
Appears in Proceedings of the 12th European Conference on Machine Learning,
pp. 466-477, Freiburg, Germany, September 2001

Using Multiple Clause Constructors

in Inductive Logic Programming

for Semantic Parsing

Lappoon R. Tang and Raymond J. Mooney

Department of Computer Sciences
University of Texas
2.124 Taylor Hall
Austin, TX 78712

frupert, mooneyg@cs.utexas.edu

Abstract. In this paper, we explored a learning approach which com-
bines di�erent learning methods in inductive logic programming (ILP)
to allow a learner to produce more expressive hypotheses than that of
each individual learner. Such a learning approach may be useful when
the performance of the task depends on solving a large amount of classi-
�cation problems and each has its own characteristics which may or may
not �t a particular learning method. The task of semantic parser acqui-
sition in two di�erent domains was attempted and preliminary results
demonstrated that such an approach is promising.

1 Motivation

While a signi�cant portion of machine learning research has devoted to tack-
ling tasks that involve solving a single classi�cation problem, some domains
require solving a large sequence of classi�cation problems in order to perform
the task successfully. For instance, in learning control rules for semantic parsing
using inductive logic programming [1], one needs to specialize a parser by induc-
ing control rules for a large set of parsing operators. However, each induction
problem has its own characteristics. The performance hit on the task could be
signi�cant if a single (ILP) learner performs poorly on some of these problems
because its language bias is \inappropriate" for them. Therefore, using a mixture
of language biases might be bene�cial (if not sacri�cing too much computational
eÆciency).

A typical ILP algorithm can be viewed as a loop in which a certain clause
constructor is embedded. A clause constructor is formally de�ned here as a func-
tion f : T �B �E ! S such that given the current building theory T , a set of
training examples E, and the set of background knowledge B, it produces a set
of clauses S. For example, to construct a clause using Foil [2] given an existing
partial theory Tp (which is initially empty) and a set of training examples �+[��

(positive and negative), one uses all the positive examples not covered by Tp to
learn a single clause C. So, we have fFoil(Tp; B; �

+[��) = fFoil(Tp; B; fe 2 �
+ j

Tp 6j= eg [��) = fCg. Notice that fFoil always produces a singleton set. Since
di�erent constructors create clauses of di�erent characteristics (like syntax and
accuracy), a learner using multiple clause constructors could exploit the various
language biases available to produce more expressive hypotheses. We want to
examine the potential bene�t of this approach on learning semantic parsers.

Section 2 reviews two ILP algorithms we used in our new approach which is
described in Section 3. Section 4 presents the task of learning semantic parsers
as our experimental domain. Experimental results are presented in Section 5
followed by conlusions in Section 6.

2 Background

2.1 An Overview of Chillin

Chillin [3] was the �rst ILP algorithm that has been applied to the task of
learning control rules for a semantic parser in a system called Chill [1]. It has a
compaction outer loop that builds a more general hypothesis with each iteration.
In each iteration, a clause is built by �nding the least general generalization
(LGG) under �-subsumption of a random pair of clauses in the building de�nition
DEF and is specialized by adding literals to its body like Foil. The clause with
the most compaction is returned. The compaction loop is as follows:

DEF := fe true j e 2 �+g
Repeat

PAIRS := a sampling of pairs of clauses from DEF

GENS := fG j G = Find A Clause(Ci; Cj ; DEF; �
+; ��) for hCi; Cji 2 PAIRS g

G := the clause in GENS yielding most compaction
DEF := (DEF � (clauses empirically subsumed by G)) [fGg

