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Abstract

This paper describes a new method for induc-
ing logic programs from examples which at-
tempts to integrate the best aspects of exist-
ing ILP methods into a single coherent frame-
work. In particular, it combines a bottom-
up method similar to Golem with a top-
down method similar to Foil. It also in-
cludes a method for predicate invention sim-
ilar to Champ and an elegant solution to
the \noisy oracle" problem which allows the
system to learn recursive programs without
requiring a complete set of positive exam-
ples. Systematic experimental comparisons
to both Golem and Foil on a range of prob-
lems are used to clearly demonstrate the ad-
vantages of the approach.

1 INTRODUCTION

Inductive Logic Programming (ILP) research inves-
tigates the construction of �rst-order, de�nite-clause
logic programs from a set of examples and given back-
ground information. As such, it stands at the intersec-
tion of the traditional �elds of machine learning and
logic programming. The explosion of recent research
in this area has clustered around two basic induction
methods, bottom-up and top-down.

Bottom-up methods, drawing heavily on logic pro-
gramming theory, search for program clauses by con-
sidering generalizations created by inverting logical
resolution or, more generally, implication. A suc-
cessful representative of this class is Muggleton and
Feng's Golem (Muggleton and Feng, 1992). Top-
down methods, in contrast, learn clauses by search-
ing from general to speci�c in a manner analogous
to traditional machine-learning approaches for induc-
ing decision trees. Perhaps the best-known example
is Quinlan's Foil(Quinlan, 1990; Cameron-Jones and
Quinlan, 1994) which uses an information heuristic to

guide search through the space of possible program
clauses.

While both Golem and Foil have been successful,
each of these approaches has weaknesses. Golem

is based on the construction of relative least-general
generalizations, rlggs (Plotkin, 1970) which forces the
background knowledge to be expressed extensionally
as a set of ground facts. This explicit model of back-
ground knowledge can be excessively large, and the
clauses constructed from such models can grow ex-
plosively. A partial answer to the e�ciency prob-
lem is the restriction of hypotheses to the so-called
ij-determinate clauses. A related problem is sensitivity
to the distribution of input examples. If only a random
sample of positive examples is presented, the resulting
model of the predicate to be learned is incomplete, and
Golem may fail to create su�ciently general hypothe-
ses, resulting in diminished performance.

Foil also uses extensional background knowledge, but
this requirement is for e�ciency reasons; top-down
algorithms can easily use intensionally de�ned back-
ground predicates to evaluate various competing hy-
potheses. A more fundamental weakness is that Foil
constructs clauses which are function-free. Any func-
tions (e.g. list structures) must be handled by in-
cluding explicit constructor predicates as part of the
background knowledge. The proliferation of construc-
tor predicates can signi�cantly degrade Foil's perfor-
mance. In addition, Foil su�ers its own version of
the incomplete model problem when trying to learn
recursive predicates. Recursive hypotheses are eval-
uated by using the positive examples as a model of
the predicate being learned. When the examples are
incomplete, they provide a \noisy oracle" and Foil

has di�culty learning even simple recursive concepts
(Cohen, 1993).

This paper describes a new ILP algorithm, Chillin1,
which combines elements of top-down and bottom-

1For Chill, INduction algorithm. Chill is a language
acquisition system based on learning control-rules for logic
programs (Zelle and Mooney, 1993).



up induction methods. This algorithm has been
used as an element of a larger system which learns
to parse natural language (Zelle and Mooney, 1993).
Chillin's combination of techniques o�ers several ad-
vantages. Chillin learns with intensionally expressed
background knowledge and can handle examples con-
taining functions without explicit constructor predi-
cates. Additionally, Chillin provides a simple, e�-
cient solution to the noisy-oracle problem, resulting in
better performance than Golem or Foil when learn-
ing from random examples. Finally, Chillin provides
a simple framework for demand-driven invention of
new predicates.

The following section presents the Chillin algorithm
and discusses the ways in which it improves on strictly
top-down or bottom-up methods. Section 3 presents
experimental results across a range of domains com-
paring Chillin to Foil and Golem. Section 4 briey
discusses some related work. Section 5 outlines future
work, and Section 6 presents our conclusions.

