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Ensemble methods like Bagging and Boosting which combine the decisions of multiple

hypotheses are some of the strongest existing machine learning methods. The diversity of

the members of an ensemble is known to be an important factor in determining its general-

ization error. We present a new method for generating ensembles, DECORATE(Diverse En-

semble Creation by Oppositional Relabeling of Artificial Training Examples), that directly

constructs diverse hypotheses using additional artificially-constructed training examples.

The technique is a simple, general meta-learner that can use any strong learner as a base

classifier to build diverse committees. Experimental results using decision-tree induction

as a base learner demonstrate that this approach consistently achieves higher predictive ac-

curacy than both the base classifier and Bagging. DECORATEalso obtains higher accuracy

than Boosting early in the learning curve when training data is limited.

We propose to show that DECORATE can also be effectively used for (1)active

learning, to reduce the number of training examples required to achieve high accuracy;

(2) exploiting unlabeled data to improve accuracy in asemi-supervisedlearning setting;

(3) combining active learning with semi-supervision for improved results; (4) obtaining

better class membership probability estimates; (5) reducing the error of regressors; and (6)

improving the accuracy of relational learners.
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Chapter 1

Introduction

One of the major advances in inductive learning in the past decade was the development of

ensembleor committeeapproaches that learn and retain multiple hypotheses and combine

their decisions during classification (Dietterich, 2000). For example,Boosting(Freund &

Schapire, 1996) is an ensemble method that learns a series of “weak” classifiers each one

focusing on correcting the errors made by the previous one; and it is currently one of the

best generic inductive classification methods (Hastie, Tibshirani, & Friedman, 2001).

Constructing adiversecommittee in which each hypothesis is as different as possi-

ble, while still maintaining consistency with the training data, is known to be a theoretically

important property of a good ensemble method (Krogh & Vedelsby, 1995). Although all

successful ensemble methods encourage diversity to some extent, few have focused directly

on the goal of maximizing diversity. Existing methods that focus on achieving diversity

(Opitz & Shavlik, 1996; Rosen, 1996) are fairly complex and are not generalmeta-learners

like Bagging (Breiman, 1996b) and Boosting which can be applied to any base learner to

produce an effective committee (Witten & Frank, 1999).

We present a new meta-learner DECORATE(Diverse Ensemble Creation by Oppo-

sitional Relabeling of Artificial Training Examples), that uses an existing “strong” learner

(one that provides high accuracy on the training data) to build an effective diverse commit-
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tee in a simple, straightforward manner. This is accomplished by adding different randomly

constructed examples to the training set when building new committee members. These

artificially constructed examples are given category labels thatdisagreewith the current

decision of the committee, thereby easily and directly increasing diversity when a new clas-

sifier is trained on the augmented data and added to the committee.

Boosting and Bagging provide diversity by sub-sampling or re-weighting the ex-

isting training examples. If the training set is small, this limits the amount of ensemble

diversity that these methods can obtain. DECORATE ensures diversity on an arbitrarily

large set of additional artificial examples. Therefore, one hypothesis is that it will result

in higher generalization accuracy when the training set is small. In our preliminary work,

we present experimental results on a wide range of UCI data sets comparing Boosting,

Bagging, and DECORATE, all using J48 decision-tree induction as a base learner. J48 is a

Java implementation of C4.5 (Quinlan, 1993) introduced in (Witten & Frank, 1999). Cross-

validated learning curves support the hypothesis that “DECORATEd trees” generally result

in greater classification accuracy for small training sets. In fact, even given large training

sets, DECORATEoutperforms Bagging and is competitive with AdaBoost.

We claim that DECORATE’s success is due to its focus ondiversitywhile construct-

ing ensembles. We support this claim with additional experiments that show a strong cor-

relation betweendiversityanderror reduction.

This proposal explains how DECORATE works and demonstrates its effectiveness

through a wide range of experiments. Our proposed work aims to show that DECORATEcan

be useful in many ways other than improvingclassificationaccuracy in apurelysupervised

setting. We propose to show that DECORATEcan also be effectively used for the following:

• Active learning, to reduce the number of training examples required to learn an accu-

rate model;

• Exploiting unlabeled data to improve accuracy in asemi-supervisedlearning setting;

• Combining bothactiveandsemi-supervisedlearning for improved results;
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• Obtaining improved class membership probability estimates, to assist in cost-sensitive

decision making;

• Reducing the error of regression methods; and

• Improving the accuracy of relational learners.

Finally, we plan to investigate the theoretical properties of DECORATE.
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Chapter 2

Background and Related Work

In this chapter we provide some background on ensemble methods and introduce the notion

of ensemblediversity. We then motivate our approach and discuss related work. The focus

of our preliminary work has been on methods for building ensembles forclassification

using purely supervised learning. We propose several extensions to our preliminary work;

and an introduction and related work for each of our extensions is provided separately in

the chapter on proposed work (Chapter 5).

2.1 Ensembles of Classifiers

We begin by introducing some notation and defining the supervised learning task. We

attempt to adhere to the notation and definitions in (Dietterich, 1997).

Y is a set of classes.

T is a set of training examples, i.e. description-classification pairs.

C is a classifier, a function from objects to classes.

C∗ is an ensemble of classifiers.

Ci is theith classifier in ensembleC∗.

wi is the weight given to the vote ofCi.
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n is the number of classifiers in ensembleC∗.

xi is the description of theith example/instance.

yi is the correct classification of theith example.

m is the number of instances to be classified.

L is a learner, a function from training sets to classifiers.

In supervised learning, a learning algorithm is given a set of training examples of the form

{(x1, y1), ..., (xm, ym)} for some unknown functiony = f(x). The descriptionxi is usu-

ally a vector of the form< xi,1, xi,2, ..., xi,k > whose components are real or discrete

(nominal) values, such as height, weight, age, eye-color, and so on. These components of

the description are often referred to as the features or attributes of an example. The values

of y are typically drawn from a discrete set of classesY in the case ofclassificationor

from the real line in the case ofregression. Our work is primarily focused on the classifica-

tion task. A learning algorithmL, is trained on a set of training examplesT , to produce a

classifierC. The classifier is a hypothesis about the true (target) functionf . Given a new

examplex, the classifier predicts the correspondingy value. The aim of the classification

task is to learn a classifier that minimizes the error in predictions on an independent test set

of examples (generalization error). For classification, the most common measure for error

is the 0/1 loss function, given by:

errorC,f (x) =




0 : if C(x) = f(x)

1 : otherwise
(2.1)

An ensemble (committee)of classifiers is a set of classifiers whose individual deci-

sions are combined in some way (typically by weighted or unweighted voting) to classify

new examples. One of the most active areas of research in supervised learning has been

to study methods for constructing good ensembles of classifiers. This area is referred to

by different names in the literature — committees of learners, mixtures of experts, classi-

fier ensembles, multiple classifier systems, consensus theory, etc. (Kuncheva & Whitaker,

2003). In general, an ensemble method is used to improve on the accuracy of a given learn-
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ing algorithm. We will refer to this learning algorithm as thebase learner. The base learner

trained on the given set of training examples is referred to as thebase classifier. It has been

found that in most cases combining the predictions of an ensemble of classifiers produces

more accurate predictions than the base classifier (Dietterich, 1997).

There have been many methods developed for the construction of ensembles. Some

of these methods, such as Bagging and Boosting aremeta-learnersi.e. they can be applied

to any learning algorithm. Other methods are specific to particular learners. For example,

Negative Correlation Learning (Liu & Yao, 1999) is used specifically to build committees

of Neural Networks. We focus primarily on ensemble methods that aremeta-learners. This

is because, some learning algorithms are often better suited for a particular domain than

others. Therefore ageneralensemble approach that is independent of the particular base

learner is preferred.

2.2 Ensemble Diversity

In an ensemble, the combination of the output of several classifiers is only useful if they

disagree on some inputs (Hansen & Salamon, 1990; Tumer & Ghosh, 1996). We refer to the

measure of disagreement as thediversity/ambiguityof the ensemble. For regression prob-

lems,mean squared erroris generally used to measure accuracy, andvarianceis used to

measure diversity. In this setting, Krogh and Vedelsby (1995) show that the generalization

error,E, of the ensemble can be expressed asE = Ē − D̄; whereĒ andD̄ are the mean

error and diversity of the ensemble respectively. This result implies that increasing ensem-

ble diversity while maintaining the average error of ensemble members, should lead to a

decrease in ensemble error. Unlike regression, for the classification task the above simple

linear relationship does not hold betweenE, Ē andD̄. But there is still strong reason to

believe that increasing diversity should decrease ensemble error (Zenobi & Cunningham,

2001).