Until no-further-compaction
Return DEF

Once a clause is found, it is added to the current theory DEF. Any other
clause empirically subsumed by it will be removed. A clause C empirically sub-
sumes D if all (�nitely many) positive examples covered by D are covered by C
given the same set of background knowledge. If a clause cannot be re�ned using
the given set of background knowledge, it will attempt to invent a predicate
using a method similar to Champ [4]. Now, let's de�ne the clause constructor
fChillin for Chillin. (Strictly speaking, fChillin is not a function because of al-
gorithmic randomness. To make it a function, one has to include an additional
argument specifying the state of the system. For simplicity, we just omit it here
and assume it behaves like a function.) Given a current partial theory Tp (ini-
tially empty), background knowledge B, and �+ [�� as inputs, fChillin takes
Tp [fe 2 �+ j Tp 6j= eg to form the initial DEF. A clause G with the best
coverage is then learned by going through the compaction loop for one step.
So, fChillin(Tp; B; �

+ [��) = fGg. However, we are going to allow fChillin to
return the best n clauses in GENS by coverage instead and use this more relaxed
version of fChillin in our algorithm.

2.2 An Overview of mFoil

Like Foil, mFoil is a top-down ILP algorithm. However, it uses a more direct
accuracy estimate, the m-estimate [5], to measure the expected accuracy of a
clause which is de�ned as

accuracy(C) =
s+m � p+

n+m
(1)

where C is a clause, s is the number of positive examples covered by the clause,
n is the total number of examples covered, p+ is the prior probability of the class
�, and m is a parameter.

mFoil was designed with handling imperfect data in mind. It uses a pre-
pruning algorithm which checks if a re�nement of a clause can be possibly sig-
ni�cant. If so, it is retained in the search. The signi�cant test is based on the
likelihood ratio statistic. Suppose a clause covers n examples and s of which are
positive examples, the value of the statistic is calculated as follows:

Likelihood Ratio = 2n(q+ log
q+

p+
+ q� log

q�

p�
) (2)

where p+ and p� are the prior probabilities of the class � and 	 respectively,
q+ = s

n
, and q� = 1� q+. This is distributed approximately as �2 with 1 degree

of freedom. If the estimated value of a clause is above a particular threshold,
it is considered signi�cant. A clause, therefore, cannot be possibly signi�cant if
the upper bound �2s logp+ is already less than the threshold and will not be
further re�ned.

The search starts with the most general clause. Literals are added successively
to the body of a clause. A beam of promising clauses are maintained, however, to
partially overcome local minima. The search stops when no clauses in the beam
can be signi�cantly re�ned and the most signi�cant one is returned. So, given the
current building theory Tp, background knowledge B, training examples �+[��,
fmFoil(Tp; B; �

+ [��) = fCg where C is the most signi�cant clause found in
the search beam. Again, we use a modi�ed version of fmFoil which returns the
entire beam of promising clauses when none of them can be signi�cantly re�ned.

3 Using Multiple Clause Constructors in Cocktail

The use of multi-strategy learning to exploit diversity in hypothesis space and
search strategy is not novel [15]. However, our focus here is applying a similar
idea speci�cally in ILP where di�erent learning strategies are integrated in a
unifying hypothesis evaluation framework.

A set of clause constructors (like Foil's or Golem's) have to be chosen in
advance. The decision of what constitutes a suÆciently rich set of constructors
depends on the application one needs to build. Although an arbitrary number of
clause constructors is permitted (in principle), in practice one should use only a
handful of useful constructors to reduce the complexity of the search as much as

Procedure Cocktail

Input:
�+, ��: the � and 	 examples respectively
F : a set of clause constructors
B: a set of sets of background knowledge for each clause constructor in F

M : the metric for evaluating a theory
Output:
T : the learned theory

T := fg
Repeat

Clauses :=
S

fi2F;Bi2B
fi(T;Bi; �

+ [��)

Choose C 2 Clauses such that M(T � fclauses empirically subsumed by Cg [fCg;
�+ [��) is the best

T := T � fclauses empirically subsumed by Cg [fCg
Until M(T; �+ [��) does not improve
Return T

End Procedure

Fig. 1. Outline of the Cocktail Algorithm

possible. We have chosen mFoil's and Chillin's clause constructors primarily
because of their inherent di�erences in language bias and the relative ease to
modify them to return a set of clauses of a given size.