2 THE CHILLIN ALGORITHM

2.1 OVERVIEW

The input to Chillin is a set of positive and negative
examples of a concept expressed as ground facts, and
a set of background predicates expressed as de�nite
clauses. Chillin constructs a de�nite-clause concept
de�nition which entails the positive examples, but not
the negative.

Chillin is, at its core, a compaction algorithm which
tries to construct a small, simple program that cov-
ers the positive examples. The algorithm starts with
a most speci�c de�nition (the set of positive exam-
ples) and introduces generalizations which make the
de�nition more compact. Compactness is measured
by a Cigol-like size metric (Muggleton and Buntine,
1988) which is a simple measure of the syntactic size
of the program. The search for more general de�ni-
tions is carried out in a hill-climbing fashion. At each
step, Chillin considers a number of possible general-
izations; the one producing the greatest compaction is
implemented, and the process repeats.

Generalizations are produced under the notion of em-
pirical subsumption. Intuitively, the algorithm at-
tempts to construct a clause that, when added to the
current de�nition, renders other clauses superuous.
The superuous clauses are then eliminated to pro-
duce a more compact de�nition. Formally, we de�ne
empirical subsumption as follows: Given a set C of
Clauses fC1,C2, : : :, CNg and a set of positive exam-
ples E provable from C, a clause G empirically sub-
sumes Ci i� 8e 2 E : [(C � Ci) [G ` e]. Throughout
the rest of the paper, unless otherwise noted, the term
\subsumption" should be interpreted in this empirical
sense.

DEF := fE :- true j E 2 Posg
Repeat

PAIRS := a sampling of pairs of clauses from DEF
GENS := fG j G = build gen(Ci,Cj,DEF,Pos,Neg)

for hCi; Cji 2 PAIRSg
G := Clause in GENS yielding most compaction
DEF := (DEF�(Clauses subsumed by G)) [ G

Until no further compaction

Figure 1: Basic Induction Algorithm

Figure 1 shows the basic compaction loop of Chillin.
Like Golem, Chillin constructs generalizations from
a random sampling of pairs of clauses in the current
de�nition. The number of pairs chosen is a user-
settable parameter which defaults to 15. The best
generalization from these pairs is used to reduce DEF.
The reduction is performed by adding G at the top
of the de�nition and then using the standard Prolog
proof strategy to �nd the �rst proof of each positive
example; any clause which is not used in one of these
proofs is then deleted from the de�nition.

2.2 CONSTRUCTING
GENERALIZATIONS

The build gen algorithm is shown in Figure 2. There
are three basic processes involved. First is the
construction of a simple generalization of the input
clauses. If this generalization covers no negative ex-
amples, it is returned. If the initial generalization is
too general, an attempt is made to specialize it by
adding antecedents. If the expanded clause is still too
general, it is passed to a routine which invents a new
predicate that further specializes the clause so that it
covers no negative examples. These three processes
are explained in detail in the following subsections.

2.2.1 Constructing an Initial Generalization

The initial generalization of the input clauses is
computed by �nding the least-general-generalization
(LGG) of the input clauses under theta-subsumption
(Plotkin, 1970). The LGG of clauses C1 and C2 is
the least general clause which subsumes (in the usual,
non-empirical sense) both C1 and C2. The LGG is eas-
ily computed by \matching" compatible literals of the
clauses; wherever the literals have di�ering structure,
the LGG contains a variable. When identical pairings
of di�ering structures occurs, the same variable is used
for the pair in all locations.

For example, when learning the de�nition of member,
the initial de�nition may contain clauses such as:

member(1, [1,2,3]) :- true.
member(2, [1,2,3]) :- true.
member(3, [3]) :- true.

The LGG of the �rst and third clauses is:
member(A,[A|B]):- true. Here the new variable, A,



Function build gen(Ci, Cj, DEF, Pos, Neg)
GEN := LGG(Ci,Cj) under �-subsumption
CNEGS := Negatives covered by GEN
if CNEGS = fg return GEN

GEN := add antecedents(Pos, CNEGS, GEN)
CNEGS := negatives covered by GEN
if CNEGS = fg return GEN

REDUCED := DEF - (Clauses subsumed by GEN)
CPOS := fe j e 2 Pos ^ REDUCED 6` E g
LITERAL := invent predicate(CPOS, CNEGS, GEN)
GEN := GEN [ LITERAL
return GEN

Figure 2: Build gen Algorithm

has been used for both pairings of the constants 1 and
3. This LGG is a valid generalization (it covers no neg-
ative examples of member) and, in fact, represents the
correct base case for the usual de�nition. Of course,
such generalizations are not always correct. The LGG
of the second and third clauses is: member(A,[B|C])
:- true which asserts that anything is a member of a
list which contains at least one element. This general-
ization requires further re�nement to prevent coverage
of negative examples.

