novel verbs. However sup-
plying all possible strings of 15 characters or less as negative examples of the
past tense of each word is clearly intractable.

When Quinlan (1994) applied Foil to the past tense problem, he used a
three-place predicate past(X,Y,Z)which is true i� the input word X is trans-
formed into past-tense form by removing its current ending Y and substituting
the ending Z; for example: past([a,c,t], [], [e,d]), past([a,r,i,s,e],
[i,s,e], [o,s,e]). This method allows the generation of useful negatives
under the closed world assumption, but relies on an understanding of the de-
sired transformation. We hypothesized that implicit negatives would allow
IFoil to learn the normal two argument version of the problem.

For comparison, we ran tests with Foil and IFoil using explicit negatives
and with IFoil using implicit negatives. The data for these experiments
came from Ling (1994) and consists 1390 pairs of base and past tense verb
forms in UNIBET phonemic form. The training and testing followed the
standard paradigm of splitting the data into testing and training sets and
training on progressively larger samples of the training set. All results were
averaged over 10 trials, and the testing set for each trial contained 500 verbs.

The background predicate provided to the systems is split which splits
a list into two non-empty sublists. Providing an extensional de�nition of
split that includes all possible strings of 15 or fewer characters (at least 1021

strings) is intractable. However, providing a partial de�nition that includes
all possible splits of strings that actually appear in the training corpus is
su�cient, so that partial de�nition was provided for Foil. The explicit
negatives provided to IFoil and Foil were those formed by combining the
base form of each verb with the past tense of each of the other verbs in the
training set.

As the left-hand graph in Figure 1 demonstrates, it is all but impossible
for Foil and IFoil to learn a useful, generative concept with this represen-
tation using the explicit negatives. However, using implicit negatives, IFoil
is able to achieve an accuracy of 55% with 100 positive examples. This
is comparable to the performance of Foil(58%) exploiting the three-place
predicate and a closed-world assumption (Mooney & Cali�, 1995). 2

2This system is not the �nal word on learning past tense with ILP. To achieve the best
accuracy, clause ordering and cuts are required, as in Mooney and Cali� (1995).

7

0

20

40

60

80

100

0 20 40 60 80 100

A
cc

ur
ac

y

Training Examples

IFOIL with implicit negatives
IFOIL with explicit negatives

FOIL

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700

A
cc

ur
ac

y

Training Examples

Chillin

Past Tense Case-role Mapping

Figure 1: Experimental Results

4 Implicit Negatives in Chillin

The utility of our technique for handling implicit negative examples is not
limited to its IFoil incarnation. We have used the same technique in a
version of the Chillin ILP system to attack induction problems which are
very di�cult for purely Foil-like approaches.

4.1 Overview of Chillin

Chillin (Zelle &Mooney, 1994) is an ILP algorithm developed in the context
of learning control rules for natural language parsing. It combines elements of
both top-down and bottom-up induction techniques including a mechanism
for demand-driven predicate invention. At its heart is a basic compaction
algorithm as follows:

DEF := fE :- true j E 2 Positivesg
Repeat

PAIRS := a sampling of pairs of clauses from DEF
GENS := fG j G = build gen(Ci,Cj,DEF,Positives,Negatives) for hCi; Cji 2 PAIRSg
G := Clause in GENS yielding most compaction
DEF := (DEF�(Clauses subsumed by G)) [G

Until no further compaction

8

Chillin starts with a most speci�c de�nition (the set of positive exam-
ples) and introduces generalizations which make the de�nition more compact
(as measured by a Cigol-like size metric (Muggleton & Buntine, 1988)). The
search for more general de�nitions is carried out in a hill-climbing fashion.
At each step, a number of possible generalizations are considered; the one
producing the greatest compaction of the theory is implemented, and the
process repeats.

The build gen algorithm attempts to construct a clause which empiri-
cally subsumes some clauses of DEF without covering any of the negative ex-
amples. The �rst step is to construct the least general generalization (LGG)
(Plotkin, 1970) of the input clauses. If the LGG does not cover any negative
examples, no further re�nement is necessary. If the clause is too general, an
attempt is made to re�ne it using a Foil-like mechanism which adds literals
derivable either from background or previously invented predicates. If the
resulting clause is still too general, it is passed to a routine which invents a
new predicate to discriminate the positive examples from the negatives which
are still covered.