The search of the hypothesis space starts with the empty theory. At each
step, a set of potential clauses is produced by collecting all the clauses con-
structed using the di�erent clause constructors available. Each clause found is
then used to compact the current building theory to produce a set of new the-
ories; existing clauses in the theory that are empirically subsumed by the new
clause are removed. The best one is then chosen according to the given theory
evaluation metric and the search stops when the metric score does not improve.
The algorithm is outlined in Figure 1.

As the \ideal" solution to an induction problem is the hypothesis that has
the minimum size and the most predictive power, some form of bias leading the
search to discover such hypotheses would be desirable. It has been formulated
in the Minimum Description Length (MDL) principle [6] that the most probable
hypothesis H given the evidence (training data) D is the one that minimizes the
complexity of H given D which is de�ned as

K(H j D) = K(H) +K(D j H)�K(D) + c (3)

where K(�) is the Kolmogorov complexity function and c is a constant. This is
also called the ideal form of the MDL principle. In practice, one would instead
�nd an H of some set of hypotheses that minimizes L(H) + L(D j H) where
L(x) = � log2 Pr(x) and interpret L(x) as the corresponding Shannon-Fano

(or Hu�man) codeword length of x. However, if one is concerned with just the
ordering of hypotheses but not coding or decoding them, it seems reasonable to
use a metric that gives a rough estimate instead of computing the complexity
directly using the encoding itself as it would be computationally more eÆcient.

Now, let S(H j D) be our estimation of the complexity of H given D which
is de�ned as

S(H j D) = S(H) + S(D j H)� S(D) (4)

where S(H) is the estimated prior complexity of H and

S(D j H) = S(fe true j e 2 �+ and H 6j= eg) + (5)

S(ffalse e j e 2 �� and H j= eg)

is the estimated complexity of D given H . This is rougly a worst case estimate
of the complexity of a program that computes the set D given H . A much better
scheme would be to compute S(H1 [fT T 0;not T 00g [H2) instead where
H1 and H2 are some (compressive) hypotheses consistent with the uncovered
positive examples of H and covered negative examples of H respectively, T is
the target concept t(R1; � � � ; Rk) that we need to learn, T 0 = t0(R1; � � � ; Rk) and
T 00 = t00(R1; � � � ; Rk) are the renaming of the target concept. (All predicates
t=k appearing in any clause in H and H2 have to be renamed to t0=k and t00=k
respectively.) Computing H1 and H2 could be problematic, however, and thus
we simply take the worst case assuming the discrepancy between H and D is
not compressible. A very simple measure is employed here as our complexity
estimate [8]. The size S of a set of Clauses (or a hypothesis) where each clause
C with a Head and a Body is de�ned as follows:

S(Clauses) =
X

C2Clauses

1 + termsize(Head) + termsize(Body) (6)

where

termsize(T) =

8<
:
1 if T is a variable
2 if T is a constant

2 +
Parity(T)

i=1 termsize(argi(T)) otherwise:

(7)

The size of a hypothesis can be viewed as a sum of the average number of
bits required to encode a symbol appearing in it which can be a variable, a
constant, a function symbol, or a predicate symbol, plus one bit of encoding
each clause terminator. (Note that this particular scheme gives less weight to
variable encoding.) Finally, our theory evaluation metric is de�ned as

M(H;D) = S(H) + S(D j H): (8)

The goal of the search is to �nd the H that minimizes the metricM . The metric
is purely syntactic; it does not take into account the complexity of proving an
instance [14]. However, we are relying on the assumption that syntactic com-
plexity implies computational complexity although this and the reverse are not
true in general. So, the current metric does not gaurantee �nding the hypothesis
with the shortest proof of the instances.

Fig. 2. Screenshots of a Learned Web-based NL Database Interface

4 Learning to Parse Questions into Logical Queries

Being able to query a database using natural languages has been an interesting
task since the 60's as most users of the database may not know the under-
lying database access language. The need for such applications is even more
pronounced with the rapid development of the Internet which has become an
important channel for information delivery. Screenshots of a natural language
interface (NLI) we developed are shown in Figure 2.

