Copyright
by
Un Yong Nahm

2004

The Dissertation Committee for Un Yong Nahm

certifies that this is the approved version of the following dissertation:

Text Mining with Information Extraction

Committee:

Raymond J. Mooney, Supervisor

Joydeep Ghosh

Inderjit Dhillon

Risto Miikkulainen

Tom Mitchell

Text Mining with Information Extraction

by

Un Yong Nahm, B.S.,M.S.

Dissertation
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

August 2004

Acknowledgments

This work was carried out with many help. First of all, I wish to express my sincere
gratitude to my supervisor, Dr. Raymond J. Mooney. The most important factor
for the completion of this thesis was his understanding attitude towards my work
and confidence in me. I am also deeply grateful for the significant contributions
of other members of my committee: Dr. Joydeep Ghosh, Dr. Risto Miikkulainen,
Dr. Inderjit Dhillon, and Dr. Tom Mitchell. They have been a constant source
of guidance. Many other have provided moral support and ideas, especially: Prem
Melville, Misha Bilenko, Sugato Basu, John Wong, Ruifang Ge, Rohit Kate, Razvan
Bunescu, Lily Mihalkova, and Stewart Yang. I am very indebted to them for helpful
discussion and encouragement throughout the years.

The research was supported by the National Science Foundation under grant

IRI-9704943 and IIS-0117308.

UN YONG NAHM

The University of Texas at Austin

August 2004

iv

Text Mining with Information Extraction

Publication No.

Un Yong Nahm, Ph.D.

The University of Texas at Austin, 2004

Supervisor: Raymond J. Mooney

The popularity of the Web and the large number of documents available in elec-
tronic form has motivated the search for hidden knowledge in text collections. Con-
sequently, there is growing research interest in the general topic of text mining. In
this dissertation, we develop a text-mining system by integrating methods from In-
formation Extraction (IE) and Data Mining (Knowledge Discovery from Databases
or KDD). By utilizing existing IE and KDD techniques, text-mining systems can be
developed relatively rapidly and evaluated on existing text corpora for testing IE
systems.

We present a general text-mining framework called DiISCOTEX which em-
ploys an IE module for transforming natural-language documents into structured
data and a KDD module for discovering prediction rules from the extracted data.
When discovering patterns in extracted text, strict matching of strings is inadequate
because textual database entries generally exhibit variations due to typographical

errors, misspellings, abbreviations, and other sources. We introduce the notion

of discovering “soft-matching” rules from text and present two new learning algo-
rithms. TEXTRISE is an inductive method for learning soft-matching prediction
rules that integrates rule-based and instance-based learning methods. Simple, inter-
pretable rules are discovered using rule induction, while a nearest-neighbor algorithm
provides soft matching. SOFTAPRIORI is a text-mining algorithm for discovering as-
sociation rules from texts that uses a similarity measure to allow flexible matching
to variable database items. We present experimental results on inducing prediction
and association rules from natural-language texts demonstrating that TEXTRISE
and SOFTAPRIORI learn more accurate rules than previous methods for these tasks.
We also present an approach to using rules mined from extracted data to improve
the accuracy of information extraction. Experimental results demonstate that such

discovered patterns can be used to effectively improve the underlying IE method.

vi

Contents

Acknowledgments iv
Abstract v
List of Tables xii
List of Figures xiv
Chapter 1 Introduction 1
1.1 Text Data Mining 1
1.2 Imnformation Extraction. 0. 2
1.3 Heterogeneity of Text Data 4
1.4 Contributions of the Thesis 5
1.5 Organization of Thesis 6

Chapter 2 Background on Text Mining and Information Extraction 8

2.1 Information Extraction. 8
2.2 Learning for Information Extraction 9
221 RAPIER i 11

vil

2.3

2.4

2.5

222 BWI. ... e 12

Rule Mining 00 0o e 13
2.3.1 Inductive Rule Learning 13
2.3.2 Association Rule Mining 14
Rule Mining from Text 15
Similarity Metricso oo s 16
2.5.1 Edit Distance oo 17
2.5.2 Vector Spaceo 20

Chapter 3 DiscoTEX: Combining IE and KDD for Text Mining 22

3.1

3.2

3.3

3.4

3.5

3.6

Introduction Lo 22
Data Representation 24
3.2.1 Representation Lo Lo, 24
3.22 DataTypeso 27
Data Sets e 29
3.3.1 Job-postings Data Set 29
3.3.2 Resumé Data Set 30
3.33 BookDataSet 30
3.34 MovieData Set Lo 31
Initial DiscoTEX oL o o e 31
Automatically Extracted Data vs. Manually Extracted Data 35

3.5.1 Experimental Methodology 36
3.5.2 Results and Discussion 40
Summary e e 42

viii

Chapter 4 TEXTRISE: Learning Soft-Matching Rules From Text
41 RISE e
4.2 The TEXTRISE Algorithm

4.2.1 Rule Generalization,
4.2.2 The Algorithm L.
4.2.3 Interestingness Measures
43 Evaluation.
4.3.1 Experimental Methodology
4.3.2 Resultsand Discussion

4.4 Summaryo e e e e e e e e e e e e

Chapter 5 SOFTAPRIORI: Mining Soft-Matching Rules from Text
5.1 Soft Association Rules oL,
5.2 The SOFTAPRIORI Algorithm

5.2.1 The Algorithm oo
5.2.2 Time Complexity
53 Evaluation.
5.3.1 Experimental Methodology
5.3.2 Results and Discussion

54 Summary Lo e e

Chapter 6 Retrieving Similar Textual Items Efficiently
6.1 Introduction.
6.2 Fast Retrieval of Similar Strings

6.2.1 Retrieving Similar Strings Using a Threshold

ix

44
45
51
51
57
61
64
64
65
67

70
71
74
75
82
83
83
83
85

6.2.2 Retrieving k-Nearest Strings 100

6.3 Fast Retrieval of Similar Documents 104
6.3.1 Retrieving Similar Documents Using a Threshold 104
6.3.2 Retrieving k-Nearest Documents 106

6.4 Summary e e e e e e e 107

Chapter 7 Experimental Comparison of TEXTRISE and SOFTAPRIORI109

7.1 Experimental Methodology 109
7.2 Results and Discussion Lo 110
7.3 Training Time. oL oo 113
74 Summary e e 114

Chapter 8 Using Mined Rules in Improving Information Extraction116

8.1 Imtroduction. 117
8.2 Experiments with Hard-Matching Rules 118
8.2.1 The Algorithm L. 118
8.2.2 Experimental Results 120

8.3 Using Soft-Matching Rules to Improve IE 125
83.1 The Algorithm oo 125
8.3.2 Experimental Results 126

84 Summary e e 131
Chapter 9 Related Work 133
9.1 Rule Mining from Text 133
9.2 Integrating IE and Data Mining 136
9.3 Mining Soft-Matching Rules 140

Chapter 10 Future Work 142

10.1 Using Background Information 142
10.2 Mining More Expressive Rules 146
10.3 Enhancing DISCOTEX, 148
10.4 Improving Information Extraction 151
10.5 Extension to Other Text Mining Tasks 152
Chapter 11 Conclusion 155
Appendix A A Brief Theory of Bags 158
Appendix B Synonym Dictionary 160
Appendix C Sample Data 168
C.1 Computer-related Job Postings 168
C.2 Computer-related Resumés 170
C.3 Book Descriptions Lo 174
C.4 Movie Descriptionso 0 o 176
Bibliography 179

xi

3.1
3.2
3.3
3.4
3.5
3.6
3.7

5.1
5.2
5.3
5.4
5.5
5.6
5.7

6.1

6.2

List of Tables

Document models and corresponding similarity metrics.
Slots and slot-value types for job-postings data set
Slots and slot-value types for resumé dataset
Slots and slot-value types for book-descriptions data set
Slots and slot-value types for movie-descriptions data set
Statistics on slot-fillers oL

The expected outcome for random guessing

Sample noisy textual database
An example of a database with soft-matching items
Sample database L Lo L
Similar itemso L
Sample frequent 1-itemset table (minsup=3)
Test accuracies of soft vs. hard association rules (%)

Test accuracies of soft vs. hardrules

Problem definition

Minimum distance between z and y with no shared trigrams

xii

8.1 Performance results with unlabeled examples

xiii

21

2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4.1
4.2
4.3
4.4

List of Figures

Sample text and filled template for a job posting 10
The algorithm for computing affine gapcost 19
Overview of IE-based text mining framework 23
An example of a book descriptiono 25
Document representation L. 27
Sample rules mined for computer-science job postings 34
The initial DISCOTEX 35
The system architecture for evaluation 38
Precision and recall with disjoint IE trainingset 41
F-measure for DISCOTEX by slots 42
Precision and recall with reused IE trainingset 43
The RISE rule-learning algorithm 47
Generalization of a rule to cover an example 48
The accuracy-computing algorithm 48
The algorithm for computing generalizations of two strings with affine

gapcost L. e 53

xiv

4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13

4.14

5.1
5.2

5.3

6.1
6.2
6.3
6.4
6.5
6.6
6.7

6.8

7.1
7.2

Generalization of a rule to cover an example 55
The TEXTRISE rule-learning algorithm 56
The accuracy-computing algorithm 57
A set of book descriptions Lo 58
Sample rules from book dataset 62
Average similarities for book data 66
Precision for book data oL 67
F-measure for book data L., 68
Precision for moviedata 0oL L. 69
F-measure for moviedata, 69
The SOFTAPRIORI algorithm, ... 76
Sample discovered soft-association rules 81
Evaluation algorithm for soft-matching association rules 84
The optimization algorithm using string length 93
The optimization algorithm using trigram index 98
Running time for similarity computations 100
The optimized search algorithm 102
Running time for nearest-neighbor search 103
The optimized search algorithm 105
Running time for similarity computations 106
Running time for nearest-neighbor search 108
Evaluation algorithm oL 0o oo 111
Test accuracies: Soft-precision 112

XV

7.3 Test accuracies: Soft-F-measures 113

7.4 Training timeol 114
8.1 Overview of IE-based text mining framework with feedback loop . . 117
8.2 The system architecture, 121
8.3 Recall on job postings for hard-matching rules 122
8.4 F-measure on job postings for hard-matching rules 123
8.5 Algorithm specification for using soft-matching mined rules in IE . . 127
8.6 Recall on job postings 130
8.7 F-measure on job postings L L oL 131
10.1 An example of an XML document for a book description. 145

10.2 An example for a set of topics identified by IE: from a CNN article . 153

xvi

Chapter 1

Introduction

The recent abundance of digital information available electronically has made the
organization of textual information into an important task. Text mining is a bur-
geoning new technology for discovering knowledge from text data. With the fast
growth of the number of pages on the World Wide Web, text mining plays a key
role in managing information and knowledge, and is therefore attracting increasing
attention (Berry, 2003; Feldman, 1999; Hearst, 2003, 1999; Grobelnik, 2001, 2003;

Mladenié¢, 2000; Muslea, 2004).

1.1 Text Data Mining

Data Mining (DM) or Knowledge Discovery in Databases (KDD) is the process of
identifying novel and understandable patterns in data (Han & Kamber, 2000; Witten
& Frank, 1999). Data mining seeks not only information or answers to the question
which the user already knows to ask, but discovers deep knowledge embedded within

the data. In order to do that, data mining applies computational techniques, usually

in the form of a learning algorithm, to find potentially useful patterns in the data.
Most existing data mining approaches look for patterns in a relational table of data
(Agrawal, Imielinsky, & Swami, 1993).

Text mining or text data mining, the process of finding useful or interest-
ing patterns, models, directions, trends, or rules from unstructured text, is used to
describe the application of data mining techniques to automated discovery of knowl-
edge from text (Chakrabarti, 2002; Han & Kamber, 2000). Text mining has been
viewed as a natural extension of data mining (Hearst, 2003, 1999) or sometimes
considered as a task of applying the same data mining techniques to the domain
of textual information (Dorre, Gerstl, & Seiffert, 1999). This reflects the fact that
the advent of text mining relies on the burgeoning field of data mining to a great
degree.

However, unlike data mining, which focuses on the well-structured collections
that exist in either relational databases or data warehouses, text mining excavates
data that is far less structured. Much of today’s electronic data resides not in
traditional relational databases, but “hidden” in the Web and natural-language
documents. In this dissertation, we present a new framework for text mining based

on the integration of traditional data mining and Information Extraction (IE).

1.2 Information Extraction

There has been an explosive growth in the amount of information available on
networked computers around the world, much of it in the form of natural language
documents. Traditionally, texts have been mainly analyzed by natural language

processing techniques or Information Retrieval (IR) methods. One way of providing

shallow understanding on this corpora is with information extraction. Information
extraction is the task of locating desired pieces of data from a natural language
document, and has been the focus of DARPA’s MUC program (DARPA, 1998). The
extracted information can then be stored in a database which could then be queried
using either standard database query languages or a natural language database
interface (Califf, 1998; Popescu, Etzioni, & Kautz, 2003).

The goal of an IE system is to find specific data in natural-language texts.
The data to be extracted is typically given by a template which specifies a list of
slots to be filled with substrings taken from the document. IE is useful for a vari-
ety of applications, particularly given the recent proliferation of Internet and web
documents. Recent applications include course and research project homepages
(Freitag, 1998a; Thompson, Smarr, Nguyen, & Manning, 2003), seminar announce-
ments (Freitag, 1998b), apartment rental ads (Soderland, 1999), job announcements
(Califf & Mooney, 1999), geographic web documents (Etzioni, Cafarella, Downey,
Kok, Popescu, Shaked, Soderland, Weld, & Yates, 2004), government reports (Pinto,
McCallum, Wei, & Croft, 2003), and medical abstracts (Bunescu, Ge, Kate, Mar-
cotte, Mooney, Ramani, & Wong, 2004).

Traditional data mining assumes that the information to be “mined” is al-
ready in the form of a relational database. Unfortunately, for many applications,
electronic information is only available in the form of unstructured natural-language
documents rather than structured databases. IE addresses the problem of trans-
forming a corpus of textual documents into a more structured database, thereby
suggesting an obvious role that can be played in text mining when combined with

standard KDD methods. In this dissertation, we suggest using an IE module to

locate specific pieces of data in raw text, and to provide the resulting database to

the KDD module for rule mining.

1.3 Heterogeneity of Text Data

In comparison with relational databases, natural-language corpora available on the
internet are heterogeneous and noisy. Entries in many textual database fields could
exhibit minor variations that can prevent mining algorithms from discovering im-
portant regularities. Variations can arise from typographical errors, misspellings,
abbreviations, as well as from other sources.

Variations are particularly pronounced in data that is automatically ex-
tracted from unstructured or semi-structured documents or web pages (Ghani,
Jones, Mladenié¢, Nigam, & Slattery, 2000; Nahm & Mooney, 2000). For example,
in data on local job offerings that we automatically extracted from newsgroup post-
ings, Windows operating system is variously referred to as “Microsoft Windows”,
“MS Windows”, “Windows 95/98/ME”, etc..

Some previous work has addressed the problem of identifying similar or
duplicate records, where it is referred to as record linkage (Winkler, 1999), the
merge/purge problem (Herndndez & Stolfo, 1995), duplicate detection (Monge &
Elkan, 1997), hardening soft databases (Cohen, Kautz, & McAllester, 2000), and
reference matching (McCallum, Nigam, & Ungar, 2000b). Typically, a fixed tex-
tual similarity metric is used to determine whether two values or records are similar
enough to be duplicates. In this approach, “Microsoft Windows”, “MS Windows”,
and “Windows 95/98/ME” are mapped to a unique term as a pre-processing step.

We propose the alternative method of directly mining “dirty” data by discov-

ering “soft-matching” rules whose antecedents and consequents are evaluated based
on sufficient similarity to database entries. Similarity of text can be measured using
standard “bag of words” metrics (Salton, 1989) or edit-distance measures (Gusfield,
1997); other standard similarity metrics can be used for numerical and additional
data types. For instance, soft-matching rules such as “If Windows is in the list of
required skills for a job, then knowledge for IIS is also required for that job.” are
discovered from a set of job announcements. In this case, “Windows” and “IIS” can

be matched to similar strings such as “MS Windows” or “IIS Services” respectively.

1.4 Contributions of the Thesis

While there is a growing interest in the general topic of text mining, there are
few working systems or detailed experimental evaluations. This dissertation intro-
duces DISCOTEX, a new framework for text mining based on the integration of
Information Eztraction (IE) and traditional Knowledge Discovery from Databases
(KDD), a.k.a. data mining. We explore the interaction between these two impor-
tant techniques to perform text mining tasks by presenting an approach to using
an automatically learned IE system to extract a structured databases from a text
corpus, and then mine this database with traditional KDD tools. We show that
text-mining systems can be developed relatively rapidly and evaluated on existing
IE corpora, by utilizing existing IE and KDD technology.

To address the heterogeneity problem, we present a method, TEXTRISE, for
learning soft-matching rules from text using a modification of the RISE algorithm
(Domingos, 1996), a hybrid of rule-based and instance-based (nearest-neighbor)

learning methods. Similarly, we introduce an algorithm, SOFTAPRIORI that discov-

ers soft-matching association rules given a user-supplied similarity metric for each
field. SOFTAPRIORI is a natural extension of the traditional association rule mining
algorithm (Agrawal & Srikant, 1994) with soft-matching based on a specified similar-
ity metric. With encouraging results from experiments in several domains, we show
how these approaches can induce accurate predictive rules despite the heterogene-
ity of automatically extracted textual databases. By illustrating that soft-matching
allows discovery of additional interesting rules, capturing certain relationships more
accurately, we show that allowing the discovery of soft-matching rules can eliminate
the need for certain types of tedious data cleaning prior to knowledge discovery.
We also explore a less obvious interaction between IE and KDD in the pro-
posed text-mining framework. KDD can in turn provide benefits to IE as the predic-
tive relationships between different slot fillers discovered by KDD provide additional
clues about what information should be extracted from a document. This disserta-
tion reports experiments in computer-related job and resumé domains demonstrating
that predictive rules acquired by applying KDD to an extracted database can be

used to improve the performance of the underlying information extraction system.

1.5 Organization of Thesis

The rest of the thesis is organized as follows. Chapter 2 will give a brief introduction
to Text Mining and Information Extraction. An implementation of the DiISCOTEX
framework which simply combines IE and KDD will be described in Chapter 3 to
demonstrate that the knowledge discovered from such an automatically extracted
database is close in accuracy to the knowledge discovered from a manually con-

structed database. Chapter 4 presents and analyzes experimental results obtained

with TEXTRISE, a more sophisticated implementation of the proposed text mining
framework with partial matching rules incorporated in the prediction rule-learning
algorithm. In Chapter 5, another approach called SOFTAPRIORI will be overviewed.
SOFTAPRIORI discovers association rules from noisy textual databases. In Chap-
ter 6, we will address the performance and the scalability issues which are important
in real-world applications. Several optimization techniques employed in our system
to speed up the running time will be discussed. After that, we will give experimental
results obtained with our systems on internet documents such as Usenet newsgroup
postings in Chapter 7. Chapter 8 presents initial results on the less obvious inter-
action between KDD and IE. We will show that rules mined by KDD can be used
to improve the performance of the underlying IE. We will then review some related
work or research problems briefly in Chapter 9 followed by a discussion on possible
directions for future work in Chapter 10. Finally, we will discuss the significance of

our research and make conclusions in Chapter 11.

Chapter 2

Background on Text Mining

and Information Extraction

We will start by giving some basic concepts and overview for information extraction

and existing text mining technology.

2.1 Information Extraction

The task of information extraction aims to find specific structured data in natural-
language text. DARPA’s Message Understanding Conferences (MUC) has concen-
trated on IE by evaluating the performance of participating IE systems based on
blind test sets of text documents (DARPA, 1998). The data to be extracted is typ-
ically given by a template which specifies a list of slots to be filled with substrings
taken from the document.

Usually the data to be extracted is described by a template specifying a list

of slots to be filled, though sometimes it is specified by annotations in the document.

In either case, slot-fillers may be of two types: they may be one of a set of specified
values or they may be strings taken directly from the document.

Figure 2.1 shows a paired (shortened) document and template from an in-
formation extraction task in the job-posting domain. This template includes only
slots that are filled by strings taken directly from the document. Several slots may
have multiple fillers for the job-posting domain as in (programming) languages,
platforms, applications, and areas.

IE has been shown to be useful in a variety of applications, e.g. seminar an-
nouncements, restaurant guides, course homepages, job postings, apartment rental
ads, and news articles on corporate acquisition (Califf, 1999; Ciravegna & Kushm-
erick, 2003; Kushmerick, 2001). IE is also a suitable technology for automatically
annotating web pages for the Semantic Web (Berners-Lee, Hendler, & Lassila, 2001;
Stevenson & Ciravegna, 2003).

In particular, machine learning techniques have been suggested for extracting
information from text documents in order to create easily searchable databases from
the information, thus making the online text more accessible (Califf & Mooney,
1999). For instance, information extracted from job postings on the Web can be

used to build a searchable database of jobs!.

2.2 Learning for Information Extraction

Although most information extraction systems have been built entirely by hand until
recently, automatic construction of complex IE systems has begun to be considered

by many researchers lately (Califf, 1999; Ciravegna, Basili, & Gaizauskas, 2000;

"http://£flipdog.monster. com/

Document

Title: Web Development Engineer
Location: Beaverton, Oregon

This individual is responsible for design and implementation
of the web-interfacing components of the AccessBase server,
and general back-end development duties.

A successful candidate should have experience that includes:

One or more of: Solaris, Linux, IBM AIX, plus Windows/NT
Programming in C/C++, Java

Database access and integration: Oracle, ODBC

CGI and scripting: one or more of Javascript,

VBScript, Perl, PHP, ASP

Exposure to the following is a plus: JDBC, Flash/Shockwave,
FrontPage and/or Cold Fusion.

A BSCS and 2+ years experience (or equivalent) is required.

Filled Template

title: “Web Development Engineer”
location: “Beaverton, Oregon”

languages: “C/C++”, “Java”, “Javascript”, “VBScript”, “Perl”, “PHP”,
L(ASP”

platforms: “Solaris”, “Linux”, “IBM AIX”, “Windows/NT”

applications: “Oracle”, “ODBC”, “JDBC”, “Flash/Shockwave”, “FrontPage”,
“Cold Fusion”

areas: “Database”, “CGI”, “scripting”

degree required: “BSCS”

years of experience: “2+ years”

Figure 2.1: Sample text and filled template for a job posting

10

Kushmerick, 2001). By training on a corpus of documents annotated with their
filled templates, they acquire a knowledge base of extraction rules that can be tested
on novel documents.

Recent proliferation of research on information extraction implies the pos-
sibility of using a successfully-built IE component as part of a larger text-mining
system. For instance, RAPIER (Califf, 1998) and BWI (Freitag & Kushmerick, 2000)
were demonstrated to perform well on realistic applications such as USENET job
postings and seminar announcements. In this section, we describe these two systems

in more detail.

2.2.1 RAPIER

RAPIER (Robust Automated Production of Information Extraction Rules) (Califf,
1998) is a bottom-up relational rule learner for acquiring information extraction
rules from a corpus of labeled training examples. It learns patterns describing
constraints on slot fillers and their surrounding context using a specific-to-general
search. Constraints on patterns can specify the specific words, part-of-speech, or
semantic classes of tokens. The hypernym links in WordNet (Fellbaum, 1998) pro-
vide semantic class information and documents are annotated with part-of-speech
information using the tagger of Brill (1994).

The learning algorithm of RAPIER was inspired by several inductive logic
programming systems (Lavrac & Dzeroski, 1994). First, RAPIER creates most-
specific patterns for each slot in each example specifying the complete word and tag
information for the filler and its full context. New rules are created by generalizing

pairs of existing rules using a beam search. When the best rule does not produce

11

incorrect extractions, RAPIER adds it to the rule base and removes existing rules
that it subsumes. Rules are ordered by an information-theoretic heuristic weighted
by the rule size. By training on a corpus of documents annotated with their filled
templates, RAPIER acquires a knowledge base of extraction rules that can then be

tested on novel documents.

2.2.2 BWI

BWTI (Boosted Wrapper Induction) (Freitag & Kushmerick, 2000) is an algorithm
for information extraction from natural text that learns extraction rules by boosting
a simple wrapper-like learner. A wrapper is a contextual pattern that is simple but
highly accurate. Wrapper induction, the automated process of learning wrappers,
has been traditionally used on highly structured texts such as web pages generated
by CGI scripts. Since individual patterns typically have high precision and low
recall, BWT uses boosting (Schapire, 1990) to create an accurate high recall pattern
by combining many high precision patterns.

BWTI treats IE as a classification problem, and learns classifiers (wrappers)
for extraction patterns. Simple contextual patterns are induced to identify the
beginning and end of relevant text fields. Such boundaries are repeatedly learned
and training examples are reweighted by the ADABOOST algorithm (Schapire &
Singer, 1998) so that subsequent patterns can handle patterns missed by previous
rules. The result is an information extraction algorithm with a bias to high precision.
BWI was shown to perform reasonably well in many domains, from traditional free

text to structured HTML documents.

12

2.3 Rule Mining

Among various data mining techniques, we focus on the problem of finding useful
rules from given data sets because rules are more comprehensible to human users.
For a data set describing customer behavior in a supermarket, a rule or pattern
might be, “10 percent of the customers buy diapers and beer together,” and for the
Web log data set, a rule could be, “If a person visits the UTCS web site, there is
a 30% chance the person will visit the UTCS AI lab web site in the same week.”
There has been a large volume of research on association rule mining (Agrawal et al.,

1993) and predictive rule induction (Mitchell, 1997).

2.3.1 Inductive Rule Learning

IF-THEN rules are one of the most expressive representations for learned hypotheses
(Mitchell, 1997). For example, given a database of customer credit information, clas-
sification rules can be learned to label customers having low credit ratings. The rules
can be used to categorize previously unseen data, e.g. future customers. In general,
classification rule learning methods either extract rules from decision trees, adopt
sequential set covering algorithms, or translate neural nets into human-readable
rules. Most of them assume that examples are represented as “feature vectors”, the
components of which are either real numbers or nominal values.

Two widely-used schemes for rule-learning are C4.5RULES (Quinlan, 1993)
and RIPPER (Cohen, 1995). Both of them generate concise and human-readable
outputs, rule sets. C4.5RULES induces rules from binary data by learning decision
trees and translating them into pruned rules. The algorithm generates a set of

rules for each path from a tree learned by C4.5. It then checks if the rules can be

13

generalized by dropping conditions. C4.5 can handle training data with continuous
attributes or missing attribute values and has been successfully applied to a wide
variety of machine-learning tasks (Mitchell, 1997).

RIPPER is a fast rule learner with an ability to handle set-valued features
(Cohen, 1996b). RIPPER, based on the incremental reduced error pruning algorithm,
splits the available training data into a growing set and pruning set before learning
rules. It is shown that RIPPER scales nearly linearly with the number of examples
in the training set. Particularly on noisy data sets, RIPPER was shown to be equally

accurate but more efficient than C4.5RULES (Cohen, 1995).

2.3.2 Association Rule Mining

Association rule mining is one of the most popular techniques in data mining (Han
& Kamber, 2000; Witten & Frank, 1999). The problem of mining association rules
is to discover all association rules that have support and confidence greater than the
user-specified minimum support and minimum confidence.

An association rule is intended to capture dependence among items in a
database. Specifically, we say that i; = i2 if 1) 41 and ¢2 occur together in at least
5% of the n baskets where baskets of items are subsets of the set of all items and 2)
of all the bakskets containing i1, at least ¢% also contains i. We call the probability
that a basket contains both items (s) the support and the probability that a basket
containing one item also contains the other (c¢) the confidence. The associations
between items can be easily generalized to those among item sets.

The classical application of association rule mining techniques is market bas-

ket analysis about finding associations between items purchased by customers. Each

14

basket in the previous definition may be viewed as a transaction that occurs in the
supermarket. An association rule from a supermarket database, “beer = pretzels
[20%, 80%)]” indicates that 20% (support) of customers bought beer and pretzels
together and 80% (confidence) of those who bought beer also bought pretzels.

One of the popular algorithms for discovering association rules is APRIORI
(Agrawal & Srikant, 1994) where the downward closure property was utilized to
prune unnecessary branches for further consideration. APRIORI is based on breadth-
first search and therefore ensures that the support values of all subsets of a candidate
are known in advance. At each stage k, all candidates of a cardinality & are counted
in a scan over the database. APRIORI prunes all candidate itemsets such that any

subset of that itemset is not frequent.

2.4 Rule Mining from Text

Much text mining or knowledge discovery in text paradigms have been based on
simple forms of text categorization as in KDT (Feldman & Dagan, 1995). How-
ever, recently several researchers have applied traditional rule induction methods to
discover relationships from textual data. FACT (Feldman & Hirsh, 1996) discovers
rules from text using association rule mining. For example, it discovered rules such
as “Iraq = Iran”, and “Kuwait and Bahrain = Saudi Arabia” from a corpus of
Reuters news articles.

Ahonen, Heinonen, Klemettinen, and Verkamo (1998) also applied existing
data mining techniques to discover episode rules (Mannila, Toivonen, & Verkamo,
1997a) from text. For example: “chemicals, processing = storage [2 - 3]” (If “chemi-

cals” and “processing” occurs within two words, the word “storage” co-occurs within

15

three words.) is an episode rule discovered from a collection of Finnish legal docu-
ments. Episode rule mining is used for language analysis because it preserves the
sequential structure of terms in a text document.

In addition, decision tree methods such as C4.5 and C5.0, and rule learners
such as FoiL and RIPPER have been used to discover patterns from textual data
(Nahm & Mooney, 2000; Ghani et al., 2000). Using C5.0, Ghani et al. (2000)
discovered interesting patterns, e.g. “Aerospace/defense companies are located in
Florida”, from the Hoovers.com online resource about companies. A first-order rule
learner, FOIL was used to learn function-free Horn clauses (Quinlan & Cameron-
Jones, 1993).

The relevant application areas of text mining include biomedical applica-
tions (Hahn, Romacker, & Schulz, 2002; Leroy, Chen, & Martinez, 2003; Muresan
& Klavans, 2002; Scheffer & Leser, 2003; Schwartz & Hearst, 2003), web mining
and personalization (Chakrabarti, 2002; Chiang, Laender, & Lim, 2003; Eirinaki
& Vazirgiannis, 2003; Grobelnik, 2003), tools for natural language processing e.g.
question-answering systems (Harabagiu, Bunescu, & Maiorano, 2001; Lin & Pan-
tel, 2001), and business applications (Sullivan, 2000) such as customer relationship

management and opinion mining (Dave, Lawrence, & Pennock, 2003).

2.5 Similarity Metrics

Most of the existing text mining techniques discover rules requiring an exact match.
However, due to the heterogeneity problem disussed in Section 1.3, a form of soft-
matching is needed to construct an effective text mining system. Soft-matching

requires a method to determine the “distance” between two textual items or docu-

16

ments.

Similarity of text can be measured using standard “bag of words” (BOW)
metrics (Salton, 1989) or edit-distance measures (Sankoff & Kruskal, 1983) such as
character edit distance used in the CORA research paper search engine (McCallum,
Nigam, Rennie, & Seymore, 2000a). This section gives a brief overview of these

standard text-similarity metrics.

2.5.1 Edit Distance

Edit distance is a well-known measure of the similarity of strings. It is based on
elementary edit operations such as insertions, deletions, and substitutions where
costs are associated with these edit operations. The distance between two strings is
defined as the transformation from one string to another using edit operations with
minimal costs. The greater the distance, the more different the strings are.
However, edit-distance cannot be used directly since it returns 0 if the strings
are identical and greater values when they are different. Therefore, we define

similarity(z,y) as follows:

similarity(z,y) = 1 — normalized_edit_distance(z,y) (2.1)

where normalized edit-distance is scaled to always be between 0 and 1 based on the

lengths of the two strings:

edit_distance(x,y)

normalized_edit_distance(z,y) = (2.2)

mazimum_distance(z,y)
The notion of maximum edit distance (as a dissimilarity measure) is introduced.

Maximum distance between two strings (mazimum_distance(z,y)) is defined as

17

the maximum possible value for edit distance between two strings ' and 3', where
|z = || and |y| = [¢/|.

Levenshtein distance (Levenshtein, 1966) is one of the well-known edit-distance
functions. Levenshtein distance is defined to be the number of character deletions,
insertions, or substitutions required to transform a string s; into another, ss. For
example, if 51 is “windows” and sz is “windows”, then Levenshtein distance between
s1 and sg is 0, because no transformations are needed. If s; is “windows” and so
is “windowsnt”, then the distance is 2, because two insertions (“n” and “t”) are
sufficient to transform s; into s3. The Levenshtein edit-distance algorithm has been
used in several text-processing tasks such as spell checking (Schulz & Mihov, 2002)
and speech recognition (Robertson, Wong, Chung, & Kim, 1998).