There have been several measures of diversity for classifier ensembles proposed in
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the literature. In a recent study, Kuncheva and Whitaker (2003) compared ten different mea-

sures of diversity. They found that most of these measures are highly correlated. However,

to the best of our knowledge, there has not been a conclusive study showing which measure

of diversity is the best to use for constructing and evaluating ensembles.

2.3 Our Basic Approach

For our work, we use the disagreement of an ensemble member with the ensemble’s predic-

tion as a measure of diversity. More precisely, ifCi(x) is the prediction of thei-th classifier

for the label ofx; C∗(x) is the prediction of the entire ensemble, then the diversity of the

i-th classifier on examplex is given by

di(x) =




0 : if Ci(x) = C∗(x)

1 : otherwise
(2.2)

To compute the diversity of an ensemble of sizen, on a training set of sizem, we average

the above term:
1

nm

n∑
i=1

m∑
j=1

di(xj) (2.3)

This measure estimates the probability that a classifier in an ensemble will disagree with

the prediction of the ensemble as a whole. Our approach is to build ensembles that are

consistent with the training data and that attempt to maximize this diversity term.

In (Melville & Mooney, 2003) we introduced a new meta-learner DECORATE(Di-

verse Ensemble Creation by Oppositional Relabeling of Artificial Training Examples) that

uses an existing learner to build an effective diverse committee in a simple, straightfor-

ward manner. This is accomplished by adding different randomly constructed examples

to the training set when building new committee members. These artificially constructed

examples are given category labels thatdisagreewith the current decision of the commit-

tee, thereby easily and directly increasing diversity when a new classifier is trained on the

augmented data and added to the committee.
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2.4 Related Work

There have been many ensemble methods studied in the literature. We only present the

approaches that are relevant to this study; for an excellent survey on ensemble methods see

(Dietterich, 2000). Bagging (Breiman, 1996b) and AdaBoost (Freund & Schapire, 1996)

are the most popular methods, and so we compare our approach to them.

2.4.1 Bagging

In a Bagging ensemble, each classifier is trained on a set ofm training examples, drawn

randomly with replacement from the original training set of sizem. Such a training set

is called abootstrap replicateof the original set. Each bootstrap replicate contains, on

average, 63.2% of the original training set, with many examples appearing multiple times.

Predictions on new examples are made by taking the majority vote of the ensemble.

Since each ensemble member is not exposed to the same set of examples, they are different

from each other. By voting the predictions of each of these classifiers, Bagging seeks to

reduce the error due to variance of the base classifier.

2.4.2 Boosting

There are several variations of Boosting that appear in the literature. When we talk about

Boosting or AdaBoost, we refer to the AdaBoost.M1 algorithm described in (Freund &

Schapire, 1996) (see Algorithm 1). This algorithm assumes that the base learner can handle

weighted examples. AdaBoost maintains a set of weights over the training examples. In

each iterationi, the classifierCi is trained to minimize the weighted error on the training set.

The weighted error ofCi is computed and used to update the distribution of weights on the

training examples. The weights of misclassified examples are increased and the weights on

correctly classified examples are decreased. The next classifier is trained on the examples

with this updated distribution and the process is repeated.
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After training, the ensemble’s predictions are made using a weighted vote of the

individual classifiers:
∑

i wiCi(x). The weight of each classifier,wi, is computed according

to its accuracy on the weighted example set it was trained on.

Algorithm 1 The ADABOOST.M1 algorithm

Input:
BaseLearn - base learning algorithm
T - set ofm training examples< (x1, y1), ..., (xm, ym) > with labelsyj ∈ Y
I - number of Boosting iterations
Initialize Distribution of weights on examples,D1(xj) = 1/m for all xj ∈ T

1. Fori = 1 toI

2. Train base learner given the distributionDi, Ci = BaseLearn(T, Di)

3. Calculate error ofCi, εi =
∑

xj∈T,
Ci(xj) 6=yj

Di(xj)

4. If εi > 1/2 then setI = i− 1 and abort loop

5. Setβi = εi/(1− εi)

6. Update weights,Di+1(xj) = Di(xj)×
{

βt : if Ci(xj) = yj

1 : otherwise

7. Normalize weights,Di+1(xj) =
Di+1(xj)∑

xj∈T

Di+1(xj)

Output: The final hypothesis,C∗(x) = arg max
y∈Y

∑
i:Ci(x)=y

log
1
βi

AdaBoost is a very effective ensemble method that has been tested extensively by

many researchers (Bauer & Kohavi, 1999; Dietterich, 2000; Quinlan, 1996a; Maclin &

Opitz, 1997). Applying AdaBoost to decision trees has been particularly successful; to the

extent that Breiman, a leading statistician, referred to AdaBoost with trees as the “best off-

the-shelf classifier in the world” (Breiman, 1996a). The success of AdaBoost has lead to

its use in a host of different applications, including text categorization (Schapire & Singer,
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2000), online auctions (Schapire, Stone, McAllester, Littman, & Csirik, 2002), document

routing (Iyer, Lewis, Schapire, Singer, & Singhal, 2000), part-of-speech tagging (Abney,

Schapire, & Singer, 1999), recommender systems (Freund, Iyer, Schapire, & Singer, 1998),

first-order learning (Quinlan, 1996b) and named-entity extraction (Collins, 2002).

Despite its popularity, Boosting does suffer from some drawbacks. In particular,

Boosting can fail to perform well given insufficient data (Schapire, 1999). This observation

is consistent with the Boosting theory. Boosting also does not perform well when there is

a large amount of classification noise (i.e. training and test examples with incorrect class

labels) (Dietterich, 2000).

2.4.3 Explicit Diversity-Based Approaches

DECORATE differs from ensemble methods, such as Bagging, in that itexplicitly tries to

foster ensemble diversity. There have been some other attempts at building ensembles that

focus on the issue of diversity.

Liu and Yao (1999) and Rosen (1996) simultaneously train neural networks in an

ensemble using a correlation penalty term in their error functions. Brown and Wyatt (2003)

provide a good theoretical analysis of these methods, commonly referred to as Negative

Correlation Learning.

Opitz and Shavlik (1996) and Opitz (1999) use a genetic algorithm to search for

a good ensemble of networks. To guide the search they use an objective function that

incorporates both an accuracy and diversity term.

Tumer and Ghosh (1996) reduce the correlation between classifiers in an ensemble

by exposing them to different feature subsets. They trainm classifiers, one corresponding

to each class in am-class problem. For each class, a subset of features that have a low

correlation to that class is eliminated. The degree of correlation between classifiers can be

controlled by the amount features that are eliminated. This method, calledinput decimation,

has been further explored in (Tumer & Oza, 1999).
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Zenobi and Cunningham (2001) also build ensembles based on different feature

subsets. In their approach, feature selection is done using a hill-climbing strategy based

on classifier error and diversity. A classifier is rejected if the improvement of one of the

metrics leads to a “substantial” deterioration of the other; where “substantial” is defined by

a pre-set threshold.

All these approaches attempt to simultaneously optimize diversity and error ofin-

dividual ensemble members. On the other hand, DECORATEfocuses on reducing the error

of theentireensemble by increasing diversity. At no point does the training accuracy of the

ensemble go below that of the base classifier; however, this is a possibility with previous

methods. Furthermore, apart from (Opitz, 1999), none of the previous studies compared

their methods with the standard ensemble approaches such as Boosting and Bagging.

2.4.4 Use of Artificial Examples

To the best of our knowledge, DECORATE is the only method that uses artificially con-

structed examples to improve generalization accuracy.

One ensemble approach that also utilizes artificial training data is the active learning

method introduced in (Cohn, Atlas, & Ladner, 1994). Rather than to improve accuracy,

the goal of the committee here is to select good new training examples using the existing

training data. The labels of the artificial examples are selected to produce hypotheses that

more faithfully represent the entire version space rather than to produce diversity. Cohn’s

approach labels artificial data either all positive or all negative to encourage, respectively,

the learning of more general or more specific hypotheses.

Another application of artificial examples for ensembles is Combined Multiple

Models (CMMs) (Domingos, 1997). The aim of CMMs is to improve the comprehensibility

of an ensemble of classifiers, by approximating it by a single classifier. Artificial examples

are generated and labeled by a voted ensemble. They are then added to the original training

set. The base learner is trained on this augmented training set to produce an approximation
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of the ensemble. The role of artificial examples here is to create less complex models,not

to improve classification accuracy.