4.2 Incorporating Implicit Negatives

Since Chillin uses top-down specialization of overly-general clauses, an es-
timate of implicit negatives may be used just as in the IFoil algorithm
described above. Although the gain metric employed in Chillin is not iden-
tical to that of Foil, it is modi�ed in exactly the same way, replacing a count
of covered explicit negatives with an estimate of implicit coverage.

Unlike Foil, however, Chillin also performs demand-driven predicate
invention. The original Chillin algorithm performs invention in a manner
analogous to Champ (Kijsirikul, Numao, & Shimura, 1992). The �rst step is
to �nd a subset of variables appearing in the clause whose instantiations are
su�cient to discriminate covered positive examples from covered negatives.
The instantiations of these variables when covering the positive and negative
examples generate positive and negative tuples for a new predicate which can
be used to specialize the clause. The top-level induction algorithm is recur-
sively invoked with these derived tuples as positive and negative examples to
create a de�nition for the predicate.

There are two cases to consider when modifying predicate invention to use
implicit negative examples. The simpler case occurs when all output variables

9

in the head of the clause for which the predicate is being invented also appear
in the body of the clause. In this situation, output queries always produce
ground results. The fact that the clause still covers negative examples means
that there are some queries for which the ground outputs are simply incorrect.
These incorrect outputs become a set of explicit negative examples for the
normal predicate invention algorithm, and the recursive invocation of the
top-level algorithm is made using explicit negative examples. The version of
Chillin used for the experiments reported below used only this mechanism
for predicate invention. Generalizations which still contained free variables
were simply discarded.

When some of the output variables appearing in the clause head do not
appear in the clause body, it is impossible to generate a set of ground negative
examples. However, it is still possible to perform demand-driven predicate
invention. Since the remaining free variables must be bound to prevent cov-
erage of implicit negatives, they must be included as output variables of the
new predicate. The input variables are chosen by �nding a small subset of
the bound variables that are su�cient to determine the values of the output
variables when covering the positive examples. Once chosen, the instantia-
tions of these variables when the clause is used to cover positive examples
produce a set of derived tuples which can be used as positive examples for
the new predicate. The implicit negative version of the top-level induction
algorithm can then be invoked using these examples and the associated mode
declaration. This predicate invention mechanism may be added to Chillin
in the future.

4.3 Experiments with Case-role Mapping

Case-role mapping is a typical problem in natural language processing. Tradi-
tional case theory (Fillmore, 1968) decomposes a sentence into a proposition
represented by the main verb and various arguments such as agent, patient,
and instrument, represented by noun phrases. The basic mapping problem
is to decide which sentence constituents �ll which roles. The ILP task con-
sidered here is the induction of a program for the relation parse(Sentence,

Representation) which holds when Representation is the correct case-
role mapping for Sentence. Furthermore, we desire that the resulting pro-
gram be generative, given a suitable goal such as parse([the,man,ate,the
pasta],X),we want the program to produce a binding X = [ate, agent:[man,

10

det:the], patient:[pasta, det:the]]. Thus, the desired mode is parse(+,-),
e�ectively producing a case-role parser.

The experimentswere conducted using a set of 1475 sentence/case-structure
pairs originally from (McClelland & Kawamoto, 1986) The corpus was pro-
duced from a set of 19 sentence templates generating sentences such as, the
HUMAN ate the FOOD with the UTENSIL, where the capitalized items were
replaced by words of the appropriate category. The sample actually com-
prises 1390 unique sentences, some of which allow multiple analyses. Thus,
the relation parse/2 is not a function. Training was done considering each
unique sentence as a single example. If a particular sentence was chosen for
inclusion in a training or testing set, the pairs representing all correct analyses
of the sentence were included in that set to provide for output completeness.

Training and testing followed the standard paradigm of �rst choosing a
random set of test examples (in this case 740) and then inducing programs
using increasingly larger subsets of the remaining examples. During testing,
the program was used to enumerate all analyses for a given test sentence.
Parsing of a sentence can fail in two ways: an incorrect analysis may be
generated, or a correct analysis may not be generated. In order to account for
both types of inaccuracy, a metric was introduced to calculate the \average
correctness" for a given test sentence as follows: Accuracy = (C

P
+ C

A
)=2

where P is the number of distinct analyses produced, C is the number of
the produced analyses which were correct, and A is the number of correct
analyses possible for the sentence. This result is an average of what are
sometimes called the \precision" and \recall" accuracy for a given sentence.