Among various edit-distance functions, we use affine gap cost (Monge &
Elkan, 1996; Needleman & Wunsch, 1970), an edit distance originally developed for
gene/protein sequence comparison. Affine gap cost incurs one penalty for starting
a new gap (i.e. sequence of deletions) and a typically smaller penalty for continuing
an existing gap (i.e. contiguous deletions). Different edit operations have varying
significance in different domains (Bilenko & Mooney, 2003). It is known that affine
gap cost provides more intuitive results than other standard edit-distances, such as
Levenshtein distance, for text strings (Nahm, Bilenko, & Mooney, 2002).

The computation of affine gap cost is performed by dynamic programming
in time O(nm) when n and m are the lengths of the two input strings as shown in

Figure 2.2 (Needleman & Wunsch, 1970).

18

Input: s; and ss are the given strings.
Output: cost is the affine gap cost between s; and so.
Parameters: match_cost, mistmatch_cost, gap_start_cost, gap_extend_cost.

Function AffineGapCost (s1, s2)

m := length(sy).; n := length(sz).
If (m =0) or (n =0)
cost := gap_start_cost + (m + n — 1) x gap_extend_cost.
Return cost.
For (j:=0;j <n+1; j++) do
I[0][j] :== MAX.; D[0][j] := MAX.
For (j:=0;j <m+1; j++) do
I[j][0] :== MAX.; D[j][0] := MAX.
T[0][0] := 0.; T'[0][1] := gap_start_cost.; T[1][0] := gap_start_cost.
For (j =2;j<n+1; j++) do
T[0][5] := T[0][j —1] + gap-extend_cost.
For (j:=2;j <m+1; j++) do
T[4][0] := T[j—1][0] + gap-extend_cost.
For (i :==1; i <m+1;i++) do
For (j=1;j<n+1;j++) do
If (D[i—1][j] + gap-extend_cost > T[i—1][j] + gap_start_cost)
D[i][j] := T[i—1][j] + gap-start_cost.
Else
D[i][j] := D[i—1][j] + gap_extend_cost.
If (I[i][j—1] + gap-extend_cost > T'[i][j—1] + gap-start_cost)
I3][j] := T[i][j—1] + gap-start_cost.
Else
I13)[4] : I[i][j—1] + gap_extend_cost.
If (s1[i—1] = s2[j—1])
sub_cost := match_cost.
Else
sub_cost := mismatch_cost.
If (T[i—1][j —1] 4+ sub_cost < DIi][j]) and (T'[i—1][j—1] + sub_cost < I[i][5])
T[i][§] := T[i—1][j—1] + sub_cost.
Else If D[i][j] < I[i][j] Then T[i|[j] := DIi][j]-
Else TI[] = TG
cost := T'[m][n].
Return cost.

Figure 2.2: The algorithm for computing affine gap cost

19

2.5.2 Vector Space

The vector-space model is typically used in Information Retrieval (IR) (Salton, 1989)
to determine the similarity of two documents. In this model, a text is represented as
a vector of real numbers, where each component corresponds to a word that appears
in the set of all documents and the value is its frequency in the document. This
is also known as a bag-of-words representation. The similarity of two documents x
and y is the cosine of the angle between two vectors & and 4 representing x and y
respectively, and calculated by the following formula:

(2.3)

similarity(z,y) = r :

gy
x|

AR
where | Z | and | ¥ | are the norms of each document vector. Cosine distance is

defined as one minus the cosine of the included angle between vectors.

cosine_distance(z,y) = 1 — cosine_similarity(z, y) (2.4)

The TFIDF (Term Frequency, Inverse Document Frequency) weighting scheme
(Salton, 1989) is used to assign higher weights to distinguished terms in a document.
TFIDF makes two assumptions about the importance of a term. First, the more a
term appears in the document, the more important it is (term frequency). Second,
the more it appears through the entire collection of documents, the less important
it is since it does not characterize the particular document well (inverse document

frequency). In the TFIDF framework, the weight for term ¢; in a document d;, w;;

20

is defined as follows:
N
Wij = tfij X log2 z (25)

where tf;; is the frequency of term ¢; in document d;, N is the total number of
documents in a collection, and n is the number of documents in which term ¢;

occurs at least once.

21

Chapter 3

DiscOTEX: Combining IE and

KDD for Text Mining

In this chapter, we suggest a new framework for text mining based on the integration
of Information Extraction (IE) and traditional Knowledge Discovery from Databases
(KDD). We first present the idea of combining IE and KDD serially for text mining,
explain how a document in this sytem can be represented as a vector of textual
elements, and empirically show that rules mined from IE-extracted data are nearly

as accurate as those discovered from manually extracted data.

3.1 Introduction

As previously stated in Chapter 1, the assumption of traditional data mining that
the information to be mined is already in the form of a relational database does not
hold in many cases. For a number of applications, electronic information is available

only in the form of unstructured natural-language documents which cannot be di-

22

- e e e e e mm e e e e e e e e e e e e = ey

Text Data Mining

Information

: Data Mining
Extraction

Figure 3.1: Overview of IE-based text mining framework

rectly analyzed by statistical data mining methods. Information Extraction, a task
that has attracted increasing attention since the start of the Message Understand-
ing Conferences (MUCs) (DARPA, 1998), addresses the problem of transforming a
corpus of textual documents into a more structured database.

Since structured databases transformed from unstructured texts by informa-
tion extraction can be supplied to traditional data mining as input, IE can play an
essential role in data preparation for text mining as illustrated in Figure 3.1. In the
proposed IE-based text-mining framework, called DiISCOTEX (Discovery from Text
EXtraction), the IE module identifies specific pieces of data in raw text, and the
resulting database is provided to the KDD module for further mining of knowledge.
Although constructing an IE system is a difficult task, there has been significant re-
cent progress in using machine-learning methods to help automate the construction

of IE systems as shown in Section 2.2. By manually annotating a small number of

23

documents with the information to be extracted, a fairly accurate IE system can
be induced from this labeled corpus and then applied to a large body of raw text
to construct a large database for mining. In this way, a small amount of labeled
training data for an IE learning system can be automatically transformed into a
large database of structured information ready to be mined with traditional KDD
methods.

General IE learning systems such as RAPIER (Califf & Mooney, 1999) or
BWTI (Freitag & Kushmerick, 2000) can be used to construct an IE module for
DiscoTEX. After constructing an IE system that extracts the desired set of slots
for a given application, a database is constructed from a corpus of texts by applying
the extractor to each document to create a collection of structured records. Standard
KDD techniques such as C4.5RULES (Quinlan, 1993) or RIPPER (Cohen, 1995) can

then be applied to the resulting database to discover interesting relationships.

3.2 Data Representation

3.2.1 Representation

An interesting question is how to represent a document or a textual data in text-
mining systems. Most existing IE learning systems represent a document as a se-
quence of characters or tokens (Califf & Mooney, 1999; Freitag & Kushmerick, 2000;
Muslea, 1999). Since the DiISCOTEX framework relies on an IE system as a prepro-
cessing module, a natural way to handle data is to treat the slot-values as sequences
of characters, i.e. strings. However, for many applications, much larger strings are

often identified as shown in Figure 3.2 . In this example, slots such as comments or

"http://www.amazon. com/

24

Book Description from Amazon.com

Title: Harry Potter and the Order of the Phoenix (Book 5)

Author: J. K. Rowling, Mary GrandPre

Comments: This book was the best book I have ever read.

If you are in for excitement this book is the one you want to read.

Synopsis: As his fifth year at Hogwarts School of Witchcraft and Wizardry
approaches, 15-year-old Harry Potter is in full-blown adolescence.
Harry is feeling especially edgy at the lack of news from the magic
world, wondering when the freshly revived evil Lord Voldemort will
strike. Returning to Hogwarts will be a relief... or will it?

Subject: Fiction, Mystery, Magic, Children, School,

Juvenile Fiction, Fantasy, Wizards
Publication Year: 2003

Figure 3.2: An example of a book description

synopsis contain long strings which are difficult to deal with when they are simply
treated as sequences of characters.

A classical way of handling long strings is to treat them as “bag-of-words”
(Salton, 1989). Standard approaches to text categorization and information retrieval
makes use of the bag-of-words (BOW) text representation technique that maps a
document to a high dimensional feature vector, where each entry of the vector
represents the frequency of a term. This approach only retains the frequency of
the terms in the document while losing the information on the order of the terms.
The BOW model is usually accompanied by the removal of non-informative words
(stop-words) and by the optional replacing of words by their stems. On the other
hand, many wrapper-learning systems represent a document as a linear sequence
of tokens (Cohen, Hurst, & Jensen, 2002; Muslea, Minton, & Knoblock, 1999) as
they are more concerned with the structural cues based on special characters such

as carriage returns.

25

One problem is that different applications need different representations. To
allow more flexibility in our text mining framework, we augment the feature vector
model of traditional machine learning approaches (Mitchell, 1997; Witten & Frank,
1999) with the bag-of-words model which is the most common scheme for represent-
ing long documents, the token-based model for preserving the order of terms, and
the simple sequence-of-characters model for shorter strings. Users are able to specify
which model should be applied to each slot in advance. For example, we can use
string edit-distance as the similarity metric for shorter strings and cosine similarity
for longer fields. One advantage of this approach is that a new type of document
representation and its similarity metric can be easily plugged into the system.

Specifically, we represent an IE-processed document as a vector of slot-values,
one for each slot filler. A rule can be represented as an antecedent that is a con-
junction of slot-values for some subset of slots and a conclusion that is a predicted
slot-value for another slot. Sometimes multiple fillers can be identified for a slot in
many domains. In that case, a slot-value corresponds to a set of textual items. For
example, the author slot of the example shown in Figure 3.2 could have two fillers
or items, “J. K. Rowling” and “Mary Grandpre” rather than treating them as one
big bag of words or a long string. To allow multiple items for each slot, we extend
the simple “vector-of-slot-values” model so that a slot-value can contain a set of
distinct items.

To summarize, we model documents as vectors of slot-values where each
slot-value corresponds to each slot of the information extraction system as shown
in Figure 3.3 with the Backus Naur Form (BNF) notation. Each slot can be either

an item or a set of items which can be either long documents, short strings, or

26

Representation

<document> :: <document> <slot-value> | empty .
<slot-value> :: <item> | <slot-value> <item> .
<item> :: <bow> | <string> | <token> | <number> .

Figure 3.3: Document representation

| Model || Representation | Similarity Metric
BOW Bag-of-Words Cosine Similarity
String Sequences of Characters | Character-level Edit-Distance
Token Sequences of Tokens Token-level Edit-Distance
Number Numbers Numeric Distance

Table 3.1: Document models and corresponding similarity metrics

numbers. In our system, we modeled each filler as either 1) long documents which
are represented using the vector-space model (BOW Model), 2) a list of tokens
(Token Model), 3) short strings as a list of characters (String Model), or 4) numbers

including dates (Numerical Model).

3.2.2 Data Types

Table 3.1 summarizes the models and the corresponding similarity metrics for tex-

tual items.

BOW Model

The BOW model follows the vector space model of handling long strings as “bags-
of-words” (Salton, 1989). In the BOW model, we eliminate 524 commonly-occurring

stop-words (e.g. “the”, “is”, and “you”) but do not perform stemming. Standard

set-operations are extended to bags in the obvious way (Peterson, 1976). For exam-

27

ple, the intersection of two bags is defined as a bag that contains as many as the
minimum of elements in both bags. The definition of “bag” and several operators
for bags are given in Appendix A. The similarity between two slot-values with the

BOW model is measured by computing the cosine similarity of two BOWs.

String Model

The string model represents short strings as a list of characters. The similarity

metric for the string model is the character-level edit distance.

Token Model

The token model used in some wrapper learning system is also introduced. In our
model, a token list is defined as an ordered sequence of tokens x1, x2, ... Ty, where
z; in T (set of tokens) is a term. Similarly, a string is defined as an ordered sequence
of characters y1, y2, ..., Yn, where y; is a character. Note that the token space for
the token model shares the same set of terms in the BOW model. The edit-distance
measure described in Section 2.5.1 can be applied to both sequences of tokens and

characters for computing simliarities between two items.

Number Model

The number model represents numerical values. The numerical difference is used to

measure the similarity between two numbers.

28

| Slot I Model |

Job title String
Programming languages String (Multiple)
Platforms Strings (Multiple)
Applications Strings (Multiple)
Areas String (Multiple)
Company String
Recruiter String
Required years of experience Number
Desired years of experience Number
Salary Number
Post date String
City String
State String
Country String

Table 3.2: Slots and slot-value types for job-postings data set

3.3 Data Sets

In this section, we present the four data sets, job-postings, resumés, book descrip-
tions, and movie descriptions used in the experiments that will be presented later.

Sample documents for each data set are shown in Appendix C.

3.3.1 Job-postings Data Set

600 computer-science job postings to the newsgroup austin.jobs originally col-
lected and manually annotated for training RAPIER (Califf, 1998) were used. In-
formation on programming languages, platforms, applications, areas, company, re-
cruiter, job title, required years of experience, desired years of experience, salary,
post date, city, state and country were identified to construct a textual database of
job requirements.

Since austin. jobs is not a moderated newsgroup, not all posted documents

are relevant to our task. Some of them are resumés posted by job-seekers, adver-

29

tisements, or non-computer-science job postings. Therefore, before constructing a
database using an IE system, we filtered out irrelevant documents from the news-
group using a trained text categorizer. First, 1,000 postings were collected and
classified by a human expert as relevant or irrelevant. Next, a bag-of-words Naive-
Bayes text categorizer (Mitchell, 1997; McCallum & Nigam, 1998) was trained on
this data to identify relevant documents (spam postings, resumés, or non-cs job
postings) using the RAINBOW package (McCallum, 1996). The resulting categorizer
has an accuracy of over 99% and is used to filter irrelevant documents from the

original postings.

3.3.2 Resumé Data Set

300 user-annotated computer-science resumé postings to the newsgroup misc. job.resumes,
alt.resumes, and us.job.resumes were collected. We used a simple web-crawler
for spidering groups.google.com web site in order to collect documents from the
newsgroups. A bag-of-words Naive-Bayes text categorizer (McCallum & Nigam,
1998) is used again to identity relevant documents. Similar information to that of

the job-postings data set are extracted as shown in Table 3.3.

3.3.3 Book Data Set

12,000 book descriptions automatically extracted from the Amazon. com online book-
store for a book recommending system (Mooney & Roy, 2000) are used. The in-
formation extractor (wrapper) for Amazon was developed manually and is highly
accurate. 10 fields (title, author, type, publisher, publication date, subjects, related

books, related authors, price, and average rating, reviews, synopsis, comments) are

30

| Slot I Model |

Name String
Programming languages || String (Multiple)
Platforms Strings (Multiple)
Applications Strings (Multiple)
Areas String (Multiple)
Hardware String (Multiple)

Company String

Recruiter String

City String

State String

Table 3.3: Slots and slot-value types for resumé data set

identified as shown in Table 3.4.

3.3.4 Movie Data Set

The movie data set is drawn from the Internet Movie Database (IMDb.com). 7,000
movie descriptions with plot summaries are automatically extracted. 7 fields (title,

director, writer, genres, keyword, plot, year) are identified as shown in Table 3.4.

3.4 Initial DiscoTEX

System Architecture

In the experiments in this section, RAPIER (Califf & Mooney, 1999) is used to
construct an IE module for DiISCOTEX. RAPIER was trained on only 60 labeled
documents, at which point its accuracy at extracting information is somewhat lim-
ited; extraction precision (percentage of extracted slot fillers that are correct) is
about 91.9% and extraction recall (percentage of all of the correct fillers extracted)

is about 52.4% . We purposely trained RAPIER on a relatively small corpus in order

31

Slot Model

Title String
Author Token (Multiple)

Type Strings

Publisher String

Publication date String
Subjects String (Multiple)

Related books

String (Multiple)

Related authors

String (Multiple)

Price Number

Average rating Number
Reviews BOW (Multiple)
Synopsis BOW (Multiple)
Comments BOW (Multiple)

Table 3.4: Slots and slot-value types for book-descriptions data set

| St | Model |
Title String
Director String (Multiple)
Writer Strings (Multiple)
Genres String (Multiple)
Keyword || String (Multiple)
Plot BOW
Year Number

Table 3.5: Slots and slot-value types for movie-descriptions data set

32

to demonstrate that labeling only a relatively small number of documents can result
in a learned extractor capable of building a database from which accurate knowledge
can be discovered.

In order to discover prediction rules, we treat each slot-value pair in the
extracted database as a distinct binary feature. For instance, given a set of n job
postings, we could go through every posting and list the job skills that it has and
does not have. We can represent a single postings’s list of required job skills by a
simple binary vector which has a 1 in the ith slot if the postings has the ith skill
specified, and a 0 otherwise. In this way, the n job-posting messages are converted
into n different binary vectors. After a set of binary vectors are obtained through
the conversion, rules are learned for predicting each feature of the vectors from all
other features.

Similar slot fillers are first collapsed into a pre-determined standard term.
For example, “Windows 98” is a popular filler for the platform slot, but it often
appears as “MS Win 98”7, “Win 98”, “Win98”, and so on, and “DBA” in the title
slot is an abbreviation for “DataBase Administrator”. These terms are collapsed to
unique slot values before prediction rules are mined from the data. A small domain-
dependent synonym dictionary is used to identify such similar terms. Trivial cases
such as “Databases” — “Database” and “Client/Server” — “Client-Server” are
handled by manually contrived synonym-checking rules. The synonym dictionary is
shown in Appendix B.

We have applied C4.5RULES (Quinlan, 1993) and RIPPER (Cohen, 1995) to
induce rules from the resulting binary data. RIPPER runs significantly faster since

it has an ability to handle set-valued features (Cohen, 1996b) to avoid the step of

33

e Oracle € application and QA Partner € application — SQL € language
e C4+ € language and Cé€language and CORBA € application — Windows inplatform

e HTML € language and WindowsNT € platform and Active Server Pages € application —
Databasecarea

e UNIX ¢ platform and Windows ¢ platform and Games € area — 3D€area
e Java € language and ActiveX € area and Graphics € area — Web € area
e Visual Basic € language and OLE € area — UNIX ¢ platform

e 3D € area and Games € area and E-Commerce ¢ area — SQL ¢ language

Figure 3.4: Sample rules mined for computer-science job postings

explicitly translating slot fillers into a large number of binary features. Specifically,
rules are induced for predicting each piece of information in each database field given
all other information in a record. In general, any standard classification rule-learning

methods can be employed for this task.

Sample Rules

Discovered knowledge describing the relationships between slot values is written in
a form of production rules. If there is a tendency for Web Design to appear in
the area slot when Director appears the in applications slot, this is represented
by the production rule, Director€application — Web Design€area. Rules can
also predict the absence of a filler in a slot. Sample rules mined by C4.5RULES from
a database of 600 jobs extracted from the USENET newsgroup austin.jobs are
shown in Figure 3.4.

The overall architecture of the initial DISCOTEX implementation is shown
in Figure 3.5. First, documents annotated by the user are provided to RAPIER as
training data. IE rules induced from this training set are stored in the IE rule

base and subsequently used by the extraction module. The learned IE system then

34

User-labeled
Examples | E(Rapi er) KDD(C4. 5r ul es/ Ri pper)
L—»
Rule Rule
< | Induction — Induction | o

IE Database Prediction

RuleBase |_, #+— RuleBase
Extraction Prediction

Examples

Figure 3.5: The initial Di1ISCOTEX

takes unlabeled texts and transforms them into a database of slot-values, which
is provided to the KDD component (i.e. C4.5 or RIPPER) as a training set for
constructing a knowledge base of prediction rules. The training data for KDD can
include the user-labeled documents used for training IE, as well as a larger IE-labeled

set automatically extracted from raw text.

3.5 Automatically Extracted Data vs. Manually Ex-

tracted Data

The accuracy of current IE systems, whether built manually or induced from data,
is limited. Therefore, an automatically extracted database will inevitably contain

significant numbers of errors. An important question is whether the knowledge

35

discovered from this “noisy” database is significantly less reliable than knowledge
discovered from a cleaner traditional database.

In this section, we present experiments on the job postings domain (Sec-
tion 3.3.1) demonstrating that knowledge discovered from an automatically ex-
tracted database is close in accuracy to that discovered from a manually constructed
database with a simple implementation of the DisCOTEX framework. Since all the
extracted items in this domain are short strings, they are represented as simple

strings (sequences of characters).

3.5.1 Experimental Methodology

Discovered knowledge is only useful and informative if it is accurate. Discovering
fluke correlations in data is not productive, and therefore it is important to measure
the accuracy of discovered knowledge on independent test data. The primary ques-
tion we address in the experiments in this section is whether knowledge discovered
from automatically extracted data (which may be quite noisy) is relatively reliable
compared to knowledge discovered from a manually constructed database.
Ten-fold cross validation was used to generate training and test sets for ex-
traction from the set of documents. Rules were mined for predicting the fillers of
the languages, platforms, applications, and areas slots, since these are usually
filled with multiple items that have potential predictive relationships. The total
number of slot-values used in the experiment is 476: 48 slot-values are for languages
slot, 59 for platforms, 159 for applications, and 210 for areas. Statistics on these
slot-fillers are shown in Table 3.6, including the average number of fillers per docu-

ment, average number of documents per filler, and the total number of distinct filler

36

Slots AvgNumFiller | AvgNumDoc | NumFiller
language 0.13 2.30 80
platform 0.17 7.11 104

application 0.30 3.76 179

area 0.60 1.17 361

total 1.21 1.38 724

Table 3.6: Statistics on slot-fillers

strings in the corpus.

In order to test the accuracy of the discovered rules, they are used to predict
the information in a disjoint database of user-labeled examples. For each test job,
each possible slot-value is predicted to be present or absent given information on
all of its other slot-values. Average performance across all features and all test
examples is then computed. The rules produced by RIPPER and C4.5RULES were
found to be of similar accuracy, and the experiments in this section employ RIPPER
since its computational time and space complexity is significantly less. The overall
architecture of the system for evaluation is shown in Figure 3.6.

The classification accuracy for predicting absence or presence of slot fillers
is not a particularly informative performance metric since high accuracy can be
achieved by simply assuming every slot filler is absent. For instance, with 60 user-
labeled examples, DISCOTEX gives a classification accuracy of 92.7% while the
all-absent strategy has an accuracy of 92.5%. This is because the set of potential
slot fillers is very large and not fixed in advance, and only a small fraction of possible
fillers is present in any given example. Therefore, we evaluate the performance of

DiscOTEX using the IE performance metrics of precision, recall, and F-measure

37

DiscoTEX System

| E(Rapi er) KDD(C4. 5r ul es)

Rule Rule

Induction —» Induction |—» ot
Database Prediction
] o “—| RuleBase
Extraction Prediction

... A —————-
KDD(C4. 5r ul es)
Rule
Human Induction [prediction
Extraction Database Rule B
ule Base
| Prediction [

compare
Test

Figure 3.6: The system architecture for evaluation
with regard to predicting slot fillers. These metrics are defined as follows:

number_of _present_slot_values_correctly predicted
number_of _slot_values_predicted_to_be_present

precision =

(3.1)

number_of _present_slot_values_correctly predicted
number_of _present_slot_values

recall =

(3.2)

F-measure is the harmonic mean of precision and recall and is computed as follows

(when the same weight is given to precision and recall):

2 X precision X recall
F—measure =

(3.3)

precision + recall

In order to obtain non-trivial bounds on precision and recall, a simple random

guessing method is used as a benchmark. This approach guesses a slot-value based

38

Present Absent
Predicted To Be Present mxp (n—m)xp
Predicted To Be Absent | mx (1 —p) | (n—m) x (1 —p)

Table 3.7: The expected outcome for random guessing

on its frequency of occurrence in the training data. For instance, if “Java” occurs
as a programming language in 29% of jobs in the training data, then this approach
guesses that it occurs 29% of the time for the test data. Instead of simulating this
method, we analytically calculated its expected precision and recall for each slot-
value. The expected outcome for this strategy for a given slot-value is summarized
in Table 3.7, where p is the percentage of times the slot-value appears in the training
examples, n is the total number of the test examples and m is the number of times
the slot-value occurs in the test data.

Using the information in the table, the precision and the recall for random-

guessing is determined as follows:

mXxp
(m x p) + ((n —m) x p)

=m/n (3.4)

precision =

mXp _
mxp)+(mx1-p) 7

recall = (3.5)

Therefore, the benchmark precision for a slot-value is its probability of occurrence
as estimated from the test data and the recall is its probability of occurrence as
estimated from the training data. The only difference between the two is due to

sampling error.

39

3.5.2 Results and Discussion

Because of the two different training phases used in DiISCOTEX, there is a question
of whether or not the training set for IE should also be used to train the rule-
miner. In realistic situations, there is no reason not to use the IE training data
for mining since the human effort has already been expended to correctly extract
the data in this text. However, to clearly illustrate the difference between mining
human-labeled and IE-labeled data, we first show a comparison with a disjoint IE
training set. In this experiment, the IE training data are thrown away once they
have been used to train RAPIER, since the extractor is unlikely to make the normal
number of extraction errors on this data. Ten-fold cross-validation is performed on
the remaining 540 examples in order to evaluate data mining. In order to clearly
illustrate the impact of mining automatically extracted data, the same set of training
examples was provided to both KDD systems. The only difference between them
is the training data for the rule-miner of DiISCOTEX is automatically extracted
by RAPIER after being trained on a disjoint set of 60 user-labeled examples. Both
systems are tested on user-labeled data to identify the quality of the rules produced.
Figure 3.7 shows the learning curves for precision and recall.

Even with an extractor trained on a small amount of user-labeled data, the
results indicate that DiISCOTEX achieves a performance fairly comparable to the
rule-miner trained on a manually constructed database, while random-guessing does
quite poorly. Figure 3.7 indicates that DISCOTEX does relatively worse with the
first 60 training examples with respect to recall, but quickly improves with 60 ad-
ditional examples. The results also show that the precision of DISCOTEX seems

to start leveling off a bit sooner, this is presumably due to the fact that extraction

40

80

40
Rll‘:’PER tr‘ained oH User-l‘_abeled‘Data A Rll‘:’PER tr‘ained o‘n User-l‘_abeled‘Data A
DiscOTEX ---x--- DiscOTEX ---x---

Random-Guessing ------ Random-Guessing ------

70 1
35 1

Precision (%)
Recall (%)

40 E

20 7 :
30 -

15 1
20 - T PR- - *

rrrrrrrr Koo M e K KR K
k- == --- - Koo Koo Koo Moo Koo Koo Koo *
10 L L L L L L L L 10 L L L L L L L L
50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 450 500
Number of Training Examples Number of Training Examples

Figure 3.7: Precision and recall with disjoint IE training set

errors put a somewhat lower ceiling on the performance it can eventually achieve.

Figure 3.8 presents F-measures for DISCOTEX'’s performance on individual
slots. Not surprisingly, the Programming Languages slot with the least number
of possible values shows the best performance, and the Area slot with as many as
210 values does poorly. More interesting is the fact that different slots show quite
different learning rates.

Figure 3.9 shows the learning curves for precision and recall under the “more
natural” scenario in which the training set provided to RAPIER, consisting of 60
user-labeled examples, is also provided to the rule-miner as a part of its training
set. In this case, both approaches start with the same 60 user-labeled examples,
which have already been used to train the IE part of DiSCOTEX. However, as
DiscOTEX proceeds to discover knowledge from data it automatically extracts from

raw text, it fairly closely tracks the performance of a system trained on additional

41

60

‘ Prog‘rammin‘g Langu‘ages -
Platforms ---x---

Applications ------
55 | Areas &

F-Measure (%)

xsF B g

50 100 150 200 250 300 350 400 450 500
Number of Training Examples

Figure 3.8: F-measure for DISCOTEX by slots

data laboriously extracted by a human expert. Since in this case DISCOTEX has the
advantage of a small set of relatively noise-free data to start with, its performance

is even somewhat closer to that achieved by mining a hand-built database.

3.6 Summary

In this chapter we demonstrated that combining IE and KDD is a viable approach to
text mining by showing that mined rules from an automatically extracted database
are fairly accurate in comparison with those discovered from a manually constructed
database. We first presented a framework called DisSCOTEX employing an IE mod-
ule for transforming natural-language documents into structured forms and a KDD
module for mining prediction rules. While information retrieval approaches view

texts as sets of terms, each of which behaves based on some form of frequency

42

70 40

I‘QIPPEI‘? lrainéd on U‘ser-Lal‘)eIed 5ata L I‘QIPPEI‘? lrainéd on U‘ser-Lal‘)eIed 5ata L
DiscOTEX ---x--- DiscOTEX ---x---
Random-Guessing ------ Random-Guessing ------

35

g =
= S
5 =
w 40T El
e &
a

30

20
20
EESRRREEEEE EGRREEEEEE [RREEEEEE ESRREEEEEE AR L REEE ESRRREEEE SRREEEEEE *
EESRRREEEEE EGRREEEEEE [RREEEEEE ESRREEEEES AR L REEE ESRRREEEE SRREEEEEE *
10 L L L L L L L L L 15 L L L L L L L L L
50 100 150 200 250 300 350 400 450 500 550 50 100 150 200 250 300 350 400 450 500 550
Number of Training Examples Number of Training Examples

Figure 3.9: Precision and recall with reused IE training set

distribution, traditional machine learning approaches view texts as sets of features
whose combinations are usually learned by inductive methods. In order to exploit
richer information provided by an underyling IE system about the structure of in-
dividual documents, we combined traditional ways of representing documents with
the feature vector model. Finally, experimental results obtained on a corpus of

USENET job postings with an initial implementation of the DISCOTEX framework

are presented and discussed.

43

Chapter 4

TEXTRISE: Learning

Soft-Matching Rules From Text

As discussed in Section 3.5, one step that is performed manually in the initial exper-
iments is collapsing similar slot-fillers in the extracted data into a canonical form.
For example, “NT,” “Windows NT,” and “Microsoft Windows NT” are typically
extracted fillers for the platform slot in the USENET job announcement domain.
All of those are mapped to a unique term by a synonym-checking dictionary shown
in Appendix B before the rule mining step and treated as the same attribute after-
wards. Such collapsing could be automated by clustering slot fillers using a textual
similarity metric (Bilenko & Mooney, 2003).

An alternative approach we adopted in this thesis is to allow partial matching
of slot-fillers during the discovery process, instead of requiring or creating canonical
slot-fillers that must match exactly. In this chapter, we will present an implemen-

tation of such a soft-matching rule mining algorithm, called TEXTRISE (Nahm &

44

Mooney, 2001). In TEXTRISE, a flexible metric is used to find examples that are
close but not exact matches to the conditions of a rule. We consider a problem
of predicting a textual slot value such as BOWs, tokens, strings, or numbers for
each slot, instead of predicting the presence or absence of a specific slot value like a

standard rule learner.

4.1 RISE

The need for soft matching of text strings in discovered rules is an aspect of text
mining that requires changes to existing rule induction methods. In this section,
we explore the discovery of rules that allow soft matching of slot-fillers by adapting
the RISE algorithm of unifying rule-based and instance-based learning methods
(Domingos, 1996).

Instance-based learning, or memory-based learning techniques work essen-
tially by keeping typical examples for each class (Aha, Kibler, & Albert, 1991). In
general, three characteristics are defined for instance-based learning algorithms: 1)
a similarity function telling the algorithm how close two instances are, 2) a typical
instance selection function indicating which of the instances are typical or atypical,
and 3) a classification function deciding how a new case is related to the learned
cases. Instance-based learning algorithms are conceptually simple and easy to test
although they suffer from the “incomprehensibility” problem due to not producing
concepts in a human readable format. They also sometimes require moderately large
amount of storage.

The RISE (Rule Induction from a Set of Exemplars) algorithm was pro-

posed to overcome the well-known small disjuncts problem and splintering problem

45

of rule induction, and mitigating instance-based learning’s vulnerability to noise
and irrelevant features at the same time. Unlike other combined model approaches,
RISE is a unified single algorithm which is able to behave both as an instance-based
classifier and a rule induction system. In extensive experiments, RISE was fairly
consistently more accurate than alternative methods, including standard rule-based
and instance-based algorithms (Domingos, 1996).

Instead of requiring rules to match exactly in order to make a prediction,
RISE makes predictions by selecting the closest matching rule according to a stan-
dard distance metric typically used in nearest-neighbor methods (a modified Eu-
clidian distance). By generating generalized rules instead of remembering specific
instances and by using a similarity metric rather than exact matching to make pre-
dictions, it elegantly combines the properties of rule induction and instance-based
learning.