Although the initial de�nitions in Chillin consist of
unit clauses (the only antecedent being true), as the
de�nition becomes more compact, the clauses from
which LGGs are constructed may contain non-trivial
conditions. LGG construction is still straight-forward;
we need only be sure that consistent variable usage
is maintained between as well as within literals. For
example, consider two clauses de�ning the concept of
uncle:

uncle(X,Y) :-
sib(X,Z), parent(Z,Y), male(X).

uncle(X,Y) :-
married(X,Z), sib(Z,W), parent(W,Y), male(X).

The LGG of these clauses yields:

uncle(A,B) :- sib(C,D), parent(D,B), male(A).

Here A replaces the pair <X,X>, B replaces <Y,Y>, etc.

Unlike the RLGGs used by Golem, LGGs are inde-
pendent of any background knowledge and e�ciently
computable from the input clauses. At this point,
GEN is guaranteed to be at least as general as either
input clause, but may also cover negative examples.
The process also e�ectively introduces relevant vari-
ables which directly decompose functional structures;
this allows subsequent specialization without resort to
explicit attening through constructor predicates.

2.2.2 Adding Antecedents

As its name implies, add antecedents attempts to
specialize GEN by adding new literals as antecedents.
The goal is to minimize coverage of negative examples
while insuring that the clause still subsumes existing

clauses. Add antecedents employs a Foil-like mech-
anism which adds literals derivable either from back-
ground or previously invented predicates. Antecedents
are added one at a time using a hill-climbing process;
at each step a literal is added that maximizes a heuris-
tic gain metric.

The gain metric employed in Chillin is a modi�cation
of the Foil information-theoretic gain metric. The
count of positive tuples (loosely, the number of covered
positive examples) in the Foil metric is replaced with
an estimate of the number of clauses in DEF which
are subsumed by GEN. This estimate is obtained by
partitioning the set of positive examples according to
the �rst clause in DEF which covers a given example.
The entire set of examples is proved once using DEF,
and subsequent testing of GEN extensions is performed
over the partitioned examples.

As an example of this process, consider learn-
ing the two-clause de�nition of uncle illustrated
above. Initially, DEF contains unit clauses represent-
ing the positive examples. Constructing the LGG
of two clauses, say uncle(john, jay) :- true and
uncle(bill sue) :- true produces the unhelpful
generalization uncle(A,B) :- true which covers all
examples. Partitioning the positive examples accord-
ing to the �rst covering-clause results in associating
each example with the unit clause constructed from
the example. Thus, the count of subsumed clauses for
any given extension of GEN is just the count of positive
examples covered by GEN; add antecedentswill per-
form analogously to Foil, adding literals to GEN one
at a time to maintain maximal coverage of positive ex-
amples and eliminate coverage of negatives. Depend-
ing on the distribution of examples, add antecedents
might produce either of the uncle clauses. When the
outer loop of Chillin adds this clause to the de�ni-
tion, all of the unit clauses for the examples covered
by the clause are removed.

In the next cycle the LGG of two remain-
ing unit clauses may again produce the GEN,
uncle(A,B):-true. This time, the partitioning in
add antecedents associates numerous examples with
the �rst clause (the previously constructed general-
ization) and associates one example with each of the
unit clauses remaining in DEF. In extending GEN at this
point, the antecedents which had high gain previously
will now look very poor; although they cover many
positive examples, they only allow subsumption of one
clause (namely the clause previously found). On the
other hand, the antecedents of the second uncle dis-
junct will have very high gain as they allow the sub-
sumption of the remaining unit clauses while elimi-
nating negative examples. Add antecedents will then
learn the second clause, and the de�nition is complete.
Of course Chillin will try one more round of com-
paction before discovering that the two disjuncts of
uncle may not be combined to form an even more



compact de�nition.