The case-role mapping problem presents two di�culties for ILP algo-
rithms such as Foil. First, the space of negative examples is very large.
Clearly it is intractable to generate the complete set of all possible incor-
rect analyses of the input sentences; in making a closed-world assumption to
generate explicit negative examples, only a fractional subset may be consid-
ered. A second di�culty is represented by the rich structure of the exam-
ples. Foil constructs clauses which are function-free. In order to inspect
functional structure Foil must make use of background predicates such as
components/3. The single case-role example, parse([the,man,ate,the,pasta],
[ate,agent:[man,det:the],patient:[pasta,det:the]]), requires 12 lit-
erals just to access relevant parts of the structures. Obviously, it is di�cult
to learn such complex clauses. Given these di�culties, it is not surprising
that we were unable to get Foil to learn any de�nition of parse/2. IFoil

11

also failed on this task, suggesting that the main di�culty lies with the
function-free representation.

The bottom-up component of Chillin is able to decompose functional
structures directly, and experiments with Chillin were run without any
background predicates except those invented by Chillin itself. Chillin

without implicit negatives is hampered by the lack of appropriate negative
examples. Some experiments were performed using the training set to gener-
ate a small fraction of the explicit closed-world negatives. Speci�cally, each
input sentence of the training set was paired with each output analysis ap-
pearing for di�erent sentences in the training examples. Using this technique,
a sample of 250 sentences generates over 36,000 negative examples. Chillin
had no problem inducing de�nitions for these examples. Training sets of
150 examples or more produced rules with over 99% recognition accuracy
on a separate testing set consisting of 740 positive examples and a random
set of 1000 negatives generated from them in a manner analogous to that
used for the training examples. Unfortunately, the resulting programs were
not generative. Given an output query, they produced results with unbound
variables. Hence, they were not useful as case-role parsers.

Chillin using implicit negatives, however, did produce good case-role
parsers for this data. The righthand graph of Figure 1 shows an average
learning curve over three independent trials. Training on 650 examples pro-
duced programs with over 97% accuracy in producing correct case-role parses
for novel sentences. The addition of implicit negatives to Chillin's existing
capabilities for direct functional decomposition render this a tractable ILP
problem.

5 Related Work

Bergadano, Gunetti, and Trinchero (1993) allow the user to supply an inten-
sional de�nition of negative examples that covers a large set of ground in-
stances (e.g (past([a,c,t],X), not(equal(X,[a,c,t,e,d])))); however,
to be equivalent to output completeness, the user would have to explicitly
provide a separate intensional negative de�nition for each positive example.
Also, they do not provide a way of quantifying implicit negative coverage.

Indico (Stahl, Tausend, & Wirth, 1993) employs a related method for
learning from positive examples only; however, it is only applicable to func-

12

tional predicates. Output completeness is a more general assumption that
allows for non-functional predicates such as parse, which allows multiple
outputs in order to handle truly ambiguous sentences. Also, Indico uses a
special-purpose heuristic to evaluate literals rather than estimating negative
coverage based on overly-general answers containing free variables.

6 Future Work

The idea of output completeness and implicit negatives could be potentially
added to other ILP methods. An important constraint is that the system
interpret partially learned clauses intensionally so that general output queries
can be used to produce potentially non-ground answers. Tests should also
be conducted on a wider variety of problems in which it is intractable to
generate negative examples using a closed-world assumption. For problems
where it is possible to generate a su�cient set of examples using a closed
world assumption, using implicit negatives has the potential of being more
e�cient. Tests demonstrating this e�ciency gain are another area for future
research.

7 Conclusion

We have presented a method for learning logic programs without explicit
negative examples by exploiting the assumption of output completeness to
determine whether a clause is overly-general. This method has been incor-
porated into two ILP systems, Chillin and IFoil, both of which use an
estimate of the number of implicit negative examples covered to guide the
top-down specialization of a clause. Chillin also includes a method for
inventing predicates in the context of implicit negatives. Each system was
tested on a di�erent natural language acquisition task, past-tense learning or
case-role mapping, to illustrate the advantage of the approach.