Flexible-matching rules are acquired using a specific-to-general (bottom-up)
induction algorithm that starts with maximally specific rules for every example and
then repeatedly minimally generalizes each rule to cover the nearest example it does
not already cover, unless this results in a decrease in the performance of the overall
rule base. Performance of a rule base is measured by conducting leave-one-out test-
ing on the training data using the closest-matching rule for making predictions. This
process repeats until any additional generalization does not increase performance.
When classifying test examples, the nearest rule to each example is found, and the
rule’s class is assigned to the example. The RISE algorithm for learning rules is
summarized in Figure 4.1.

Figure 4.2 and Figure 4.3 presents the algorithm for generalizing rules and

46

Input: ES is the training set.
Output: RS is the rule set.

Function RISE (ES)

RS = ES.
Compute Accuracy(RS, ES).
Repeat
For each rule R € RS do
Find the nearest example E to R (not covered).
R' := MostSpecificGeneralization(R, E).
RS’ := RS with R replaced by R'.
If Accuracy(RS', ES) > Accuracy(RS,ES)
RS := RS".
Delete R’ from RS if it is a duplicate.
Until no increase in Accuracy(RS, ES) is obtained.
Return RS.

Figure 4.1: The RISE rule-learning algorithm

computing the accuracy of a rule set. In RISE, an example or an instance is simply
a rule in which the consequent is the example’s class. In the remainder of this
chapter, the word “rule” is used to refer both to rules of the general type and the
stored examples.

For a walk-through example, consider the following training set for voting

records.

1)y y n n y -> republican
2) n y y n n -> republican
3)n n n y n -> republican
4) y n n n n -> democrat

5) n n y y n -> democrat

47

Input: R = (41, A,, ..., A,) is a rule.

E = (Ey, Es, ..., Ey) is an example.

A; and E; are either ? or symbolic values (r;).
Output: R’ is the generalized rule.

Function MostSpecificGeneralization (R, E)

For each attribute i do
If Az = 7 Then Ri, =7,
Else if Ei =T Then Ri, = Rz
Else if E,L 75 T Then R,’I =7,
R .= (R/,RY,...,R,).
Return R'.

Figure 4.2: Generalization of a rule to cover an example

Input: ES is the example set.
RS is the rule set.
Output: Acc is the accuracy.

Function Accuracy (ES, RS)

Sum =0
For each example E € ES do
Find the nearest rule R to E (except R s.t. R = E).
C(R) := class label of R.
If C(R) = C(E)
Sum := Sum + 1.

— S
Acc := sizezzES) :
Return Acc.

Figure 4.3: The accuracy-computing algorithm

48

These input/output pairs associate patterns of voting decision with party allegiance.
The output variable shows whether the politician that cast the votes was Republican
or Democrat. Within the input, a ‘y’ indicates a vote in favor while a ‘n’ indicates
a vote against.

We assume that the Manhattan distance is used to find the closest rule. The
initial rule set for the RISE algorithm is the same as the training set since RISE
starts with maximally specific rules. The initial accuracy of the rule set is 0 because
no example is correctly classified by this rule set with the leave-one out method.
For instance, example 1 is incorrectly classified as democrat since the closest rule
for this example is rule 5 and its class is democrat.

After calculating the initial accuracy, we locate the most similar example
for the first rule in the current rule base (among those that have the same class).
Example 1) is not considered as a candidate because it is already covered by this
rule. The closest example in the training examples is 2, that is generalized with rule

1 in the current rule set. The generalized rule between these two is:
1°) 2 y ? n ? -> republican

By replacing rule 1) with 1)', the rule set to be compared with the original one is

updated as follows.

1°) 2 y ? n ? -> republican
2) ny y n n -> republican
3) nnm n y n -> republican
4) y n n n n -> democrat
5) n n y y n -> democrat

49

We calculate the global accuracy of the updated rule set in order to deter-
mine if the old rule should be replaced with the generalized one. Every example in
the training set is matched successively to rules in those rule sets. Since the gener-
alized rule increases the accuracy by classifying the second example (which used to
be classified incorrectly as democrat by the old rule set) correctly, we accept this
updated rule base and repeat this process with all the remaining rules. As a re-
sult, we get the second-stage rule set like the following (after eliminating duplicated
rules). Rule 2 is the generalization of rule 2 (n y y n n — republican) and rule 3 (n
nnyn — repubilcan) in the above rule set while rule 3 is the generalization of rule

4 (y nnnn — democrat) and rule 5 (n ny y n — democrat).

1) 2 y ? n ? -> republican
2) n ? ? ? n -> republican

3) 2 n ? ? n -> democrat

The algorithm is terminated at this point because no rules can be generalized
with any examples in the training set to increase the overall accuracy. Generaliza-

tions of rule 1 or rule 2 with the closest training example,
? ? ? ? ? -> republican

cause false predictions (classifying demoract as republican), resulting in a decrease
in the global accuracy.
If we are now presented with the following test case,

y Yy Y Y VY

the output value is republican because the closest rule to this test example is rule

1 in the final rule base and its class is republican.

50

Domingos (1996) empirically shows that the RISE algorithm can create syn-
ergistic effects between rule induction and instance-based learning. Results indicate
that the classifier generated by RISE is better than those produced by its parent
algorithms, rule induction and nearest-neighbor. Compared to nearest-neighbor,
which is sensitive to irrelevant features, RISE has a superior ability to choose rele-
vant features for different regions of the instance space.

RISE has two major advantages over rule induction. First, RISE is bet-
ter at dealing with exceptions while rule induction suffers from the small disjuncts
problem. Second, it mitigates the splintering problem of having a dwindling number
of available examples during the induction process, by evaluating each rule set with
respect to the accuracy on the entire training set. Training is reasonably computa-
tionally efficient, requiring time O(e?, a?) where e is the number of examples, and a

the number of attributes.

4.2 The TEXTRISE Algorithm

RISE is not directly applicable to mining rules from extracted text because: 1) its
similarity metric is not text-based and 2) it learns rules for classification rather than

text prediction. TEXTRISE presented in this section addresses both of these issues.

4.2.1 Rule Generalization

First of all, a text-based similarity metric is required to apply RISE to textual data.
RISE assumes a Euclidean similarity metric to measure the similarity between two
examples. As shown in Section 3.2, a standard vector-space metric from information

retrieval (IR) (Baeza-Yates & Ribeiro-Neto, 1999) is used to provide an appropri-

51

ate similarity metric for TEXTRISE. For shorter strings, a string edit-distance is
employed. Classification accuracy as a measure of performance is replaced with the

average similarity of the text predicted to fill a slot and the actual filler.

Computing Generalization

In the BOW model (Section 3.2.2), extracted text is represented as a bag-of-word
(BOW), assuming a single slot filler for each slot. To compute the minimal gener-
alization of two BOWSs, bag intersection is used (See Appendix A). For instance,
the generalization of the title slot in Figure 3.2 ({“harry”, “potter”, “order”,
“phoenix”, “book”}) and that of “Harry Potter and the Goblet of Fire (Book 4)”
(Title = {“harry”, “potter”, “goblet”, “fire”, “book”}) is a simple intersection of
those two, which is Title = {“harry”, “potter”, “book” }. The minimal generaliza-
tion of two examples or rules is the minimal generalization of the BOWs in each of
their corresponding slots.

In the string model (Section 3.2.2), strings are represented as sequences of
characters. The minimal generalization of two strings is a string that has the same
distance to both strings. Figure 4.4 shows the pseudocode for computing the gen-
eralization based on the affine gap cost function (See Figure 2.2 for the pseudocode
of computing affine gap cost function). The generalization algorithm first com-
putes the distance matrix and then traces back to the point at which the two given
strings have the same distances. This algorithm can be applied to the token model
(Section 3.2.2) as well.

For example, “Windows” and “Windows 98/2000” are generalized by finding

an intermediate string such as “Windows 98/2”. In this case, the distance between

52

Input: s; and ss are the given strings.
Output: spey is the generalized string.
Parameters: match_cost, mistmatch_cost, gap_start_cost, gap_extend_cost.

Function GeneralizationWithAffineGapCost (s1, s2)

T[m][n] := AffineGapCost(s1, s2)-
hal f _distance := m
stop := no.
For (i :=m, j:=n;i>0and j > 0 and stop = no;) do
If (s1[i — 1] == s2[j — 1]) Then sub_cost := match_cost.
Else sub_cost := mismatch_cost.
If ((T[i —1][j — 1] + sub_cost < D[i][5]) and (T[i — 1][j — 1] + sub_cost < I[i|[5]))
If (s1[i — 1] # s2[j —1])
Spewlj — 1] :==s1[t —1];i:=di-1;5j:=j-1.
Else
Tf (D[i][j] < Ii]7)
T([j] = D).
len := length(spew)-
For k:=len to j +1 do
Snewlk] = Snewlk — 15 Snew[j] == s1[t —1]; i :=7 - L.
Else
Tl = 703l
len := length(snew)
For k:=j—1tolen—1do
Snewlk] = Spewlk +1].57:=7- 1.
If (T[¢][5] < half_distance) Then stop := yes
len := length(spew)-
If (: ==0)
For(k := j;k > 0 and stop = no;k—) do
len :=len - 1.
If (T'[0][k] < half_distance) Then stop := yes.
Else if j =0
For (k :=i;k > 0 and stop = no;k—) do
Snewl[len] := s1[i — 1].; len := len + 1.
If (T'[k][0] < half_distance Then stop := yes.
Return s,,.y.

Figure 4.4: The algorithm for computing generalizations of two strings with affine
gap cost

53

“Windows” and “Windows 98/2” must be the same with the distance between
“Windows 98/2” and “Windows 98/2000” (Af fineGapCost(“Windows”, “Win-
dows 98/2”) = Af fineGapCost(“Windows 98/2”, “Windows 98/2000”)). Given
“Windows” and “Windows 98/2000”, the algorithm first computes the distance be-
tween two strings (Af fineGapCost(“Windows”, “Windows 98/2000”)) by repeat-
edly inserting extra characters such as “ 7, “9” “8” «/7 «27 “0” “0”, and “0”
to the original string, “Windows”. Applied operations are recorded in order. Next,
an intermediate string is found by attempting to reconstruct the original string
(“Windows”) from the target string (“Windows 98/2000”), applying the recorded
operations in a reverse manner. As soon as the distances of the intermediate string
to the original and the target strings are equal, the algorithm stops. The same
generalization algorithm can be applied to the token model, which represents an

extracted slot as a sequence of tokens.

Computing Similarity

RISE finds the nearest example to generalize a given rule, satisfying two require-
ments: that the example should not be already covered by that rule, and the class
assigned to the example is the one predicted by that rule. Since TEXTRISE does
not learn simple categorization rules, the second requirement must be changed: the
similarities between the slot-filler of an example and the consequent of the rule
should be maximized. To combine this requirement with the goal of the original
task which is to find the nearest example of a given rule, we calculate the similarity
between each example and the given rule to find an example with minimal distance

to the rule.

54

Inputs: R = (A4, A, ..., A, CRr) is a rule

E = (Ey, Es, ..., E,,Cg) is an example.

A;, E;, Cr, and Cg are fillers, possibly empty.
Output: R’ is the generalized rule.
Function MostSpecificGeneralization (R, E)

For i :=1tondo
If ¢ is using the BOW model
A/ = A; N E;.
Else if ¢ is using the token model or the string model
A;' := GeneralizationWithAffineGapCost(4;, E;).
Else if 7 is using the numeric (number model)
A;' := NumericalAverage(4;, E;).
R = (A, AY, ..., A, Generalization(Cg, Cg)).
Return R'.

Figure 4.5: Generalization of a rule to cover an example

The distance between a rule and an example is formally defined as follows.
Let E = (Ey, Es, ..., E,, Ec) be an example with E; for the ith attribute. Let R =
(A1, As, ..., Ap, Rc) be arule. Ec and Re the consequents of E and R respectively.
A; as well as E;, E¢, and R is either a BOW (BOW Model), a sequence of tokens
(Token Model), a string (String Model), or a numeric value (Number Model). The
distance A(R, E) between R and FE is then defined as:
n
A(R,E) = _6(i) + 6(Rc, Ec) (4.1)
i=1
where the component distance §(z) for the ith attribute is:
cosine_distance(R;, E;) if i is using the BOW Model
6(1) = { af fine_gap_cost(R;, E;) if i is using the Token Model or the String Model
Onum (7) if 7 is using the Number Model

(4.2)

55

Input: ES is the training set.
Output: RS is the rule set.

Function TextRISE (ES)

RS = ES.
Compute Text Accuracy(RS, ES).
Repeat
For each rule R € RS do
Find the nearest example E to R (not covered).
R' := MostSpecificGeneralization(R, E).
RS’ := RS with R replaced by R'.
If TextAccuracy(RS', ES) > TextAccuracy(RS, ES)
RS := RS".
If R' is identical to another rule in RS
delete R' from RS.
Until no increase in TextAccuracy(RS, ES) is obtained.
Return RS.

Figure 4.6: The TEXTRISE rule-learning algorithm

where cosine_distance(R;, E;) and af fine_gap_cost(R;, E;) are computed by Equa-
tion 2.5.2 and the affine gap cost function described in Figure 2.2 respectively, and

dnum(t) is the difference in the ith value normalized by its largest observed value:

| E; — R; |

))= —————————
num (1) Max; — Min;

(4.3)

where Max; and Min; being respectively the maximum and minium values for the
attribute found in the training set. We also define the distance from a missing value

to any other as 0. 6(R¢, E¢) is the distance between R¢ and Eg.

56

Input: ES is the example set.
RS is the rule set.
Output: Acc is the accuracy.

Function TextAccuracy (ES, RS)

Sum := 0.

For each example F € ES do
Find the nearest rule R to E (except R s.t. R = E).
R.ons := consequent of R.

Sum := Sum + Similarity(Reons, Econs)-

.. S
ACC = % .
Return Acc.

Figure 4.7: The accuracy-computing algorithm

4.2.2 The Algorithm

A rule is said to cover an example if all of its antecedents are satisfied by the
example’s corresponding fillers. To extend the algorithm from classification to text
prediction, we define a new measure for the accuracy of a rule set on an example
set: TextAccuracy(RS,ES) is the average similarity of the predicted fillers for
the examples in ES to the corresponding fillers predicted by a rule set RS. The
algorithms for generalizing a rule to cover an example and for learning rules are
described in Figure 4.5 and Figure 4.6 respectively.

The algorithm is a straightforward modification of RISE using the new sim-
ilarity and predictive-accuracy metrics and is used to induce soft-matching rules for
predicting the filler of each slot given the values of all other slots. The algorithm
for computing the accuracy of a rule set is given in Figure 4.7. Unlike RISE, TEX-

TRISE computes the accuracy of a rule set by accumulating the similarity between

57

Author

Title

Synopsis

Isaac Asimov

Norby and the Lost Princess

“In this third book of the
Norby series, Jeff and Norby
rescue a young princess trapped
on a planet.”

2 I Asimov

Lucky Starr

“In this book, David Starr and his
partner travel to a planet to
investigate accidents and setbacks of
a research project.”

3 Janet Asimov

Norby and the Lost Princess (1985)

“In this book, Space Cadet Jeff
and his robot Norby rescue

a princess trapped on another
planet.”

4 || Ursula Le Guin

The Dispossessed

“Shevek, a brilliant physicist,
risks his life by traveling to
the utopian planet of Urras.”

Figure 4.8: A set of book descriptions

the consequent of an example and the consequent of the corresponding rule.

For an example, consider the set for book descriptions in Figure 4.8. Let us

assume that all slots are represented as strings except for the “synopsis” slot which

is represented as BOWSs. We also assume that the “synopsis” slot is to be predicted

from the “author” and the “title” slot. As in RISE, the initial rule set for the

TEXTRISE algorithm is the same as the training set since TEXTRISE starts with

maximally specific rules. When we locate the most similar example with the first

rule in the current rule base, we find example 3) is the closest one with example 1).

The generalized rule between these two is

1)

Author

Isa Asimov

Title = Norby and the Lost Princess (19

Synopsis =

58

{"book", "jeff", "robot", "norby", "rescue", "princess",

"trapped", "planet'"}

By replacing rule 1) with 1)', the rule set to be compared with the original one is

updated as follows.

1)

Author = Isa Asimov

Title = Norby and the Lost Princess (19

_)

Synopsis = {"book", "jeff", "robot", "norby", "rescue", "princess",
"trapped", "planet"}

2)

Author = I. Asimov

Title = Lucky Starr

_>

Synopsis = {"book", '"david", '"starr", "parner", "travel", "planet",
"investigate", "accidents", "setbacks", "research", "project"}

3)

Author = Janet Asimov

Title = Norby and the Lost Princess (1985)

_)

Synopsis = {"book", '"space", '"cadet", "jeff", "robot", "norby",

"rescue", "princess", "trapped", "planet"}

59

4)

Author = Ursula Le Guin

Title The Dispossessed

Synopsis = {"shevek", "brilliant", "physicist", "risks", "life",
ynop pay

"traveling", "utopian", "planet", "urras"}

We calculate the global accuracy of the updated rule set to see if the old rule
should be replaced with the generalized one. Every example in the training set is
matched successively to rules in those rule sets. Since the generalized rule increases
the accuracy by predicting the consequent slot of the second example more closely,
we accept this updated rule base and repeat this process to all the remaining rules.

After eliminating duplicates, we obtain the following rule set as a result.

17)
Author = Isa Asimov

Title = Norby and the Lost Princess (19

_)
Synopsis = {"book", "jeff", "robot", "norby", "rescue", "princess",
"trapped", "planet'}
PP p
2)
Author = I. Asimov

Title = Lucky Starr

60

Synopsis = {"book", '"david", '"starr", "parner", "travel", "planet",

"investigate", "accidents", "setbacks", "research", "project"}

4)

Author = Ursula Le Guin
Title = The Dispossessed
_)

Synopsis = {"shevek", "brilliant", "physicist", "risks", "life",

"traveling", "utopian", "planet", "urras"}

The algorithm terminates at this point because no rules can be generalized
with any examples in the training set to increase the overall accuracy. If we are now

presented with the following test case:

Author Janet Asimov

Title = Norby and the Court Jester

the output value for the subject slot is a BOW, {"book”, ”jeff”, "robot”, "norby”,
"rescue”, ”princess”, "trapped”, "planet”} because the closest rule to this test ex-
ample is rule 1) in the final rule base and it predicts that BOW in the synopsis slot.
Sample rules induced from the book descriptions data set (Section 3.3.3) are shown

in Figure 4.9.

4.2.3 Interestingness Measures

The output of TEXTRISE is an unordered set of soft-matching rules. Ranking rules
based on an interestingness metric can help a human user focus attention on the

most promising relationships. Several metrics for evaluating the “interestingness”

61

title nancy_drew

synopses { nancy(1) }

subject { children(2), fiction(2), mystery(3), detective(3), juvenile(1), espionage(1)
}

%

author keene_carolyn

synopses { role(1), protein(1), absorption(1), metabolism(4), vitamins(1), miner-
als(1) }

reviews { health(1) }

subject { science(1), human(1), physiology(1) }

%

title { nutrition(1) }

author beatrice_gormley

synopses { witness(1), ufo(1), landing(1) }
subject { science(1), fiction(2) }

_>

reviews { aliens(1), ufo(1), book(2) }

title charlotte_perk gilman(1)

synopses { work(1), utopias(1), herland(1), ourland(1) }

reviews { gilman(1), author(1) }

subject { literature(2), criticism(2), classics(1), women(1), literary(1) }
—

comments { utopia(1), feminist(1) }

title { dance(1) }
_>
subject { romance(2), fiction(2) }

Figure 4.9: Sample rules from book data set

62

or “goodness” of mined rules, such as confidence and support, have been proposed
(Bayardo Jr. & Agrawal, 1999).

However, the traditional definitions for confidence and support assume ex-
act matches for conditions. For instance, the support of a rule “C € languages —
WindowsNT € platform” is defined as the number of examples in the database in
which C € 1anguages and WindowsNT € platform occur together. By this definition,
an example with C € languages and WinNT € platform is not counted when support
and confidence are computed even though WindowsNT and WinNT could be treated as
a unique item based on the high similarity of those terms. Consequently, we modify
the two common metrics, confidence and support, for judging the goodness of the
soft-matching rules.

A rule consists of two conditions called antecedent and consequent, and is
denoted as A — C where A is equal to A; A As A ... A A;. The similarity-support
of an antecedent A, denoted as simsup(A) is the number of examples in the data
set, that are soft-matched by A. In other words, simsup(A) is the number of
examples to which A is the closest rule in the rule base. The similarity-support
of rule A — C, denoted as simsup(A — C), is defined as the sum of similarities
between C and the consequents of the examples soft-matched by A in the data set.
In these definitions, we replace the traditional hard-matching constraints for a rule
with weaker constraints determined relative to all the other rules in the rule base.
Similarity-confidence of a rule A — C, denoted by simconf(A — C), is computed

as below.

simeconf(A — C) = %W

These measures are used to rank the rules generated by TEXTRISE to show

63

users more interesting rules first. Users can specify the minimum value of similarity
support (confidence) for rules to be displayed in order to filter out rules with limited
coverages (accuracies) by setting a cutoff level, although a rule pruning mechanism
based on minimum confidence or support is not incorporated in the rule learning

algorithm of TEXTRISE as in association rule mining.

4.3 Evaluation

4.3.1 Experimental Methodology

The book data set (Section 3.3.3) is employed in our evaluation of TEXTRISE. The
data set is composed of 6 subsets, science fiction, literary fiction, mystery, romance,
science, and children’s books. 1,500 titles were randomly selected for each genre to
make the total size of the book data set to be 9,000. We used a 6 slots: titles,
authors, subject terms, synopses, published reviews, and customer comments.
All slots are treated as BOWs.

Unlike a standard rule learner that predicts the presence or absence of a
specific slot value, TEXTRISE predicts a textual value for each slot. Therefore, we
evaluate the performance of TEXTRISE by measuring the average similarity of the
predicted slot values to the actual fillers for each slot, e.g. consine similarity for
BOW-type slots. We compare the system to a standard nearest-neighbor method to
show that TEXTRISE’s compressed rule base is superior at predicting slot-values.
In both methods, prediction is made by selecting the closest rule/example using
only the text in the antecedent slots. We also tested nearest-neighbor without using

information extraction to show the benefit of IE-based text mining. To clearly show

64

IE’s role, the only change made to nearest-neighbor was to treat the set of antecedent
slots as a single, larger text.

In addition to the textual similarity, we developed analogs for precision and
recall. Precision and recall were defined as follows, where C' is the correct slot and

P is the predicted one.
precision = similarity(generalization(C, P), P) (4.4)

recall = similarity(generalization(C, P),C) (4.5)

F-measure is defined as the harmonic mean for precision and recall as previously
shown in Equation 3.3. For example, the precision and recall are defined as follows

when C and P are BOWs, precision and recall are defined as follows.
precision = similarity(C N P, P) (4.6)

recall = similarity(C N P, C) (4.7)

4.3.2 Results and Discussion

The experiments were performed using ten-fold cross validation. Learning curves
for predicting the title slot are shown in Figure 4.10. The graph shows 95%
confidence intervals for each point. All the results on average similarities, preci-
sions, and F-measures were statistically evaluated by a one-tailed, paired t-test.
For each training set size, two pairs of systems(TEXTRISE versus nearest-neighbor
and nearest-neighbor versus nearest-neighbor without information extraction) were
compared to determine if their differences were statistically significant (p < 0.05).
The results indicate that TEXTRISE does best, while nearest-neighbor with-

out IE does worst. This shows TEXTRISE successfully summarizes the input data

65

18 T T T T T

TextRISE ———

NN (Nearest Neighbor) --------
NN without IE —-~~
16 | 1
14 1 B
12 + | ! i
g i)
> [
g 10 X
E 1 ‘
(7] 4 :
S 8t ook
I 27
o X i
> ! H
< - T 1
6 | P -
Lo
X
4 | A _
X 04
2+ =7 1
¥
Il Il Il Il Il Il Il Il

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Number of Training Examples

Figure 4.10: Average similarities for book data

in the form of prediction rules. The rule-compression rate of TEXTRISE is about
68% on average, which means the number of rules TEXTRISE produces is 68% of
the number of examples originally stored in the initial rule base.

Learning curves for precision and F-measure are presented in Figure 4.11 and
Figure 4.12. TEXTRISE provides higher precision, since the conclusions of many of
its rules are generalized slots, and overall F-measure is moderately increased. The
average similarity, precision, and F-measures are low (under 256%) because predicting
textual slots given the information on other slots is a relative difficult task.

We also conducted the experiments on the movie data set (Section 3.3.4)

and obtained similar results as shown in Figure 4.13 and Figure 4.14. The learning

66

I I I ' ' TextRISE ——
25 NN (Nearest Neighbor) -------- i
NN without IE -~~~
20 | | i
) ; x
S 15 T i
E 3
)
(5]
e g
& n |
i K
10 KT J\ i
¥
0 1 1 1 1 L | |)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Number of Training Examples

Figure 4.11: Precision for book data

curves are for predicting the title slot.

4.4 Summary

In this chapter, we showed that instance-based learning and rule-learning algorithms
can be integrated to discover soft-matching rules from textual data. Such a hybrid
is a good match for text mining since rule-induction provides simple, interpretable
rules, while nearest-neighbor provides soft matching based on a specified similar-
ity metric. In TEXTRISE, the user gives a similarity metric for each field. Our

approach uses a TFIDF text-similarity metric from information retrieval (Baeza-

67

| | | | I TextRISE
NN (Nearest Neighbor) --------
NN without IE --——~
20 |
15 |
S
S
=}
[%2]
@
[J]
= 10} _
L
5 I -
0 I I ; L L 1 1 1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Number of Training Examples

Figure 4.12: F-measure for book data

Yates & Ribeiro-Neto, 1999) for long text and a standard edit-distance metric for
short strings. Generalization methods for each model, such as bag intersections and

intermediate strings, are presented.

68

Precision (%)

F-measure (%)

' ' ' ' TextRISE ——
NN(Nearest Neighbor) --------
25 e
20 —
15 | 1
10 | .
v
5 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000
Number of Training Examples
Figure 4.13: Precision for movie data
20 T T T T T T
TextRISE ——
NN(Nearest Neighbor) --------
18 —
16 | 1
14 + -
12 —
10 —
8 - -
6 - -
1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000

Number of Training Examples

Figure 4.14: F-measure for movie data

69

Chapter 5

SOFTAPRIORI: Mining

Soft-Matching Rules from Text

Association rules mining is one of the most popular methods in data mining (Han &
Kamber, 2000; Witten & Frank, 1999) (See Section 2.3.2). By directly applying the
standard association rule mining algorithm such as APRIORI (Agrawal & Srikant,
1994) to text, associations between the extracted items could be discovered. Docu-
ments can be treated as baskets and extracted fillers as items. However, one of the
problems of association rule mining techniques is that each item is always considered
to be distinct from the others, therefore any two items are either the same or totally
different.

As previously stated in Section 1.3, the content of the extracted item may
not always be an exact text match with known values. Instead, it may be a close
match. The problem of matching these extracted items to the actual known values is

called “soft matching”. In this chapter, we explore the generalization of the standard

70

| ID | Areas | Platforms | Applications |

1 || Data Management Windows Microsoft Access
2 DB Management Windows98 MS Access

3 Web WindowsNT VBScript

4 World Wide Web WinNT ASP

Table 5.1: Sample noisy textual database

algorithm for discovering association rules to allow for soft matching based on a given
similarity metric for each field. Soft matching association rules whose antecedents
and consequents are evaluated based on sufficient similarity to database entries are
able to directly mine “dirty” data by overcoming the barrier of the traditional rule
mining that only takes fixed categorical values (or items).

For instance, consider the example in Table 5.1, that lists required skills for
a set of computer-science jobs. In this database, the co-occurrence of “DB Manage-
ment (or Data Management)” in areas, “Windows (or Windows98)” in platforms,
and “Microsoft Access (or MS Access)” in applications is a pattern that a human can
easily recognize (from jobs 1 and 2). However, traditional rule mining techniques
such as the association rule mining algorithm (Section 2.3.2) cannot discover such
patterns because they treat “Data Management” / “DB Management”, “Windows”
/ “Windows98”, and “Microsoft Access” / “MS Access” as different items. This

example motivates a rule-learning algorithm that allows partial matching.

5.1 Soft Association Rules

In this section, we introduce the problem of mining soft association rules from

databases and investigate how to utilize an existing association rule mining algo-

71

rithm to incorporate similarity in discovering associations. With a softened defini-
tion for associations that does not require exact matches, we present an algorithm
called SOFTAPRIORI for discovering soft association rules, as well as implementa-
tions using a string edit-distance and a cosine similarity as the similarity metrics.
Before presenting our algorithm for discovering soft association rules, we
define soft relations as follows. We assume that a function, similarity(z,y), is given
for measuring the similarity between two items z and y. The range of the similarity
function is the set of real numbers between 0 to 1 inclusive, and similarity(z,y) =1

iff x =y.

Definition 1 (is-similar-to) An item x is similar to an itemy (x ~ y) iff similarity(z,y)
> T, where T is a predefined threshold between 0 and 1. We also define a binary
function similar(x,y) which is 1 if x ~ y and 0 otherwise. This definition is a natu-
ral generalization of “x equals to y (x = y)” with T set to 1. The similarity relation
is reflexive (x ~ x) and symmetric (x ~ y implies y ~ x), but not transitive(r ~ y

and y ~ z does not necessarily imply ¢ ~ z).

Definition 2 (is-a-soft-element-of) An item x is a soft-element of an itemset I

(x Esopt 1) iff there exists an &' € I such that &' ~ .

Definition 3 (is-a-soft-subset-of, set-similar) An itemset I is a soft-subset of
an itemset J (I Cyopy J) iff for every item in I there is a distinct similar item in
J, i.e. for every item x; € I, I = {z1,...,xm}, there is an item y; € J such that
zi~y; and y; #y; for all j #1i,1 < j <m. Two sets I and J are similar, denoted
by I~ J, iff I Ceopt J and J Cyope I. I is a proper soft-subset of J iff I Cyppr J

holds but I ~ J 1is not true.

72

| Record || Ttems |
Ry a, b, ¢, d
R, a, b, c d
R3 a,c, c,d
R4 a',d, e

Table 5.2: An example of a database with soft-matching items

Definition 4 (soft-disjoint) Two itemsets I and J are soft-disjoint when no item
in I is a soft-element of J. The “soft-disjoint” relation is symmetric, i.e. if I and

J are soft-disjoint then so are J and I.

For instance, consider the example in Table 5.2. Let us assume that those
items with /' are similar to items with the same literal without /, but not similar
to those with other literals. With this assumption, a is similar to a' (a ~ a') and
a" (a ~ a"), but not similar to b (a ¥ b). Ry ({a,b,c,d}) is a soft-subset of Ry
({a',b',¢,d'}) since every item in R; is similar to some item in Ry. Rp is also a
soft-subset of R; and that makes R; and Rs similar to each other. However, R3
({a,c,c/,d'}) is not a soft-subset of Rs since ¢ and ¢ in R3 have only one shared
similar item ¢ in Ry, but a one-to-one mapping is required for soft-matching items.

The following is a formal statement of the problem of mining soft association
rules: Let I = {41,142, ...,im} be a set of literals, called items. Let D be a set of
records, where each record R is a set of items such that R C I. A soft association
rule is an implication of the form X = Y, where X C I, Y C I, and X and
Y are soft-disjoint. The problem of mining soft association rules is to find all
soft association rules, X = Y, such that the soft-support and the soft-confidence
of X = Y are greater than the user-defined minimum values (called minsup and

minconf respectively). Formal definitions for soft-support and soft-confidence, which

73

are straightforward generalizations of the traditional ones, are given below.

Definition 5 (soft-support) The soft-support of an itemset X in a set of records
(database) D, denoted as softsup(X), is the number of records, R € D, such that
X Csopt R. The soft-support of a rule X = Y in a database D, denoted as

softsup(X = Y), is the number of records R € D such that X UY C,opt R.

Definition 6 (soft-confidence) The soft-confidence of a rule X =Y, denoted as
softconf(X = Y) is given by:

softsup(X = Y)
softsup(X)

softeonf(X =Y) =

For example, the soft-support of the itemset {a,c} for the database shown
in Table 5.2 is 3 since it is a soft-subset of 3 records, Ry, Ro, and R3. The soft-
confidence of the association rule, {a,c} = {¥'} is computed by dividing the soft-
support of {a,c,b'} (= {a,c} U {b'}) by the soft-support of {a,c}. Since the soft-
support of {a,c,b'} is 2 (R; and R2), the soft-confidence of this rule is 2/3, or

66.67%.