This discussion has assumed that add antecedents
has predicates available which will allow it to com-
pletely discriminate between the positive and negative
examples; however, this is not always the case. In
such situations, add antecedents may add a few an-
tecedents and then be unable to extend the clause fur-
ther because no literal has positive gain. This partially
completed clause is then passed to invent predicate
for completion.

2.2.3 Inventing New Predicates

Predicate invention is carried out in a manner analo-
gous to Champ(Kijsirikul et al., 1992). The �rst step
is to �nd a minimal-arity projection of the clause vari-
ables such that the set of projected tuples (a tuple
is a particular instantiation of variables appearing in
the clause) from proofs of positive examples is disjoint
with the projected tuples from proofs of negative ex-
amples. These ground tuple sets form the positive and
negative example sets for the a new predicate. The
top-level induction algorithm is recursively invoked to
create a de�nition of the predicate.

Champ searches for a minimal projection of variables
by greedily removing variables that are not necessary
to maintain the disjointness of the tuple sets. Chillin
di�ers in that it starts with no variables and greedily
adds those variables which help separate the examples
and also minimize the set of positive examples for the
new predicate. Variables are chosen to maximize the
number of negative examples eliminated per additional
positive tuple created. The search terminates when all
negative examples have been eliminated or there are
no more variables to add.

Suppose that we are trying to learn uncle,
but do not have a de�nition of male. After
add antecedents, GEN might be: uncle(A,B) :-
sibling(A,C), parent(C,B) which still covers some
negative examples. Using this clause to prove some
positive and negative examples might result in the set
of bindings shown here in tabular form:

Set A B C

Pos john jay mary
bill sue bruce

Neg liz jay mary
liz sue mary

Notice that variables B and C have overlap between
positive and negative examples, while A's values are
disjoint. Invent predicate will select the single vari-
able A as the minimalprojection and create positive ex-
amples p1(john) and p1(bill), along with the nega-
tive example p1(liz). Calling the top-level induction
algorithm on these examples produces no compaction,
so the learned de�nition of p1 will just be a listing of

the positive examples. Finally, build gen completes
its clause by adding the �nal literal p1(A) which is the
newly invented predicate representing male.

Once a predicate has been invented and found useful
for compressing the de�nition, it is made available for
use in further generalizations. This enables the induc-
tion of clauses having multiple invented antecedents,
something which is not possible in the strictly top-
down framework of Champ.

2.2.4 Handling Recursion

When introducing clauses with recursive antecedents,
care must be taken to avoid unfounded recursion.
Foil deals with this issue by attempting to estab-
lish an ordering on the arguments which may ap-
pear in a literal. Chillin takes a much simpler ap-
proach based on structure reduction: each recursive
literal must have an argument that is a proper sub-
term of the corresponding argument in the head of
the clause. For example, in the clause member(A,
[B|C]) :- member(A,C), the second argument of the
recursive literal is structure reducing, and any recur-
sive chaining of this clause must eventually \bottom-
out." Well-founded recursion among multiple clauses
is guaranteed by ensuring that every recursive literal
has at least one argument that is structure reducing,
and for all other recursive literals in the de�nition, the
same argument is a (possibly improper) subterm of the
corresponding argument in the head of the contain-
ing clause. This property is maintained by dropping
any unsound recursive literals produced by the LGG
operation and only considering addition of recursive
antecedents which meet the structure-reducing condi-
tions. These restrictions on recursive de�nitions are
strictly stronger than those imposed by Foil, but this
simple approach works well on a large class of prob-
lems.

The evaluation of recursive clauses also requires some
consideration. Testing the coverage of a non-recursive
clause is easily achieved by unifying the head of a
clause with an example and then attempting to prove
the body of the clause using the background theory.
Evaluation of a recursive clause, however, requires a
de�nition of the concept being learned. As mentioned
in the introduction, Foil and Golem rely on the ex-
tensional de�nition provided by the positive examples,
giving rise to the noisy-oracle problem when these ex-
amples are incomplete. Chillin, on the other hand, is
able to use the current de�nition of the predicate being
learned, which is guaranteed to be at least as general
as the extensional de�nition. Coverage of recursive
clauses is tested by temporarily adding the clause to
the existing de�nition and evaluating the antecedents
in the context of the background knowledge and the
current (extended) de�nition. In this way, generaliza-
tion of the original examples (say the discovery of the
recursive base-case) can signi�cantly improve the cov-



erage achieved by correct recursive clauses. This ap-
proach gives Chillin a signi�cant advantage in learn-
ing recursive concepts from random examples.