Traditional (rationalist) approaches to constructing database interfaces re-
quire an expert to hand-craft an appropriate semantic parser [9]. However, such
hand-crafted parsers are time consuming to develop and su�er from problems
with robustness and incompleteness. Nevertheless, very little research in empir-
ical NLP has explored the task of automatically acquiring such interfaces from
annotated training examples. The only exceptions of which we are aware are a
statistical approach to mapping airline-information queries into SQL presented
in [10], a probabilistic decision-tree method for the same task described in [11],
and an approach using inductive logic programming to learn a logic-based se-
mantic parser described in [1].

We are going to briey review our overall approach using an interface devel-
oped for a U.S. Geography database (Geoquery) as a sample application [1] which
is available on the Web at http://www.cs.utexas.edu/users/ml/geo.html.

4.1 Semantic Representation

First-order logic is used as a semantic representation language. Chill has also
been applied to a restaurant database in which the logical form resembles SQL,
and is translated automatically into SQL (see Figure 2). We explain the features

of the Geoquery representation language through a sample query:

Input: \What is the largest city in Texas?"
Query: answer(C,largest(C,(city(C),loc(C,S),const(S,stateid(texas))))).

Objects are represented as logical terms and are typed with a semantic cat-
egory using logical functions applied to possibly ambiguous English constants
(e.g. stateid(Mississippi), riverid(Mississippi)). Relationships between objects are ex-
pressed using predicates; for instance, loc(X,Y) states that X is located in Y.

We also need to handle quanti�ers such as `largest'. We represent these using
meta-predicates for which at least one argument is a conjunction of literals. For
example, largest(X, Goal) states that the object X satis�es Goal and is the largest
object that does so, using the appropriate measure of size for objects of its type
(e.g. area for states, population for cities). Finally, an unspeci�ed object required
as an argument to a predicate can appear elsewhere in the sentence, requiring
the use of the predicate const(X,C) to bind the variable X to the constant C.

4.2 Parsing Actions

Our semantic parser employs a shift-reduce architecture that maintains a stack
of previously built semantic constituents and a bu�er of remaining words in the
input. The parsing actions are automatically generated from templates given the
training data. The templates are INTRODUCE, COREF VARS, DROP CONJ,
LIFT CONJ, and SHIFT. INTRODUCE pushes a predicate onto the stack based
on a word appearing in the input and information about its possible meanings
in the lexicon. COREF VARS binds two arguments of two di�erent predicates
on the stack. DROP CONJ (or LIFT CONJ) takes a predicate on the stack and
puts it into one of the arguments of a meta-predicate on the stack. SHIFT simply
pushes a word from the input bu�er onto the stack. The parsing actions are tried
in exactly this order. The parser also requires a lexicon to map phrases in the
input into speci�c predicates. This lexicon can also be learned automatically
from the training data [12].

Let's go through a simple trace of parsing the request \What is the capital
of Texas?" A lexicon that maps `capital' to `capital()', `of' to `loc(,)', and
`Texas' to `const(,stateid(texas))' suÆces here. Interrogatives like \what" may
be mapped to predicates in the lexicon if necessary. The parser begins with
an initial stack and a bu�er holding the input sentence. Each predicate on the
parse stack has an attached bu�er to hold the context in which it was introduced;
words from the input sentence are shifted onto this bu�er during parsing. The
initial parse state is shown below:

Parse Stack: [answer(,):[]]
Input Bu�er: [what,is,the,capital,of,texas,?]

Since the �rst three words in the input bu�er do not map to any predicates,
three SHIFT actions are performed. The next is an INTRODUCE as `capital' is
at the head of the input bu�er:

Parse Stack: [capital():[], answer(,):[the,is,what]]
Input Bu�er: [capital,of,texas,?]

The next action is a COREF VARS that binds the argument of capital() with
the �rst argument of answer(,).