5.2 The SOFTAPRIORI Algorithm

The problem of discovering soft association rules can be decomposed into three
parts as in traditional association rule mining (Agrawal & Srikant, 1994; Srikant &
Agrawal, 1995): discovering frequent itemsets, rule generation, and (optional) rule

filtering. Here we discuss the first part, finding all frequent itemsets with higher

74

soft-support than the user-specified minimum. Given the frequent itemsets, the
APRIORI algorithm (Agrawal & Srikant, 1994) can be used to generate rules by

simply replacing the confidence measure with soft-confidence.

5.2.1 The Algorithm

In the current algorithm, we add an extra constraint to the definition of similar
items that avoids a practical problem. In most applications of mining association
rules from textual databases, we do not expect similar items to appear together in
the same database record. In other words, even though a single record contains
string-valued items that are similar by Definition 1, such items generally refer to
different entities. For instance, “ASP” and “JSP” are best considered distinct items
despite their similar appearance when they both occur in the job skills of a single
resume. Based on this intuition, the definition of similar items in the context of a

given database is restated as follows.

Definition 7 (is-similar-to (in-the-context-of)) An item x is similar to an item
y in the context of database D (x ~p y) iff similarity(x,y) > T (where the threshold
T is a predefined constant between 0 and 1) and z and y do not appear together in

any record R in D ({z,y} £ R(R € D)).

For brevity, in the rest of the thesis, we use the shorter notation ~ without specifying
the database D when the relevant database is clear from context.

To discover frequent itemsets for soft association rules, we generalize the
existing itemset mining algorithm presented by Agrawal and Srikant (1994) in a
straightforward way. Since the notion of equality in the traditional definition of an

association rule is replaced by similarity, we need to compute the soft-support of each

75

Input: D is the set of records.
Output: Ly is the frequent k-itemsets.

Function SoftApriori (D)

L; := FindFrequentItemsets(D).
k:=2.
while (Lk_1 75 (B) do
begin
C}, := GenerateCandidates(Ly 1).
forall records » € D do
forall ¢ € C}, do
ifc Csoft T
c.count := c.count + 1.
L := All candidates in C} with minimum softsups.
k:=k+1.
end
Return (J; Ly.

Figure 5.1: The SOFTAPRIORI algorithm

item and itemset by Definition 5. Similarity between items is computed once and
cached for future references. In this approach, frequent itemsets under the definition
of soft-support (Definition 5) are treated as normal items and the standard APRIORI
algorithm can be used with minor modifications. Figure 5.1 gives pseudocode for
the SOFTAPRIORI algorithm. Notations such as Ly, (set of frequent k-itemsets) and
Ck (set of candidate k-itemsets) are from Agrawal and Srikant (1994).

The first step of the algorithm determines the frequent 1-itemsets. We as-
sume the minimum soft-support value, minsup, is provided by the user. The set of

frequent 1-itemsets L; in SOFTAPRIORI is defined as follows:

Ly ={{z} | z € I A softsupi({z}) > minsup}

76

| Record || Ttems |
Ry a, b, ¢, d
Ry e, f, g

Rs3 a,c, h,i
Ry ja d’ fa k

Table 5.3: Sample database

In other words, L; is the set of all 1-itemsets whose soft-support is greater than
the user-given minimum support. By Definition 5, the soft-support of each item is
calculated by summing the number of occurrences of all similar items. Formally,
the soft-support of a 1-itemset {x} where z is an element of the set of all items I (z

€ I) is computed as follows:

softsupr({x}) = 3,1 similar(z,y) X support(y)

While counting the occurrences of all items, we measure the similarity of
every pair of items and construct an m X m matrix similar(i, j), where m is the
total number of items in the database. Usually the similarity matrix is extremely
sparse since most items are not similar. A hash table is used to store the sparse
similarity matrix. Table 5.4 shows a list of the pairs of similar items given in the
database in Table 5.3.

To determine frequent 1-itemsets, the soft-supports of all items are computed.
Intuitively, we construct a cluster of items containing the items similar to each given
“central” item, and sum the support of all items in the cluster. The similarity hash
table is used to efficiently retrieve similar items. Table 5.5 shows the items from
the sample database in Table 5.3 sorted by decreasing soft-support. Items whose

support is less than the minimum support are discarded since they are not frequent.

7

| Similar Items (z ~ y) |

a, e

a, j

b, f

e f

d,1

gt

hy j
Otherwise, z # y

Table 5.4: Similar items

| Item (Similar Ttems) [| Support | Frequent |
a (e, j) 4

IS

~—

N[DN GO Q| Ll | ix] i

Table 5.5: Sample frequent 1-itemset table (minsup = 3)

78

After constructing sets of frequent similar items, they are treated the same
as items in the original APRIORI algorithm. Note that the closure property on
which the original APRIORI algorithm is based still holds for soft itemsets. In other
words, if an itemset has a soft-support higher than minsup, then every subset of
that itemset also has soft-support higher than minsup. Given L 1, the set of all
frequent (k — 1)-itemsets, the candidate itemsets Cj are generated by self-joining
Ly 1 with Ly 4.

In a manner similar to the initial construction of frequent items, itemsets
are grown by computing the soft-support of candidates and discarding those with
low soft-support. The soft-subset function is used to check which itemsets in Cj,
are softly in record r. For each itemset that is a soft-subset of r, or for each set of
items that have similar items in r, the soft-support of k-itemset is again computed
by the equation in Definition 5, counting the number of soft-matching items, instead
of simply counting the number of occurrences of each item.

For example, consider the set for the required skills for job announcements
shown in Figure 5.1. The data set can be translated into a database, or baskets of

items like following:

1) area_Data_Management, platform_Windows, application_Microsoft_Access

2) area_DB_Management, platform_Windows98, application_MS_Access
3) area_Web, platform_WindowsNT, application_VBScript

4) platform_WinNT, application_ASP

Let us assume that the minimum soft-support value is set to 2. In the tradi-
tional association rule mining algorithm, no frequent 1-itemset can be found from

this data set because there is no pair of identical items. However, by considering

79

similar items such as “area_Data_Management” and “area_DB_Management” and
“platform_Windows98” and “platform_WindowsNT”, SOFTAPRIORI is able to cap-

ture frequent 1-itemsets as:

{Frequent 1-itemset} Soft-Support
{platform_Windows (platform_Windows98, platform_WindowsNT)} 3
{platform_WindowsNT (platform_Windows, platform_WinNT)} 3
{area_Data_Management (area_DB_Management)} 2
{application_Microsoft_Access (application_MS_Access)} 2

therefore allowing the algorithm to grow itemsets further. In the next step, frequent

2-itemsets are identified:

{Frequent 2-itemset} Soft-Support
{platform_Windows (platform_Windows98, platform_WindowsNT), 2
application_Microsoft_Access (application_MS_Access)}
{platform_WindowsNT (platform_Windows, platform_WinNT), 2
area_Data_Management (area_DB_Management)}
{application_Microsoft_Access (application_MS_Access), 2

area_Data_Management (area_DB_Management)}

Frequent 3-itemsets are again found as follows, and the algorithm stops here since

no frequent 4-itemsets can be found.

{Frequent 3-itemset} Soft-Support
{platform_Windows (platform_Windows98, platform_WindowsNT),
application_Microsoft_Access (application_MS_Access), 2

area_Data_Management (area_DB_Management)}

80

Job-postings

1. database (databases, database sys.) € area = oracle (oracle7) € application
[3.2%, 43.2%)]

2. mfc € area = windows (windows nt, windows 95, windows 3.1, windows 3.x,
windowsnt, windows95, windows’95) € platform [2.7%, 39.0%)]

3. bsee (bs/ee) € required-degree = bscs (bs/cs) € required-degree [2.5%, 75.0%]
Resumés

1. unix € programming-language = visual basic (visual basic 5.0, visual ba-
sic 6.0, visual basic 4.0, ms visual basic, visual basic 4, visual basic 5/6) €
programming-language [13.0%, 31.2%]

2. netscape (netscape 4.7, netscape 4.x, netscape 6, netscape ldap) € application
= tcp/ip (tep ip, tepip) € application [3.3%, 34.5%]

3. ¢t++ (ve++) € programming-language and asp (asps) € language and unix
€ platform = java (java 2, java2) € programming-language [2.3%, 63.6%]

Figure 5.2: Sample discovered soft-association rules

From the above frequent itemsets, rules are generated in a straightforward way:
For each frequent itemset L, all nonempty subsets are generated first. For every
nonempty subset S, the rule, “S = (L —S)” is returned if soft—support(L)/soft—
support(S) is greater than or equal to the mininum confidence. For instance, “plat-

form Windows = application Microsoft_Access” is returned if:

soft—support({plat f orm Windows, application_Microsoft_Access}) 2)
- = — > minconf
soft—support({platform Windows}) 3

Sample rules discovered from the job-postings data set (Section 3.3.1) and
the resumé data set (Section 3.3.2) are shown in Figure 5.2. Items similar to a given
item are shown in parentheses and values for soft-support and soft-confidence are

shown in brackets.

81

5.2.2 Time Complexity

In the original APRIORI algorithm, the identification of the frequent itemsets is
known to be computationally expensive, having exponential worst-case behavior in
|I| (the number of literals) (Agrawal & Srikant, 1994). However, the number of
itemsets considered is greatly reduced in practice. Once all sets of frequent itemsets
are obtained, it is straightforward to find association rules without scanning the
data again. SOFTAPRIORI also has the same property in generating candidates and
finding rules but requires a pre-processing step of computing similarities between
items.

The extra complexity of constructing a similarity matrix in the initial stage is
O(m?) where m is the total number of items since we need to compute the similarity
of every pair of items. However, this complexity can be reduced in practice because
items in different fields do not need to be compared. By treating every pair of
items in different fields as non-similar, we are able to lower the number of similarity
computations to Zszl my? whereas N is the number of fields and my, is the number
of items in field k.

Depending on the particular similarity metric, additional optimizations are
possible. For example, items in numeric fields can be sorted and then similar items
can be quickly determined by checking neighboring items in order of proximity until
the similarity threshold is exceeded. We present additional optimizations for string
edit-distance and cosine similarity in Chapter 6 to reduce the O(m?) time complexity

in finding all similar pairs.

82

5.3 Evaluation

5.3.1 Experimental Methodology

To determine the accuracy of a set of association rules, we measured precision and
recall with respect to predicting the presence of items in a record from other items
in that record. We measured the ability of both hard and soft association rules
mined from the same training data with the same minimum confidence and support
parameters to make accurate predictions on the same disjoint set of test data.

Precision is the percentage of predicted items that are actually present and
recall is the percentage of actual items that are correctly predicted. We also report
F-measure which is the harmonic mean of recall and precision (Equation 3.3). If
both soft-precision and recall are 100%, then the results are completely correct.
Lower precision indicates that the system is producing spurious rules. Lower recall
indicates that the system is failing to predict correct slots.

A prediction is judged to be correct iff there is an item in the record that
is at least similar to the predicted item (i.e. similarity(z,y) > T). Antecedents
of hard rules are matched using the appropriate hard matching criteria and soft
rules are matched using the appropriate soft-matching criteria; however, predictions
are always judged “softly” in order not to give soft rules an unfair advantage. The

pseudocode for the evaluation method is presented in Figure 5.3.

5.3.2 Results and Discussion

The experimental results obtained for the four textual databases are summarized in

Table 5.6. This table gives average prediction accuracies for hard and soft association

83

Input: Dyes: (test database), Rules (association rule set)
Output: (precision, recall)

Function ComputeAccuracy (Diest, Rules)

fired := 0.
matched := 0.
item = 0.

predicted := 0.
for each record R € Djes; do
/* precision */
for each r (A = ¢) € Rules do
if ((r is hard and A C R) or
(r is soft and A Cyot R))
then if 7 is hard then A’ := A.
else A' :== X st. X CRand X ~ A.
fired .= fired + 1.
if ¢ €gope R— A’
then matched := matched + 1.
/* recall */
for each ¢ € R do
item = item + 1.
if there exists a r (A = ¢) € Rules s.t.
¢~ c and ((r is hard and A C R— {¢'}) or
(r is soft and A Cyopt R — {c'}))
then predicted := predicted + 1.
return (matched/ fired, predicted/item).

Figure 5.3: Evaluation algorithm for soft-matching association rules

84

| Domain | Rule [| Precision | Recall | F-measure |

Job Soft 89.44 8.68 15.82

Hard 86.92 8.55 15.57

Resume | Soft 89.45 3.13 6.06
Hard 69.75 1.92 3.73

Books Soft 88.47 10.55 19.06
Hard 66.67 0.32 0.63

Table 5.6: Test accuracies of soft vs. hard association rules (%)

rules using a minimum support and confidence of 10% and 70% respectively for
USENET postings and 2% and 70% for book descriptions, and using a similarity
threshold of 0.7 for every field. Minimum support for book data (Section 3.3.3) is
lower since otherwise no rules at all are found from this data. The results show that
the accuracy of soft rules is consistently, significantly higher than that of hard rules.
Training accuracy, measured by training and testing on the same entire dataset,
shows similar patterns.

We also performed the same experiments while varying these parameters on
the resumé data set (Section 3.3.2) as shown in Figure 5.7. Differences for hard
and soft rules were evaluated by a two-tailed, paired t-test to determine if they were
statistically significant (p < 0.05). Overall, the results clearly show that soft rules
are generally better than hard rules at discovering reliable regularities in “dirty”

data.

5.4 Summary

Tradtional association rule mining methods require terms in discovered rules to ex-

actly match database entries. Normal variation in data items can therefore prevent

85

Minconf Minsup (%)

(%) Rule || 5 | 10 | 15

50 Soft || 90.86/3.17 | 86.95/3.14 | 84.55/3.13
Hard || 62.19/3.01 | 60.41/2.76 | 60.32/2.31

60 Soft || 90.79/3.18 | 87.71/3.13 | 85.64/3.13
Hard || 66.64/2.89 | 64.47/2.50 | 62.16/2.09

70 Soft || 91.34/3.18 | 89.45/3.13 | 85.76/3.08
Hard || 71.51/2.61 | 69.75/1.92 | 74.50/1.43

80 Soft 92.14/3.15 | 88.37/3.11 | 84.13/2.82
Hard || 78.84/2.25 | 79.05/1.46 | 80.60/0.69

Table 5.7: Test accuracies of soft vs. hard rules

the discovery of important and interesting relationships. In this chapter, we pre-
sented the SOFTAPRIORI algorithm to discover “soft matching” rules that are eval-
uated using a specified similarity metric. SOFTAPRIORI introduces soft-matching to
capture additional relationships. Allowing the discovery of soft-matching rules can
eliminate the need for certain types of tedious data cleaning prior to knowledge dis-
covery. Compared to TEXTRISE, an inductive method for learning soft-matching
prediction rules presented in Chapter 4, SOFTAPRIORI finds all association rules
with a given soft-support and soft-confidence, and therefore typically discovers a

larger set of regularities.

86

Chapter 6

Retrieving Similar Textual

Items Efficiently

We introduced a problem of mining similarity-based rules for text mining in the
previous chapters. So far we have been focusing on mining accurate rules from
texts. However, it is also an important problem to discover rules efficiently to build
a scalable text-mining system. One of the major bottlenecks in our systems as well
as many other text-mining systems is the computational complexity for retrieving
similar textual items. In this chapter, we show that similarity-based rule mining
systems that deal with large amounts of text data can be scaled up by showing how

to efficiently retrieve similar items in textual databases.

6.1 Introduction

A practical text mining system needs to be scalable and efficient in terms of time.

Table 6.1 shows that there are four problems to be solved with regard to the per-

87

| | SorTAPrIORI (Chapter 5) | TEXTRISE (Chapter 4) |

Short String Edit-Distance Edit-Distance
Threshold k-Nearest Neighbor
Long Documents Cosine Similarity Cosine Similarity
Threshold k-Nearest Neighbor

Table 6.1: Problem definition

formance issue. For mining soft association rules in SOFTAPRIORI, we cluster sim-
ilar items within some boundaries. In other words, all items that exceed a pre-
determined similarity threshold value must be retrieved. Similarities are measured
by edit-distance between two items for shorter strings, while the vector space model
and cosine similary are adopted for longer documents. On the other hand, for
learning soft prediction rules in TEXTRISE k-nearest neighbors are used in gener-
alizing similar items, where k is usually 1. We also separate this problem into two
categories, one with edit-distance and the other with cosine similarity.

Without optimization, the time complexity of the naive algorithms for solving
these problems is quadratic (O(n?)) in the number of textual items n since all the
items need to be compared with every other item. In the realistic situation where
n is very large, an O(n?) algorithm does not scale well. In this chapter, we show
that one can provide an optimized algorithm to yield near linear time complexity

on realistic, large data sets.

88

6.2 Fast Retrieval of Similar Strings

6.2.1 Retrieving Similar Strings Using a Threshold

In this subsection, we first present the implementation of a string retrieval system
using an edit-distance function and then describe two optimization methods for fast
retrieval of similar strings with a given similarity threshold T' (0 < T < 1). The
problem is to fill out the n x n similarity matrix for any n strings with either the
similarity value of each pair of strings (when the value exceeds the given threshold)

or 0 (otherwise).

Optimization I: Using String-Length Information

To measure similarities of string-valued items, a form of edit-distance was adopted
as discussed in Section 2.5. In our implementation, we used affine gap cost (Needle-
man & Wunsch, 1970; Monge & Elkan, 1996). The computation of edit-distance is
performed by dynamic programming in time O(nm) when n and m are the lengths
of the two input strings. However, the edit-distance computation in our implemen-
tation does not always require the full O(nm) time because it stops as soon as the
intermediate result exceeds the minimum value computed from the given similarity
threshold, T'.

The normalized edit-distance of affine gap cost for two strings is defined as
shown in Equation 2.2. Without loss of generality, we assume that |z| < |y| where
|z| (Jz| > 1) and |y| (J]y| > 1) are the lengths z and y in the rest of this chapter.

The maximum distance between x and y can be calculated based on their lengths

89

as follows:

ly| + gap_cost if |z| = 1;

mazimum_distance(z,y) = § mismatch_cost x |y| if 1 < |z| < gap_cost and |z| = |y|;

|z| + |y| + gap_cost otherwise.
(6.1)

where gap_cost is gap_start_cost + gap_extend_cost.

Intuitively, the maximum distance is the distance of two strings which do
not share any characters. Let us assume that the mismatch cost, gap start cost
and gap extend cost, which are parameters of affine gap cost, are set to 3, 3 and
1 respectively. Here are examples for each of the three cases. 1) “a” and “bede”:
3(mismatch) + 3(gap start) + 1(gap continued) + 1(gap continued) = 8, 2) “ab”
and “cd”: 3(mismatch) + 3(mismatch) = 6 , 3) “abcd” and “efghij”: 3(gap start)
+ 1(gap continued) + 1(gap continued) + 1(gap continued) + 3(gap start) + 1(gap
continued) = 14.

Given a particular edit-distance function, we can reduce the time complexity
of determining similar items under a given threshold T'. Since edit-distance counts
the number of operations needed to change one string to another, two strings can-
not be similar if their lengths are too different. For example, we do not have to
compute the actual affine gap cost for “isaac-asimov” and “clark” when T' = 0.7 to
confirm they are different because the gap between any 12-character string and any
5-character string is too big to result in a similarity greater than 0.7.

To generalize this observation, we present a proposition to show that there
exists an upper bound for the maximum similarity of two strings that only depends
on the lengths of the two strings. If that upper bound is less than 7' then two strings

cannot be similar.

90

Proposition 1 There exists an upper bound for the mazrimum similarity of two

strings © and y where |z| > 0, |y| > 0, and |z| < |y|.

Proposition 1 can be proved by showing that we can derive a function of
|z| and |y| for a lower bound of minimum_distance(z,y). Intuitively, two strings
x and y are most similar when they share as many characters as possible, i.e.
is a substring of y in this case since z is always shorter than or of equal size to y.
Among all the cases of x being a substring of y, £ and y are most similar when z
is the starting substring of y (or equivalently, the ending substring of y), e.g. “abc”
and “abcde”. By the definition of the affine gap function, we add the gap start cost
for the first gap then the gap extend cost is accumulated as the gap is increased.
For example, the distance between “abc” and “abcd” is 3 while distance(“abc”,
“abcde”) is 4 and distance(“abc”, “abcedef”) is 5, and so on when gap_start_cost
and gap_extend_cost are set to 3 and 1 respectively. Based on such observation, we
derive a function for computing the minimum distance of z and y as follows when

we assume that |z| # |y|:

minimum_distance(z,y) = |y| — |z| + (gap_start_cost — gap_extend_cost) (6.2)

It is clear that if the upper bound for the maximum similarity of x and y is
not greater than or equal to 7, then = and y cannot be similar. In that case, it is
redundant to explicitly compute the similarity between x an y to decide if they are
similar or not.

By combining this equation for the minimum distance between z and y with
Proposition 1 and the definition of similarity in Equation 2.1, we can obtain the

following formula for determining if two strings cannot be similar under affine gap

91

cost.

y|+1 i — .
1- ly|+(gap—start_cost+gap_extend_cost) <T if |.’E‘ =l and ‘:L‘| 7& |y" (6 3)

_ |lyl=|z|+(gap_start_cost—gap_extend_cost)) .
1 |z|+]y|+(gap_start_cost+gap_extend_cost) <T otherwise (‘x| 7 |y|)

Using this test, we are able to eliminate edit-distance computations for very
different strings. The pseudocode shown in Figure 6.1 describes the procedure of

applying the filter.

Optimization II: Using a Trigram Index

We can reduce the number of total comparisons between items even further by
using an n-gram index (Navarro & Baeza-Yates, 1998). An m-gram is a substring
of length n of a given string. It is easy to show that a string & cannot be similar to
y, for any reasonably high threshold T, if they do not share a common substring.
In addition, a string x cannot be similar to y for a given threshold if they do not
share at least k (k > 0) n-grams. For example, two similar strings “science” and

“sci”. For

“sci-fi” (affine_gap_cost(“science”, “sci-fi”) = 11) share 1 trigram, e.g.
any given string x, one can retrieve a list of strings worth comparing by determining
the minimum number of n-grams of z that must be shared with any similar string
Y.

In our implementation, we used a trigram index to efficiently retrieve a list
of candidate similar strings for each string. Trigram methods have been shown to
be useful for identifying phrases that have a high probability of being synonyms in
many tasks such as DNA sequence analysis (McCray & Aronson, 2002) or automatic

spelling correction (Angell, Freund, & Willet, 1983). Each string is indexed under

every three-character substring that it contains. For example, “science” is indexed

92

Input: s is the given string.

S is the set of strings, s1, sa, ..., Sp-
Output: S’ is the set of strings similar to s. (S’ C S)
Parameter: T is the similarity threshold.

Function RetrieveUsingStringLength (s, S)

S = 0.
z := length(s).
For each string s; € S’ do
y = length(s;).
If LengthFilter(z,y,T) = True
sim := similarity(z,y).

If sim>T
S'i= 8"U{s;}
Return S'.

SubFunction LengthFilter (z, y, T')
Ifz=y

Return False.
If 2 > y swap(z,y).
Ifx = 1.

mazimum_similarity

:=1-(ly|+1) / (Jy| + (gap-start_cost + gap_extend_cost)).
Else

mazimum_similarity

=1-

(ly| — |z| + (gap-start_cost—gap_extend_cost))/(|z| + |y| + (gap-start_cost + gap_extend_cost)).

If mazimum_similarity > T

Return True.
Else

Return False.

Figure 6.1: The optimization algorithm using string length

93

by 5 trigrams, “sci”, “cie’ , “ien”, “enc” and “nce”.

To compute the minimum number of trigrams to be shared by similar items,
we first present a proposition which states that there exists a minimum number of

trigrams required to be shared by any pair of similar strings.

Proposition 2 There exists an integer k > 0 such that any similar pair of strings

x and y share at least k trigrams.

Proposition 2 can be restated: there exists an integer £ > 0 such that no y
which shares only k' (k' < k) trigrams with & can be similar to . Note that our
task is to find a minimum number k for retrieving all ¢’s that have a possibility of
being simliar to the given z when y has at least £ shared trigrams with x.

Before showing how to prove the above proposition, let us compute the min-
imum distance between z and y when they share no trigrams. In that case, the
distance of ¢ and y is minimized when they share as many bigrams as possible.
For example, assume that x is “abcde” and y is “abfde” so that x and y do not
share any trigram. The distance between x and y is minimized since there is only
one mismatch (“c” and “f”) between the bigrams they share (“ab” and “de”). By
repeating this computation, we obtain a table shown in Table 6.2 for each |z| and |y|
when the mismatch cost, gap start cost, and gap extend cost, which are parameters
of affine gap cost, are set to 3, 3 and 1 respectively. These are commonly used values
for the penalties (Nahm et al., 2002).

We can easily see from the Table 6.2 that 1) |z| and |y| should be the same
to make z and y most similar and that 2) the minimum distance between z and y

(z and y share no trigrams) can be written as 3 x ||z|/3].

94

| [lzl=1]1lz|=2]|z|=3]|z|=4] |z[=5]|e]=6 [|a]=T7] ... |

=1l o | - | - | - | - | | -
wl=2| 8 | o | - - - - -
ly| =3 4 3 3 - - - -
ly| = 4 5 4 3 3 - - -
lyl =5 6 5 4 6 3 ; ;
ly| = 6 7 6 5 7 6 6 ;
ly| =7 8 7 6 8 7 7 6

Table 6.2: Minimum distance between x and y with no shared trigrams

To prove the Proposition 2, we need to show that the maximum similarity
of x and y is always less than T' for some k£ > 0 when k is the number of trigrams
shared by x and y. In other words, it has to be shown that the the minimum distance
between x and y is always greater than 1 — T for some k. So our goal is to find the
lower bound of the minimum_distance(x,y) when it is known that z and y share k
trigrams and check whether that lower bound exceeds 1 — T or not.

The distance between x and y is minimized when the shared portion of and
y is as great as possible. In other words, and y should share either 3k characters
if 3k > |z| or |z| characters otherwise. The distance is minimized especially when
the shared characters in two strings are aligned consecutively, e.g. “abcdefg” and
“abcdefhi” where two trigrams “abc” and “def” are shared. We can assume that
they follow our previous observation shown in Table 6.2 since the rest of two strings
do not share any trigrams. One thing different from the normal cases is that the
first characters of the non-trigram-shared parts of two strings should be different as
“g” and “h” in the previous example since otherwise there will be the (k + 1)-th

shared trigram. So the minimum distance between z and y are written as follows

95

when x and y are greater than 3 for k£ > 0:

0 if 3k > |z|;
minimum_distance(z,y) = (6.4)
3+3x LW%J otherwise.

It is easy to see that if |x| is 1 or 2 then there is no way for to share any
trigrams with other strings. For |z| = 3 and |y| = 3, the minimum distance between
x and y is 3 when they share no trigrams. By computing the maximum similarity
of z and y in that case, we obtain a formula such as 1 — % = % > T. Only when
the threshold T' passses this test, we retrieve all strings y which shares no trigrams
with z (|| = 3) to compare with . Otherwise, we only consider a string when
|| is greater than 3.

However, the Equation 6.4 does not cover every possible case because of the
constraint on k that k should not be 0. We first need to find the range of |z| to which
the Equation 6.4 can be applied. In other words, for some sufficiently small |z| and
some low T, it is not necessarily true that x cannot be similar to y even though
they share no trigrams(k = 0), e.g. “abcde” and “abfde”. Let’s assume that |z| is
at least 3 since we can simply exclude the cases for |z| = 1 or |z| = 2 as mentioned
previously. The minimum distance between x and y when they have no common
trigrams is 3 X ||z|/3] as described above. If the similarity of and y in such case,
which can be computed by the Equation 2.1 is always less than or equal to T', then
the Equation 6.4 cannot be applied to those z’s. For example, assume that 7' is
0.7. The filtering process defined by the computation that follows should be applied
to only to # which has |z| > 5. For instance, the similarity between “abcdef” and
“abgdeh” which share two bigrams is 0.625 which is less than 7" = 0.7.

Back to the equation 6.4, the equation holds when two strings and y share

96

3k characters aligned consecutively at either the starting or the ending position of
the longer string(y). If |z| is sufficiently small, then the minimum distance between
x and y is 0 because z might be a substring of y. Otherwise, we assume that x is a
starting (or ending) substring of y and the rest of z and y share as many as bigrams.
We can define an equation for checking if the maximum similarity of z and y are

less than T by Equation 2.1 and Equation 6.1.

1<T if 3k > |z|; (65
|| =3xk—1 .
3+3X2L><|$|+34 J >1—T otherwise.

From the first condition which is always false since T' is between 0 and 1,
we obtain a minimum value for k¥ which is [% — 1]. The second part of the above

equation is rewritten as follows by separating three cases by computing |z| mod 3.

E<(2xT—-1)x|z|+(4xT+2) if |z| mod 3 =0;
k<(2xT—1)x|z|+ (4 xT+4) if |z| mod 3=1; (6.6)
E<(@2xT—-1)x|z|+(4xT+3) if |z| mod 3 =2.

In conclusion, we pick all strings y such that y shares at least k trigrams
by the Equation 6.6 with any given = (|z| > 3) and compute the similarity of
them only in order to avoid unncessary comparisons. This method is guaranteed
not to miss any pair of similar items. The algorithm combined with the approach
presented in Section 6.2.1 is summarized in Figure 6.2. The algorithm assumes that
the index provides a function, contain(t) for retrieving all strings in S containing
a trigram t and mazimum_trigram, the maximum number of trigrams found in S.
We implemented this function as a hash table by building a string index accessed

through trigrams.

97

Input: s is the given string.

S is the set of strings, s1, sa, ..., Sp-
Output: S’ is the set of strings similar to s. (S’ C S)
Parameter: T is the similarity threshold.

Function RetrieveUsingTrigramIndex (s, .S)

S = 0.
z := length(s).
Switch (z mod 3)
Case 0: minimum _shared_trigram := (2xT —1) x |z| + (4 x T + 2).
Case 1: minimum_shared_trigram := (2 x T —1) x |z| + (4 x T + 4).
Case 2: minimum _shared_trigram := (2 x T —1) X |z| + (4 x T + 3).
Candidate := 0.
For each trigram ¢ of s do
For each string ¢ of contain(t) do
If c € Candidate
c.counter := c.counter + 1.
Else
Candidate := Candidate U {c}.
c.counter := 1.
For each string ¢ € Candidate do
If c.counter < minimum_shared_trigram
Candidate := Candidate - {c}.
For each string ¢; € Candidate do
y := length(c).
If LengthFilter(z,y,T) = True
sim := similarity(s,c).

If sim>T
S = 8"U{c}.
Return S'.

Figure 6.2: The optimization algorithm using trigram index

98

Experimental Results

In this subsection, we perform a benchmark test for the proposed optimization
schemes on two real data sets collected from the Internet. We present results show-
ing the efficiency gained by using the optimization methods presented previously for
quickly finding similar string-valued items. 3,000 science fiction (SF) book descrip-
tions automatically extracted from the Amazon.com online bookstore are used (See
Section 3.3.3). Three fields (title, author, subjects) are used in our experiments.
The total number of items for this dataset is 7,854 and the average length of the
strings is 179. The task is to determine if two strings are similar to each other
using a similarity threshold value, T', for every pair of strings where T is set to 0.7.
In the experiments presented in this chapter, white spaces contained in strings are
considered as a blank character and upper and lower cases are not distinguished.
Figure 6.3 shows the CPU time for the similarity computation step. The “No
Optimization” method compares all pairs of items in each field, “String Length” uses
a heuristic to eliminate comparisons between strings with very different lengths, and
“String Length + Trigram Index” additionally employs the trigram index to retrieve
strings with shared trigrams. This experiment was performed on a Linux/i686 PC.
For 500 records the optimization reduces running time by 56.36%. As the number
of items increase the effectiveness of the optimization decreases but it is still quite
effective even for more records. The results demonstrate that with good heuristics
and an efficient indexing method, our approach is scalable to larger datasets by

reducing the total number of explicit similarity comparisons between pairs of items.

99

I I I NoIOptimizatioln —t
6 String Length ---x---
String Length + Trigram Index --->--- |
5 -
4 -
o
[}
L
g3t
=
2 -
1 -
0 k= = Sl L L L
0 500 1000 1500 2000 2500 3000

Number of Records

Figure 6.3: Running time for similarity computations

6.2.2 Retrieving k-Nearest Strings

In this subsection, we present how to utilize a trigram index to efficiently retrieve
k-nearest-neighbors for short strings. The problem is to find the most similar &k
strings out of n strings for a given short string. A simple algorithm is presented
for increasing the efficiency of information retrieval searches under the edit-distance
framework. This optimization algorithm employs knowledge about the lengths of
the strings and a branch-and-bound search stategy in order to examine as few strings

as possible.