This approach to recursion has proven e�ective in
practice, although it is not without shortcomings. If a
recursive clause is introduced and subsequent general-
izations expand the coverage of the recursive call, the
resulting de�nition could cover negative training ex-
amples; the current implementation does not check to
insure that new generalizations maintain global con-
sistency (although this would be easy to do). Such
undesirable ordering e�ects do not often arise because
recursive clauses do not generally show high gain until
adequate base-cases have been constructed. Of course,
if the data allow overly-general base-cases, then it is
possible that the recursive clause may not be generated
at all.

2.3 EFFICIENCY CONSIDERATIONS

The actual implementation of Chillin is somewhat
more complicated than the abstract description pre-
sented so far. As the above discussion indicates, the
process of constructing a generalization involves three
steps: form an LGG, add antecedents and invent a
new predicate. If this much e�ort was expended for a
reasonable sampling of clause pairs on every iteration
of the compaction loop, the algorithm would be intol-
erably slow. The current implementation provides two
remedies for this problem.

First, the outer compaction loop is initially performed
using only the LGG construction process to �nd gen-
eralizations. When no more compaction is found us-
ing simple LGGs, the more sophisticated re�nement
mechanisms are tried. Signi�cant compaction is of-
ten obtainable in the initial phase, reducing the size of
the theory on which the subsequent (more intensive)
processing is done. Examples in the control-rule do-
mains for which Chillin was designed are often highly
structured, and this initial pass can reduce thousands
of examples to a de�nition containing only tens of unit
clauses.

A second conservation of e�ort is achieved by interleav-
ing the building of generalizations. A given iteration
of the compaction loop begins by gathering a sampling
of clause pairs from which LGGs are immediately con-
structed. These generalizations form a pool of clauses
which may need further re�nement. Chillin proceeds
by repeatedly removing the most promising clause and
extending it with a single antecedent. The resulting
clause is then returned to the pool and the process
continues. If the selected clause is unextendable, it is
set aside as a candidate for predicate invention. Predi-
cate invention is invoked only if the pool of clauses has
been exhausted without �nding a valid generalization.

Using this more e�cient approximation of the abstract
algorithm, the current system, implemented in Quin-

tus Prolog, running on a SparcStation 2, can handle
induction problems involving thousands of examples.

3 EXPERIMENTAL EVALUATION

Chillin has been primarily used within a larger
control-rule learning framework. However, we have un-
dertaken a series of experiments to compare Chillin's
performance with Golem and Foil on some bench-
mark ILP tasks. We chose to compare against these
systems because they are well-known, and arguably
the most mature and e�cient ILP platforms developed
to date.

3.1 EXPERIMENTAL DESIGN

There is, as yet, no standard approach to the evalua-
tion of ILP systems. We are primarily interested in the
ability of systems to perform \realistic" learning tasks.
That is, given some (random) sampling of examples
how well do the learned hypotheses characterize the
entire example space. Therefore, we have adopted an
experimental strategy, common in propositional learn-
ing, of randomly splitting the example space into dis-
joint training and testing sets. The systems were
trained on progressively larger portions of the train-
ing examples and the performance of the learned rules
assessed on the independent testing set. This pro-
cess of splitting, training and testing was repeated and
the results averaged over 10 trials to produce learning
curves for each of the systems on several benchmark
problems. It is important to note that ILP systems
are often tested using a set of complete or carefully
chosen positive examples. We would not necessarily
expect the systems to perform as well under the more
realistic conditions of random selection used here.

The number of training examples in successive train-
ing sets was chosen experimentally to highlight the
interesting parts of the learning curves. Except where
indicated, enough training examples were provided so
that the system having the best accuracy achieved a
perfect score on the majority of the runs. The dis-
tribution of positive examples in many relational do-
mains is quite sparse, and a relatively large number of
positive examples are required for each of these ILP
systems. In order to insure a reasonable number of
positive training examples, training sets were always
selected to be one-�fth positive and four-�fths nega-
tive examples. Testing sets included an equal number
of positive and negative examples to test the ability of
the resulting rules to recognize instances of the concept
and reject non-instances.