12



Chapter 3

Our Approach

In this chapter we explain our algorithm DECORATEin detail, and present arguments for its

effectiveness.

3.1 DECORATE: Algorithm Definition

In DECORATE(see Algorithm 2), an ensemble is generated iteratively, first learning a clas-

sifier and then adding it to the current ensemble. We initialize the ensemble to contain the

classifier trained on the given training data. The classifiers in each successive iteration are

trained on the original training data combined with some artificial data. In each iteration,

artificial training examples are generated from the data distribution; where the number of

examples to be generated is specified as a fraction,Rsize, of the training set size. The labels

for these artificially generated training examples are chosen so as to differ maximally from

the current ensemble’s predictions. The construction of the artificial data is explained in

greater detail in the following section. We refer to the labeled artificially generated training

set as thediversity data. We train a new classifier on the union of the original training data

and the diversity data, thereby forcing it to differ from the current ensemble. Therefore

adding this classifier to the ensemble will increase its diversity. While forcing diversity we
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still want to maintain training accuracy. We do this by rejecting a new classifier if adding it

to the existing ensemble decreases its accuracy. This process is repeated until we reach the

desired committee size or exceed the maximum number of iterations.

To classify an unlabeled example,x, we employ the following method. Each base

classifier,Ci, in the ensembleC∗ provides probabilities for the class membership ofx. If

PCi,y(x) is the probability of examplex belonging to classy according to the classifierCi,

then we compute the class membership probabilities for the entire ensemble as:

Py(x) =

∑
Ci∈C∗

PCi,y(x)

|C∗|

wherePy(x) is the probability ofx belonging to classy. We then select the most probable

class as the label forx i.e. C∗(x) = arg max
y∈Y

Py(x)

3.2 Construction of Artificial Data

We generate artificial training data by randomly picking data points from an approximation

of the training-data distribution. For a numeric attribute, we compute the mean and standard

deviation from the training set and generate values from the Gaussian distribution defined

by these. For a nominal attribute, we compute the probability of occurrence of each distinct

value in its domain and generate values based on this distribution. We use Laplace smooth-

ing so that nominal attribute values not represented in the training set still have a non-zero

probability of occurrence. In constructing artificial data points, we make the simplifying

assumption that the attributes are independent. It is possible to more accurately estimate

the joint probability distribution of the attributes; but this would be time consuming and

require a lot of data. Furthermore, the results seem to indicate that we can achieve good

performance even with the crude approximation we use.

In each iteration, the artificially generated examples are labeled based on the current

ensemble. Given an example, we first find the class membership probabilities predicted by

14



Algorithm 2 The DECORATE algorithm

Input:
BaseLearn - base learning algorithm
T - set ofm training examples< (x1, y1), ..., (xm, ym) > with labelsyj ∈ Y
Csize - desired ensemble size
Imax - maximum number of iterations to build an ensemble
Rsize - factor that determines number of artificial examples to generate

1. i = 1

2. trials = 1

3. Ci = BaseLearn(T )

4. Initialize ensemble,C∗ = {Ci}

5. Compute ensemble error,ε =
P

xj∈T,C∗(xj) 6=yj
1

m

6. While i < Csize andtrials < Imax

7. GenerateRsize × |T | training examples, R,
based on distribution of training data

8. Label examples in R with probability of class labels
inversely proportional to predictions ofC∗

9. T = T
⋃

R

10. C ′ = BaseLearn(T )

11. C∗ = C∗ ⋃{C ′}
12. T = T −R, remove the artificial data

13. Compute training error,ε′, of C∗ as in step 5

14. If ε′ ≤ ε

15. i = i + 1

16. ε = ε′

17. otherwise,

18. C∗ = C∗ − {C ′}
19. trials = trials + 1
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the ensemble. We replace zero probabilities with a small non-zero value and normalize the

probabilities to make it a distribution. Labels are then selected, such that the probability of

selection is inversely proportional to the current ensemble’s predictions. So if the current

ensemble predicts the class membership probabilitiesPy(x), then a new label is selected

based on the distribution

P−1
y (x) =

1/Py(x)∑
y 1/Py(x)

3.3 Why DECORATEShould Work

Ensembles of classifiers are often more accurate than its component classifiers if the errors

made by the ensemble members are uncorrelated (Hansen & Salamon, 1990). By training

classifiers on oppositely labeled artificial examples, DECORATE reduces the correlation

between ensemble members. Furthermore, the algorithm ensures that thetraining error of

the ensemble is always less than or equal to the error of the base classifier; which usually

results in a reduction ofgeneralizationerror. This leads us to our first hypothesis:

Hypothesis 1: On average, combining the predictions of DECORATE ensembles will im-

prove on the accuracy of the base classifier.

We believe that diversity is the key to constructing good ensembles, and is thus the

basis of our approach. Other ensemble methods also encourage diversity, but in different

ways. Bagging implicitly creates ensemble diversity, by training classifiers on different

subsets of the data. Boosting fosters diversity, by explicitly modifying the distributions

of the training data given to subsequent classifiers. We note, that both these methods rely

solely on thetraining data for encouraging diversity. So when the size of the training set

is small, they are limited in the amount of diversity they can produce. On the other hand,

DECORATE ensures diversity on an arbitrarily large set of additional artificial examples,

while still exploiting all the available training data. This leads us to our next hypothesis:

Hypothesis 2: DECORATE will outperform Bagging and AdaBoost low on the learning

curve i.e. when training sets are small.
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Chapter 4

Preliminary Experiments

In this chapter we present experiments comparing DECORATE with the leading ensemble

methods, Bagging and AdaBoost. We also discuss some additional experiments that we ran

to better understand DECORATE’s performance.

4.1 Experimental Methodology

To evaluate the performance of DECORATE we ran experiments on 15 representative data

sets from the UCI repository (Blake & Merz, 1998) that were used in similar studies (Webb,

2000; Quinlan, 1996a). The data sets are summarized in Table 4.1. Note that the datasets

vary in the numbers of training examples, classes, numeric and nominal attributes; thus

providing a diverse testbed.

We compared the performance of DECORATE to that of AdaBoost, Bagging and

J48, using J48 as the base learner for the ensemble methods and using the Weka implemen-

tations of these methods (Witten & Frank, 1999). For the ensemble methods, we set the

ensemble size to 15. Note that in the case of DECORATE we can only specify adesired

ensemble size; the algorithm terminates if the number of iterations exceeds the maximum

limit set even if the desired ensemble size is not reached. For our experiments, we set
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Table 4.1: Summary of Data Sets

Name Cases Classes Attributes
Numeric Nominal

anneal 898 6 9 29
audio 226 6 – 69
autos 205 6 15 10
breast-w 699 2 9 –
credit-a 690 2 6 9
glass 214 6 9 –
heart-c 303 2 8 5
hepatitis 155 2 6 13
colic 368 2 10 12
iris 150 3 4 –
labor 57 2 8 8
lymph 148 4 – 18
segment 2310 7 19 –
soybean 683 19 – 35
splice 3190 3 – 62

the maximum number of iterations in DECORATE to 50. We ran experiments varying the

amount of artificially generated data,Rsize; and found that the results do not vary much for

the range 0.5 to 1. However,Rsize values lower than 0.5 do adversely affect DECORATE,

because there is insufficient artificial data to give rise to high diversity. The results we re-

port are forRsize set to 1, i.e. the number of artificially generated examples is equal to the

training set size.

The performance of each learning algorithm was evaluated using 10 complete runs

of 10-fold cross-validation. In each 10-fold cross-validation, each data set is randomly

split into 10 equal-size segments and results are averaged over 10 trials. For each trial,

one segment is set aside for testing, while the remaining data is available for training. To

test performance on varying amounts of training data, learning curves were generated by

testing the system after training on increasing subsets of the overall training data. Since we

would like to summarize results over several data sets of different sizes, we select different

percentagesof the total training-set size as the points on the learning curve.
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To compare two learning algorithms across all domains we employ the statistics

used in (Webb, 2000), namely the win/draw/loss record and the geometric mean error ratio.

The win/draw/loss record presents three values, the number of data sets for which algorithm

A obtained better, equal, or worse performance than algorithmB with respect to classifica-

tion accuracy. We also report thestatistically significantwin/draw/loss record; where a win

or loss is only counted if the difference in values is determined to be significant at the 0.05

level by a pairedt-test.