100

Optimization

To optimize the search for the nearest-neighbor under string edit-distance, we em-
ployed two simple optimization techniques. As in Section 6.2.1, we first utilized
the information on the string lengths and adopted the branch-and-bound search by
terminating the dynamic programming algorithm for computing distances of pairs
of strings as soon as the maximum expected similarity between those strings cannot
exceed the current maximum value.

The pseudo-code for this search algorithm is given in Figure 6.4 where
mazimum_distance(x,y) returns the maximum distance between two strings with
lengths x and y respectively (See Equation 6.1). The subfunction called “Simi-
larityBranchAndBound” computes the maximum expected distance between two
remaining strings after computing the maximum distance at each step of the dy-
namic programming for affine gap cost function. It then eliminates those strings
with low expected similarity since they cannot exceed the current maximum simi-
larity even if the rest of the string is as close as possible to the given string. This
algorithm can be easily generalized to k-nearest-neighbor search by maintaining a

list of k candidates.

Experimental Results

The same SF book dataset used in the previous experiment (Section 6.2.1) with 3
fields (title, author, subject) are used to evaluate the performance of the proposed
optimization. Figure 6.5 shows the CPU time for the nearest-neighbor search. The
“No optimization” method stands for linear search where every string is compared

with the given string in turn by repeatedly updating the current value of the maxi-

101

Input: s is the given string.

S is the set of strings, s1, sa, ... $p.
Output: s’ is the nearest neighbor of s. (s’ €)
Parameter: T is the similarity threshold.

Function FindNearestNeighbor (s, .S)

z := length(s).

currentNN := s;.

current_mazx := 0.

For each string s; € S do
y = length(s;).

dif f = |z -yl
Ifdiff =0
minimum_expected_distance := 0.
Else
minimum_expected_distance := |z — y| + (gap_start_cost — 1).

minimum _expected_distance
mazimum_distance(z,y)

If mazimum _expected_similarity > current_mazx
sim := Similarity BranchAndBound(s, s;, current_maz).
If sim > current_maz
current_max = sim.
currentNN := s;.
s’ := currentNN.
Return s'.

mazimum_ezpected_similarity := 1 —

SubFunction SimilarityBranchAndBound (s;, s2, current-maz)
$1 := aias...a, where a; is the i-th character of s;.
s2 := b1bs...b,, where b; is the j-th character of s,.
For each character a; in s; do
For each character b; in s do
compute costMaxtrix[i][j] under affine gap function.
mazimum_column := maz(costMatriz[i][§]) for all j :=1 .. m.
j' := j such that costMatriz[i][j'] = mazimum_column.
mazimum_expected_similarity :=
mazimum_ezpected_similarity(ai;1ait2..an, bjr 41bj112..bm).
If (mazimum_column + mazimum_ezpected_similarity) < current_maz
Return 0.
Return cost M atriz[n][m].

Figure 6.4: The optimized search algorithm

102

I I I NoIOptimizatioln —t
String Length ---x---

6 String Length + Bounded Search ------ 7

5F .

4+ .
g /><’/
L
()
E 3r -
[-

X
2 F - E
X
¥
e ,'%“
X
l - - -
A
0 ” 1 1 1 1 1
0 500 1000 1500 2000 2500 3000

Number of Records

Figure 6.5: Running time for nearest-neighbor search

mum similarity and “String Length 4+ Bounded Search” employs the proposed opti-
mization scheme. We also included the performance results from the version which
uses string length information only (“String Length”). For 3,000 records the opti-
mization reduces running time by 49.25%. The results show that our approach with

optimization scales up to large datasets.

103

6.3 Fast Retrieval of Similar Documents

6.3.1 Retrieving Similar Documents Using a Threshold

For longer documents represented as BOWs, a different optimization approach is
required. One of the well-known methods developed in the IR community is the
inverted index, an index to a set of texts of the words in the texts (Baeza-Yates &
Ribeiro-Neto, 1999). Each index entry gives the word and a list of texts in which
the word appears. Figure 6.6 summarizes our optimization algorithm.

The optimization technique is based on the observation that calculating exact
similarity is not necessary to know that two documents are “similar” using a thresh-
old T (similarity(d,d') > T'). Since similarity(d,d') is computed by accumulating
partial scores for each term, we can calculate the maximum expected similarity at
each point by assuming the rest of the tokens in one document are exactly the
same with those in another and computing the similarity between two virtual docu-
ments when the tokens are sorted descendingly by their inverse document frequencies
(IDF). The partial score of a term term,; (score(document;(term;), document; (term))
where j = j') is defined as idf (term;)? x count (i, j) x count(i', j') where count(i, j)
is the number of occurrences of the term j in document i. If a document cannot
be similar to the other even if all the remaining tokens are shared by the two docu-
ments, then the algorithm stops and does not compute the exact similarity between
them.

Using the inverted index, we are able to address the scaling problem with
BOW documents as shown in Figure 6.7. For the “Inverted Index” method, docu-

ments that have no shared term with the given document are simply not considered

104

Input: d is the given document.
D is the set of documents, di, da, ... dy.
Output: D’ is the set of documents similar to s. (D' C D)

Function RetrieveUsingInvertedIndex (d, D)

Let W := set of all words in d, w1, ws, ... Wn,.
Sort W by decreasing idf (inverse document frequency).
A:=0.
For each word w; € W do
Let dyirtuar := document containing all remaining words (wit1, Wit2...wn,) in d.

m
mazimum_ezpected_score := Y (score(d(§), dyirtuar (7))-
it1
Read I;, inverted list for w;.
For each unmarked document d' in I; do
If Currenty ¢ Current and Currenty is not marked
Currenty := 0.
Current := Current U {Currenty }.
Currenty := Currenty + score(d(i),d (7).
If normalize(Currenty + mazimum_ezpected_score) < T
mark Currenty and d'.
D' = 0.
For each unmarked current score Currenty € Current do
sim := normalize(Currentg).

If sim>T
D' :=D'u{d}.
Return D'.

Figure 6.6: The optimized search algorithm

105

2 T T T T T
No Optimization —+—
Inverted Index ---x---
18 Inverted Index + Optimization ------
16 4
14 -
12} N
(8]
[}
L
> 1r i
E
. 0.8 4
0.6 4
04 -
0.2 e
e
T S
0 T Koot Hoooes X yf
0 500 1000 1500 2000 2500 3000

Number of Records

Figure 6.7: Running time for similarity computations

for similarity computation. The “Inverted Index + Optimization” follows the algo-
rithm shown in Figure 6.6. The same set of data used in the previous experiment
(Section 6.2.1) was used with the same threshold, 7' = 0.7. BOW-translatable slots
such as reviews, comments, synopses and subject were used in this experiment. The
total number of items for this dataset is 5,426. The results show that the running
time can be greatly reduced even by using a simple indexing technique, employing

the inverted index to efficiently retrieve documents with shared terms.

6.3.2 Retrieving k-Nearest Documents

To retrieve k similar textual items when the items are BOWSs, we consider optimiza-
tion techniques suggested earlier in the IR community (Lucarella, 1988). Traditional

IR systems have extensively studied the problem of retrieving k-nearest-neighbor

106

documents for a query ¢, when documents and queries are represented as vectors
of terms. We adopted a technique called “partial ranking with document-at-a-time
evaluation” (Turtle & Flood, 1995) for effectively obtaining k-nearest neighbors of
the given document. In a nutshell, it operates by keeping track of the top k& docu-
ments as evaluation progresses and terminates evaluation of a document as soon as
the maximum score that the document could achive would not place it in the cur-
rent set of top ranked documents. With this evaluation technique, cost per query is
shown to be greatly reduced (Turtle & Flood, 1995).

With the same set of data used in the previous experiment (Section 6.2.2)
and k = 1, Figure 6.8 shows the CPU time for the similarity computation step. The
“No Optimization” method compares all pairs of items to find the nearest neighbors
and “Optimization” employs the algorithem suggested by Turtle and Flood (1995).

The optimization reduces running time by 79.25% on average.

6.4 Summary

The larger the size of available documents becomes, the more critical tradeoffs be-
tween speed and accuracy emerge, since accurate but slow methods may not be
practical in many applications. In this section on the scalability of our approach,
we presented methods to efficiently retrieve similar text-valued items in text-mining
systems. Straight-forward algorithms, such as those based on nested loops, typically
require O(N?) similarity computations. This quadratic scaling hinders its use when
we tackle increasingly larger data sets.

For a given problem of finding all similar short-string items under a similarity

threshold, we derived an optimized algorithm utilizing a trigram index. For another

107

25 T T T T
No Optimization —+—
Optimization ---x->
20 b
15 e
[S]
[}
L
3]
E
T 1o -
5 - -
0 el 1 1 1 1 1
0 500 1000 1500 2000 2500 3000

Number of Records

Figure 6.8: Running time for nearest-neighbor search

problem of finding the &£ most similar short-string items, we presented a simple op-
timization using information about the length of the given strings for short strings
and a branch-and-bound search technique for longer documents. For longer docu-
ments, we employed the inverted index, a widely used technique in the information
retrieval field. The optimized algorithms are based on the fact that most similar-
ity calculations in the naive algorithm are redundant. Experimental results on a
real-life data illustrate that our approach can greatly reduce the total time required
for finding similar items. The results demonstrate that with good heuristics and
efficient indexing methods, our approach is scalable to larger datasets by reducing

the number of explicit similarity comparisons between pairs of items.

108

Chapter 7

Experimental Comparison of

TEXTRISE and SOFTAPRIORI

In previous chapters, we presented two rule mining systems for learning soft-matching
rules: TEXTRISE (Chapter 4) and SOFTAPRIORI (Chapter 5). Both of them have
their own strengths and weaknesses. We hypothesize that TEXTRISE which induces
soft-matching rules by generalization learns more accurate rules while SOFTAPRI-
ORI focuses on efficient mining of soft-matching rules. In this chapter, we present
experimental results with TEXTRISE and SOFTAPRIORI on one set of data: book
descriptions. The soft-precision and soft-recall are compared to demonstrate the

advantage of mining soft-matching rules.

7.1 Experimental Methodology

The experiments presented here are performed on the book data set (Section 3.3.3).

To evaluate the performance of the system with varying amounts of training data,

109

we ran tests with smaller subsets of the training examples for each test set and
produced learning curves.

We compare four systems in the experiments: TEXTRISE, SOFTAPRIORI,
nearest-neighbor, and APRIORI. The first two systems discover soft-matching rules
while the last one mines hard rules. For these experiments, we used the default
values for all parameters of the SOFTAPRIORI algorithm as presented in Section 5.3.

To determine the accuracy of a set of rules, we introduce soft-precision and
soft-recall with respect to predicting the presence of items in a record from other
items in that record. Soft-precision is defined as the percentage of predicted items
that are (softly) actually present and soft-recall is defined as the percentage of actual
items that are (softly) correctly predicted. We also report soft-F-measure which is
the harmonic mean of soft-recall and soft-precision. Soft-F-measure is defined as in
Equation 3.3 using soft-precision and soft-recall in place of precision and recall.

The algorithm for computing soft-precision and soft-recall is presented in
Figure 7.1. This method is a general extension of the test algorithm shown in
Figure 5.3. Instead of adding 1 for each match, this algorithm accumulates the
actual similarity between the consequent of rules and the matched part of examples.
The notation A’ in the algorithm represents the matched part in an example for the

antecedent A of a rule.

7.2 Results and Discussion

In order to measure the predictive accuracy of discovered rules, we have performed
a ten-fold cross-validation procedure. In each test, the soft-precision and the soft-

recall of the system are reported. The results are summarized in Figure 7.2 and and

110

Input: Dyt is the test database.
Rules is the rule set.
Output: soft—precision and soft—recall as measured on Dyeg.

Function ComputeAccuracy (Diest, Rules)

fired := 0.0.
total := 0.0.
matched := 0.0.

predicted := 0.0.
foreach record R € Dy do
/* precision */
foreach rule (A = ¢) € Rules do
if ((rule is hard and A C R) or (rule is soft and A Cyop; R))
if rule is hard then A’ := A.
else A’ := X st. X C Rand X ~ A.
fired := fired + 1.
matched := matched + similarity(c, c')
where ¢’ := arg maxy¢(g_a1) similarity(c,c').
/* recall */
foreach r € R do
total := total + 1.
if there exists a rule (A = ¢) € Rules s.t.
¢~ r and ((rule is hard and A C R — {r})
or (rule is soft and A Cyo5¢ R —{r}))
predicted := predicted + similarity(c, 7).
soft—precision := matched/ fired.
soft—recall := predicted/total.
Return (soft—precision, soft—recall).

Figure 7.1: Evaluation algorithm

111

40 T T T T T T T

TextRISE —+—
SoftApriori ---x---
35 | Apriori ---%--- |
NN(Nearest Neighbor) &

5 F .
é\i 77777777777777777777777 N X"""“""""—~»——»_
5
@ 20 i
(8]
g
& 15 T 4
[S ——— LI T L
o
10 1
5F i

0 1 1 1 1 1 1 1 1
3000 4000 5000 6000 7000 8000 9000 10000 11000 12000
Number of Training Examples

Figure 7.2: Test accuracies: Soft-precision

Figure 7.3. Minium support and confidence, and similarity threshold are set to 2%,
10%, 0.7 respectively.

As previously shown in Chapter 4 and Chapter 5, TEXTRISE performs bet-
ter than the simple nearest neighbor and soft-matching association rules are more
accurate than hard-matching association rules. In addition, the accuracy of the
TEXTRISE rules is consistently highter than others, including soft-matching associ-
ation rules. Nearest-neighbor provides higher recall, but suffers from lower precision.
Training accuracy also shows similar patterns. Differences for each pair of systems
were evaluated by a two-tailed, paired t-test to determine if they were statistically
significant (p < 0.05). Overall, the results show that soft rules are generally bet-
ter than hard rules and especially TEXTRISE produces more accurate rules than

soft-matching association rules. As discussed in Section 4.3.2; the accuracies are

112

30 T T T T T T T
TextRISE —+—

SoftApriori ---x---
Apriori --->---
25 - NN(Nearest Neighbor) &~ |

20 —

F-measure (%)

0
3000 4000 5000 6000 7000 8000 9000 10000 11000 12000
Number of Training Examples

Figure 7.3: Test accuracies: Soft-F-measures

relatively low since predicting textual slots is a hard task.

7.3 Training Time

We measured the training time for TEXTRISE and SOFTAPRIORI to compare the
running time of two algorithms. Figure 7.4 shows the evolution of running time with
the number of examples for TEXTRISE and SOFTAPRIORI on the book data set.
This experiment was performed on a Linux/i686 PC. SOFTAPRIORI is much faster
than TEXTRISE. In association rule mining, any association between features is
to be discovered, not just ones that predict a particular feature or class. On the
other hand, classification rules are learned to predict a specific slot. SOFTAPRIORI

predicts any attribute, not just one to be predicted as in TEXTRISE. This graph

113

20000 T T T T T
TextRISE —+—

18000 SoftApriori —--x--- 1

16000 -
14000 -
12000

10000 -

Time (sec)

8000 -

6000

4000

2000

0 2000 4000 6000 8000 10000 12000
Number of Training Examples

Figure 7.4: Training time

shows that SOFTAPRIORI runs consistently faster than TEXTRISE as the number

of training examples increases.

7.4 Summary

In this chapter, we evaluate the quality of the discovered rules on independent
data by measuring the similarity of predicted text and actual text. By compar-
ing results to the predictions made by traditional hard-matching rules and nearest
neighbor method, we demonstrate the advantage of mining soft-matching rules.
TEXTRISE induces more accurate prediction rules while SOFTAPRIORI discovers
soft-matching association rules efficiently. We introduced new measures for eval-

uating soft-matching rule mining systems: soft-precision and soft-recalls. Overall,

114

soft-matching rules were superior to hard-matching rules in terms of accuracy as

hypothesized, thereby indicating that our approach shows considerable promise.

115

Chapter 8

Using Mined Rules in
Improving Information

Extraction

In the DiSCOTEX framework for integrating IE and KKD, IE benefits KDD by
extracting structured data from textual documents, which can then be mined using
traditional methods. A less obvious interaction is the benefit that KDD can in turn
provide to IE. The predictive relationships between different slot fillers discovered
by KDD can provide additional clues about what information should be extracted
from a document. This chapter reports experiments in the computer-related job-
posting domain demonstrating that predictive rules acquired by applying KDD to an

extracted database can be used to improve the accuracy of information extraction.

116

- e e e e e mm e e e e e e e e e e e e = ey

Information
Extraction

F eedback

Figure 8.1: Overview of IE-based text mining framework with feedback loop
8.1 Introduction

The general DISCOTEX framework described in Chapter 3 serially combines an in-
formation extraction system and a KDD module. Information extraction and data
mining can be integrated for the mutual benefit of both tasks. IE enables the appli-
cation of KDD to unstructured text corpora and KDD can discover predictive rules
useful for improving IE performance (Figure 3.1). This chapter explores the mutual
benefit that the integration of IE and KDD can provide. DiSCOTEX includes a
capability for improving the recall of the learned IE system by proposing additional
slot fillers based on learned prediction rules as shown in Figure 8.1.

The predictive relationships between different IE slot fillers discovered by

KDD can provide additional clues about what information should be extracted from

117

a document. For example, suppose we discover the following rule from data on
programming languages and topic areas extracted from a corpus of computer-science
job postings: “SQL” € language — “Database” € area. If the IE system extracted
“SQL” for the language slot but failed to extract “Database” for the area slot, we
may want to assume there was an extraction error and add “Database” to the area
slot. Since typically the recall (percentage of correct slot fillers extracted) of an IE
system is significantly lower than its precision (percentage of extracted slot fillers
which are correct) (DARPA, 1998), such predictive relationships can be productively

used to improve recall by suggesting additional information to extract.

8.2 Experiments with Hard-Matching Rules

In this section, we describe the initial system with the feedback loop and report

experiments with the initial DISCOTEX (Section 3.4).

8.2.1 The Algorithm

As shown in Section 3.4, we induce rules for predicting the information in each
database field given the information in all other fields after constructing an IE
system. In order to discover prediction rules, we treat each slot-value pair in the
extracted database as a distinct binary feature and learn rules for predicting each
feature from all other features. Similar slot fillers are first collapsed into a pre-
determined standard term (Appendix B). The experiments in this chapter employ
C4.5RULES to induce rules from the resulting binary data by learning decision trees
and translating them into pruned rules.

After mining knowledge from extracted data, DISCOTEX uses the discov-

118

ered rules to predict missing information during subsequent extraction. Tests of IE

systems usually consider two performance measures, precision and recall defined as:

number_of _correct_fillers_extracted

rectsion =
P number_of_fillers_extracted

number_of _correct_fillers_extracted

ll=
reca number_of _fillers_in_correct_templates

Also, F-measure was introduced to combine precision and recall and is computed as
Equation 3.3.

Since the set of potential slot fillers is very large and not fixed in advance, and
since only a small fraction of possible fillers is present in any given document, these
performance metrics are generally more informative than the accuracy of predicting
the presence/absence across all slot-value pairs.

Many extraction systems provide relatively high precision, but recall is typi-
cally much lower. Previous experiments in the job postings domain showed RAPIER’s
precision (e.g. low 90%’s) is higher than its recall (e.g. mid 60%’s) (Califf, 1998).
Currently, RAPIER’s search focuses on finding high-precision rules and does not in-
clude a method for trading-off precision and recall. Although several methods have
been developed for allowing a rule learner to trade-off precision and recall (Cohen,
1996a), this typically leaves the overall F-measure unchanged.

By using additional knowledge in the form of prediction rules mined from a
larger set of data automatically extracted from additional unannotated text, it may
be possible to improve recall without unduly sacrificing precision. For example,
suppose we discover the rule SQLElanguage — Databasecarea. If the IE system

extracted SQLElanguage but failed to extract Databasecarea, we may want to as-

119

sume there was an extraction error and add Database to the area slot, potentially
improving recall. Therefore, after applying extraction rules to a document, Dis-
COTEX applies its mined rules to the resulting initial data to predict additional
potential extractions. The final decision whether or not to extract a predicted filler
is based on whether the filler (or any of its synonyms) occurs in the document as
a substring. If the filler is found in the text, the extractor considers its prediction
confirmed and extracts the filler. Mined rules that predict the absence of a filler are
not used to remove extracted information since there is no analogous confirmation
step for improving precision.

The overall architecture of the final system is shown in Figure 8.2. Docu-
ments which the user has annotated with extracted information, are used to create
a database. The rule miner then processes this database to construct a knowledge
base of rules for predicting slot values. These prediction rules are then used during
testing to improve the recall of the existing IE system by proposing additional slot
fillers whose presence in the document are confirmed before adding them to final ex-
traction template. The last step of validation is made by confirming if the predicted

string appears in the document.

8.2.2 Experimental Results

Experimental Methodology

To test the overall system, 600 user-annotated computer-science job postings (Sec-
tion 3.3.1) were collected. 10-fold cross validation was used to generate training and
test sets. In addition, 4,000 unannotated documents were collected as additional

optional input to the text miner. Rules were induced for predicting the fillers of

120

Training

Human
Extraction
Training
Documents | E(Rapi er) KDD(C4. 5rul es/ Apriori/ SoftApriori)
: Rule Rule
IE <« Induction Induction | kpD
“—| RuleBase
Rule Base = Extraction Prediction
Validation |«
Human

Extraction

Test

Figure 8.2: The system architecture

the languages, platforms, applications, and areas slots, since these are usually
filled with multiple discrete-valued fillers and have obvious potential relationships
between their values. The title slot is also used, but only as a possible antecedent
condition of a production rule, not as a consequent. The title slot has many pos-
sible values and is difficult to predict; however, may be useful as a predictor since
fillers such as Database Administrator can help determine other values. In this
experiment, we use the simpler version of RAPIER that employs only word and part-
of-speech constraints since WordNet classes provide no additional advantage in this

domain (Califf & Mooney, 1999).

121

85 T T T T T T T
IEOnly ——
IE + Rules ---x---

Recall (%)

50 Il Il Il Il Il Il Il Il Il

50 100 150 200 250 300 350 400 450 500 550
Number of Training Examples

Figure 8.3: Recall on job postings for hard-matching rules

Results and Discussion

In order to clearly illustrate the impact of the amount of training data for both
extraction and prediction rule learning, the same set of annotated data was provided
to both RAPIER and the rule miner. Figure 8.3 and Figure 8.4 show a comparison
between the performance of RAPIER alone (IE alone) and DiSCOTEX (IE + Rules)
with mined rules. The results were statistically evaluated by a two-tailed, paired
t-test. For each training set size, each pair of systems were compared to determine
if their differences in recall and F-measure were statistically significant (p < 0.05).

As hypothesized, DISCOTEX provides higher recall, and although it does

122

90 T T T T T T T
IE Only —+—
IE + Rules ---x---

F-Measure (%)

65 Il Il Il Il Il Il Il Il Il

50 100 150 200 250 300 350 400 450 500 550
Number of Training Examples

Figure 8.4: F-measure on job postings for hard-matching rules

decrease precision somewhat, overall F-measure is moderately increased. One in-
teresting aspect is that DISCOTEX retains a fixed recall advantage over RAPIER
as the size of the training set increases. This is probably due to the fact that the
increased amount of data provided to the text miner also continues to improve the
quality of the acquired prediction rules. Overall, these results demonstrate the role
of data mining in improving the performance of IE.

Table 8.1 shows results on precision, recall and F-measure when additional
unlabeled documents are used to construct a larger database prior to mining for
prediction rules. In this experiment, unsupervised data which has been processed by

the initial IE system (which RAPIER has learned from the supervised data) has been

123

Number of Examples Precision | Recall | F-Measure
for Rule Mining

0 97.4 776 86.4
540 (Labeled) 95.8 80.2 87.3
540 + 1000 (Unlabeled) | 94.8 81.5 87.6
540 + 2000 (Unlabeled) | 94.5 81.8 87.7
540 + 3000 (Unlabeled) | 94.2 82.4 87.9
540 + 4000 (Unlabeled) | 93.5 83.3 88.1

Table 8.1: Performance results with unlabeled examples

used. The 540 labeled examples used to train the extractor were always provided to
the rule miner, while the number of additional unsupervised examples were varied
from 0 to 4,000. The results show that the more unsupervised data supplied for
building the prediction rule base, the higher the recall and the overall F-measure.
Although precision does suffer, the decrease is not as large as the increase in recall.

Although adding information extracted from unlabeled documents to the
database may result in a larger database and therefore more good prediction rules,
it may also result in noise in the database due to extraction errors and consequently
cause some inaccurate prediction rules to be discovered as well. The average F-
measure without prediction rules is 86.4%, but it goes up to 88.1% when DiSCOTEX
is provided with 540 labeled examples and 4,000 unlabeled examples. Unlabeled ex-
amples do not show as much power as labeled examples in producing good prediction
rules, because only 540 labeled examples boost recall rate and F-measure more than
4,000 unlabeled examples. However, unlabeled examples are still helpful since recall

and F-measure do slowly increase as more unlabeled examples are provided.

124

8.3 Using Soft-Matching Rules to Improve IE

One step in the previous experiments that was performed manually is collapsing
similar slot-fillers in the extracted data into a canonical form, e.g. mapping “NT,”
“WinNT”, “Windows NT,” and “Microsoft Windows NT” all to a unique term.
Although our initial results with this manual step were encouraging, hard-matching
rules discovered by standard data mining algorithms may not work for data sets
with significant textual variation. We propose mining soft-matching rules instead,
which allow non-standardized database entries to match antecedents and conse-

quents based on relevant similarity metrics.

8.3.1 The Algorithm

A benefit of association-rule mining instead of classification-rule induction is that
consequents of rules are not predetermined, resulting in efficient mining of all po-
tential associations as part of a single process. When inducing classification rules, a
separate learning step must be run for predicting each possible item. For instance,
classification rule induction is not as efficient for our job-postings data set with as
many as 750 items in 600 documents.

In order to find association rules for extracted data, we first map each ex-
tracted filler to an item. A document is represented as a basket of items where each
item is a slot-filler pair extracted from the document. By applying SOFTAPRIORI to
job postings, we mined relationships between items such as “If a computer-related
job posting requires knowledge of MFC then it also lists Windows in the list of
required skills.”

By forward-chaining on extracted data using soft-matching of antecedents, we

125

can derive additional probable extractions as with hard-matching rules. Pseudocode
shown in Figure 8.5 describes the use of mined rules in information extraction.
The final decision step is modified so that it is based on whether the filler (or
any of its “synonyms”) occurs in the document. If a string equal or similar to the
predicted filler is found in the text, the extractor considers its prediction confirmed
and extracts the string. In the previous example, even if the string “Database” is
not found in the document, a similar string such as “databases” is still considered
for extraction since similarity(“Database”,“databases”) > Ty where Ty, is the
prespecified threshold for determining a match. The confidence of the rule is also
considered in confirming that the rule is strong enough to extract the filler, com-
bined with the similarity information indicating how close the actual string is to
the predicted one. In summary, mined soft-matching rules are used during testing
to improve the recall of the existing IE system by proposing additional slot fillers

whose similar strings are confirmed to be present in the document.

8.3.2 Experimental Results

In this section, we demonstrate that using soft-matching rules to predict poten-
tial extractions improves the accuracy of IE slightly more than using hard-matching
rules. Specifically, we compare the hard-matching rules mined with APRIORI (Agrawal
& Srikant, 1994) to soft-matching rules mined with SOFTAPRIORI (Chapter 5) with
respect to their ability to improve information extraction from the job postings

corpus.

126

Parameter: minconf, minsup - minimum confidence/support.
Tsim - similarity threshold.
Tes - extraction threshold.

Input: Dypgin - set of labeled documents.

"~ Dyest - set of n unlabeled documents.

Output: L - set of new labels for Dyeg;.

Function InformationExtraction (Dipgin, Dtest)

Build an information extraction rule base, RBrg
(by applying RAPIER to Dygin)
Let Lipgin := set of labeled slot fillers of Dypgin-
Build a soft association rule base, RB .
(by applying SOFTAPRIORI t0 Lypgin
with parameters minconf, minsup, and Tg;p,)
For each unlabeled document Dye4 (i) do
Extract slot fillers from Dyeg(7) using RBjg.
Let L(i) := set of extracted slot fillers of Dyest (7).
Until no change obtained on L(i) Do
For each rule R (X = Y) € RB do
If R fires on L(i)
For each matching substring Y’ in Dyeg(4)
(with similarity(Y,Y"') > Tsim) do
score(Y') := similarity(Y,Y') x conf(R).
If score(Y') > T,
add Y’ to L(7).
Let L := (L(1),L(2),...,L(n)).
Return L.

Figure 8.5: Algorithm specification for using soft-matching mined rules in IE

127

Experimental Methodology

To test the overall system, the same set of computer-science job postings data set
(Section 3.3.1) was used. Ten-fold cross validation was used to generate training and
test sets for extraction from the set of documents. Rules were mined for predicting
the fillers of the languages, platforms, and applications slots, but the title
slot is not employed.

The similarity threshold, minimum support, and minimum confidence for
APRIORI and SOFTAPRIORI were set to 0.70, 5%, and 10%, respectively. Association
rules without antecedents (e.g. = C++) are also employed. The minium confidence
value is set to a low value because the final extraction of a filler is confirmed by
checking if the same (hard rules) or similar (soft rules) strings are found in the
document or not. Even if some rules make inaccurate predictions, this confirmation
step filters out such predictions. The match cost, mismatch cost, gap-start cost, and
gap-extend cost parameters for the affine-gap edit distance were set to 0, 3, 3, and
1, respectively. All white spaces in strings are considered as blank characters and

upper and lower cases are distinguished only in the IE phase.

Results and Discussion

To evaluate our system, we compared the performance of RAPIER (Section 2.2.1)
alone, RAPIER aided with hard-matching rules mined by standard APRIORI, and
RAPIER with soft-matching association rules mined with SOFTAPRIORI. Figures 8.6
and 8.7 and show the learning curves for recall and F-measure for the job-postings
data. The same set of human-annotated training data was provided to both RAPIER

and the rule miner as shown in Figure 8.2.

128

As a benchmark, we also show the performance of a simple baseline (Memo-
rizing) for increasing recall that always extracts substrings that are known fillers for
a particular slot. This baseline remembers all slot-fillers that appear at least once
in the training data. Whenever a known filler string, e.g. Java, is contained in a
test document, it is extracted as a filler for the corresponding slot, e.g. language.
This method has good recall but limited precision since a filler string contained in
a document is not necessarily the correct filler for the corresponding slot. For in-
stance, “www” can appear in a document, not in a list of required skills but in a
URL of the company’s homepage.

We also tested a “soft” version of this baseline (Soft-Memorizing) that ex-
tracts all strings that are sufficiently similar to known items in the training data.
Although this increases recall, it decreases precision even further. For example,
“Peoplesoft” remembered as a filler for the application slot can cause the system
to extract the spurious filler “people”. The fact that the F-measure of these base-
lines are worse than the proposed system demonstrates the additional value of rule
mining for improving extraction performance.

RAPIER with soft-matching rules provides higher recall, and in spite of de-
creasing precision somewhat, overall F-measure is not decreased. For each training
set size, systems were compared to determine if their differences in recall were sta-
tistically significant using a two-tailed, paired t-test (p < 0.05). For all sets of
training examples, using soft-matching rules is significantly better than both using
hard-matching rules and unaided extraction while using hard-matching rules is also
significantly better than unaided extraction. The differences between F-measures

were not significant. Although the differences are somewhat small, these results

129

85

<
S
T
o
7}
o

75

65

T T T
Memorizing —+—
Soft-Memorizing ---x---
IE Alone ---*---
IE + Hard Rules &~
IE + Soft Rules ---®-—

50

100 150 200 250 300 350 400 450 500 550
Number of Training Examples

Figure 8.6: Recall on job postings

130

100 T T T T

80

-
Rt
70 I

60 |-

F-measure (%)

50

40

30 TTXee

20 1 1 1 1

T T T
Memorizing —+—
Soft-Memorizing ---x---

IE Alone ------
IE + Hard Rules &
IE + Soft Rules ---®-—

50 100 150 200

250 300 350 400 450 500 550

Number of Training Examples

Figure 8.7: F-measure on job postings

demonstrate the advantage of mining soft-matching rules for improving extraction

accuracy without sacrificing F-measures.

8.4 Summary

In this section, we introduced an approach to using predictive rules mined from
extracted data to improve the recall of information extraction. Traditional hard-
matching rules could be used for this task in a straightforward way. However, this
approach is limited by the requirement that the antecedents and consequents of

mined rules exactly match textual items. The normal variation that occurs in tex-

131

tual information frequently prevents such an approach from effectively exploiting
many of the potentially-useful predictive relationships in the data. In Chapter 5,
we have developed techniques for mining soft-matching rules that employ standard
text-similarity metrics to discover more subtle relationships in variable textual data.
By combining these ideas, we have developed a method for using soft-matching
mined rules to further improve the recall of information extraction. Empirical ex-
periments on a real text corpus showed that our new method can more effectively
use automatically-discovered knowledge to improve the recall (and F-measure) of

information-extraction.