Our experiments were performed using version 5.0 of
Foil and version 1.0 alpha of Golem both of which
are written in C. All of the algorithms were run with
default settings of the various parameters. No extra
mode, type, or bias information was provided besides



the examples and background predicates. While all of
the algorithms can make use of additional constraints,
they do not necessarily do so in consistent ways; there-
fore, providing no extra information to any algorithm
allows for a more direct comparison.

3.2 ACCURACY RESULTS

3.2.1 Learning Recursive Programs

The �rst three learning problems tested the ability to
learn simple recursive concepts. We chose three prob-
lems widely used in the ILP literature: the list predi-
cates member and append and the arithmetic predicate
multiply.

For the list predicates, the data consisted of all lists
of length 0-3 de�ned over three constants. The back-
ground information consisted of de�nitions of list con-
struction predicates, null which holds for an empty
list and components which decomposes a list into its
head and tail. The results for these two problems
were approximately the same. The learning curves for
member are presented in the left-hand graph of Fig-
ure 3. As expected, with random examples, Chillin
was able to learn accurate de�nitions with fewer ex-
amples than the other systems, and without using the
background predicates.

The domain for the multiply problem consisted of in-
tegers in the range from zero to ten. The de�nition
was to be learned in terms of background predicates:
plus, decrement, zero, and one. We expected Foil

and Golem to do well on this problem as it is a stan-
dard benchmark which both systems have been shown
capable of learning. Chillin, in its current form, is
not able to formulate the correct recursive de�nition
for this predicate, since the required recursive clause
does not meet the structure-reducing conditions.

The learning curves, shown on the right-hand side of
Figure 3, turned out to be quite surprising. None of
the systems showed the ability to learn this concept
accurately from random examples. Chillin quickly
converged to de�nitions that were 90 percent correct
for the limited domain, and was unable to improve.
It's inaccurate de�nitions, however, were much better
than those found by either of the other systems. Fur-
ther experimentation showed that Foil kept improv-
ing as the training set grew, but it was only reliable
in generating correct de�nitions with nearly complete
training sets. Golem was unable to learn the correct
de�nition without additional guidance.

3.2.2 Learning with Nondeterminate Literals

Another traditional testbed for relational learners is
the domain of family relationships. We performed ex-
periments with an extended family tree in which the
target predicate was either grandfather or uncle and
the background consisted of facts concerning the rela-

tions: parent, sibling, married, male and female.
This domain is interesting because it requires the use
of literals which violate determinacy conditions used
by Golem and other bottom-up ILP systems.

As expected, Chillin and Foil do quite well on these
problems, and Golem is unable to learn any reason-
able de�nitions. On the uncle problem, both Foil

and Chillin learned accurate de�nitions from 100
training examples, with Foil having a slight edge
over the 10 trial average. Rather surprisingly, how-
ever, Foil seemed to have more trouble on the sim-
pler grandfather de�nition. As can be seen in the
learning curves in the left-hand graph Figure 4, Foil's
performance takes a mysterious dip at 75 training ex-
amples before catching up with Chillin at 125 exam-
ples. Even at 175 examples where Chillin succeeds in
�nding a correct de�nition in all 10 trials, Foil is only
learning the correct de�nition half of the time. These
experiments indicate that Chillin, like Foil is able to
learn de�nitions containing nondeterminate literals.

3.2.3 Control-rule Learning

The previous experiments concerned learning well-
de�ned concepts containing only one or two clauses.
Chillin was originally designed for learning control
rules from structured examples where the de�nition of
the correct concept is not necessarily simple, and cer-
tainly is not known a priori. For the last experiment
we wanted to compare the performance of these sys-
tems on this type of problem. We chose a relatively
simple task of determining when a shift-reduce parser
should perform a shift operation in parsing a simple,
regular corpus of active sentences.2 Chillin typically
learns a �ve or six clause de�nition for this concept.

The data for this problem was modi�ed slightly so
that the only logical functions appearing in the ex-
amples are list constructions. Golem and Chillin

can both handle these structures without explicit con-
structor predicates. Unfortunately, it is not possible
to run Foil on this data. Foil requires extension-
ally expressed constructor predicates; the components
relation over lists of the required size (up to 8) con-
structible from the set of 34 constants appearing in
these examples would require trillions of background
facts. This illustrates the di�culties posed by the ex-
tensional background requirement.