The geometric mean error ratio is defined asn

√∏n
i=1

EA
EB

, whereEA andEB are

the mean errors of algorithmA andB on the same domain. If the geometric mean error

ratio is less than one it implies that algorithmA performs better thanB, and vice versa. We

compute error ratios to capture the degree to which algorithms out-perform each other in

win or loss outcomes.

4.1.1 Results

Our results are summarized in Tables 4.2-4.4. Each cell in the tables presents the accuracy

of DECORATE versus another algorithm. If the difference is statistically significant, then

the larger of the two is shown in bold. We varied the training set sizes from 1-100% of

the total available data, with more points lower on the learning curve since this is where

we expect to see the most difference between algorithms. The bottom of the tables provide

summary statistics, as discussed above, for each of the points on the learning curve.

The results in Table 4.2 confirm our hypothesis that combining the predictions

of DECORATE ensembles will, on average, improve the accuracy of the base classifier.

DECORATEalmost always does better thanJ48, producing considerable reduction in error

throughout the learning curve.

DECORATE has moresignificantwins to losses over Bagging for all points along

the learning curve (see Table 4.3). DECORATEalso outperforms Bagging on the geometric

mean ratio. This suggests that even in cases where Bagging beats DECORATEthe improve-

19



ment is less than DECORATE’s improvement on Bagging on the rest of the cases.

DECORATE outperforms AdaBoost early on the learning curve both on significant

wins/draw/loss record and geometric mean ratio; however, the trend is reversed when given

75% or more of the data. Note that even with large amounts of training data, DECORATE’s

performance is quite competitive with AdaBoost - given 100% of the training data, DECO-

RATE produces higher accuracies on 6 out of 15 data sets.

It has been observed in previous studies (Webb, 2000; Bauer & Kohavi, 1999) that

while AdaBoost usually significantly reduces the error of the base learner, it occasionally

increases it, often to a large extent. DECORATEdoes not have this problem as is clear from

Table 4.2.

On many data sets, DECORATE achieves the same or higher accuracy as Bagging

and AdaBoost with far fewer training examples. Figures 4.1 and 4.2 show learning curves

that clearly demonstrate this point. Hence, in domains where little data is available or

acquiring labels is expensive, DECORATEhas an advantage over other ensemble methods.

4.2 Diversity versus Error Reduction

Our approach is based on the claim that ensemble diversity is critical to error reduction.

We attempt to validate this claim by measuring the correlation between diversity and error

reduction. We ran DECORATEat 10 different settings ofRsize ranging from 0.1 to 1.0, thus

varying the diversity of ensembles produced. We then compared the diversity of ensembles

with the reduction in generalization error, by computing Spearman’s rank correlation be-

tween the two. Diversity of an ensemble is computed as the mean diversity of the ensemble

members (as given by Eq. 2.3). We compared ensemble diversity with theensemble error

reduction, i.e. the difference between the average error of the ensemble members and the

error of the entire ensemble (as in (Cunningham & Carney, 2000)). We found that the cor-

relation coefficient between diversity and ensemble error reduction is 0.6602 (p ¿ 10−50),
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which is fairly strong.1 Furthermore, we compared diversity with thebase error reduction,

i.e. the difference between the error of the base classifier and the ensemble error. The base

error reduction gives a better indication of the improvement in performance of an ensem-

ble over the base classifier. The correlation of diversity versus the base error reduction is

0.1607 (p ¿ 10−50). We note that even though this correlation is weak, it is still asta-

tistically significantpositive correlation. These results reinforce our belief that increasing

ensemble diversity is a good approach to reducing generalization error.

4.3 Influence of Ensemble Size

To determine how the performance of DECORATE changes with ensemble size, we ran

experiments with increasing sizes. We compared results for training on 20% of available

data since the advantage of DECORATE is most noticeable low on the learning curve. The

results were produced using 10-fold cross-validation. We present graphs ofaccuracyversus

ensemble sizefor five representative datasets (see Figure 4.3). The performance on other

datasets is similar. We note, in general, that the accuracy of DECORATE increases with

ensemble size; though on most datasets, the performance levels out with an ensemble size

of 10 to 25.

1The p-value is the probability of getting a correlation as large as the observed value by random chance,
when the true correlation is zero.
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Table 4.2: DECORATEvs J48
Dataset 1% 2% 5% 10% 20% 30% 40% 50% 75% 100%

anneal 75.29/72.49 78.14/75.31 85.24/82.08 92.26/89.28 96.48/95.57 97.36/96.47 97.73/97.3 98.16/97.93 98.39/98.35 98.71/98.55
audio 16.66/16.66 23.73/23.07 41.72/41.1755.42/51.67 64.09/60.59 67.62/64.84 70.46/68.11 72.82/70.77 77.8/75.15 82.1/77.22
autos 24.33/24.33 29.6/29.01 36.73/34.37 42.89/41.22 52.2/50.53 59.86/53.92 64.77/59.68 68.6/65.24 78/73.15 83.64/81.72
breast-w 92.38/74.73 94.12/87.34 95.06/89.42 95.64/92.21 95.55/93.09 95.91/93.36 96.2/93.85 96.01/94.24 96.28/94.65 96.31/95.01
credit-a 71.78/69.54 74.83/77.46 80.61/81.57 83.09/82.35 84.38/84.29 84.68/84.5985.22/84.41 85.57/84.78 85.61/85.43 85.93/85.57
Glass 31.69/31.69 35.86/32.96 44.5/38.34 55.4/46.62 61.77/54.16 66.01/60.63 68.07/61.38 68.85/63.69 72.73/67.53 72.77/67.77
heart-c 58.66/49.57 65.11/58.03 73.55/67.71 75.05/70.15 77.66/73.44 78.34/74.61 79.09/74.78 79.46/75.62 78.74/76.7 78.48/77.17
hepatitis 52.33/52.33 71.95/65.93 76.59/72.75 78.85/78.25 80.28/78.61 81.14/78.63 81.53/79.35 81.68/79.57 82.37/79.04 82.43/79.22
colic 59.85/52.85 68.19/65.31 74.91/74.37 78.45/79.94 81.81/82.71 82.47/83.41 82.74/83.55 83.5/84.66 83.93/85.18 85.24/85.16
iris 33.33/33.33 50.87/33.33 80.67/59.33 91.27/84.33 93.07/91.33 94.4/92.73 95.07/93 94.07/93.33 94.67/94.07 94.93/94.73
labor 54.27/54.27 54.27/54.27 67.7/58.93 71.47/64.77 78.6/70.07 81.67/73.7 85.67/75.17 84.2/75.8 87.53/77.4 89.5/78.8
lymph 48.39/48.39 53.49/46.64 65.73/60.39 72.79/68.21 74.57/70.79 78.84/73.58 78.37/74.53 78.31/73.34 78.06/75.63 78.74/76.06
segment 67.94/52.43 80.75/73.26 89.52/85.41 92.87/89.34 94.99/92.22 95.82/93.37 96.54/94.34 96.93/94.77 97.56/95.94 98.02/96.79
soybean 19.37/13.69 32.12/22.32 55.55/42.94 73.51/59.04 84.63/74.49 88.52/81.59 90.37/84.78 91.35/86.89 92.85/89.44 93.81/91.76
splice 63.48/59.92 67.56/68.69 77.34/77.49 82.62/82.58 88.2/87.98 90.46/90.44 91.82/91.77 92.5/92.4 93.41/93.47 93.92/94.03
Win/Draw/Loss 15/0/0 13/0/2 13/0/2 14/0/1 14/0/1 14/0/1 14/0/1 14/0/1 13/0/2 14/0/1
Sig. W/D/L 7/8/0 10/3/2 11/4/0 10/5/0 11/4/0 12/3/0 13/2/0 12/2/1 10/4/1 10/4/1
GM error ratio 0.858 0.8649 0.8116 0.8098 0.8269 0.8103 0.7983 0.8305 0.8317 0.8293