132

Chapter 9

Related Work

There has been relatively little research exploring the combination of Information
Extraction and traditional data mining. Soft-matching used in our rule-learning al-
gorithms have barely been applied to text-mining systems either. In this chapter, we
will explain our novelty in using IE for the task of knowledge discovery from text by
reviewing earlier work on 1) using existing rule-mining techniques on unstructured
or semi-structured text, 2) integrating information extraction and data mining, and

3) handling soft-matching rules for text processing.

9.1 Rule Mining from Text

Besides traditional applications of text processing such as text categorization (Yang,
1999) and text clustering (Manning & Schiitze, 1999), discovering rule-based knowl-
edge from unstructured text is an exiting new area for text mining. For example,
Knowledge Discovery in Textual Databases (KDT) (Feldman & Dagan, 1995) discov-

ers interesting patterns from text, by establishing a hierarchy of meaningful concepts

133

and looking for mutual connections between the concept nodes. KDT has evolved
into the FACT system (Feldman & Hirsh, 1996) with the aid of a well-known data
mining technique, association rule mining, and DOCUMENT EXPLORER (Feldman,
Fresko, Hirsh, Aumann, Liphstat, Schler, & Rajman, 1998) accompanied with an
interactive exploration tool. These approaches were applied to Reuters news arti-
cles to find interesting relationships between concept items, e.g. natural resources
of Latin American countries or business alliances between companies. For example,
DOCUMENT EXPLORER discovered rules such as “Chevron Corp and Mobil Corp
are likely to be joint venture partners”.

Loh, Wives, and de Oliveira (2000) suggested an extension of KDT for web
mining by discovering conceptual knowledge from web documents using automated
text categorization. In this research, concepts are identified through a text cate-
gorization algorithm for the purpose of listing key-concepts and finding correlation
between concepts. Ghani et al. (2000) applied several rule induction methods to
a database of corporations automatically extracted from the Web as a part of the
WEBKB project (Craven, DiPasquo, Freitag, McCallum, Mitchell, Nigam, & Slat-
tery, 2000). Data mining techniques used by this system include finding association
rules (APRIORI), inducing decision trees (C5.0), and learning rules with FoIL. In-
teresting regularities such as “Advertising agencies tend to be located in New York”
are discovered from a knowledge base about corporations extracted from the Web.
A similar approach has been tested on medical abstracts (Blake & Pratt, 2001).

Lamirel and Toussaint (2000) proposed to extract association rules from a
collection of documents by using a variation of SOM (Self-organizing Map) (Ko-

honen, 1997), but this work has not been extended beyond agglomeration which is

134

essentially document clustering. Recently Pierre (2002) applied the association rule
mining algorithm to metadata records generated via automated text categorization
in a business domain. Similarly, Ghani and Fano (2002) discover inference rules from
a collection of product descriptions by using association-rule mining techniques. For
instance, rules such as “If the age group of a consumer is classified as mature, then
the trendiness of the products she purchases is low” are discovered from apparel
product data.

Text analysis tasks such as descriptive phrase extraction and co-occurring
phrase extraction have been conducted by applying existing data mining techniques
to text (Ahonen et al., 1998; Ahonen-Myka, Heinonen, Klemettinen, & Verkamo,
1999). In this work, frequent sets of items (i.e. words) are located by using an
episode rule mining algorithm for finding rules from sequences (Mannila, Toivonen,
& Verkamo, 1997b), but no preprocessing of texts to be analyzed is employed ex-
cept simple morphological tagging. Another approach related to linguistic issues is
a method used to discover semantic relationships between terms in a collection of
documents (Finkelstein-Landau & Morin, 1999). In their “term level text mining”,
a natural-language parser is used in place of information extraction since the ex-
traction process is followed by finding syntactic or semantic relations between the
extracted terms.

Two primary aspects distinguish DISCOTEX from other systems that dis-
cover rules from text. First, rules learned by these systems are hard-matching rules
unlike those produced by TEXTRISE and SOFTAPRIORI. All induced rules must
exactly match extracted text, thus the heterogeneity of items in textual databases

has not been addressed. The second distinguishing characteristic is DiISCOTEX’s

135

use of automated information extraction. Most previous systems that mine rules
from text do not have an automated process for structuring the documents. For
instance, KDT uses texts manually tagged with a limited number of fixed cate-
gory labels instead of actually using automated text categorization or IE. Similarly,
FACT (Feldman & Hirsh, 1996), which finds associations amongst keywords from
text documents, does not have an automated routine for labeling the documents
with keywords, which can be viewed as the basic level of information extraction.
DocuMENT EXPLORER extracts terms to label a document in a more automatic
manner, but it is still restricted to highlighting selective terms based on predeter-
mined syntactic patterns such as “noun-noun” or “adjective-noun” (Feldman et al.,
1998). One of the limitations for these approaches is that they require a substantial

amount of background knowledge provided by a domain expert in advance.

9.2 Integrating IE and Data Mining

There has been relatively little research exploring the integration of IE and KDD.
One earlier work related to our approach in spirit can be found in Conrad and Utt
(1994). Instead of using information extraction as a pre-processing step for handling
natural language texts, they assume structured textual databases as an input and
try to find relationships between extracted features.

Etzioni (1996) discusses applying data mining techniques to Web resources
available on the Internet. He identifies the significance of using information extrac-
tion in building a web mining system with an emphasis on the scalability prob-
lem. However, information extraction systems surveyed in this article are very

application-oriented and domain-specific, e.g. extraction of answers for frequently

136

asked questions (FAQ) in FAQ-FINDER (Hammond, Burke, Martin, & Lytinen,
1995) or extraction of product information from web vendors for a shopping agent,
SHOPBOT (Doorenbos, Etzioni, & Weld, 1997).

Tan (1999) suggested a text mining framework that deduces patterns from
an intermediate form. In this framework, text mining is visualized as consisting of
two phases: tezt refining to transform text documents into an intermediate form and
knowledge distillation to capture knowledge from the intermediate form. Although
this can be interpreted as alluding to IE as a pre-processing module for further
discovery of relationships from the intermediate form, they do not discuss this idea
explicitly.

KDT (Feldman & Dagan, 1995) and DOCUMENT EXPLORER (Feldman et al.,
1998) suggest the use of IE in text mining in an indirect way; however, as stated
previously, they do not actually use automated text categorization or IE and the
paper does not discuss using mined knowledge to improve extraction. In addition,
DoOCUMENT EXPLORER assumes semi-structured documents such as Standard Gen-
eralized Markup Language (SGML) text unlike DISCOTEX developed for general
natural-language text.

Several natural language processing systems use information extraction. One
of those earlier efforts is found in Riloff (1996). It uses a dictionary of extraction
patterns, learned originally for IE, to classify text documents. This can be viewed
as an indirect use of IE, since it does not employ a full IE system as a component
for a larger system but utilizes by-products of an IE learning process. IE has been
considered as a front-end of a text summarization or abstracting system consisting

of sentence extraction and summary generation modules. Radev and McKeown

137

(1998) developed a text summarization system called SUMMONS by combining
a message understanding system which can be viewed as an IE component with a
postprocessing module that generates summaries.

More recently, IE began to be used for applications such as machine transla-
tion (MT) or question-answering (QA). White, Cardie, Han, Kim, Lavoie, Palmer,
Rambow, and Yoon (2000) help analysts perform information-filtering tasks on for-
eign language documents, by making IE techniques based on English transferable to
other languages. AuTOSLOG (Riloff, 1993) is combined with a machine translation
system to develop an English information access gateway to newspapers published
electronically in foreign countries. QA is another complicated task consisting of un-
derstanding questions, locating possible answers from a database, a document cor-
pus, or the Web, and presenting the most reasonable answer. TEXTRACT (Srihari
& Li, 1999), presented in the QA track of the TREC (Text REtreival Conference)-8
test, answers natural language questions such as “Who won the 2003 Nobel Peace
Prize?” by combining a named entity recognizer with other necessary components
for QA, e.g. question processors and answer search engines.

Although all of the above research acknowledged the use of information ex-
traction as an essential component for doing other natural-language understanding
tasks, none of these concerned an important application of IE, constructing struc-
tured textual databases from raw text, for use in text mining.

Cohen (2003a) has recently proposed using feedback from a link analysis
module to boost a text-classification system. This system is related to our approach
to improve IE with aid of a KDD in spirit since it also tries to boost the underlying

learner (web page classifier) by utilizing feedback from a KDD module. Cohen et al.

138

(2002) suggests using a feedback combination of an HTML parser and a higher-level
wrapper. A parser for HTML tables and lists used in this research can be viwed as a
form of IE since it also transforms (HTML) documents to highly-structured concept
hierarchies. However, none of these projects use explicit information extraction in
a general way for further utilization of the extracted concepts.

The use of Web-based statistics (search-engine hit counts) to improve the
precision of information extraction has been also proposed recently (Soderland, Et-
zioni, Shaked, & Weld, 2004). Instead of increasing recalls by additionally extract
fillers, this system based on the KNOWITALL information extraction module (Et-
zioni et al., 2004) attempts to increase precision by filtering out extracted fillers
using Web statistics.

McCallum and Jensen (2003) proposed a probabilistic framework for unifying
information extraction and data mining. A general approach for using statistical re-
lational models to integrate IE and KDD is presented, but an actual implementation
and experimental results for this approach are still forthcoming. In this work, data
mining run on a partially-filled database finds patterns that provide “top-down”
constraints to information extraction. On the other hand, information extraction
provides a set of “bottom-up” hypotheses to data mining that can handle uncertainty
information. However, unlike our approach which uses collective knowledge mined
from an entire set of documents, this framework focuses on interaction between IE

and KDD within a document.

139

9.3 Mining Soft-Matching Rules

Traditionally, the “bag-of-words” model (Baeza-Yates & Ribeiro-Neto, 1999) in In-
formation Retrieval (IR) has been widely used to handle texts. However, unlike
simple tasks such as document matching, ranking, and clustering, soft-matching
has not been adequately addressed in rule-mining tasks.

Recently, Cui, Kan, and Chua (2004) proposed an unsupervised learning
system that induces soft-matching patterns for classifying sentences in online news
articles. To accommodate the diversity of sentence structure, flexible, soft patterns
are introduced and employed. Soft patterns include not only lexical tokens but also
part-of-speech (POS) tags and puctuation.

WHIRL is a query processing system that combines traditional database and
IR methods by introducing a “soft join” operation (Cohen, 1998). In WHIRL, all
information is assumed to be represented in a relational model in which every ele-
ment of every tuple contains free text. Although WHIRL and DiSCOTEX share a
focus on soft-matching rules for text processing, rules in WHIRL must be written by
the user while DISCOTEX tries to discover such rules automatically.

Compared to automated data cleaning or duplicate detecting methods that
impose a single normalization on the data items (Cohen et al., 2000; Herndndez
& Stolfo, 1995; McCallum et al., 2000b; Monge & Elkan, 1996; Winkler, 1999),
mining soft-matching rules dynamically clusters data items into different groups de-
pending on the association under consideration, i.e. each discovered rule may group
items into different similarity-based equivalence classes. For example, “Windows
NT” must be placed either in the “NT” or “Windows” group in the normalization

approach, while our algorithm allows it to belong to both clusters, depending on the

140

inference that is being made.

141

Chapter 10

Future Work

We will address a number of issues in future research in this chapter. These fall
into two primary areas. First there are several enhancements which can be made
to the DISCOTEX system: using background information, mining more expressive
rules, enhacing DISCOTEX, and improving information extraction. Next, we intend
to explore the applicability of our framework to other text mining tasks. Each of

these areas of future research is discussed in some detail below.

10.1 Using Background Information

One shortcoming of DISCOTEX is that it does not consider the use of prior informa-
tion or metadata. Incorporating domain knowledge has been one of the important
topics in machine learning and data mining (Witten & Frank, 1999). Metadata
often involves relations among attributes such as semantic relation, causal rela-
tion, or functional dependencies. As a result of the explotion of the amount of

electronically-available data, it is often the case that other sources of knowledge are

142

easily accessible and exploitable. A potential extension of DISCOTEX is to use the
WordNet (Fellbaum, 1998) hierarchy of hypernyms to generate generalizations that
takes semantics into account. WordNet hypernyms have been shown to be helpful in

improving text categorization (Scott & Matwin, 1998). For example, the two rules:

o thermodynamics € subject — heat, modern, theory, waves € synopses

e optics € subject — electromagnetics, laser, waves € synopses

might be minimally generalized to the rule

e physics € subject — waves € synopses

if a semantic lexicon provided by WordNet is utilized. “Thermodynamics” and
“optics” have the common parent, “physics”, in the hypernym tree. The current
implementation of DISCOTEX generates an empty filler slot for the subject slot
in this case because it is not able to recognize the semantic relationships between
the two slot fillers. This change requires a redefinition of distance between words in
terms of the WordNet hierarchy as in Basu, Mooney, Pasupuleti, and Ghosh (2001).
Once the distances are redefined, a generalized association rule mining algorithm
(Srikant & Agrawal, 1995) for learning abstract rules can be applied.

Like in Zelikovits and Hirsh (2002) or Pereira, Tishby, and Lee (1993) which
use additional “background text” or semantic information given by LSI (Latent
Semantic Indexing) (Deerwester, Dumais, Furnas, Landauer, & Harshman, 1990)
in text classification or word clustering, utilizing statistical measures of semantic
similarity might be a another option. A similar approach has been proposed by

Choudhary and Bhattacharyya (2002) for text clustering. In this work, a document

143

clustering algorithm based on UNL (Universal Networking Language) (Uchida, Zhu,
& Della, 2000), a semantic representation for sentences, is developed. The OPEN-
MIND commonsense database, the Cyc knowledge base (Lenat, 1997), or multi-
lingual ontologies/dictionaries such as BRICO (Haase, 2000) are potential sources
for background knowledge. OPENMIND has been utilized in building a model of
textual affect sensing (Liu, Lieberman, & Selker, 2003), while bilingual dictionaries
are employed by Lin, Zhao, Qin, and Zhou (2003) based on the observation that
translations of a word from another language are often synonyms of one another.
Slots such as reviews or comments in the book descriptions data could be treated
as representing affect, e.g. “satisfied”, “unhappy”, etc..

We may also use domain-specific sources of semantic information such as
dictionaries of programming langauges, job titles, companies, places, etc. Henze
and Nejdl (2002) developed an ontology for the programming language Java and
Hotho, Staab, and Stumme (2003) utilize it in clustering eLearning course Web
pages about Java. For instance, it would be interesting to attempt to have a semantic
class consisting of programming languages which can be expanded to incorporate
new languages.

Incoporating structural information is a viable option for utilizing back-
ground knowledge. There is a growing need to handle semi-structured documents
written in mark-up languages. The current version of DISCOTEX does not have
any special ability to cope with Web pages written in HTML or XML (EXtensible
Markup Language) (Bray, Paoli, Sperberg-McQueen, & Maler, 2000). Automati-
cally generated web pages in Amazon and IMDb contain HTML tags, but they are

only used by a wrapper. Structural hints given by such tags could be utilized in

144

<book>
<title>The Complete Works of William Shakespeare</title>
<author>William Shakespeare</author>
<reviews>
<review> <reviewer> <name>John Doe</name>
<email>johndoe@email . com</email>
</reviewer>
<rating>3/5</ranking>
<review_txt>There are pros and cons to buying this.</review_txt>
</review>
<review> <reviewer> <name>Jane Doe</name>
<email>janedoe@email .com</email>

</reviewer>
<rating>5/5</rating>
<review_txt>His writing is one that can’t be compared.</review_txt>
</review>
</reviews>
</book>

Figure 10.1: An example of an XML document for a book description

rule mining as well.

One option for this task is to take the XML document structure tree gener-
ated by an XML parser as the representation for a document. Although the problem
of handling hierarchical structure has received relatively little attention in the ma-
chine learning literature, XML is increasingly being used for exchanging information
from data sources. A shortened example for XML documents for book descriptions
is shown in Figure 10.1. This type of document is easy to convert to a tree structure
where the leaf nodes contain BOWSs or strings. In that case, the generalization of
two sets of bags or strings in the current system is replaced by the generalization
of two trees of bags or strings. The similarity measures should also be redefined
appropriately for this representation. Tree edit distance (Zhang & Shasha, 1989)

could be adopted in redefining the distances.

145

One of the barriers in utilizing the structural information hidden inside the
documents is that most current pages on the Web are still in HTML although XML
pages are more powerful than HTML ones for describing the structured contents
of a page. A method for automatically recognizing the structures in HTML pages
is needed in that case (Cohen, 2003b). In this case, tree mining alogorithms for
finding frequent subtrees such as TREEMINER (Zaki, 2002) could be applied instead
of the general association rule mining algorithms for discovering frequent terms or
bags in the current implementation of DiISCOTEX. Changes to the system should
be relatively straightforward. We believe that text-mining algorithms can be im-
proved by combining content-based information with structural cues if the structure

underlying textual data can be recovered.

10.2 Mining More Expressive Rules

Instead of taking individual words, n-grams could be used as additional terms for the
vector representation. When applying DiSCOTEX to book data, we found that it
recognizes “Juvenile Fiction” and “Science Fiction” in the subject slot as a BOW
with “juvenile(1)”, “science(1)” and “fiction(2)”, thus missing useful information
which could have been maintained if they had been treated as a single term. For
example, we could construct a bag-of-uni/bigrams with “juvenile(1)”, “science(1)”,
“fiction(2)”, “juvenile-fiction(1)”, and “science-fiction(1)” from the same slot-filler.

A related issue is to combine words for a named entity, such as an author’s
name or a company name. “Stephen” or “King” by themselves in “Stephen King”
might not be very useful for mining interesting rules about this author, but “stephen-

king” as a whole makes more sense to users looking at this domain. Named entity

146

recognition task, introduced in the MUC-6 (DARPA, 1995), was found to be a
relatively easy task because the best system submitted to the competition scored
96.4% in F-measure (business news domain). Automatic extraction of named entities
with RAPIER or other machine learning techniques such as (Bikel, Schwartz, &
Weischedel, 1999) or (Kelin, Smarr, Nguyen, & Manning, 2003) could be considered
for a preprocessing step of building a training set with bags-of-terms.

Another option is to replace the current generalization scheme in TEXTRISE.
For example, we we take the intersection of two BOWSs for generalization currently.
First, we could generalize to a k-nearest-neighbor method that uses the k closest
rules or examples rather than just the single nearest one. The predictions of these
k rules could be combined by taking the generalization of the slots (e.g. the average
of the BOW vectors) in their consequents. Likewise during learning, rules could be
generalized to the k nearest uncovered examples using a similar averaging technique,
possibly rounding values to maintain integer counts and simplifying the resulting
rules.

We also believe an algorithm for mining sequential association rules (Srikant
& Agrawal, 1996) could be applied to textual data without much modification. Se-
quential rule mining algorithms can discover a rule, “Customers usually purchase
wireless cards and routers after they bought laptops.” from a customer transaction
database. While speech and biological sequences have been considered as typi-
cal examples for sequential data, sequential data mining algorithms have not been
widely used in text mining. Although Ahonen-Myka et al. (1999) suggested a sim-
ilar approach based on the episode rules, adopting sequential association rules has

the advantage that they are a straightforward generalization of generic association

147

rules.

10.3 Enhancing DiscoTEX

One of the important issues is the interestingness of the mined rules. Even though
we currently rank rules before presenting them to users, this task bears further inves-
tigation. The interestingness measures we used currently, confidence and support,
are common measures in the KDD community. However, the quality or goodness
of rules specific for textual databases could be defined in different ways. For in-
stance, trivial rules such as “If the title of a book contains “chemistry”, both the
synopses and the subject have “chemistry”, too.” are very often found in the rule
set generated by DISCOTEX. This kind of rule can be left out via simple identity
checking filters.

Another idea is to use a semantic network like WordNet (Fellbaum, 1998)
again to measure the semantic distance between the words in the antecedent and
the consequent of a rule, preferring more “surprising” rules where this distance is
larger. For example, this would allow ranking the rule “beer — diapers” above “beer
— pretzels” since beer and pretzels are both food products and therefore closer in
WordNet. Although WordNet provides rich information for a given word such as
synonyms, antonyms, hypernyms, and meronyms, the interestingness measure might
mostly concern synonyms and hypernyms. We could define the semantic distance
between two words as the length of the path between those in the WordNet hierarchy
(Basu et al., 2001).

Domain-specific dictionaries constructed in the process of building word vec-

tors for document collections can be used to eliminate uninteresting terms before

148

learning. For instance, in the synopses slot of book data, many examples contain
“table”, and “contents”, since a “table of contents” is usually included in the syn-
opses of a book. The rules learned by DiSCOTEX therefore contain both “table”
and “contents” in their synopses slots in many cases, although they are neither in-
formative nor interesting. “Copyright” in the reviews slot or any words related to
books such as “book” or “read” are other typical examples for this problem. They
do not provide any clue to the specific book they describe. Although we already
used the TFIDF weighting scheme to prefer words that are dominant in a particu-
lar document, eliminating such domain-specific frequent words spread throughout a
collection of documents could help with finding more interesting rules.

The procedure for selecting slots to be used in rule mining could be auto-
mated. In the current experiments in Chapter 7, we manually chose slots from the
templates from the data sets. For example, the title slot for job postings is not
used in the experiments on job postings data because it has many possible values
and is difficult to predict. With the book descriptions data set, some of the ex-
tracted slots such as ISBN or publishing date of a book are not included in the rule
mining for the same reason.

By computing the correlations between slot values, this decision could be
automated. Prior information on the correlations between slot values can be also
used for weighting the antecedents slots in DISCOTEX. For instance, if the reviews
slot turns out not to be useful for predicting the author of a book while title is
very informative, different weights can be put to each slot in analogy of weighting
words by their frequencies. One possibility is to apply the mining algorithm to

a small subset of the training examples, and evaluate the resulting rule base to

149

determine if the predicted slot is viable for further mining or not. In this strategy,
some parameters must be empirically tuned, e.g. how many of the training examples
are to be used in the pre-mining step and how to set a threshold for slot selection.

Using flexible and learnable metrics instead of fixed-cost similarity metrics
(Bilenko & Mooney, 2003) for soft matching might be a good option. In this work,
a duplicate detection system uses trainable measures, instead of relying on generic
and manually-tuned distance metrics, for estimating the similarity of textual items.
Although this framework focuses more on duplicate detection in textual databases,
a learnable similiary metric for either each database field or database record could
be applied to our system. Since DiISCOTEX was designed to plug in any similarity
metric for each field, adaptively-tuned similarity metrics can be used in place of
other metrics. A related issue is comparing our approach of mining soft-matching
rules with that of MARLIN (Bilenko & Mooney, 2003) in which similar items are
first collapsed before traditional hard-matching rules are mined.

Specifically for SOFTAPRIORI, an extension considering the actual similar-
ity between items could be explored. The limitation of the current definitions
for soft-support and soft-confidence is that they do not reflect the different orig-
inal support values of individual items nor different degrees of similarities between
items. One possible solution to this problem is to redefine the similarity matrix as
similarity(i, j) instead of the binary value, similar(i, j). In other words, the simi-
larity matrix is not binary but should be filled with the actual value for similar pairs
of items. The optimization method described in Chapter 6 should be redesigned in
this case. Using predictive assocation rules which were shown to be more accurate

than plain association rules is another option to improve SOFTAPRIORI (Bayardo

150

Jr., 1997; Liu, Hsu, & Ma, 1998; Yin & Han, 2003).

10.4 Improving Information Extraction

Currently, we only consider improving the recall of IE. Methods for using mined
knowledge to improve extraction precision are also needed. Simply eliminating ex-
tracted fillers that are not predicted is too coarse and would likely severely dam-
age recall. One possible solution is to use a variation of negative association rules
(Savasere, Omiecinski, & Navathe, 1998; Wu, Zhang, & Zhang, 2002). By confi-
dently predicting the absence of certain slot values given other extracted informa-
tion, both precision and recall could potentially be improved.

One great potential impact would be on the utility of the World Wide Web
since the Web is an immense, multilingual, freely available corpus. Increasing preci-
sion using Web statistics such as PMI (pointwise mutual information) scores (Soder-
land et al., 2004) could be also considered. The PMI score of a descriminator pattern

D and an extraction pattern E are defined as:

Hits(D + E)

PMID, B) = =g &)

while D + E is the descriminator pattern with the extraction substituted for the
instance. For example, Hits(‘City of <City>’, ‘Austin’) is the number of hits in a
search engine with a query “City of Austin”. Soderland et al. (2004) showed that
the precision of an underlying information extraction system can be improved by
providing PMI scores to a KDD module (naive Bayesian classifier (Mitchell, 1997))
as input. Although we applied the same method on the job-postings and the resumé

domain (e.g. computing PM I(’programming language’, ’java’) or PMI(’platform’,

151

'natural’) with the AltaVista search engine'), we were not able to improve the
information-extraction system substantially. We believe that this is because the
Web has too many general terms to descriminate computer-related terms. Using
domain-specific ontologies as background knowledge as discussed in Section 10.1
or narrowing the search domain by pre-selecting Web pages dedicated to the topic

could solve this problem.

10.5 Extension to Other Text Mining Tasks

We also believe that additional text mining tasks can be found for which our frame-
work may prove useful. Since IE can be useful for many kinds of text processing,
using extracted information for other text mining tasks might be an interesting is-
sue. However, little research has been done in this field. We present here possible
extensions of our framework to one of the other text mining tasks: topic detection.

Topic Detection and Tracking (TDT), or novelty detection, is a variant of
traditional document classification that allows new classes over a time-series text
corpora. Unlike query-based retrieval task or simple categorization task, users do
not know in advance what they want to retrieve or what categories there are. In-
formation retrieval and machine learning techniques have been used to identify new
events from streams of articles, concentrating on news stories (Yang, Carbonell,
Brown, Pierce, Archibald, & Liu, 1999).

As in TopCAT (Clifton & Cooley, 1999), we consider a TDT task in a data
mining context: preprocessing a collection of articles for identifying key concepts in

individual documents, and applying data mining techniques such as frequent item

"http://www.altavista.com/

152

Subject Politics
International Affairs
Keyword | Abuse

Prison

Scandal

Date May 15, 2004
Location | Abu Ghraib
Bagdad
Afghanistan
Person Donald Rumsfeld
George W. Bush
Seymour M. Hersh
Title President

Defense Secretary
Maj. Gen.

Figure 10.2: An example for a set of topics identified by IE: from a CNN article

set generation and clustering. Frequent item sets, defined as all item sets that often
occur together, identify correlated topics while clustering tracks natural boundaries
for neighboring topic periods to detect changes of topic items over time. TOPCAT
uses a named entity recognizer which is limited to extracting information related to
“who?” and “where?” questions (e.g. location, organization, and person).

For example, a system for extracting keywords from news stories has been
proposed recently (Nallapati, Allan, & Mahadevan, 2004). Key players (person),
key locations (location), and key nouns/verbs are automatically extracted from a
news article. Using such an automated system, we could tag news articles, which
is a typical kind of time-series text corpora, and apply DICOTEX to the textual
databases constructed by IE. An example of an entry for such databases is shown
in Figure 10.2. This example is from a CNN article of May 2004 and the title of it

is “Rumsfeld policy allowed jail abuse”.

153

Similar approaches for discovering trends in text databases have been pro-
posed and applied to a database of U.S. patents (Lent, Agrawal, & Srikant, 1997) or
Spanish newspapers (y Gémez, Gelbukh, & Lépez-Lépez, 2001), but were limited
to the simple framework of mapping each word or phrase to an item. By identify-
ing and highlighting keywords such as persons, organization, and locations, more

interesting trends and rules could be discovered.

154

Chapter 11

Conclusion

With the dramatic increase in online information in recent years, text mining at
the intersection of data mining, natural-language processing, machine learning, and
information retrieval, is starting to gain increasing interest. In this dissertaion, we
present a new framework for text mining, called DISCOTEX (Discovery from Text
EXtraction), which uses a learned information extraction system to transform text
into more structured data which is then mined for interesting relationships.

The ability to extract relationships and rules from natural-language texts
is an important task with a growing number of potential applications. Information
Extraction (IE) is a form of shallow text understanding that locates specific pieces of
data from a corpora of natural-language texts. Data Mining or Knowledge Discovery
from Databases (KDD) considers the application of statistical and machine-learning
methods to discover novel relationships in large relational databases. However, there
has been little if any research exploring the interaction between these two important

techniques to perform text-mining tasks.

155

The goal of text mining is to discover knowledge in unstructured text. The re-
lated task of IE concerns transforming unstructured text into a structured database
by locating desired pieces of information. Although handmade IE systems have
existed for a while, automatic construction of information extraction systems us-
ing machine learning is more recent. DISCOTEX combines IE and standard data
mining methods to perform text mining as well as improve the performance of the
underlying IE system. It discovers prediction rules from natural-language corpora,
and these rules are used to predict additional information to extract from future
documents, thereby improving the recall of IE.

Existing methods for mining rules from text use a hard, logical criteria for
matching rules. However, for most text processing problems, a form of soft matching
that utilizes word-frequency information typically gives superior results. Therefore,
the induction of soft-matching rules from text is an important, under-studied prob-
lem. The standard rule mining algorithms have problems when the same extracted
entity or feature is represented by similar but not identical strings in different doc-
uments. Consequently, we developed an alternate rule induction system for Dis-
COTEX called, TEXTRISE, that allows for partial matching of textual features.
SOFTAPRIORI, another rule mining system which is an extension of the general
association rule miner, has also been developed.

We presented experimental results applying the TEXTRISE rule learner and
the SOFTAPRIORI rule miner to corpora of Internet documents retrieved from the
World Wide Web (WWW). The empirical results obtained with two systems on
the Amazon.com book descriptions data set show that TEXTRISE focuses on induc-

ing accurate rules by gradually generalizing textual instances while SOFTAPRIORI

156

concerns efficient mining of soft-matching rules.

In conclusion, we have presented a general framework for text mining by
combining existing IE and KDD technologies. Two rule-learning approaches that
use a flexible mechanism both in their rule-learning algorithm and in their classi-
fication schemes are developed: TEXTRISE and SOFTAPRIORI. The former was
applied to the task of learning inductive rules, which produced better accuracy than
the nearest-neighbor approach. The latter was applied to mining association rules
for capturing additional relationships, which was shown to give better efficiency
in mining soft patterns. Instead of considering the documents as a simple bag of
words or a string, we used a flexible method of plugging in a similarity metric for
each field. Both rule-learning systems for automated discovery of knowledge from
unstructured text were demonstrated to perform better than previous methods in

several domains.

157

Appendix A

A Brief Theory of Bags

Bag theory is a natural extension of set theory (Yager, 1986). A bag is similar to a
set in that it is defined as a collection of elements over a domain. However, unlike
a set, bags allow multiple occurrences of elements. For an element z and a bag B,
we denote the number of occurrences of z in B by count(z, B).

An element x is a member of a bag B if count(x,B) > 0. This is denoted
z € B. Similarly, if count(z,B) = 0, then z ¢ B. The empty bag, (), has no
members: For all z, count(z,0) = 0. The cardinality |B| of a bag B is the total

number of occurrences of elements in the bag:

|B| = Z count(z, B)
T

A bag A is a subbag of a bag B if every element of A is also an element of A at least

as many times:

A C B iff count(z, A) < count(z, B) for all =

158

Two bags A and B are equal (A = B) if count(z,A) = count(z,B) for all z.
Operations for sets such as union, intersection, sum, and difference can be redefined

for bags.

Union: count(z, AU B) = maz(count(z, A), count(z, B))
Intersection: count(z, A N B) = min(count(z, A), count(z, B))
Sum: count(z, A + B) = count(z, A) + count(z, B)

Difference: count(z, A — B) = count(z, A) — count(z, AN B)

Let D = {a,b,c,d,e} be a domain. Then for the following bags,

A = {a,b}
B ={a,a,b,c,e}

C ={a,a,a,¢,c,e}

we have

|A| =2
|C| =6
ANB=/{a,a,b,c} =A
AuUC ={a,a,a,b,c,c,e}
ANC ={a}
BNC ={a,a,ce}
A+ B ={a,a,a,b,b,c,e}

A—B=0

159

Appendix B

Synonym Dictionary

This appendix contains a list of synonyms for the computer-science job postings
domain which was used in the experiments described in Section 3.5. Synonyms for

each standardized term are sorted in decreasing order of frequency.