Parse Stack: [capital(C):[], answer(C,):[the,is,what]]
Input Bu�er: [capital,of,texas,?]

The next sequence of steps are a SHIFT followed by an INTRODUCE

Parse Stack: [loc(,):[], capital(C):[capital], answer(C,):[the,is,what]]
Input Bu�er: [of,texas,?]

The next sequence of steps are a COREF VARS, a SHIFT, an INTRODUCE,
and then a COREF VARS:

Parse Stack: [const(S,stateid(texas)):[], loc(C,S):[of],capital(C):[capital],
answer(C,):[the,is,what]]

Input Bu�er: [texas,?]

The last four steps are three DROP CONJ's followed by two SHIFT's:

Parse Stack: [answer(C, (capital(C),loc(C,S),const(S,stateid(texas)))):[the,is,what]]
Input Bu�er: []

This is the �nal state and the logical query is extracted from the stack.

4.3 Learning Control Rules

The initially constructed parser has no constraints on when to apply actions,
and is therefore overly general and generates numerous spurious parses. Positive
and negative examples are collected for each action by parsing each training
example and recording the parse states encountered. Parse states to which an
action should be applied (i.e. the action leads to building the correct semantic
representation) are labeled positive examples for that action. Otherwise, a parse
state is labeled a negative example for an action if it is a positive example
for another action below the current one in the ordered list of actions. Control
conditions which decide the correct action for a given parse state are learned for
each action from these positive and negative examples.

5 Experimental Results

5.1 The Domains

Two di�erent domains are used for experimentation here. The �rst one is the
United States Geography domain. The database contains about 800 facts imple-
mented in Prolog as relational tables containing basic information about the U.S.
states like population, area, capital city, neighboring states, and so on. The sec-
ond domain consists of a set of 1000 computer-related job postings, such as job
announcements, from the USENET newsgroup austin.jobs. Information from
these job postings are extracted to create a database which contains the follow-
ing types of information: 1) the job title, 2) the company, 3) the recruiter, 4) the
location, 5) the salary, 6) the languages and platforms used, and 7) required or
desired years of experience and degrees [13].

Parsers learned with n Corpora Geo1000 Jobs640

R P S T R P S T
Cocktail (fmFoil+fChillin) 79.40 89.92 64.79 62.88 79.84 93.25 105.77 68.10

Cocktail (fmFoil only) 75.10 88.98 127.61 76.67 63.75 82.26 427.02 66.64
Cocktail (fChillin only) 70.80 91.38 150.69 41.24 72.50 86.24 177.99 43.81

Chillin 71.00 90.79 142.41 38.24 74.22 87.48 175.94 45.31
mFoil 67.50 87.10 204.62 65.17 58.91 82.68 561.34 69.08

Table 1. Results on all the experiments performed. Geo1000 consists of 1000 sentences
from the U.S. Geography domain. Jobs640 consists of 640 sentences from the job post-
ings domain. R = recall, P = precision, S = average size of a hypothesis found for each
induction problem when learning a parser using the entire corpus, and T = average
training time in mins.

5.2 Experimental Design

The U.S. Geography domain has a corpus of 1000 sentences collected from un-
dergraduate students in our department and from real users of our Web in-
terface. The job database information system has a corpus of 640 sentences;
400 of which are arti�cially made using a simple grammar that generates cer-
tain obvious types of questions people may ask and the other 240 are ques-
tions obtained from real users of our interface. Both corpora are available at
ftp://ftp.cs.utexas.edu/pub/mooney/nl-ilp-data/.

The experiments were conducted using 10-fold cross validation. In each test,
the recall (a.k.a. accuracy) and the precision of the parser are reported. Recall
and precision are de�ned as

Recall =
of correct queries produced

of sentences
(9)

Precision =
of correct queries produced

of successful parses
: (10)

The recall is the number of correct queries produced divided by the total num-
ber of sentences in the test set. The precision is the number of correct queries
produced divided by the number of sentences in the test set from which the
parser produced a query (i.e. a successful parse). A query is considered correct
if it produces the same answer set as that of the correct logical query.