Table 4.3: DECORATEvs Bagging
Dataset 1% 2% 5% 10% 20% 30% 40% 50% 75% 100%

anneal 75.29/74.57 78.14/76.42 85.24/82.88 92.26/89.87 96.48/95.67 97.36/96.89 97.73/97.34 98.16/97.78 98.39/98.53 98.71/98.83
audio 16.66/12.98 23.73/23.68 41.72/38.55 55.42/51.34 64.09/61.76 67.62/66.9 70.46/70.29 72.82/73.07 77.8/77.3282.1/80.71
autos 24.33/22.16 29.6/28 36.73/35.88 42.89/44.65 52.2/54.32 59.86/59.67 64.77/65.6 68.6/69.88 78/77.97 83.64/83.12
breast-w 92.38/76.74 94.12/88.07 95.06/90.88 95.64/93.41 95.55/94.42 95.91/94.95 96.2/94.95 96.01/95.55 96.28/96.07 96.31/96.3
credit-a 71.78/69.54 74.83/77.99 80.61/82.58 83.09/83.9 84.38/85.13 84.68/85.78 85.22/85.59 85.57/85.64 85.61/86.12 85.93/85.96
Glass 31.69/24.85 35.86/31.47 44.5/40.87 55.4/49.6 61.77/58.9 66.01/64.35 68.07/66.3 68.85/68.44 72.73/72 72.77/74.67
heart-c 58.66/50.56 65.11/55.67 73.55/68.77 75.05/73.17 77.66/76.12 78.34/77.9 79.09/78.44 79.46/79.11 78.74/79.05 78.48/78.68
hepatitis 52.33/52.33 72.14/63.18 76.8/75.2 79.48/78.64 80.7/80.42 81.81/81.07 81.65/81.2283.19/81.06 82.99/80.87 82.62/81.34
colic 58.37/53.14 66.58/63.83 75.85/76.44 79.54/80.06 81.33/83.04 82.47/83.58 83.02/83.98 83.1/84.47 84.02/85.4 84.69/85.34
iris 33.33/33.33 50.27/33.33 80.67/60.47 91.53/81.4 93.2/90.67 94.2/92.33 94.73/92.87 94.4/93.6 94.53/94.47 94.67/94.73
labor 54.27/54.27 54.27/54.27 67.63/56.27 70.23/65.9 79.77/74.97 83/75.67 84.17/76.27 83.43/78.6 89.73/80.83 89.73/85.87
lymph 48.39/48.39 53.62/47.11 65.06/60.12 71.2/69.68 76.74/73.6 78.84/76.58 78.17/77.68 78.99/76.98 79.14/76.8 79.08/77.97
segment 67.03/55.88 81.16/76.36 89.61/87.42 92.83/91.01 94.88/93.4 95.94/94.65 96.47/95.26 96.93/95.82 97.58/96.78 98.03/97.41
soybean 19.51/14.56 32.4/24.58 55.36/47.46 73.06/65.45 85.14/79.29 88.27/85.05 90.22/87.89 91.4/89.22 92.75/91.56 93.89/92.71
splice 62.77/62.52 67.8/72.36 77.37/80.5 82.55/85.44 88.24/89.5 90.47/91.44 91.84/92.4 92.41/93.07 93.44/94.06 93.92/94.53
Win/Draw/Loss 15/0/0 13/0/2 12/0/3 11/0/4 11/0/4 12/0/3 11/0/4 10/0/5 10/0/5 8/0/7
Sig. W/D/L 8/7/0 10/3/2 10/3/2 9/5/1 10/2/3 8/4/3 6/7/2 8/5/2 5/7/3 4/9/2
GM error ratio 0.8727 0.8785 0.8552 0.8655 0.8995 0.9036 0.8979 0.9214 0.9312 0.9570
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Figure 4.1: DECORATEcompared to AdaBoost and Bagging
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Figure 4.2: DECORATEcompared to AdaBoost and Bagging
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Figure 4.3: DECORATEat different ensemble sizes

Table 4.4: DECORATEvs AdaBoost
Dataset 1% 2% 5% 10% 20% 30% 40% 50% 75% 100%

anneal 75.29/73.02 78.14/77.12 85.24/87.51 92.26/94.16 96.48/97.13 97.36/97.95 97.73/98.54 98.16/98.8 98.39/99.23 98.71/99.68
audio 16.66/16.66 23.73/23.41 41.72/40.24 55.42/52.7 64.09/64.15 67.62/68.91 70.46/73.07 72.82/75.92 77.8/81.74 82.1/84.52
autos 24.33/24.33 29.6/29.71 36.73/34.2 42.89/43.28 52.2/56.13 59.86/62.2 64.77/69.14 68.6/72.03 78/80.28 83.64/85.28
breast-w 92.38/74.73 94.12/87.84 95.06/91.15 95.64/93.75 95.55/94.85 95.91/95.72 96.2/95.84 96.01/95.87 96.28/96.3 96.31/96.47
credit-a 71.78/68.8 74.83/75.3 80.61/79.68 83.09/81.14 84.38/83.04 84.68/84.22 85.22/84.13 85.57/84.58 85.61/84.93 85.93/85.42
Glass 31.69/31.69 35.86/32.93 44.5/40.71 55.4/49.78 61.77/58.03 66.01/64.33 68.07/66.93 68.85/68.69 72.73/74.69 72.77/76.06
heart-c 58.66/49.57 65.11/58.65 73.55/70.71 75.05/72.5 77.66/76.65 78.34/78.26 79.09/78.96 79.46/79.55 78.74/79.06 78.48/79.22
hepatitis 52.33/52.33 72.14/65.93 76.8/73.01 79.48/76.95 80.7/79.44 81.81/79.22 81.65/81.27 83.19/82.63 82.99/83.24 82.62/82.71
colic 58.37/52.85 66.58/67.18 75.85/72.85 79.54/77.17 81.33/79.36 82.47/79.24 83.02/79.51 83.1/80.22 84.02/80.59 84.69/81.93
iris 33.33/33.33 50.27/33.33 80.67/66.2 91.53/84.53 93.2/90.73 94.2/93 94.73/93.33 94.4/93.53 94.53/94.2 94.67/94.2
labor 54.27/54.27 54.27/54.27 67.63/58.93 70.23/65.1 79.77/73.2 83/76.9 84.17/79.57 83.43/80.1 89.73/84.07 89.73/86.37
lymph 48.39/48.39 53.62/46.64 65.06/60.54 71.2/69.57 76.74/74.16 78.84/78.62 78.17/80.35 78.99/79.88 79.14/80.96 79.08/81.75
segment 67.03/60.22 81.16/77.38 89.61/88.5 92.83/92.71 94.88/95.01 95.94/96.03 96.47/96.9 96.93/97.23 97.58/98 98.03/98.34
soybean 19.51/14.26 32.4/23.36 55.36/49.37 73.06/69.49 85.14/85.01 88.27/88.37 90.22/90.04 91.4/90.89 92.75/92.5793.89/92.88
splice 62.77/65.11 67.8/73.9 77.37/82.22 82.55/86.13 88.24/88.27 90.47/89.82 91.84/90.8 92.41/90.78 93.44/92.63 93.92/93.59
Win/Draw/Loss 14/0/1 11/0/4 13/0/2 12/0/3 10/0/5 10/0/5 10/0/5 9/0/6 6/0/9 6/0/9
Sig. W/D/L 7/7/1 8/6/1 11/2/2 10/3/2 7/6/2 4/9/2 5/5/5 5/6/4 3/6/6 3/6/6
GM error ratio 0.8812 0.8937 0.8829 0.9104 0.9407 0.9598 0.9908 0.9957 1.0377 1.0964
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Chapter 5

Proposed Work

Our preliminary experiments have demonstrated that applying DECORATEto decision trees

generally results in greater classification accuracy than Bagging or Boosting (when trained

on few labeled examples). We have also shown that the error reduction brought about by

the use of DECORATE is due to thediversityof the committee that it generates. There are

several other machine learning tasks that can benefit from using diverse ensembles. We will

present each of these in the following sections, and discuss how we can use DECORATEto

perform these tasks better.

5.1 Active Learning

5.1.1 Introduction

Most research in inductive learning has focused on learning from training examples that are

randomly selected from the data distribution. On the other hand, inactive learning(Cohn,

Ghahramani, & Jordan, 1996) the learning algorithm exerts some control over which ex-

amples it is trained on. The most common form of active learning isselective sampling,

in which, given a set of unlabeled examples, the system uses what it has already learned

to select the most informative new examples to be labeled. Examples are considered infor-
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mative if knowing their class label would reduce classification error over the distribution of

examples.

Most real-world classification tasks require a large number of training examples,

and often acquiring labels for examples is expensive or time-consuming. In general,selec-

tive samplingmethods alleviate this problem, by reducing the number of training examples

required to accurately learn a concept.