Standardized Terms: Corresponding Synonyms

"ACCESS”: "MS ACCESS” "MICROSOFT ACCESS”

"ACTIVEX”: "ACTIVE X”

7AT” : 7 ARTIFICIAL INTELLIGENCE”

”"ANIMATION” : ”GIF ANIMATION” ”GIF OPTIMIZATION/ANIMATION”
"ASSEMBLY” : ”ASSEMBLER”

"ATM” : ”ATM SVCS”

”C” : "PROC” "OBJECTIVE C”

"CH+" : 7C ++47 7CH 47

"CLIENT/SERVER” : ”CLIENT SERVER” ” CLIENT-SERVER”

160

"CLIENT / SERVER” "CLIENT/ SERVER”
"CLIENT/SEVER” ”CLEINT SERVER”
”"COBOL” : ”COBOL II” ”COBOL/400” ”MICROFOCUS COBOL”
"COM” : "DCOM”
"COMMUNICATIONS” : ?COMMUNICATIONS PROTOCOLS”
"COMMUNCIATIONS PROTOCOLS” "DATACOM”
"COMPILER” : ”COMPILER DEVELOPMENT” ?» COMPILERS”
"CORBA” : ”"CORBA/RMI” ”COBRA”
"CORELDRAW” : "COREL”
"DATABASE” : "DATABASE ADMINISTRATION” "DATABASES”
"DATABASE DESIGN” "RELATIONAL DATABASE”
"RELATIONAL DATABASES” "RELATIONAL DATA BASE”
"RELATIONAL AND/OR OBJECT-ORIENTED DATABASE”
"OBJECT ORIENTED DATABASES” "LARGE DATABASES”
"RDBM” "RDBMS” "RDBM SYSTEMS”
"DATABASE SOFTWARE” "DATABASE DEVELOPMENT”
"DBA” "RBDMS” "DATABASES AND DATA MODELING”
"RDB”
"DATA WAREHOUSING” : ”"DATA WAREHOUSE” ”WAREHOUSE”
"DB2” : ”"DB2/2” ”DB2/400” "DB/2” "DB2/6K”
"DEVICE DRIVER” : "DEVICE DRIVERS” ” VIDEO DEVICE DRIVERS”
"PRINTER DRIVER”
"DIGITAL” : ”DIGITAL TV” "DIGITAL DESIGN”
"DIGITAL ACCESSING DEVICES”

161

"DIRECT 3D” : "DIRECTDRAW 3D” "DIRECTDRAW” "DIRECT3D”
"DIRECT 3-D”
"DISTRIBUTED SYSTEM” : ”"DISTRIBUTED OO SYSTEMS”
"DISTRIBUTED SYSTEMS”
"DISTRIBUTED APPLICATIONS”
"DISTRIBUTED COMPUTING”
"DISTRIBUTED APPLICATION”
"DOS” : "MS DOS” "MICROSOFT DOS” "MS-DOS”
"E-COMMERCE” : "ELECTRONIC COMMERCE” "ECOMMERCE”
"EMAIL” : "E-MAIL” "ELECTRONIC MAIL” "MAIL”
"EMBEDDED SYSTEMS” : "EMBEDDED OPERATING SYSTEMS”
"EMBEDDED” "EMBEDDED OPERATING”
"EMBEDDED ENGINEER”
"EMBEDDED SOFTWARE”
"EMBEDDED PROGRAMMING”
"EXCEL” : "MS EXCEL” "MICROSOFT EXCEL”
"FIREWALL” : "FIREWALLS”
"FRONTPAGE” : "MS FRONTPAGE” "MICROSOFT FRONTPAGE” "FRONT PAGE”
"GAMES” : ?"GAME” "NETWORK GAMING”
"GRAPHICS” : "GRAPHIC” "GRAPHIC DESIGN”
?GUI” : ?GRAPHICAL USER INTERFACE” "USER INTERFACE”
"GRAPHIC USER INTERFACES”
"HP/UX” : ”’HP” "HP /UNIX” "HP UNIX” "HP ASSISTANCE” "HP-UX”
"HPUX” "HP UX”

162

"I1IS” : "INTERNET INFORMATION SERVER”
"IMAGING” : ”"IMAGING SOLUTIONS”
"INTERNET” : "INTERNET-DEVELOPMENT”
"IP” : ”CLASSICAL IP” "MOBILE IP”
"JAVASCRIPT” : "JAVA SCRIPT” ”JSCRIPT”
"JAVA” : ”JAVA BEANS”
"LAN” : "LANS”
"LOTUS NOTES” : "NOTES”
"MAC” : "MACINTOSH” "MACOS”
"MODELING” : OO MODELING” ”O-O MODELING” "DATA MODELING”
"GEOMETRY MODELING”
"MS OFFICE” : "MS OFFICE SUITE”
"MS BACKOFFICE” : "BACKOFFICE” "MICROSOFT BACKOFFICE”
"MTS” : "MS TRANSACTION SERVER” "MICROSOFT TRANSACTION SERVER”
"MULTIMEDIA” : "MULTI-MEDIA” "MULTI MEDIA”
"MULTI-THREADED” : "MULTI-THREAD APPLICATIONS”
"MULTITHREAD APPLICATION”
"MULTI- THREADED SYSTEMS”
"MULTI-TASKING” : "MULTITASKING”
"NETWORK” : "NETWORKS” "NETWORKING” "NETWORK PROTOCOLS”
"NETWORK PROGRAMMING”
"NETWORK PROTOCOLS & TECHNOLOGIES”
"NETWORK MANAGEMENT” "NETWORKING PROTOCOLS”
"NOVELL” : ’"NOVELL NETWARE” "NETWARE”

163

"NOVELL NETWARE/INTRANETWARE”

"OBJECT ORIENTED DESIGN” :

»OBJECT ORIENTED” ”00” "00D” ”OOP”
»00A&D” »OBJECT-ORIENTED”

» OBJECT-ORIENTED DESIGN”

»00 DESIGN” "00A” "00A/D/P” »O0AD”
»00D/OOP”

»OBJECT ORIENTED DEVELOPMENT”

»OBJECT ORIENTED METHODOLOGIES”

»OBJECT ORIENTED ANALYSIS”

»OBJECT ORIENTED TECHNOLOGY”

0.0 ANALYSIS AND DESIGN”

» OBJECT-ORIENTED METHODOLOGIES”

» OBJECT-ORIENTED DESIGN AND PROGRAMMING”
»OBJECT-ORIENTED DESIGN AND DEVELOPMENT”
»OBJECT-ORIENTED ANALYSIS AND DESIGN”
»OBJECT ORIENTED PROGRAMMING”

"OBJECT TECHNOLOGY”

"OPENVIEW” : "HP OPENVIEW” ”OPEN VIEW”

"OPENGL” : ”OPEN GL”

”0S” : "OPERATING SYSTEMS”

"PAINTSHOP” : "PAINTSHOP PRO”

7’PC?7 . 7?PCS7?

"PHOTOSHOP” : ”ADOBE PHOTOSHOP”

"POWERBUILDER” : "PB”

164

"POWERPC” : "POWER PC”
"QA” : "QUALITY ASSURANCE” "SOFTWARE QA” "SW QA”
"SW QUALITY ASSURANCE” "SOFTWARE QUALITY ASSURANCE”
"QA ENGINEERING” "SQA”
»QA PARTNER” : "QA PARTNER/SILK”
"R:BASE” : "R”
"REAL-TIME” : "REAL TIME” "REAL-TIME SYSTEMS”
"REAL-TIME SYSTEM” "REAL TIME SOFTWARE”
"REAL TIME SYSTEMS” "REAL TIME OPERATING SYSTEMS”
"REAL-TIME OPERATING SYSTEMS”
"REAL-TIME SOFTWARE” "REAL-TIME CONTROL”
»REAL-TIME EMBEDDED SYSTEM” "REALTIME”
"REALTIME EMBEDDED SYSTEMS”
"REAL-TIME EMBEDDED SYSTEMS”
"RPG” : "RPGIV” "RPGIII” "RPGII” "RPG400” "RPG /400"
"SECURITY” : "NETWORK SECURITY” "SOFTWARE SECURITY”
"INTERNET SECURITY” "COMPUTER SECURITY”
"SERVER” : "SERVER/CLIENT” "SERVER” ”SERVER MANAGEMENT”
"SERVER ADMIN”
»SENDMAIL” : ”SEND MAIL”
"SHELL” : "KORN SHELL” "KORN” "KSHELL” "BSH” "KSH”
"BOURNE SHELL”
"SHOCKWAVE” : "DIRECTOR/SHOCKWAVE” "FLASH/SHOCKWAVE”
"MACROMEDIA DIRECTOR/SHOCKWAVE?

165

»"SITESERVER” : "SITE SERVER” "MICROSOFT SITE SERVER”
»SMALLTALK” : "MS SMALLTALK” "MQ SMALLTALK”
"SOFTWARE” : "SW”
"SQL” : "SQLPLUS” "SQLFORMS” "SEQUEL” ”"PL/SQL”
»SQL SERVER” : "SQL-SERVER” "MSSQL SERVER” ”SQLSERVER”
"MS SQL SERVER”
»SUN 0S” : "SUNOS” "SUN SOLARIS” "SOLARIS” ”SUN UNIX” ”SUN”
»SYSTEM ADMINISTRATION” : "SYSTEMS ADMINISTRATION”
»SYSTEMS ADMIN”
»SYSTEMS ADMINISTRATOR?”
»TCL/TK” : "TCL”
»TCP/IP” : »TCP-IP” » TCPIP”
» TELECOMMUNICATIONS” : »TELECOMMUNICATION” » TELECOM”
»TELECOM SYSTEMS AND TECHNOLOGY”

»TESTING” : "SOFTWARE TESTING” »SOFTWARE TEST”

» AUTOMATED TESTING” " AUTOMATED TEST”

» AUTOMATING THE TESTS”

"DESIGNING SOFTWARE TEST TOOLS”
»USER INTERFACE” : UI” "USER INTERFACE DESIGN”
"UNIX” : "UNIX NT” "SCO” ”SCO UNIX” »U”
»VERIFICATION” : "DESIGN VERIFICATION”

"FUNCTIONAL VERIFICATION”

"VISUAL C++” : "VC++" "MSVC++"
"VISUAL BASIC” : »VB” ”VISUALBASIC” ”VBASIC” "BASIC”

166

"VISUAL TEST” : ”VISUALTEST”
"WAN” : "WANS”
"WEB” : "WWW” "WEB-BASED TECHNOLOGY” "WEB APPLICATIONS”
"EMBEDDED WEB?”
"WINDOWS 95” : 795” "WIN95” "WIN 95” ”"MS WINDOWS 95”
"MS WIN 95” "MICROSOFT WINDOWS 95” "WINDOWS95”
"WIN9X” »WINDOWS9X” »WINDOWS95/98” ”WIN95/98”
"WINDOWS’95”
"WINDOWS 98” : 798” "WIN98”
"WINDOWS” : ”"WIN” "MS WINDOWS” ”STRONG WINDOWS” ”- WINDOWS”
”C WINDOWS” "MICROSOFT WINDOWS”
"MICROCODE WINDOWS” "WIN32” »WIN 3.X”
"WINDOWS 3.X” ”SENIOR WINDOWS” ”SQL WINDOWS”
"SQA WINDOWS” "FOXPRO WINDOWS” »WINDOWS 3.1”
"WIN 32” 732-BIT WINDOWS” ”WINDOWS 3.1X”
"WINDOWS NT” : "NT” "MICROSOFT NT” "MICROSOFT WINDOWS NT”
"MS NT” ”WIN NT” ”SOLID NT” "MS WINDOWS NT”
"WINDOWSNT” »WINNT” ”NT 4.0”
"WINRUNNER” : "WIN RUNNER” ”WIN/RUNNER”
"WORD” : "MS WORD” "MICROSOFT WORD”
"X? : "X-WINDOWS”
"Y2K” : "YEAR 2000” "YEAR 2K”
”3D” : 73-D” 73D GRAPHICS” 73D SOFTWARE” ”3D PROGRAMS”
73D GAMES” 73D DESIGN” ”3-D DESIGN”

167

Appendix C

Sample Data

This appendix contains pairs of documents and templates from the domains used
in the experiments in this research. The templates consist of the template name
followed by a list of slots. Each slot has the slot name followed by a colon and then

the slot-fillers, separated by backslashes.

C.1 Computer-related Job Postings

Below is an example of a document and its templates from the computer-related
jobs information extraction task.

Document

Path: cs.utexas.edu!news-relay.us.dell.com!jump.net'!news-fw!news.mpd!
newsgate.tandem.com!su-news-feedl.bbnplanet.com!su-news-hubl.bbnplane
t.com! cpk-news-hubl.bbnplanet.com!news.bbnplanet.com!news-peer.sprint
link.net!news.sprintlink.net!Sprint!ix.netcom.com!news

From: hktexas@ix.netcom.com (Hall Kinion)

Newsgroups: austin. jobs

Subject: US-TX-Austin WINDOWS, C++, MFC/OWL NEEDED (tab)

Date: Fri, 29 Aug 1997 19:11:09 GMT

168

Organization: Netcom

Lines: 22

Message-ID: <34081leca.8972712QNNTP.IX.NETCOM.COM>
NNTP-Posting-Host: aus-tx23-14.ix.netcom.com
Mime-Version: 1.0

Content-Type: text/plain; charset=us-ascii
Content-Transfer-Encoding: 7bit

X-NETCOM-Date: Fri Aug 29 2:23:27 PM CDT 1997
X-Newsreader: Forte Agent .99f/16.299

Xref: cs.utexas.edu austin.jobs:120178

US-TX-AUSTIN WINDOWS, C++, MFC/OWL NEEDED (tab)

Excellent opportunity to work with a small team within and
well-established company the develops software for the banking
industry! New management means new directions and exciting changes.

A strong Windows C++ Developer is needed to complete a development
team.

Requirements:

Windows 16 and 32 bit

Expert C++

MFC or OWL

Must have done commercial applications

2-5 years experience

Must be a team player, be enthusiastic and ready to learn new
technology.

Salary- $50-70k, DOE

Please respond immediately to: Tracy
tab@hallkinion.com

ph. 512-349-0960

fax.512-349-0983

Template
e id: 34081eca.8972712@NNTP.IX.NETCOM.COM
o title:

salary: $50-70k

e company:

recruiter:

169

o state: TX

e city: AUSTIN

e country: US

e language: C++

o platform: WINDOWS
e application:

e area: MFC, OWL

e req_years_experience: 2
o desired_years_experience: 5
e req_degree:

o desired_degree:

e post_date: 29 Aug 1997

C.2 Computer-related Resumés

Below is a sample document paired with a template from the computer-science
resumé domain. Phone number and address are omitted for privacy.

Document

Path: geraldo.cc.utexas.edu!newsfeed.cs.utexas.edu!cpk-news-hubl.
bbnplanet.com!news.gtei.net!news.mindspring.net!nyf-ny6-21.ix.
netcom.com!user
From: michaellokomo@yahoo.com (Michael Lokomo Lomoro)
Newsgroups: misc.jobs.resumes,us.jobs.resumes,can. jobs,bc.jobs,ont. jobs
Subject: VirtualResume / Senior Software Developer /

Control Systems Engineer (3536515)
Date: Sun, 17 Jun 2001 23:58:56 -0400
Organization: VirtualSight Communications
Lines: 103
Message-ID: <michaellokomo-1706012358560001@nyf-ny6-21.ix.netcom.com>
NNTP-Posting-Host: c6.d3.11.55
X-Server-Date: 18 Jun 2001 03:58:58 GMT
Xref: geraldo.cc.utexas.edu misc. jobs.resumes:459476

Distributed online by VirtualResume http://www.virtualresume.com

170

Name: Michael Lokomo Lomoro
Location: N1476 Rasta, IL NO

Control Systems Engineer/Engineering Software developer
OBJECTIVE: Develop a career in control systems or Enterprise Software
development on Novell, windows and Linux platforms.

DESIRED JOB TYPE: Employee
DESIRED STATUS: Full-Time
SITE LOCATION: No Preference

DESCRIPTION OF MY ’PERFECT’ JOB:
My ideal job is to be part of a team but assigned a responsibility area
with clearly defined achievement goals.

DATE OF AVAILABILITY: Immediately

TARGET COMPANY Company Size: No Preference

CATEGORY: Engineering/IT

EXPERIENCE:

May 2000 to current employment EMANIO Inc. (Norwegian branch)

B2B enabler Company with HQ in Berkeley, California

Systems Engineer

Developer of B2B communications software. The development department is
based in Oslo,Norway while the corporate HQ is in the US. The work entails
knowledge of C/C++, JAVA, XML, WIN32 API’S etc. I am responsible for
developing component softwares for connecting databases and applications.

1/1998 - 5/2000 Dynamica AS Trondheim, Norway

Project Engineer

Carry out tasks in a broad spectra of engineering disciplines to provide
and implement solutions to concrete technical problems related to control,
automation, instrumentation and measurements. See also under subsection

"Additional Information".

7/1997 - 12/1997

Norwegian University of Science and Technology Trondheim, Norway
Teaching Assistant

Teaching, guiding and tutoring students in Non-linear control systems.
Assisting the lecturer in setting and marking examination papers.

EDUCATION
12/1995 Norwegian Institute of Technology Norway-Trondheim-Trondheim

171

Masters Degree

Control Systems Engineering

CERTIFICATION

1997 Microsoft Certified Specialist Oslo, Norway
Certification

Windows NT

1997 Novell Certification Oslo, Norway
Certification

Novell Administrator,

Novell Advanced Administrator,

Novell TCP/IP

2000 Sybase Certification Oslo, Norway

Certification
Building Applications using PowerBuilder and EAServer

AFFILIATIONS 2/2000 - Present
The Norwegian Society of Chartered Engineers Member
SKILLS/EXPERIENCE

Software development

C/C++, Perl scripts, Linux shell scripts, JAVA QT,

TK/TCL, OPENGL, Matlab, Matlab’s simulink

CORBA, TCP/IP and Linux sockets programming,

COM/DCOM.

WIN32 programming.

Deploying software on SYBASE Enterprise Application Server (JAGUAR).
CONTROL SYSTEMS

Design of Control systems, Mathematical modelling of dynamic systems (see
also under additional information),

PLC programming

ADDITIONAL INFORMATION

Some Projects I’ve done:

- Have written a Linux device driver for a 3D mouse and used it to command
an OPENGL graphic simulator in six degrees of freedom motion via a network
connection. I programmed the network connection using linux sockets in C++
- I was part of a team that developed a computer networked measurement and
data acquisition software for an industrial furnace that produces a

certain metal. The quantity in question is the pressure in electrodes in
the furnace as well as the weight of the electrodes. I made this
information available in real-time graphs that are viewable on webbrowsers

172

using JAVA applets and automatically emailed to

scientist(using Linux scripts). It involved CORBA

technology, CGI-programming with perl, lots of shell scripts, ISDN
configuration on linux, JAVA APPLETS running threads,

hardware setup of the sensors, and mathematical modeling to derive desired
quantities that could not be measured directly.

- I programmed a JAVA GUI frontend (using the awt package)for

a FORTRAN software on a windows platform. I implemented the communication
between the JAVA GUI and the FORTRAN code using CORBA technology.

- Mathematical modeling of a towline tension stabilizer aboard a vessel.

- I have programmed a network extention to a windows based SCADA software
(name withheld) enabling client software running on linux to communicate
with the commercial windows-based SCADA software (SCADA-Supervisory
Control And Data Acquisition) using CORBA technology.

- I have made my own JAVA-COM bridge using JNI and I have used a Java-COM
bridge to integrate a JAVA application with the Microsoft EXCEL application.
I programmed an interface for the same JAVA application to a ODBC database
using JDBC.

VirtualResume <http://www.virtualresume.com>
mailto: info@virtualresume.com

*Free BASIC resume posting

*Free guest access to our resume database

Template

e name: Michael Lokomo Lomoro

e title: Senior Software Developer, Control Systems Engineer

o language: Linux shell scripts, C, C++, Perl, JAVA, JAVA QT, TK/TCL

e platform:

e application: TCP/IP, CORBA, OPENGL, Matlab, COM/DCOM, Matlab’s simulink
e area: WIN32 programming, Linux sockets programming

e hardware:

o degree: Masters

e major: Control Systems Engineering

e post_date: 17 Jun 2001

173

C.3 Book Descriptions

Below is a sample document paired with a template from the book descriptions
domain.

Document

12 American Detective Stories (Oxford Twelves)
Edward D. Hoch

Anthologies (multiple authors), Mystery ; Detective - General, Mystery ;
Detective - Anthologies, Fiction, Fiction - Mystery/ Detective, Mystery
And Suspense Fiction, Mystery/Suspense, Mystery ; Thrillers, Literature ;
Fiction

Table of Contents:

Introduction

1 ‘Thou Art the Man’ (1844) EDGAR ALLAN POE (1809-49)

2 The Stolen Rubens (1907) JACQUES FUTRELLE (1875-1912)

The Second Bullet (1915) ANNA KATHARINE GREEN (1846-1935)

The Age of Miracles (1916) MELVILLE DAVISSON POST (1869-1930)

The Shadow (1934) T. S. STRIBLING (1881-1965)

The Episode of the Nail and the Requiem (1935) C. DALY KING (1895-1963)
His Heart Could Break (1943) CRAIG RICE (1908-57)

The House in Goblin Wood (1947) CARTER DICKSON (1906-77)

The Dauphin’s Doll (1948) ELLERY QUEEN (DANNAY 1905-82; LEE 1905-71)
10 The Splinter (1955) MARY ROBERTS RINEHART (1876-1958)

11 The Pencil (1959) RAYMOND CHANDLER (1888-1959)

12 One Drop of Blood (1962) CORNELL WOOLRICH (1903-68)

Notes

© 00 N O O bW

Acknowledgements,

Amazon.com, Editor of numerous annual collections and an accomplished mystery
writer himself, Edward D. Hoch illustrates genres ranging from impossible
crime to hard-boiled detective fiction with 12 tales from America’s
distinguished mystery authors. Hoch’s anthology chronicles detective
fiction’s development from the mid-18th century through the early 1960s.

If you’re familiar with the classics and are looking for lesser-known
selections from such character sleuths as Violet Strange, Uncle Abner,

Trevis Tarrant, Sir Henry Merrivale, and Philip Marlowe, this is the book

to buy. Twelve American Detective Stories opens appropriately with a more

174

obscure work by the forerunner of mystery, Edgar Allan Poe. In "Thou Art

the Man" (1844) a murderer is exposed in a ghastly yet amusing turn of events.
Jacques Futrelle’s "Thinking Machine," Professor Van Dusen, is master of
impossible crime in ’The Stolen Rubens’ (1907). C. Daly King’s "The Episode
of the Nail and the Requiem" (1935), a fair play puzzle, solves the conundrum
of a sealed studio with a bloody corpse sprawled inside--the gem of the bunch.
Ellery Queen remains faithful to the genre in 1948’s "The Dauphin’s Doll,"

a seemingly impossible jewel robbery. Hailed as the first female mystery
writer, Anna Katharine Green brings brilliant socialite Violet Strange to
center stage in "The Second Bullet" (1915). Craig Rice, nee Georgiana

Ann Randolph, was briefly one of the best-known female authors of the 1940s.
"His Heart Could Break" (1943) features criminal lawyer John J. Malone, who
discovers the real motive behind his client’s "suicide." Raymond Chandler
delivers his famous pulp-fiction gumshoe prose in "The Pencil" (1959) as
hard-drinking, womanizing private eye Philip Marlowe thwarts a mob plot,
while a desperate murderer thinks he can outwit the cops in "One Drop of
Blood" (1962), by the "father of classic noir ," Cornell Woolrich. Also
featured: Melvill Davisson Post’s "The Age of Miracles" (1916); T.S.
Stribling’s "The Shadow" (1934); "The House in Goblin Wood" (1947) by

Carter Dickson (a.k.a. John Dickson Carr); and Mary Roberts Rinehart’s

"The Splinter" (1955). Introduction and author biographies a re included.
--Brina Bolanz,

Template

author: Edward D. Hoch

title: 12 American Detective Stories (Oxford Twelves)

subject: Anthologies (multiple authors), Mystery Detective - General, Mystery De-
tective - Anthologies, Fiction, Fiction - Mystery/ Detective, Mystery And Suspense
Fiction, Mystery/Suspense, Mystery Thrillers, Literature Fiction

e synopsis: Table of Contents: Introduction 1 ‘Thou Art the Man’ (1844) EDGAR
ALLAN POE (1809-49) 2 The Stolen Rubens (1907) JACQUES FUTRELLE (1875-
1912) 3 The Second Bullet (1915) ANNA KATHARINE GREEN (1846-1935) 4 The
Age of Miracles (1916) MELVILLE DAVISSON POST (1869-1930) 5 The Shadow
(1934) T. S. STRIBLING (1881-1965) 6 The Episode of the Nail and the Requiem
(1935) C. DALY KING (1895-1963) 7 His Heart Could Break (1943) CRAIG RICE
(1908-57) 8 The House in Goblin Wood (1947) CARTER DICKSON (1906-77) 9
The Dauphin’s Doll (1948) ELLERY QUEEN (DANNAY 1905-82; LEE 1905-71)
10 The Splinter (1955) MARY ROBERTS RINEHART (1876-1958) 11 The Pencil
(1959) RAYMOND CHANDLER (1888-1959) 12 One Drop of Blood (1962) COR-
NELL WOOLRICH (1903-68) Notes Acknowledgements,

175

e reviews: Amazon.com, Editor of numerous annual collections and an accomplished
mystery writer himself, Edward D. Hoch illustrates genres ranging from impossible
crime to hard-boiled detective fiction with 12 tales from America’s distinguished mys-
tery authors. Hoch’s anthology chronicles detective fiction’s development from the
mid-18th century through the early 1960s. If you’re familiar with the classics and
are looking for lesser-known selections from such character sleuths as Violet Strange,
Uncle Abner, Trevis Tarrant, Sir Henry Merrivale, and Philip Marlowe, this is the
book to buy. Twelve American Detective Stories opens appropriately with a more
obscure work by the forerunner of mystery, Edgar Allan Poe. In "Thou Art the
Man” (1844) a murderer is exposed in a ghastly yet amusing turn of events. Jacques
Futrelle’s "Thinking Machine,” Professor Van Dusen, is master of impossible crime
in 'The Stolen Rubens’ (1907). C. Daly King’s " The Episode of the Nail and the
Requiem” (1935), a fair play puzzle, solves the conundrum of a sealed studio with a
bloody corpse sprawled inside-the gem of the bunch. Ellery Queen remains faithful
to the genre in 1948’s ”The Dauphin’s Doll,” a seemingly impossible jewel robbery.
Hailed as the first female mystery writer, Anna Katharine Green brings brilliant so-
cialite Violet Strange to center stage in ”The Second Bullet” (1915). Craig Rice, nee
Georgiana Ann Randolph, was briefly one of the best-known female authors of the
1940s. ”His Heart Could Break” (1943) features criminal lawyer John J. Malone, who
discovers the real motive behind his client’s ”suicide.” Raymond Chandler delivers his
famous pulp-fiction gumshoe prose in " The Pencil” (1959) as hard-drinking, womaniz-
ing private eye Philip Marlowe thwarts a mob plot, while a desperate murderer thinks
he can outwit the cops in ”One Drop of Blood” (1962), by the ”father of classic noir
,7 Cornell Woolrich. Also featured: Melvill Davisson Post’s ”The Age of Miracles”
(1916); T.S. Stribling’s ”The Shadow” (1934); ”The House in Goblin Wood” (1947)
by Carter Dickson (a.k.a. John Dickson Carr); and Mary Roberts Rinehart’s ”The
Splinter” (1955). Introduction and author biographies a re included. —Brina Bolanz,

e comments:

C.4 Movie Descriptions

Below is a sample document paired with a template from the movie descriptions

domain.
$64,000 Question, The
1955

Family;

176

non-fiction; quiz-show;
Joseph Cates ; Seymour Robbie ; Cort Steen ;
Joseph Nathan Kane;

Barbara Britton ; Lynn Dollar ; Celeste Holm ; Ginger Rogers ;
Norman Leyden ;

"The $64,000 Question" was based on the old radio program, "Take it
or Leave It," which had a $64 top prize. Contestants who appeared
on the show answered questions in one single category (e.g.,
Shakespeare, the Bible, American History or boxing). The first
question was worth $64, and doubled as the questions increased in
difficulty, up to that breathtakingly difficult $64,000 question.
If the contestant reached the $1,000 plateau, the contestant
returned to the next show to answer one question each week (the
questions brought out by a bank executive and two security guards),
so long as he/she kept winning. At the $4,000 plateau, he/she was
placed in an on-stage isolation chamber; at the $8,000 plateau, any
incorrect answer guaranteed the contestant a Cadillac Series 62
sedan as a consolation prize. At the $64,000, the contestant was
given some reference material to study and/or could enlist the aid
of an expert to help him/her answer the $64,000 question. The
category for the first $64,000 winner, Capt. Tom McCutcheon, was in
cooking; the second $64,000 winner was Dr. Joyce Brothers, whose
expertise was 1in boxing. "The $64,000 Question" was among the most
watched shows in all of television between 1955 and 1957, but its
popularity would deteriorate rapidly in the face of the Quiz Show
Scandals. Regardless of the connection "The $64,000 Question" may
have had with the scandals, it remains among the most influential

television game shows.

Template

o title: $64,000 Question, The

year: 1955

e genre: Family

keyword: non-fiction, quiz-show

director: Joseph Cates, Seymour Robbie, Cort Steen

177

e writer: Joseph Nathan Kane
e cast: Barbara Britton, Lynn Dollar, Celeste Holm, Ginger Rogers, Norman Leyden

e synopsis: "The $64,000 Question” was based on the old radio program, ”Take it
or Leave It,” which had a $64 top prize. Contestants who appeared on the show
answered questions in one single category (e.g., Shakespeare, the Bible, American
History or boxing). The first question was worth $64, and doubled as the questions
increased in difficulty, up to that breathtakingly difficult $64,000 question. If the
contestant reached the $1,000 plateau, the contestant returned to the next show to
answer one question each week (the questions brought out by a bank executive and
two security guards), so long as he/she kept winning. At the $4,000 plateau, he/she
was placed in an on-stage isolation chamber; at the $8,000 plateau, any incorrect
answer guaranteed the contestant a Cadillac Series 62 sedan as a consolation prize.
At the $64,000, the contestant was given some reference material to study and/or
could enlist the aid of an expert to help him/her answer the $64,000 question. The
category for the first $64,000 winner, Capt. Tom McCutcheon, was in cooking; the
second $64,000 winner was Dr. Joyce Brothers, whose expertise was in boxing. " The
$64,000 Question” was among the most watched shows in all of television between
1955 and 1957, but its popularity would deteriorate rapidly in the face of the Quiz
Show Scandals. Regardless of the connection ”The $64,000 Question” may have had
with the scandals, it remains among the most influential television game shows.

178

Bibliography

Agrawal, R., Imielinsky, T., & Swami, A. (1993). Mining association rules between
sets of items in large databases. In Proceedings of the 1993 ACM SIGMOD
International Conference on Management of Data (SIGMOD-93), pp. 207—

216.

Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules.
In Proceedings of the 20th International Conference on Very Large Databases

(VLDB-9/4), pp. 487-499 Santiago, Chile.

Aha, D. W., Kibler, D. F., & Albert, M. K. (1991). Instance-based learning algo-

rithms. Machine Learning, 6(1), 37-66.

Ahonen, H., Heinonen, O., Klemettinen, M., & Verkamo, A. I. (1998). Applying
data mining techniques for descriptive phrase extraction in digital document
collections. In Proceedings of the IEEE Forum on Research and Technology

Advances in Digital Libraries, pp. 2-11 Santa Barbara, CA.

Ahonen-Myka, H., Heinonen, O., Klemettinen, M., & Verkamo, A.1. (1999). Finding
co-occurring text phrases by combining sequence and frequent set discovery. In

Feldman, R. (Ed.), Proceedings of the Sizteenth International Joint Conference

179

on Artificial Intelligence (IJCAI-99) Workshop on Text Mining: Foundations,

Techniques and Applications, pp. 1-9 Stockholm, Sweden.

Angell, R. C., Freund, G. E., & Willet, P. (1983). Automatic spelling correction
using a trigram similarity measure. Information Processing and Management,

19(4), 255-261.

Baeza-Yates, R., & Ribeiro-Neto, B. (1999). Modern Information Retrieval. ACM

Press, New York.

Basu, S., Mooney, R. J., Pasupuleti, K. V., & Ghosh, J. (2001). Evaluating the
novelty of text-mined rules using lexical knowledge. In Proceedings of the
Seventh ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining (KDD-2001), pp. 233-239 San Francisco, CA.

Bayardo Jr., R. J. (1997). Brute-force mining of high-confidence classification rules.
In Heckerman, D., Mannila, H., & Pregibon, D. (Eds.), Proceedings of the
Third International Conference on Knowledge Discovery and Data Mining

(KDD-97), pp. 123-126 Newport Beach, CA. AAAT Press.