5.3 Discussion of Results

For all the experiments performed, we used a beam size of four for mFoil (and
therefore for fmFoil), a signi�cant threshold of 6.64 (i.e. 99% level of signi�cance),
and a parameter m = 10. We took the best four clauses (by coverage) found by
Chillin. Cocktail using both the mFoil's and Chillin's clause constructors
performed the best; it outperformed all other learners by at least 4% in recall
in either domains. In addition, Cocktail using only fmFoil performed better

than using only fChillin in the Geography domain while the latter performed
better in the job postings domain. This indicates that there are some inherent
di�erences between the two domains as far as language bias is concerned. This
will be further explained below. Notice that Chillin alone performed slightly
better than Cocktail using only fChillin. There must be other factors in the
picture we were not aware of as using a hill-climbing search actually performed
better in this case. One possibility might be that the current MDL metric has
problems handling complicated terms with lots of constants which could result in
choosing overly speci�c clauses (if they are in the beam) and therefore learning
a larger number of clauses for the building theory. Perhaps somewhat surprising
is the result obtained from using the original mFoil algorithm; the poor results
seem to suggest that choosing the most statistically signi�cant clause (in the
search beam) does not necessarily produce the most compressive hypothesis.
Apparently, this is due to the fact that some compressive clauses were wrongly
rejected by a statistical based measure [14].

Cocktail found the most compressive hypothesis on average for an induc-
tion problem when learning a parser using the entire corpus. (There were 138
induction problems for Geo1000 and 87 for Jobs640.) Before we proceed to ex-
plain the results, let's go through an example to see how fmFoil and fChillin
construct clauses of very di�erent language biases which are good for express-
ing di�erent types of features present in a set of training examples. Suppose
we want to learn a concept class of lists of atoms and tuples of atoms and
we have positive examples �+ = ft([a; [e; c]; b]); t([c; [a; b]; a])g and negative ex-
amples �� = ft([[e; c]; b]); t([b; c; [a; b]]); t([c; b; c]); t([d; [e; c]; b; b])g. One possible
hypothesis H1 consistent with the data would be

t(X) member(a;X): (11)

which states that any list containing the constant a is in the concept. Another
possible hypothesis H2 would be

t([W; [X;Y]; Z]) true: (12)

which asserts that the concept class contains lists of three elements and the
second element has to be a tuple. Both H1 and H2 are qualitatively di�erent
in the sense that they look for di�erent types of features for classi�cation; the
former looks for the presence of a certain speci�c element that might appear
anywhere in a given list while the latter looks for a speci�c structure of a list.

This is exactly what is happening here. mFoil and Chillin learn very dif-
ferent features for classi�cation; mFoil is given background predicates which
check the presence (or absence) of a particular element in a given parse state
(e.g. a certain predicate or a certain word phrase) while Chillin is not given
any such background predicates but it learns the structural features of a parse
state through �nding LGGs with good coverage (and inventing predicates if nec-
essary). Each learner is e�ective in expressing each type of feature using its own
language bias; if one were to learn structural features of a parse state using

mFoil's language bias (e.g. not allowing function terms), the hypothesis thus
expressed would have a very high complexity and vice versa.

When inspecting the set of control rules learned by Cocktail, we discovered
that on small induction problems involving only a few training examples, only
one type (either mFoil's or Chillin's) of clause constructors was suÆcient; the
resulting hypothesis contained clauses built only by one of them. However, di�er-
ent (similarly small) problems require di�erent constructors. On larger induction
problems involving a few hundred examples, Cocktail learned hypotheses with
clauses constructed by both fmFoil and fChillin. This suggests that some prob-
lems do require inspecting structural features of a parse state and examining its
elements; using a variety of language biases allows the learner to discover and
e�ectively express these di�erent features in a problem which is illustrated by
the fact that the average size of a hypothesis found is minimal (as irrelevant fea-
tures tend to make complicated hypotheses), at least in the domains attempted.
The training time of Cocktail using all the given clause constructors in each
domain was much less than the sum of using each of them alone (unlike what
one might expect) and in fact in some case closer to the average time.