5.1.2 Related Work

Various active learning methods have been successfully applied to different classification

learning schemes, such as neural networks (Davis & Hwang, 1992; Cohn et al., 1994), de-

cision tree induction (Lewis & Catlett, 1994), Hidden Markov Models (Dagan & Engelson,

1995), SVMs (Tong & Koller, 2000; Brinker, 2003) and nearest neighbor classifiers (Lin-

denbaum, Markovitch, & Rusakov, 1999). There are several methods to perform active

learning. The most popular among these methods are:

• Uncertainty sampling(Lewis & Gale, 1994), which selects examples on which the

current learner has the greatest uncertainty in its predicted label;

• Query-by-Committee(QBC) (Seung, Opper, & Sompolinsky, 1992; Freund, Seung,

Shamir, & Tishby, 1997), which selects examples on which a committee of learners

most disagree; and

• Estimation of error reduction(Roy & McCallum, 2001; Lindenbaum et al., 1999),

which selects examples, that once labeled and added to the training set, are expected

to result in the lowest error on future test examples.

5.1.3 Future Work

We are most interested inQuery-by-Committeemethods for active learning. Freund et al.

(1997) have shown that QBC converges to an optimal classifier more quickly thanuncer-
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tainty sampling. QBC attempts to reduce the error of the learner, by choosing an example

to be labeled that will minimize the size of theversion space(Mitchell, 1997) consistent

with the training data. Instead of explicitly computing the size of the version space, QBC

attempts to divide the version space into two parts of comparable size. To achieve this, it

uses a committee of hypotheses sampled from the version space to predict labels of unla-

beled examples; and then selects the example on which the committee disagrees most to be

labeled by the user.

QBC provides a theoretical guarantee of a logarithmic reduction in the number of

labeled training examples needed. However, for QBC to be successful it needs to main-

tain all possible hypotheses consistent with the training data (version space) in some form

(Liere & Tadepalli, 1997). For most interesting hypothesis classes this is computation-

ally intractable. As an alternative to QBC, Abe and Mamitsuka (1998) introduceQuery

by BaggingandQuery by Boosting, where the committee of hypotheses consistent with the

training data are created by Bagging and AdaBoost respectively. For both methods, the next

query example is selected by picking a point on which the (weighted) majority voting by the

committee of hypotheses has the leastmargin. Here themargin for an example is defined

as the difference between the weight assigned to the label predicted by the ensemble and

the maximal weight assigned to any single incorrect label.

Abe and Mamitsuka show that Query by Bagging and Query by Boosting achieves

higher accuracies than both C4.5 and boosted C4.5 with random selection of examples.

Given their success with combining active learning with ensemble methods, we plan to

apply active learning to DECORATE as well. Extending DECORATE to incorporate active

learning is quite straightforward (see Algorithm 3). We can define thedisagreementof an

ensembleC∗, on an examplex, in terms of diversity:

dis(C∗, x) =
|C∗|∑
i=1

di(x)
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Recalling the definition of diversity,

di(x) =




0 : if Ci(x) = C∗(x)

1 : otherwise

We propose to implementactive-DECORATEand compare it to DECORATEapplied

to J4.8 (with random selection). Given the success of other ensemble active learning ap-

proaches, we expect:

Hypothesis 5.1.1: Active-DECORATE will produce classifiers with the same accuracy as

DECORATEusing fewer training examples.

To do a comparative study, we will also implementQuery by BaggingandQuery by

Boosting. Our preliminary experiments have demonstrated that DECORATEperforms better

than Bagging and Boosting, when training sets are small; which is when active learning is

most useful. Therefore, we expect the following:

Hypothesis 5.1.2: Active-DECORATE will achieve steeper learning curves thanQuery by

BaggingandQuery by Boosting.

Algorithm 3 Active-DECORATE algorithm

Given:
T - set of training examples
U - set of unlabeled training examples
n - number of selective sampling iterations
Params - set of DECORATEparameters, (BaseLearn, Csize, Imax, Rsize)

1. Repeatn times

2. C∗ = Decorate(T, Params), produce DECORATEensemble

3. xj = arg max
x∈U

dis(C∗, x), select example with the maximum disagreement

4. Labelxj

5. Removexj from U and add it toT

6. ReturnDecorate(T, Params)
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5.2 Semi-supervised Learning

5.2.1 Introduction

In semi-supervised learning one tries to improve the accuracy of a supervised learner by

exploiting the availability of a set of unlabeled examples (Muslea, 2002b). This is similar

to active learning, in that, it also reduces the need for labeled training examples. Several

semi-supervised algorithms work in the following way: first, they use the base learnerL

and a small set of labeled training examplesT to learn an initial hypothesish. Thenh

is applied to the examples in the unlabeled setU . Examples for whichh can confidently

generate labels are added toT . This process is repeated for a number of iterations.

Semi-supervised learning is based on the following intuition: even though the initial

hypothesish is learned based on a small training set, its highest confidence predictions

are likely to be correct. Hence by adding these “high confidence” examples fromU to

the training set, we get more training data, and we may be able to learn a more accurate

hypothesis. In turn, the more accurate hypothesis can be used to label more examples from

U , and so on. A more detailed study of why unlabeled examples can be used to improve

accuracy can be found in (Blum & Mitchell, 1998; Mitchell, 1999).

Algorithm 4 presents the outline of a typical semi-supervised learner. This frame-

work captures the essence of most semi-supervised algorithms (Muslea, 2002b).

5.2.2 Related Work

There have been few approaches to exploiting unlabeled data for improving the accuracy

of ensemble learners. Co-training (Blum & Mitchell, 1998) can be thought of a special

case of semi-supervised ensemble learning, where the ensemble size is always two. Co-

training requires that the examples in the domain can be described by two disjoint sets of

features (views). The initial training set is used to learn a classifier in both views. Then each

classifier is applied to the unlabeled set, and the examples on which each classifier makes
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Algorithm 4 Semi-supervised Learner

Input:
BaseLearn - base learning algorithm
T - set of labeled training examples
U - set of unlabeled examples
k - number of iterations to be performed
n - number of examples to be added at each iteration

1. Repeatk times

2. Train classifierC = BaseLearn(T )

3. Let MCP be then examples inU for which C makes the most confident
predictions

4. For eachx ∈ MCP

5. Removex from U

6. Add< x, C(x) > to T

the most confident predictions are identified. These self-labeled examples are added to the

training set and the process is repeated for a number of iterations. In the end, a hypothesis

is constructed by voting the predictions made by the classifiers in each view. The drawback

of co-training is that it relies on the assumption that the two views arecompatibleand

uncorrelated(i.e. every example is identically labeled by the target concepts in each view;

and, given the label of any example, its descriptions in each view are independent) (Muslea,

2002a; Nigam & Ghani, 2000).

Unlike co-training, ASSEMBLE(Bennett, Demiriz, & Maclin, 2002) can build semi-

supervised ensembles of any size, and does not require the domain to have multipleviews.

ASSEMBLEincorporatesself-labeledexamples in a Boosting framework. In each iteration

of ASSEMBLE examples from the unlabeled set are labeled by the current ensemble and

added to the training set. Apart from labeling the unlabeled examples, the algorithm is

similar to AdaBoost.
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There have been other approaches to semi-supervised learning that do not use en-

semble methods. Of note, are semi-supervised EM (Nigam, McCallum, Thrun, & Mitchell,

2000), transductive SVMs (Joachims, 1999), and semi-supervised SVMs (Bennett & Dem-

iriz, 1999).

5.2.3 Future Work

Bennett et al. (2002) show how unlabeled data can be effectively combined in ensemble

learning. We plan on implementing an approach similar to theirs; but while they use Boost-

ing as the underlying ensemble learner, we will use DECORATE. Incorporating unlabeled

data in DECORATE is quite straightforward: in each iteration of semi-supervised DECO-

RATE we label examples from the unlabeled set, and add then examples with the most

confident predictions to the training set. We add the remaining unlabeled examples to the

set of artificial training examples. The rest of the DECORATEalgorithm remains unchanged

(see Algorithm 5).

Given that exploiting unlabeled data in ASSEMBLE improves the classification ac-

curacy of Boosting, we expect to see a similar improvement in results for DECORATE. Fur-

thermore, since DECORATE generally outperforms Boosting given few training examples,

we would expect to see similar results for the semi-supervised versions of both algorithms.

These hypothesis can be summarized as follows:

Hypothesis 5.2.1: Using unlabeled data can increase the accuracy of classifiers produced

by DECORATE.

Hypothesis 5.2.2: When labeled examples are scarce, semi-supervised DECORATE will

produce more accurate classifiers than ASSEMBLE.