Acknowledgements

Support for this research was provided in part by grant IRI-9310819 from the
National Science Foundation and an MCD fellowship from the University of

13

Texas awarded to the third author.

References

Bergadano, F., Gunetti, D., & Trinchero, U. (1993). The di�culties of learn-
ing logic programs with cut. Journal of Arti�cial Intelligence Research,
1, 91{107.

Cameron-Jones, R. M., & Quinlan, J. R. (1994). E�cient top-down induction
of logic programs. SIGART Bulletin, 5 (1), 33{42.

Fillmore, C. J. (1968). The case for case. In Bach, E., & Harms, R. T.
(Eds.), Universals in Linguistic Theory. Holt, Reinhart and Winston,
New York.

Kijsirikul, B., Numao, M., & Shimura, M. (1992). Discrimination-based
constructive induction of logic programs. In Proceedings of the Tenth
National Conference on Arti�cial Intelligence, pp. 44{49 San Jose, CA.

Lavra�c, N., & D�zeroski, S. (Eds.). (1994). Inductive Logic Programming:
Techniques and Applications. Ellis Horwood.

Ling, C. X. (1994). Learning the past tense of English verbs: The sym-
bolic pattern associator vs. connectionist models. Journal of Arti�cial
Intelligence Research, 1, 209{229.

Ling, X., & Marinov, M. (1993). Answering the connectionist challenge: A
symbolic model of learning the past tense of English verbs. Cognition,
49 (3), 235{290.

MacWhinney, B., & Leinbach, J. (1991). Implementations are not conceptu-
alizations: Revising the verb model. Cognition, 40, 291{296.

McClelland, J. L., & Kawamoto, A. H. (1986). Mechanisms of sentence
processing: Assigning roles to constituents of sentences. In Rumelhart,
D. E., & McClelland, J. L. (Eds.), Parallel Distributed Processing, Vol.
II, pp. 318{362. MIT Press, Cambridge, MA.

14

Mooney, R. J., & Cali�, M. E. (1995). Induction of �rst-order decision lists:
Results on learning the past tense of English verbs. Journal of Arti�cial
Intelligence Research, ?? submitted.

Muggleton, S., & Buntine, W. (1988). Machine invention of �rst-order pred-
icates by inverting resolution. In Proceedings of the Fifth International
Conference on Machine Learning, pp. 339{352 Ann Arbor, MI.

Muggleton, S. H. (Ed.). (1992). Inductive Logic Programming. Academic
Press, New York, NY.

Plotkin, G. D. (1970). A note on inductive generalization. In Meltzer, B.,
& Michie, D. (Eds.), Machine Intelligence (Vol. 5). Elsevier North-
Holland, New York.

Quinlan, J. R. (1994). Past tenses of verbs and �rst-order learning. In
Zhang, C., Debenham, J., & Lukose, D. (Eds.), Proceedings of the
Seventh Australian Joint Conference on Arti�cial Intelligence, pp. 13{
20 Singapore. World Scienti�c.

Quinlan, J. R., & Cameron-Jones, R. M. (1993). FOIL: A midterm report.
In Proceedings of the European Conference on Machine Learning, pp.
3{20 Vienna.

Quinlan, J. (1990). Learning logical de�nitions from relations. Machine
Learning, 5 (3), 239{266.

Rumelhart, D. E., & McClelland, J. (1986). On learning the past tense of
English verbs. In Rumelhart, D. E., & McClelland, J. L. (Eds.), Parallel
Distributed Processing, Vol. II, pp. 216{271. MIT Press, Cambridge,
MA.

Stahl, I., Tausend, B., & Wirth, R. (1993). Two methods for improving
inductive logic programming systems. In Machine Learning: ECML-
93, pp. 41{55 Vienna.

Zelle, J. M., & Mooney, R. J. (1993). Learning semantic grammars with con-
structive inductive logic programming. In Proceedings of the Eleventh
National Conference on Arti�cial Intelligence, pp. 817{822 Washing-
ton, D.C.

15

Zelle, J. M., & Mooney, R. J. (1994). Combining top-down and bottom-up
methods in inductive logic programming. In Proceedings of the Eleventh
International Conference on Machine Learning New Brunswick, NJ.

16