The right-hand graph of Figure 4 shows the learn-
ing curves. On this problem Chillin tends to invent
new predicates. For direct comparison, we performed
the experiments with two versions of Chillin; the
curve labeled \Chillin{" is Chillin with predicate
invention turned o�. The learning curves show that
Chillin rapidly converges to very good de�nitions.

2This data is derived from a framework for parsing
sentences from (McClelland and Kawamoto, 1986) as de-
scribed in (Zelle and Mooney, 1993).
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Figure 5: Timing Results

Disabling predicate invention had only a minor im-
pact (1%) in accuracy with smaller training sets, and
no di�erence was detectable for larger sets. Golem,
on the other hand, never achieves greater than 80%
accuracy and displays erratic learning behavior in this
domain.

3.3 TIMING RESULTS

Given the di�erences in implementation, we expected
Foil and Golem to be considerably faster than
Chillin. However, this was not the case. On all
problems where Golem was learning useful rules, it
was signi�cantly slower than Chillin often by a fac-
tor of 10 or more. While Foil tended to be a bit
faster than Chillin, the learning times for the two
systems were generally comparable. The timing curves
for the member experiments shown in the left-hand
graph of Figure 5 are typical. This graph shows the
time in seconds required to learn a set of rules as
a function of training set size. In the experiments
where Foil had more di�culty learning accurate rules
such as multiply and grandfather, Chillin actu-
ally ran faster than Foil at some data points. The
left-hand graph of Figure 5 shows timing results for
grandfather. Note that the run-time for Golem is
lower here because it is not learning a de�nition, but
rather, just memorizing the examples.

4 RELATED RESEARCH

Like Chillin, Series (Wirth and O'Rorke, 1991) and,
later Indico (Stahl et al., 1993) make use of LGGs of
examples to construct clause heads containing func-
tions. However, both of these systems precompute a
set of clause heads for which bodies are subsequently
induced. The approach taken by Chillin interleaves
the bottom-up and top-down mechanisms, handling a

larger class of concepts.

A number of recent investigations have considered the
noisy-oracle problem in the induction of recursive def-
initions (Cohen, 1993; Lapointe and Matwin, 1992;
Muggleton, to appear). However, the proposed mech-
anisms either severely limit the class of learnable pro-
grams (e.g. to single clause, linearly recursive) or rely
on computationally expensive matching of subterms,
or both. None has yet been implemented and tested
in a system for large-scale induction over hundreds or
thousands of examples.

Predicate invention is also an area of considerable in-
terest. Like Chillin and Champ, Series and Indico
employ demand-driven predicate invention. These sys-
tems di�er signi�cantly in the heuristics used to select
arguments for the new predicate. Another approach
to invention is the use of the intra{construction op-
erator of inverse-resolution (Muggleton and Buntine,
1988; Wirth, 1988; Rouveirol, 1992; Banerji, 1992). In
this approach, new predicates are invented through a
restructuring of an existing de�nition, usually to make
it more compact. Unfortunately, we are not aware of
any work that has systematically evaluated the com-
peting approaches or the practical utility of predicate
invention.

5 FUTURE WORK

The top-down component of Chillin could clearly be
improved by adding more of Foil's current features
such as exploiting mode and type information, deal-
ing with noise, and checking termination of recursive
clauses (Cameron-Jones and Quinlan, 1994). Ehance-
ments are also needed for multi-predicate learning (De
Raedt et al., 1993), particularly for inventing predi-
cates useful in the de�nition of multiple concepts. Fi-
nally, further experimental evaluation on a wider range



of more realistic problems is needed. In particular, ab-
lation studies on the speci�c utility of predicate inven-
tion are indicated.

6 CONCLUSION

The Chillin ILP algorithm attempts to integrate the
best aspects of existing ILP methods into a coher-
ent, novel framework that includes both top-down and
bottom-up search, predicate invention, and a solution
to the noisy-oracle problem. Our current experimen-
tal results indicate that it is a robust and e�cient sys-
tem which can learn a range of logic programs (includ-
ing recursive and nondeterminate ones) from random
examples more e�ectively than current methods such
as Golem and Foil. It has also recently been used
to learn natural language parsers from real text cor-
pora requiring induction over thousands of complex,
structured examples (Zelle and Mooney, 1994). Con-
sequently, we believe it provides an important foun-
dation for continued progress on robust and e�cient
induction of complex relational and recursive concepts.
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