To verify the above hypotheses we will need to implement ASSEMBLE and semi-

supervised DECORATE. We also propose to implement co-training to use as a baseline

semi-supervised algorithm for comparison. Since most available datasets do not have mul-

tiple views, we will construct the two views required for co-training by randomly splitting



Algorithm 5 Semi-supervised DECORATE algorithm

Input:
BaseLearn - base learning algorithm
T - set ofm training examples< (x1, y1), ..., (xm, ym) > with labelsyj ∈ Y
U - set of unlabeled training examples
n - number of unlabeled examples to use
Csize - desired ensemble size
Imax - maximum number of iterations to build an ensemble
Rsize - factor that determines number of artificial examples to generate

1. i = 1

2. trials = 1

3. Ci = BaseLearn(T )

4. Initialize ensemble,C∗ = {Ci}

5. Compute ensemble error,ε =
P

xj∈T :C∗(xj) 6=yj
1

m

6. While i < Csize andtrials < Imax

7. GenerateRsize × |T | artificial training examples, R

8. Label examples inU usingC∗

9. Select then most confident predictions fromU and add them toT

10. Add the remaining unlabeled examples toR

11. Label examples in R with probability of class labels inversely
proportional toC∗’s predictions

12. T = T
⋃

R

13. C ′ = BaseLearn(T )

14. C∗ = C∗ ⋃{C ′}
15. T = T −R, remove the artificial data

16. Compute training error,ε′, of C∗ as in step 5

17. If ε′ ≤ ε

18. i = i + 1

19. ε = ε′

20. otherwise,

21. C∗ = C∗ − {C ′}
22. trials = trials + 1
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feature sets. This approach to co-training has been used in (Nigam & Ghani, 2000). Since

co-training’s assumptions are violated in most domains, we expect that semi-supervised

DECORATEshould be able to outperform it. This leads us to our next hypothesis:

Hypothesis 5.2.3: Semi-supervised DECORATEwill produce more accurate classifiers than

co-training using random feature splits.

The use of unlabeled examples in DECORATE is based on the same intuition as

in other semi-supervised learners; namely, that the most confident predictions of the base

learner are likely to be right and adding thesehigh confidenceexamples from the unlabeled

set to the training set may increase accuracy. Apart from using the high confidence examples

from the unlabeled set, DECORATE can readily exploit the remaining unlabeled data, by

using this data the same way it uses artificial data to foster diversity in the ensemble. Hence

having many unlabeled examples can also reduce the amount of artificial examples that need

to be generated in each DECORATE iteration; thus reducing the training time. We propose

to run experiments with semi-supervised DECORATE, varying the amount of unlabeled and

artificial examples, to verify the following hypothesis:

Hypothesis 5.2.4: Using unlabeled data can reduce the amount of artificial training exam-

ples required by DECORATEto achieve a given accuracy.

5.3 Combining Active Learning with Semi-Supervision

Both active learningandsemi-supervised learningcan be viewed as methods that reduce

the amount of labeled data required for supervised learning. Given a large set of unlabeled

examples, we can combine both these frameworks for improved results.

In each iteration of active-DECORATE we use the current ensemble to select the

most informative example to be labeled from the unlabeled data. However, in the active-

DECORATE algorithm we described above, we only use thelabeleddata to produce the

current ensemble. But, if possible, we should exploit the unlabeled data to produce more

accurate ensembles at each iteration. This algorithm is a straightforward extension to active-
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DECORATE(see Algorithm 6).

Algorithm 6 Active Semi-supervised DECORATE algorithm

Given:
T - set of training examples
U - set of unlabeled training examples
n - number of selective sampling iterations
Params - set of DECORATEparameters, (BaseLearn, Csize, Imax, Rsize)

1. Repeatn times

2. C∗ = SemiSupDecorate(T, U, Params), produce semi-supervised DECO-
RATE ensemble

3. xj = arg max
x∈U

dis(C∗, x), select example with the maximum disagreement

4. Labelxj

5. Removexj from U and add it toT

6. ReturnSemiSupDecorate(T, U, Params)

We expect semi-supervised DECORATE and active-DECORATE to reinforce each

other in the following way. By exploiting unlabeled data, semi-supervised DECORATE

will improve the accuracy of the classifiers learned by active-DECORATE. And at the same

time, active-DECORATEwill improve semi-supervised DECORATE’s accuracy by providing

highly informative labeled examples. Depending on the success of both components, we

conjecture the following:

Hypothesis 5.3.1: Active semi-supervised DECORATEwill produce higher accuracies than

both active-DECORATEand semi-supervised DECORATE, using the same number of train-

ing examples.

Similar combinations of semi-supervised and active learning have shown success in

the past. McCallum and Nigam (1998) show that combining semi-supervised Expectation-

Maximization (EM) and Query-by-Committee (QBC) performs better than both EM and

QBC. Muslea (2002a) introduces Co-EMT, a combination of Co-Testing (Muslea, Minton,
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& Knoblock, 2000) and Co-EM (Nigam & Ghani, 2000), which performs better than its

components.

5.4 Improved Class Membership Probability Estimates

5.4.1 Introduction

In many supervised learning applications, it is not sufficient to predict the most likely class

label for a test example. Quite often, what is needed is an accurate estimate of the proba-

bility of a test example belonging to each class.

Cost-sensitive learningis one area that stands to benefit from having accurate class

probability estimates. Most learning algorithms for classification are designed to minimize

zero-one lossi.e. the number of misclassified examples. This implicitly assumes that all

errors are equally costly. However, in many domains, such as fraud detection, medical di-

agnosis, or intrusion detection, the cost of making a false positive error may be significantly

different from making a false negative error (Margineantu & Dietterich, 2002). The area of

cost-sensitive learningfocuses on building classifiers that take into account these different

misclassification costs. In general, misclassification costs may be represented as a cost ma-

trix C, whereC(i, j) is the cost of predicting that an example belongs to classi when in

fact it belongs to classj. According to decision theory, we should select a class to minimize

the cost:

y = arg min
i∈Y

∑
j

P (j|x)C(i, j)

To make an optimal decision we need to have accurate estimates of the class membership

probabilitiesP (j|x). Cost-sensitive learning is a well studied area; and a good bibliography

can be found in (Turney, 1997).
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5.4.2 Future Work

We believe that DECORATEnot only improves classifier accuracy; but by averaging across

an accurateanddiverseensemble, it also provides better class probability estimates than

the base classifier. This leads us to the following:

Hypothesis 5.4.1: DECORATEimproves the class membership probability estimates of the

base classifier.

We plan on testing our hypothesis on thedonor-solicitationtask that was used in the

data mining contest in KDD in 1998 (Bay, 2000). In this task we are given that the cost of

requesting a donation from an individualx is $0.68, and that the best estimate of the amount

thatx will donate, isg(x). The goal of the task is to learn when to solicitx for a donation,

such that our net revenue is maximized. The optimal decision-making strategy, would be

to solicit x for a donation if and only if,P (donor|x)g(x) > 0.68, whereP (donor|x) is

the estimate of the probability thatx belongs to the class of donors. Clearly having good

estimates of the class membership probabilities is critical for this task. We will compare

the effectiveness of using class membership probabilities from J48 decision trees versus

DECORATEd trees.

There have been several other studies that have focused on improving class proba-

bility estimates (Provost & Domingos, 2000; Zadrozny & Elkan, 2001, 2002; Margineantu

& Dietterich, 2002; Saar-Tsechansky & Provost, 2001; Bennett, 2003). Based on the im-

provements we observe, we will consider comparing with some of these methods.

5.5 Regression

5.5.1 Introduction

So far we have focused on theclassificationtask of learning the functiony = f(x), where

the y values are drawn from a discrete set of classes{1, ..., K}. However, quite often

domains requireregression, where they values are drawn from the real line. The typical
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goal of regression is to learn a function that minimizes themean squared error(MSE),

defined as: ∑
x

(fT (x)− f(x))2

wheref(x) is the target function andfT (x) is the function learned based on the training

setT . There have been many well-studied learning algorithms developed for regression

(Hastie et al., 2001); but we are chiefly interested in methods that decrease error by using

ensembles of regressors.

5.5.2 Related Work

There have been several approaches to applying ensemble methods to regression; most of

which have focused on ensembles of neural networks (Liu & Yao, 1999; Rosen, 1996; Opitz

& Shavlik, 1996; Krogh & Vedelsby, 1995; Brown & Wyatt, 2003). These ensemble ap-

proaches are tied to using neural networks as the base learner; whereas we are interested in

developing methods that can be applied to improve the generalization accuracy of any learn-

ing algorithm. Drucker (1997) compared Bagging and Boosting techniques for regression.