Bayardo Jr., R. J., & Agrawal, R. (1999). Mining the most interesting rules. In
Proceedings of the Fifth International Conference on Knowledge Discovery and

Data Mining (KDD-99), pp. 145-154 San Diego, CA.

Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The Semantic Web.. Scientific

American.

Berry, M. W. (Ed.). (2003). Proceedings of the Third SIAM International Conference

on Data Mining(SDM-2003) Workshop on Text Mining, San Francisco, CA.

180

Bikel, D. M., Schwartz, R., & Weischedel, R. M. (1999). An algorithm that learns

what’s in a name. Machine Learning, 34, 211-232.

Bilenko, M., & Mooney, R. J. (2003). Adaptive duplicate detection using learnable
string similarity measures. In Proceedings of the Ninth ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining (KDD-2003),

pp- 39-48 Washington, DC.

Blake, C., & Pratt, W. (2001). Better rules, fewer features: A semantic approach to
selecting features from text. In Cercone, N., Lin, T. Y., & Wu, X. (Eds.), Pro-
ceedings of the 2001 IEEE International Conference on Data Mining (ICDM-

2001), pp. 59-66 San Jose, CA. IEEE Computer Society.

Bray, T., Paoli, J., Sperberg-McQueen, C. M., & Maler, E. (2000).
EXtensible = Markup Language (XML) 1.0 (second edition).

http:/ /www.w3.org/TR,/2000/REC-xml-20001006.

Brill, E. (1994). Some advances in rule-based part of speech tagging. In Proceedings
of the Twelfth National Conference on Artificial Intelligence (AAAI-94), pp.

722-727 Seattle, WA.

Bunescu, R., Ge, R., Kate, R. J., Marcotte, E. M., Mooney, R. J., Ramani, A. K.,
& Wong, Y. W. (2004). Comparative experiments on learning information
extractors for proteins and their interactions. Special Issue in the Journal Ar-
tificial Intelligence in Medicine on Summarization and Information Extraction

from Medical Documents, 31. To appear.

Califf, M. E. (1998). Relational Learning Techniques for Natural Language Informa-

181

tion Extraction. Ph.D. thesis, Department of Computer Sciences, University
of Texas, Austin, TX. Also appears as Artificial Intelligence Laboratory Tech-

nical Report AT 98-276.

Califf, M. E. (Ed.). (1999). Papers from the AAAI-1999 Workshop on Machine

Learning for Information Extraction, Orlando, FL. AAAIT Press.

Califf, M. E., & Mooney, R. J. (1999). Relational learning of pattern-match rules for
information extraction. In Proceedings of the Sixteenth National Conference

on Artificial Intelligence (AAAI-99), pp. 328-334 Orlando, FL.

Chakrabarti, S. (2002). Mining the Web: Analysis of Hypertezt and Semi Structured

Data. Morgan Kaufmann, San Francisco, CA.

Chiang, R., Laender, A., & Lim, E.-P. (Eds.). (2003). Proceedings of the Fifth
International Workshop on Web Information and Data Management(WIDM-

2003), New Orleans, LA. ACM.

Choudhary, B., & Bhattacharyya, P. (2002). Text clustering using semantics. In Pro-
ceedings of the Eleventh International World Wide Web Conference (WWW-
2002) Honolulu, HI. ACM. Short paper.

Ciravegna, F., Basili, R., & Gaizauskas, R. (Eds.). (2000). Proceedings of the 14th
European Conference on Artificial Intelligence(ECAI-2000) Workshop on Ma-

chine Learning for Information Extraction, Berlin, Germany.

Ciravegna, F., & Kushmerick, N. (Eds.)., text mining (2003). Papers from the
14th European Conference on Machine Learning(ECML-2003) and the 7th

European Conference on Principles and Practice of Knowledge Discovery in

182

Databases(PKDD-2003) Workshop on Adaptive Text Extraction and Mining,

Cavtat-Dubrovnik, Croatia.

Clifton, C., & Cooley, R. (1999). TopCat: Data mining for topic identification in
a text corpus. In Zytkow, J. M., & Rauch, J. (Eds.), Proceedings of Third
European Conference of Principles and Practice of Knowledge Discovery in
Databases(PKDD-99), pp. 174-183 Prague, Czech Replublic. Springer Verlag.

Lecture Notes in Computer Science Vol. 1704.

Cohen, W. W. (1995). Fast effective rule induction. In Proceedings of the Twelfth
International Conference on Machine Learning (ICML-95), pp. 115-123 San

Francisco, CA.

Cohen, W. W. (1996a). Learning to classify English text with ILP methods. In De
Raedt, L. (Ed.), Advances in Inductive Logic Programming, pp. 124-143. 10S

Press, Amsterdam.

Cohen, W. W. (1996b). Learning trees and rules with set-valued features. In
Proceedings of the Thirteenth National Conference on Artificial Intelligence

(AAAI-96), pp. 709-716 Portland, OR.

Cohen, W. W. (1998). Providing database-like access to the web using queries based
on textual similarity. In Proceedings of the 1998 ACM SIGMOD International

Conference on Management of Data (SIGMOD-98), pp. 558-560 Seattle, WA.

Cohen, W. W. (2003a). Improving a page classifier with anchor extraction and

link analysis. In Becker, S., Thrun, S., & Obermayer, K. (Eds.), Advances in

183

Neural Information Processing Systems 15, pp. 1481-1488 Cambridge, MA.

MIT Press.

Cohen, W. W. (2003b). Learning and discovering structure in Web pages. IEEE

Data Engineering, 26(3), 3—-10.

Cohen, W. W., Hurst, M., & Jensen, L. S. (2002). A flexible learning system
for wrapping tables and lists in HTML documents. In Proceedings of the
Eleventh International World Wide Web Conference (WWW-2002), pp. 232—
241 Honolulu, HI. ACM.

Cohen, W. W., Kautz, H., & McAllester, D. (2000). Hardening soft information
sources. In Proceedings of the Sixth International Conference on Knowledge

Discovery and Data Mining (KDD-2000) Boston, MA.

Conrad, J. G., & Utt, M. H. (1994). A system for discovering relationships by
feature extraction from text databases. In Croft, W. B., & van Rijsbergen,
C. J. (Eds.), Proceedings of Seventeenth International ACM SIGIR Conference
on Research and Development in Information Retrieval (SIGIR-94), pp. 260—

270 Dublin, Ireland. ACM / Springer.

Craven, M., DiPasquo, D., Freitag, D., McCallum, A., Mitchell, T., Nigam, K., &
Slattery, S. (2000). Learning to construct knowledge bases from the World

Wide Web. Artificial Intelligence, 118(1-2), 69-113.

Cui, H., Kan, M.-Y., & Chua, T.-S. (2004). Unsupervised learning of soft patterns

for generating definitions from online news. In Proceedings of the Thirteenth

184

International World Wide Web Conference (WWW-2004) New York, NY.

ACM.

DARPA (Ed.). (1995). Proceedings of the Sizth Message Understanding Evaluation

and Conference (MUC-95), San Mateo, CA. Morgan Kaufmann.

DARPA (Ed.). (1998). Proceedings of the Seventh Message Understanding Evalua-

tion and Conference (MUC-98), Fairfax, VA. Morgan Kaufmann.

Dave, K., Lawrence, S., & Pennock, D. M. (2003). Mining the peanut gallery:
Opinion extraction and semantic classification of product reviews. In Proceed-

ings of the Twelfth International World Wide Web Conference (WWW-2003)

Budapest, Hungary. ACM.

Deerwester, S. C., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harshman,
R. A. (1990). Indexing by latent semantic analysis. Journal of the American

Society for Information Science, 41, 391-407.

Domingos, P. (1996). Unifying instance-based and rule-based induction. Machine

Learning, 24, 141-168.

Doorenbos, R. B., Etzioni, O., & Weld, D. S. (1997). A scalable comparison-shopping
agent for the World-Wide Web. In Proceedings of the First International

Conference on Autonomous Agents (Agents-97), pp. 39-48 Marina del Rey,
CA.

Dorre, J., Gerstl, P., & Seiffert, R. (1999). Text mining: Finding nuggets in moun-

tains of textual data. In Proceedings of the Fifth International Conference on

185

Knowledge Discovery and Data Mining (KDD-99), pp. 398-401 San Diego,

CA. ACM. Short paper.

Eirinaki, M., & Vazirgiannis, M. (2003). Web mining for web personalization. ACM

Transactions on Internet Technology, 3(1), 1-27.

Etzioni, O. (1996). The World-Wide Web: Quagmire or gold mine?. Communica-

tions of the Association for Computing Machinery, 39(11), 65-68.

Etzioni, O., Cafarella, M., Downey, D., Kok, S., Popescu, A.-M., Shaked, T., Soder-
land, S., Weld, D. S., & Yates, A. (2004). Web-scale information extraction in
KnowlItAll. In Proceedings of the Thirteenth International World Wide Web

Conference (WWW-2004) New York, NY. ACM.

Feldman, R. (Ed.). (1999). Proceedings of the Sizteenth International Joint Confer-
ence on Artificial Intelligence (IJCAI-99) Workshop on Text Mining: Foun-

dations, Techniques and Applications, Stockholm, Sweden.

Feldman, R., & Dagan, I. (1995). Knowledge discovery in textual databases (KDT).
In Proceedings of the First International Conference on Knowledge Discovery

and Data Mining (KDD-95), pp. 112-117 Montreal, Canada.

Feldman, R., Fresko, M., Hirsh, H., Aumann, Y., Liphstat, O., Schler, Y., & Raj-
man, M. (1998). Knowledge management: A text mining approach. In Reimer,
U. (Ed.), Proceedings of Second International Conference on Practical Aspects

of Knowledge Management (PAKM-98), pp. 9.1-9.10 Basel, Switzerland.

Feldman, R., & Hirsh, H. (1996). Mining associations in text in the presence of

background knowledge. In Proceedings of the Second International Conference

186

on Knowledge Discovery and Data Mining (KDD-96), pp. 343-346 Portland,
OR.

Fellbaum, C. D. (1998). WordNet: An Electronic Lezical Database. MIT Press,

Cambridge, MA.

Finkelstein-Landau, M., & Morin, E. (1999). Extracting semantic relationships
between terms: Supervised vs. unsupervised methods. In Proceedings of In-
ternational Workshop on Ontological Engineering on the Global Information

Infrastructure, pp. 71-80 Dagstuhl Castle, Germany.

Freitag, D. (1998a). Information extraction from HTML: Application of a general
learning approach. In Proceedings of the Fifteenth National Conference on
Artificial Intelligence (AAAI-98), pp. 517-523 Madison, WI. AAAI Press /

The MIT Press.

Freitag, D. (1998b). Multi-strategy learning for information extraction. In Proceed-
ings of the Fifteenth International Conference on Machine Learning (ICML-

98), pp. 161-169 Madison, WI.

Freitag, D., & Kushmerick, N. (2000). Boosted wrapper induction. In Proceedings of
the Seventeenth National Conference on Artificial Intelligence (AAAI-2000),

pp. 577-583 Austin, TX. AAAI Press / The MIT Press.

Ghani, R., & Fano, A. E. (2002). Using text mining to infer semantic attirbutes
for retail data mining. In Proceedings of the 2002 IEEE International Confer-

ence on Data Mining (ICDM-2002), pp. 195-202 Maebash City, Japan. IEEE

Computer Society.

187

Ghani, R., Jones, R., Mladenié¢, D., Nigam, K., & Slattery, S. (2000). Data mining
on symbolic knowledge extracted from the Web. In Mladenié¢, D. (Ed.), Pro-
ceedings of the Sizth International Conference on Knowledge Discovery and

Data Mining (KDD-2000) Workshop on Text Mining, pp. 29-36 Boston, MA.

Grobelnik, M. (Ed.). (2001). Proceedings of IEEE International Conference on Data
Mining (ICDM-2001) Workshop on Text Mining (TextDM’2001), San Jose,

CA.

Grobelnik, M. (Ed.)., text mining (2003). Proceedings of the Eighteenth International
Joint Conference on Artificial Intelligence(IJCAI-2008) Workshop on Text

Mining and Link Analysis (TextLink-2003), Acapulco, Mexico.

Gusfield, D. (1997). Algorithms on Strings, Trees and Sequences. Cambridge Uni-

versity Press, New York.
Haase, K. B. (2000). Interlingual brico. IBM Systems Journal, 39(3 / 4), 589-596.

Hahn, U., Romacker, M., & Schulz, S. (2002). Creating knowledge repositories
from biomedical reports: The MEDSYNDIKATE text mining system. In Pro-

ceedings of the Tth Pacific Symposium on Biocomputing, pp. 338—-349 Kauali,
HI.

Hammond, K., Burke, R., Martin, C., & Lytinen, S. (1995). FAQ-Finder: A case-
based approach to knowledge navigation. In Working Notes of AAAI Spring
Symposium: Information Gathering from Heterogeneous, Distributed Environ-

ments, pp. 69-73 Stanford University. AAAT Press.

188

Han, J., & Kamber, M. (2000). Data Mining: Concepts and Techniques. Morgan

Kaufmann, San Francisco.

Harabagiu, S. M., Bunescu, R. C., & Maiorano, S. J. (2001). Text and knowledge
mining for coreference resolution. In Proceedings of the Second Meeting of
the North American Chapter of the Association for Computational Linguistics

(NAACL-2001), pp. 55—62 Pittsburgh, PA.

Hearst, M. A. (1999). Untangling text data mining. In Proceedings of the 37th
Annual Meeting of the Association for Computational Linguistics (ACL-99),

pp- 3-10 College Park, MD.

Hearst, M. A. (2003). What is text mining?.

http://www.sims.berkeley.edu/ hearst/text-mining.html.

Henze, N., & Nejdl, W. (2002). Knowledge modeling for open adaptive hyperme-
dia. In De Bra, P., Brusilovsky, P., & Conejo, R. (Eds.), Proceedings of the
Second International Conference on Adaptive Hypermedia and Adaptive Web-
Based Systems, pp. 174-183 Malaga, Spain. Springer Verlag. LEcture Notes

in Computer Science Vol. 2347.

Herndndez, M. A., & Stolfo, S. J. (1995). The merge/purge problem for large
databases. In Proceedings of the 1995 ACM SIGMOD International Confer-

ence on Management of Data (SIGMOD-95), pp. 127-138 San Jose, CA.

Hotho, A., Staab, S., & Stumme, G. (2003). Ontologies improve text document

clustering. In Proceedings of the Third IEEE International Conference on Data

189

Mining (ICDM-03), pp. 541-544 Melbourne, FL. IEEE Computer Society.

Short Paper.

Kelin, D., Smarr, J., Nguyen, H., & Manning, C. D. (2003). Named entity
recognition with character-level models. In Daelemans, W., & Osborne, M.

(Eds.), Proceedings of Conference on Computational Natural Language Learn-

ing (CoNLL-2003), pp. 180-183 Edmonton, Canada. ACM.

Kohonen, T. (1997). Self-Organizing Maps (2nd edition). Springer-Verlag, Berlin,

Germany.

Kushmerick, N. (Ed.). (2001). Proceedings of the Seventeenth International Joint
Conference on Artificial Intelligence (IJCAI-2001) Workshop on Adaptive

Text Extraction and Mining, Seattle, WA. AAAT Press.

Lamirel, J.-C., & Toussaint, Y. (2000). Combining symbolic and numeric techniques
for DL contents classification and analysis. In Proceedings of the First DE-
LOS Network of Excellence Workshop on Information Seeking, Searching and

Quering in Digital Libraries Zurich, Switzerland.

Lavrac, N., & Dzeroski, S. (1994). Inductive Logic Programming: Techniques and

Applications. Ellis Horwood.

Lenat, D. B. (1997). Cyc: A large-scale investment in knowledge infrastructure.

Communications of the Association for Computing Machinery, 38(11), 32-38.

Lent, B., Agrawal, R., & Srikant, R. (1997). Discovering trends in text databases.

In Heckerman, D., Mannila, D. P. H., & Uthrysamy, R. (Eds.), Proceedings of

190

the Third International Conference on Knowledge Discovery and Data Mining

(KDD-97), pp. 227-230 Newport Beach, CA.

Leroy, G., Chen, H., & Martinez, J. D. (2003). A shallow parser based on closed-
class words to capture relations in biomedical text. Journal of Biomedical

Informatics (JBI), 36, 145-158.

Levenshtein, V. 1. (1966). Binary codes capable of correcting insertions and reversals.

Soviet Physics Doklady, 10(8), 707-710.

Lin, D., & Pantel, P. (2001). Discovery of inference rules for question answering.

Natural Language Engineering, 7(4), 343-360.

Lin, D., Zhao, S., Qin, L., & Zhou, M. (2003). Identifying synonyms among dis-
tributionally similar words. In Gottlob, G., & Walsh, T. (Eds.), Proceedings
of the Seventeenth International Joint Conference on Artificial Intelligence

(IJCAI-2003), pp. 1492-1493 Acapulco, Mexico. Morgan Kaufmann. Short
paper.

Liu, B., Hsu, W., & Ma, Y. (1998). Integrating classification and association rule
mining. In Piatetsky-Shapiro, G., Agrawal, R., & Stolorz, P. E. (Eds.), Pro-

ceedings of the Fourth International Conference on Knowledge Discovery and

Data Mining (KDD-98), pp. 80-86 New York, NY. AAAT Press.

Liu, H., Lieberman, H., & Selker, T. (2003). A model of textual affect sensing using
real-world knowledge. In Proceedings of the 2003 International Conference on

Intelligent User Interfaces (IUI-2003), pp. 125-132 Miami, FL. ACM.
Loh, S., Wives, L. K., & de Oliveira, J. P. M. (2000). Concept-based knowledge

191

discovery in texts extracted from the Web. SIGKDD Ezplorations, 2(1), 29—

39.

Lucarella, D. (1988). A document retrieval system based on nearest neighbour

searching. Journal of Information Science, 14, 25-33.

Mannila, H., Toivonen, H., & Verkamo, A. I. (1997a). Discovery of frequent episodes

in event sequences. Data Mining and Knowledge Discovery, 1(3), 259-289.

Mannila, H., Toivonen, H., & Verkamo, A. I. (1997b). Discovery of frequent episodes
in event sequences. Tech. rep. C-1997-15, Department of Computer Science,

University of Helsinki, Helsinki, Finland.

Manning, C. D., & Schiitze, H. (1999). Foundations of Statistical Natural Language

Processing. MIT Press, Cambridge, MA.

McCallum, A. (1996). Bow: A toolkit for statistical language modeling, text re-

trieval, classification and clustering. http://www.cs.cmu.edu/ mccallum/bow.

McCallum, A., & Jensen, D. (2003). A note on the unification of information ex-
traction and data mining using conditional-probability, relational models. In
Proceedings of the IJCAI-2003 Workshop on Learning Statistical Models from

Relational Data Acapulco, Mexico.

McCallum, A., & Nigam, K. (1998). A comparison of event models for naive Bayes
text classification. In Papers from the AAAI-98 Workshop on Text Catego-

rization, pp. 41-48 Madison, WI.

McCallum, A.; Nigam, K., Rennie, J., & Seymore, K. (2000a). Automating the

192

construction of internet portals with machine learning. Information Retrieval,

3(2), 127-163.

McCallum, A., Nigam, K., & Ungar, L. (2000b). Efficient clustering of high-
dimensional data sets with application to reference matching. In Proceedings of

the Sizth International Conference on Knowledge Discovery and Data Mining

(KDD-2000), pp. 169-178 Boston, MA.

McCray, A. T., & Aronson, A. R. (2002). Automated and semi-automated indexing..

http://ii.nlm.nih.gov/resources/MTI_091102.pdf.
Mitchell, T. (1997). Machine Learning. McGraw-Hill, New York, NY.

Mladenié, D. (Ed.). (2000). Proceedings of the Sizth International Conference on
Knowledge Discovery and Data Mining (KDD-2000) Workshop on Text Min-

ing, Boston, MA.

Monge, A. E., & Elkan, C. (1996). The field matching problem: Algorithms and
applications. In Proceedings of the Second International Conference on Knowl-

edge Discovery and Data Mining (KDD-96), pp. 267-270 Portland, OR.

Monge, A. E., & Elkan, C. P. (1997). An efficient domain-independent algorithm
for detecting approximately duplicate database records. In Proceedings of the
SIGMOD 1997 Workshop on Research Issues on Data Mining and Knowledge

Discovery, pp- 23—29 Tuscon, AZ.

Mooney, R. J., & Roy, L. (2000). Content-based book recommending using learning
for text categorization. In Proceedings of the Fifth ACM Conference on Digital

Libraries, pp. 195-204 San Antonio, TX.

193

Muresan, S., & Klavans, J. L. (2002). A method for automatically building and eval-
uating dictionary resources. In Proceedings of the 3rd International Conference

on Language Resources & Evaluation (LREC-2002) Las Palmas, Spain.

Muslea, I. (1999). Extraction patterns for information extraction tasks: A survey.
In Califf, M. E. (Ed.), Papers from the Sizteenth National Conference on Arti-
ficial Intelligence (AAAI-99) Workshop on Machine Learning for Information

Eztraction Orlando, FL. AAAI Press.

Muslea, I. (Ed.). (2004). Papers from the AAAI-2004 Workshop on Adaptive Text

Eztraction and Mining (ATEM-2004) Workshop, San Jose, CA. AAAT Press.

Muslea, I., Minton, S., & Knoblock, C. A. (1999). A hierarchical approach to wrap-
per induction. In Proceedings of the Third Annual Conference on Autonomous

Agents, pp. 190-197 Seatttle, WA. ACM.

Nahm, U. Y., Bilenko, M., & Mooney, R. J. (2002). Two approaches to handling
noisy variation in text mining. In Papers from the Nineteenth International
Conference on Machine Learning (ICML-2002) Workshop on Text Learning,

pp- 18-27 Sydney, Australia.

Nahm, U. Y., & Mooney, R. J. (2000). Using information extraction to aid the dis-
covery of prediction rules from texts. In Proceedings of the Sizth International
Conference on Knowledge Discovery and Data Mining (KDD-2000) Workshop

on Text Mining, pp. 51-58 Boston, MA.

Nahm, U. Y., & Mooney, R. J. (2001). Mining soft-matching rules from textual data.

194

In Proceedings of the Seventeenth International Joint Conference on Artificial

Intelligence (IJCAI-2001), pp. 979-984 Seattle, WA.

Nallapati, R., Allan, J., & Mahadevan, S. (2004). Extraction of key words from
news stories. Tech. rep. CIIR Technical report # IR-345, Center for Intelli-
gent Information Retrieval, Department of Computer Science, University of

Massachusetts, Amherst, MA.

Navarro, G., & Baeza-Yates, R. (1998). A practical g-gram index for text retrieval

allowing errors. CLEI Electronic Journal, 1(2).

Needleman, S. B., & Wunsch, C. D. (1970). A general method applicable to the
search for similarities in the amino acid sequences of two proteins. Journal of

Molecular Biology, 48, 443-453.

Pereira, F. C. N., Tishby, N., & Lee, L. (1993). Distributional clustering of En-
glish words. In Proceedings of the 31st Annual Meeting of the Association for

Computational Linguistics (ACL-93), pp. 183-190 Columbus, Ohio.

Peterson, J. L. (1976). Computation sequence sets. Journal of Computer and Sys-

tems Sciences, 19(1), 1-24.

Pierre, J. M. (2002). Mining knowledge from text collections using automatically
generated metadata. In Karagiannis, D., & Reimer, U. (Eds.), Proceedings of
the Fourth International Conference on Practical Aspects of Knowledge Man-
agement (PAKM-2002), pp. 537-548 Vienna, Austria. Springer. Lecture Notes

in Computer Sicnece Vol. 2569.
Pinto, D., McCallum, A., Wei, X., & Croft, W. B. (2003). Table extraction using

195

conditional random fields. In Proceedings of 26th International ACM SIGIR
Conference on Research and Development in Information Retrieval, pp. 235—

242 Toronto, Canada. ACM.

Popescu, A.-M., Etzioni, O., & Kautz, H. (2003). Towards a theory of natural
language interfaces to databases. In Proceedings of the 2003 International
Conference on Intelligent User Interfaces (IUI-2003), pp. 149-157 Miami, FL.

ACM.

Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann,

San Mateo,CA.

Quinlan, J. R., & Cameron-Jones, R. M. (1993). FOIL: A midterm report. In Pro-

ceedings of the FEuropean Conference on Machine Learning, pp. 3—20 Vienna.

Radev, D. R., & McKeown, K. R. (1998). Generating natural language summaries

from multiple on-line sources. Computational Linguistics, 24(3), 469-500.

Riloff, E. (1993). Automatically constructing a dictionary for information extrac-
tion tasks. In Proceedings of the Eleventh National Conference on Artificial

Intelligence (AAAI-93), pp. 811-816 Washington, D.C.

Riloff, E. (1996). Using learned extraction patterns for text classification. In
Wermter, S., Riloff, E., & Scheler, G. (Eds.), Connectionist, Statistical, and
Symbolic Approaches to Learning for Natural Language Processing, pp. 275—

289. Springer, Berlin.

Robertson, J., Wong, W. Y., Chung, C., & Kim, D. K. (1998). Automatic speech

recognition for generalised time based media retrieval and indexing. In Pro-

196

ceedings of the 6th ACM International Conference on Multimedia, pp. 241-246

Bristol, England. ACM.

Salton, G. (1989). Automatic Text Processing: The Transformation, Analysis and

Retrieval of Information by Computer. Addison-Wesley.

Sankoff, D., & Kruskal, J. B. (Eds.). (1983). Time Warps, String Edits and Macro-

molecules: the Theory and Practice of Sequence Comparison. Addison-Wesley.

Savasere, A., Omiecinski, E., & Navathe, S. B. (1998). Mining for strong negative
associations in a large database of customer transactions. In Proceedings of the
14th International Conference on Data Engineering (ICDE-98), pp. 494-502

Orlando, FL. TEEE Computer Society.

Schapire, R. E. (1990). The strength of weak learnability. Machine Learning, 5(2),

197-227.

Schapire, R. E., & Singer, Y. (1998). Improved boosting algorithms using confidence-
rated predictions. In Piatetsky-Shapiro, G., Agrawal, R., & Stolorz, P. E.
(Eds.), Proceedings of the 11th Annual Conference on Computational Learning
Theory, pp- 80-91 Madison, WI. ACM.

Scheffer, T., & Leser, U. (Eds.). (2003). Proceedings of the ECML/PKDD 2003
Workshop on Data Mining and Text Mining for Bioinformatics, Dubrovnik,

Croatia.

Schulz, K. U., & Mihov, S. (2002). Fast string correction with Levenshtein automata.

International Journal of Document Aanlysis and Recognition, 5(1), 67-85.

197

Schwartz, A. S., & Hearst, M. A. (2003). A simple algorithm for identifying ab-
breviation definitions in biomedical text. In Proceedings of the 8th Pacific

Symposium on Biocomputing, pp. 4561-462 Lihue, HI.

Scott, S., & Matwin, S. (1998). Text classification using WordNet hypernyms. In
Harabagiu, S. (Ed.), Proceedings of the COLING/ACL Workshop on Usage

of WordNet in Natural Language Processing Systems, pp. 38-44 Montreal,

Quebec, Canada. ACL / Morgan Kaufmann Publishers.

Soderland, S. (1999). Learning information extraction rules for semi-structured and

free text. Machine Learning, 34, 233-272.

Soderland, S., Etzioni, O., Shaked, T., & Weld, D. S. (2004). The use of Web-
based statistics to validate information extraction. To appear in Papers from
the AAAT-2004 Workshop on Adaptive Text Extraction and Mining (ATEM-

2004) Workshop, San Jose, CA.

Srihari, R., & Li, W. (1999). Information extraction supported question answering.
In Proceedings of the Eighth Text REtrieval Conference(TREC-8) Gaithers-

burg, MD. NIST Special Publication.

Srikant, R., & Agrawal, R. (1995). Mining generalized association rules. In Proceed-
ings of the 21st International Conference on Very Large Databases (VLDB-
95), pp. 407-419 Zurich, Switzerland.

Srikant, R., & Agrawal, R. (1996). Mining sequential patterns: Generalizations and
performance improvements. In Apers, P. M. G., Bouzeghoub, M., & Gardarin,

G. (Eds.), Proceedings of the Third International Conference on Extending

198

Database Technology (EDBT-96), pp. 3—17 Avignon, France. ACM. Lecture

Notes in Computer Science Vol. 1057.

Stevenson, M., & Ciravegna, F. (2003). Information extraction as a Semantic Web
technology: Requirements and promises. In Ciravegna, F., & Kushmerick,
N. (Eds.), Papers from the ECML/PKDD-2003 Workshop on Adaptive Text

Extraction and Mining Cavtat-Dubrovnik, Croatia.
Sullivan, D. (2000). The need for text mining in business intelligence.. DM Review.

Tan, A.-H. (1999). Text mining: The state of the art and the challenges. In Pro-
ceedings of PAKDD-1999 Workshop on Knowledge Discovery from Advanced

Databases, pp. 656—70 Beijing, China.

Thompson, C. A., Smarr, J., Nguyen, H., & Manning, C. D. (2003). Finding educa-
tional resources on the Web: Eexploiting automatic extraction of metadata.
In Ciravegna, F., & Kushmerick, N. (Eds.), Papers from the 14th European
Conference on Machine Learning(ECML-2003) and the 7th European Confer-
ence on Principles and Practice of Knowledge Discovery in Databases(PKDD-
2003) Workshop on Adaptive Text Extraction and Mining Cavtat-Dubrovnik,

Croatia.

Turtle, H. R., & Flood, J. (1995). Query evaluation: Strategies and optimizations.

Information Processing and Management, 31(6), 831-850.

Uchida, H., Zhu, M., & Della, S. (2000). UNL: A Gift for a Millennium. The United

Nations University, Tokyo, Japan.
White, M., Cardie, C., Han, C.-H., Kim, N., Lavoie, B., Palmer, M., Rambow, O.,

199

& Yoon, J. (2000). Towards translingual information access using portable
information extraction. In Proceedings of the Applied Natural Language Pro-
cessing and the North American Chapter of the Association for Computational
Linguistics (ANLP/NAACL-2000) Workshop on Embedded MT Systems, pp.

31-37 Seattle, WA.

Winkler, W. E. (1999). The state of record linkage and current research problems.
Tech. rep., Statistical Research Division, U.S. Census Bureau, Washington,

DC.

Witten, I. H., & Frank, E. (1999). Data Mining: Practical Machine Learning Tools
and Techniques with Java Implementations. Morgan Kaufmann, San Fran-

cisco.

Wu, X., Zhang, C., & Zhang, S. (2002). Mining both positive and negative asso-
ciation rules. In Sammut, C., & Hoffmann, A. G. (Eds.), Proceedings of the
Ninteenth International Conference on Machine Learning (ICML-2002), pp.

658-665 Sydney, Australia. Morgan Kaufmann.

y Gémez, M. M., Gelbukh, A. F., & Lépez-Lépez, A. (2001). Text mining as a
social thermometer. In Feldman, R. (Ed.), Proceedings of the Sizteenth Inter-
national Joint Conference on Artificial Intelligence (IJCAI-99) Workshop on
Text Mining: Foundations, Techniques and Applications, pp. 103—107 Stock-

holm, Sweden.

Yager, R. R. (1986). On the theory of bags. International Journal of General

Systems, 18(1), 23-37.

200

Yang, Y. (1999). An evaluation of statistical approaches to text categorization

Journal of Information Retrieval, 1(1/2), 67-88.

Yang, Y., Carbonell, J. G., Brown, R., Pierce, T., Archibald, B., & Liu, X. (1999).

Learning approaches for detecting and tracking news events. IEEE Intelligent

Systems, 14(4), 32-43.

Yin, X., & Han, J. (2003). CPAR: Classification based on predictive association
rules. In Barbard, D., & Kamath, C. (Eds.), Proceedings of Third SIAM Inter-

national Conference on Data Mining(SDM-2003) San Francisco, CA. STAM.

Zaki, M. J. (2002). Efficiently mining frequent trees in a forest. In Proceedings of
the Eighth ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining (KDD-2002), pp. 71-80 Edmonton, Alberta, Canada. ACM.

Zelikovits, S., & Hirsh, H. (2002). Integrating background knowledge into nearest-
neighbor text classification. In Proceedings of the 6th European Conference
on Case-Based Reasoning (ECCBR-2002), pp. 1-5 Aberdeen, Scotland, U.K.

Springer Verlag. Lecture Notes in Computer Science Vol. 2416.

Zhang, K., & Shasha, D. (1989). Simple fast algorithms for the editing distance

between trees and related problems. SIAM Journal on Computing, 18(6),
1245-1262.

201