6 Conclusion

An ILP learning approach which employs di�erent clause constructors from dif-
ferent ILP learners is discussed. It was applied to the task of semantic parser
acquisition and was demonstrated to perform better than using a single learner.
Future work could explore using a larger set of clause constructors and examine
their e�ects on language learning problems. Since problems that require solv-
ing a large sequence of induction problems do not seem to occur very often, we
would like to see if the existing approach is applicable to domains where only
a single or a relatively small number of classi�cation prolems are involved. It
is also interesting to use a more precise theory evaluation metric like the one
described by Srinivasan et. al. [7].

7 Acknowledgements

This research was supported by the National Science Foundation under grant
IRI-9704943. Special thanks go to Sugato Basu for proofreading an earlier draft
of this paper.

References

1. John M. Zelle and Raymond J. Mooney: Learning to Parse Database Queries Using
Inductive Logic Programming. Proceedings of the Thirteenth National Conference
on Arti�cial Intelligence (1996) 1050{1055

2. J. Ross Quinlan: Learning Logical De�nitions from Relations. Machine Learning 5
(1990) 239{266

3. John M. Zelle and Raymond J. Mooney: Combining Top-Down and Bottom-Up
Methods in Inductive Logic Programming. Proceedings of the Eleventh Interna-
tional Conference on Machine Learning (1994) 343{351

4. Boonserm Kijsirikul and Masayuki Numao and Masamichi Shimura:
Discrimination-Based Constructive Induction of Logic Programs. Proceedings of
the Tenth National Conference on Arti�cial Intelligence (1992) 44{49

5. Bojan Cestnik: Estimating probabilities: A crucial task in machine learning. Pro-
ceedings of the Ninth European Conference on Arti�cial Intelligence (1990) 147{149

6. Jorma Rissanen: Modeling by Shortest Data Description. Automatica 14 (1978)
465{471

7. Ashwin Srinivasan, Stephen Muggleton, Michael Bain: The Justi�cation of Logical
Theories based on Data Compression. Machine Intelligence 13 (1994) 87{121

8. Stephen Muggleton and W. Buntine: Machine Invention of First-order Predicates
by Inverting Resolution. Proceedings of the Fifth International Conference on Ma-
chine Learning (1988) 339-352

9. G. G. Hendrix and E. Sacerdoti and D. Sagalowicz and J. Slocum: Developing
a Natural Language Interface to Complex Data. ACM Transactions on Database
Systems 3 (1978) 105{147

10. Scott Miller and David Stallard and Robert Bobrow and Richard Schwartz: A
Fully Statistical Approach to Natural Language Interfaces. Proceedings of the 34th
Annual Meeting of the Association for Computational Linguistics (1996) 55{61

11. Roland Kuhn and Renato De Mori: The Application of Semantic Classi�cation
Trees to Natural Language Understanding. IEEE Transactions on Pattern Analysis
and Machine Intelligence 17 (1995) 449{460

12. Cynthia A. Thompson and Raymond J. Mooney: Automatic Construction of Se-
mantic Lexicons for Learning Natural Language Interfaces. Proceedings of the
Sixteenth National Conference on Arti�cial Intelligence (1999) 487{493

13. Mary Elaine Cali� and Raymond J. Mooney: Relational Learning of Pattern-Match
Rules for Information Extraction. Proceedings of the Sixteenth National Confer-
ence on Arti�cial Intelligence (1999) 328{334

14. S. Muggleton, A. Srinivasan, and M. Bain: Compression, signi�cance and accuracy.
Proceedings of the Ninth International Machine Learning Conference (1992) 338-
347

15. Attilio Giordana, Filippo Neri, Lorenza Saitta, and Marco Botta: Integrating Mul-
tiple Learning Strategies in First Order Logics. Machine Learning 27(3): 209-240
(1997)