He applied standard Bagging (Breiman, 1996b) and a variation ofAdaBoost.R(Freund &

Schapire, 1996) to Breiman’s Classification and Regression Trees (CART)(Breiman et al.,

1984). From his experiments, he concluded that in most cases, Boosting produces improve-

ments and is never statistically worse than Bagging.

5.5.3 Future Work

So far we have focused on using DECORATE for the classification task; however, it can

easily be modified to solve regression problems. The algorithm will largely remain the

same as Algorithm 2. The only step that requires modification is the labeling of artificial

examples (step 8). This is because in regression, our target function maps to numbers on

the real line, as opposed to a discrete set of class labels. But we still want to label artificial

examples, such that training on them will increase the ensemble’s diversity. In the case of
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regression, we use the ensemble’s variance around the mean, as our measure ofdiversity.

So to give rise to increased diversity, we label each artificial example withµ±α×σ; where

µ andσ are the mean and standard deviation of the predictions of the current ensemble’s

members, andα is a factor that determines how much we want to increase the variance

(values ofα > 1 will increase the variance).

As mentioned earlier, the diversity decomposition from (Krogh & Vedelsby, 1995),

shows that the generalization error,E, of the ensemble can be expressed asE = Ē − D̄,

whereĒ andD̄ are the mean error and diversity (variance) of the ensemble respectively.

Therefore, by increasing the variance as described above we can ensure a drop in the en-

semble’s error.

To evaluate the effectiveness of DECORATE for regression, we will apply the ap-

proach described above to neural networks. We expect the following:

Hypothesis 5.5.1: A DECORATE ensemble of neural networks will produce significantly

lower error than a single neural network.

To further evaluate the amount of error-reduction that DECORATEcan bring about,

we will compare our approach to Bagging and Boosting neural networks. We will run

comparisons on the sets of synthetic data used in (Friedman, 1991) as well as a represen-

tative collection of real datasets from the UCI repository (Blake & Merz, 1998). Given the

promising results in classification error-reduction, we expect to see similar improvements

here:

Hypothesis 5.5.2: DECORATEwill produces lower errors than Bagging and AdaBoost.R1

applied to neural networks; specially when training data is scarce.

Apart from neural networks, we would also like to test DECORATE’s performance

on other regressors, such as regression trees and SVMs. Time-permitting we will run these

experiments too.
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5.6 Relational Learning

5.6.1 Introduction

Most current machine learning techniques assume a “propositional” (a.k.a “feature vector”

or “attribute value”) representation of examples (Witten & Frank, 1999).Relational learn-

ing (RL) (Dz̆eroski & Lavrăc, 2001b), on the other hand, concerns learning from multiple

relational tables that are richly connected. The most widely studied methods for induc-

ing relational patterns are those ininductive logic programming(ILP)(Muggleton, 1992;

Lavrac & Dzeroski, 1994). ILP concerns the induction of Horn-clause rules in first-order

logic (i.e., logic programs) from data in first-order logic.

ILP is the study of learning methods for data and rules that are represented in first-

order predicate logic. Predicate logic allows for quantified variables and relations and can

represent concepts that are not expressible using examples described as feature vectors. A

relational database can be easily translated into first-order logic and be used as a source of

data for ILP (Wrobel, 2001). As an example, consider the following rules, written in Prolog

syntax (where the conclusion appears first), that define the uncle relation:

uncle(X,Y) :- brother(X,Z),parent(Z,Y).

uncle(X,Y) :- husband(X,Z),sister(Z,W),

parent(W,Y).

The goal ofinductive logic programming(ILP) is to infer rules of this sort given a database

of background facts and logical definitions of other relations (Muggleton, 1992; Lavrac &

Dzeroski, 1994). For example, an ILP system can learn the above rules for uncle (thetarget

predicate) given a set of positive and negative examples of uncle relationships and a set of

facts for the relations parent, brother, sister, and husband (thebackground predicates) for

the members of a given extended family, such as:

uncle(tom,frank), uncle(bob,john),

¬uncle(tom,cindy), ¬uncle(bob,tom)
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parent(bob,frank), parent(cindy,frank),

parent(alice,john), parent(tom,john),

brother(tom,cindy), sister(cindy,tom),

husband(tom,alice), husband(bob,cindy).

Alternatively, rules that logically define the brother and sister relations could be supplied

and these relationships inferred from a more complete set of facts about only the “basic”

predicates:parent , spouse , andgender .

If-then rules in first-order logic are formally referred to asHorn clauses. A more

formal definition of the ILP problem follows:

• Given:

– Background knowledge,B, a set of Horn clauses.

– Positive examples,P , a set of Horn clauses (typically ground literals).

– Negative examples,N , a set of Horn clauses (typically ground literals).

• Find: A hypothesis,H, a set of Horn clauses such that:

– ∀p ∈ P : H ∪B |= p (completeness)

– ∀n ∈ N : H ∪B 6|= n (consistency)

Many algorithms for the ILP problem have been developed (Dz̆eroski & Lavrăc,

2001a) and applied to a variety of important data-mining problems (Dz̆eroski, 2001). The

algorithms that we will primarily work with are ALEPH (Srinivasan, 2001) and BETH (Tang,

Mooney, & Melville, 2003).

5.6.2 Related Work

There have been few attempts at applying ensemble methods to first-order learning. Quin-

lan (1996b) applied Boosting to FFOIL, a first-order system that constructs definitions of

functional relations. He found that Boosting produces modest improvements in accuracy
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on 4 out of 5 datasets. Bagging has been applied to ALEPH and has been shown to produce

sizeable improvements in results (Dutra, Page, Costa, & Shavlik, 2002; Mooney, Melville,

Tang, Shavlik, de Castro Dutra, Page, & Costa, 2002). Hoche and Wrobel (2001) apply

a variation of Boosting,constrained confidence-rated Boosting, to a weak ILP learner that

they constructed. They claim that their weak learner can be boosted to perform comparably

with more powerful ILP learners. Their focus is comprehensibility of results and efficiency

of learning, and so their work is not directly relevant.

5.6.3 Future Work

Prior work has shown that using ensembles for first-order learning can improve accuracy of

the base learner. So it would be interesting to see to what extent results may be improved by

applying DECORATE to first-order learning. However, generating artificial training exam-

ples is not as straightforward for relational data as it is for feature-vector data. But, in some

domains it is possible to acquire unlabeled training examples, e.g. the Contract-Killing

domain (Mooney et al., 2002). We can exploit this unlabeled data to build DECORATE

ensembles in an approach similar to that described in section 5.2.

We plan on implementing Bagging, Boosting and DECORATE using both ALEPH

and BETH as base learners. We will compare the results of applying each of these en-

semble methods on the Contract-Killing and Mutagenicity dataset (Srinivasan, Muggleton,

Sternberg, & King, 1996). To evaluate each system we will run standard 10-fold cross-

validation and generate learning curves. The promising results of applying DECORATE to

propositional learning lead us to the following hypotheses:

Hypothesis 5.6.1: DECORATE applied to ALEPH and BETH will produce more accurate

classifiers than the base classifiers at all points on the learning curve.

Hypothesis 5.6.2: When there is a paucity of training data DECORATEwill achieve a higher

accuracy than Boosting or Bagging applied to ALEPH and BETH.
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5.7 Theoretical Issues

The empirical success of DECORATE in the classification task, raises the issue of the need

for a sound theoretical understanding of its effectiveness. Here are a few of the theoretical

questions that we would like to address:

• Can we prove that the DECORATE algorithm improves the bound on generalization

error?

• How does ensemblediversityrelate to bias and variance error decomposition (Domin-

gos, 2000)?

• How does DECORATErelate to methods that attempt to maximize the margins on the

training sample, such as AdaBoost (Schapire, Freund, Bartlett, & Lee, 1998)?

To answer these questions, we need to develop a strong theoretical framework for DECO-

RATE.
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Chapter 6

Conclusion

DECORATE provides strong evidence that diversity is a critical factor in constructing ef-

fective ensemble classifiers. By manipulating artificial training examples, DECORATE is

able to use a strong base learner to produce an accurate, diverse ensemble. Preliminary

experimental results demonstrate that our approach produces highly accurate ensembles

that outperform both Bagging and Boosting low on the learning curve. Moreover, given

large training sets, DECORATEoutperforms Bagging and is competitive with Boosting. The

goal of our proposed research is to show that DECORATE can also be effectively used for

(1) active learning, (2) semi-supervised learning, (3) combining active learning with semi-

supervision, (4) regression, (5) improving class membership probability estimates and (6)

relational learning.
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