
In Proceedings of the 25th International Conference on Machine Learning (ICML),. Helsinki, Finland, July 2008.

Discriminative Structure and Parameter Learning for

Markov Logic Networks

Tuyen N. Huynh HNTUYEN@CS.UTEXAS.EDU

Raymond J. Mooney MOONEY@CS.UTEXAS.EDU

Department of Computer Sciences, The University of Texas at Austin,1 University Station C0500, Austin, TX 78712, USA

Abstract

Markov logic networks (MLNs) are an expres-

sive representation for statistical relational learn-

ing that generalizes both first-order logic and

graphical models. Existing methods for learn-

ing the logical structure of an MLN are not dis-

criminative; however, many relational learning

problems involve specific target predicates that

must be inferred from given background infor-

mation. We found that existing MLN methods

perform very poorly on several such ILP bench-

mark problems, and we present improved dis-

criminative methods for learning MLN clauses

and weights that outperform existing MLN and

traditional ILP methods.

1. Introduction

Statistical relational learning (SRL) concerns the induc-

tion of probabilistic knowledge that supports accurate

prediction for multi-relational structured data (Getoor &

Taskar, 2007). Markov Logic Networks (MLNs) are a re-

cently developed SRL model that generalizes both full first-

order logic and Markov networks (Richardson & Domin-

gos, 2006). An MLN is represented as a set of weighted

clauses in first-order logic, and learning an MLN decom-

poses into structure learning, learning the logical clauses,

and parameter learning, setting the weight of each clause.

Existing structure-learning algorithms for MLNs (Kok &

Domingos, 2005; Mihalkova & Mooney, 2007) are non-

discriminative and attempt to learn a set of clauses that is

equally capable of predicting the truth value of all predi-

cates given an arbitrary set of evidence. However, in many

learning problems, there is a specific target predicate that

must be inferred given evidence data about other back-

ground predicates used to describe the input data. Most tra-
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ditional Inductive Logic Programming (ILP) methods fo-

cus on discriminative relational learning (Dzeroski, 2007);

however, they do not address the issue of uncertainty. Dis-

criminative methods have been developed for parameter

learning in MLNs (Singla & Domingos, 2005; Lowd &

Domingos, 2007); however, they do not address structure

learning.

We have found that existing MLN structure learning meth-

ods perform very poorly when tested on several bench-

mark ILP problems on relating the activity of chemical

compounds to their structure (King et al., 1995). This

led us to develop new discriminative structure and param-

eter learning algorithms for MLNs whose performance on

these problems surpasses that of traditional ILP methods.

The overall approach is to use traditional ILP methods to

construct a large number of potentially useful clauses, and

then use discriminative MLN parameter learning methods

to properly weight them, preferring to assign zero weights

to clauses that do not contribute significantly to overall pre-

dictive accuracy, thereby eliminating them. Our structure

learning component utilizes many of the clauses considered

during the search conducted by a specific configuration of

ALEPH (Srinivasan, 2001). Our parameter learning com-

ponent utilizes an exact probabilistic inference algorithm

for MLNs with only non-recursive definite clauses. Our

parameter learner also uses L1-regularization (Lee et al.,

2006) instead of the normal L2 in order to encourage as-

signing zero weights to clauses, thereby simplifying the

theory. We present experimental results that demonstrate

that all three of these enhancements contribute significantly

to improving the performance of our system over existing

MLN and ILP methods.

The remainder of the paper is organized as follows. Section

2 provides some background on MLNs, ALCHEMY (Kok

et al., 2005), and ALEPH. Section 3 presents our new struc-

ture and parameter learning algorithms. Section 4 presents

our experimental evaluation of these methods. Section 5

discusses related work, and section 6 presents our conclu-

sions.
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2. Background

2.1. ILP and Aleph

Traditional ILP systems discriminatively learn logical

Horn-clause rules (logic programs) for inferring a given tar-

get predicate given information provided by a set of back-

ground predicates. These purely logical definitions are in-

duced from Horn-clause background knowledge and a set

of positive and negative tuples of the target predicate.

ALEPH is a popular and effective ILP system primarily

based on PROGOL (Muggleton, 1995). The basic ALEPH

algorithm consists of four steps. First, it selects a positive

example to serve as the “seed” example. Then, it constructs

the most specific clause, the “bottom clause”, that entails

that selected example. The bottom clause is formed by

conjoining all known facts about the seed example. Next,

ALEPH finds generalizations of this bottom clause by per-

forming a general to specific search. These generalized

clauses are scored using a chosen evaluation metric, and

the clause with the best score is added to the final theory.

This process is repeated

until it finds a set of clauses that covers all the positive ex-

amples. ALEPH allows users to customize each of these

steps, and thereby supports a variety of specific algorithms.

2.2. MLNs and Alchemy

An MLN consists of a set of weighted first-order formulae

(also called clauses or rules). It provides a way of softening

first-order logic by making situations in which not all for-

mulae are satisfied less likely but not impossible (Richard-

son & Domingos, 2006). More formally, let X be the set

of all propositions describing a world (i.e. the set of all the

ground atoms1), F be the set of all clauses in the MLN, wi

be the weight associated with clause fi ∈ F, Gfi
be the set

of all possible groundings of clause fi, and Z be the nor-

malizing constant. Then the probability of a particular truth

assignment x to the variables in X is given by the formula

(Richardson & Domingos, 2006):

P (X = x) =
1

Z
exp





∑

fi∈F

wi

∑

g∈Gfi

g(x)





=
1

Z
exp





∑

fi∈F

wini(x)



 (1)

where g(x) is 1 if g is satisfied and 0 otherwise, and

ni(x) =
∑

g∈Gfi
g(x) is the number of groundings of fi

that are satisfied given the current truth assignments to the

variables in X .

1Ground atoms are predicates without variables, which are
formed by replacing all the variables in predicates by constants.

In order to perform inference for an MLN, L, one needs to

produce its corresponding ground Markov network. As de-

scribed by Richardson and Domingos (2006), this is done

by including a node for every possible grounding of the

predicates in L and an edge between two nodes if they ap-

pear together in a grounding of a clause in L. The nodes

appearing together in a ground clause form a clique. In

general, exact inference in MLNs is intractable, so to cal-

culate the probability that a ground atom or a set of them

has a particular truth assignment given some evidence, one

needs to run an approximate inference algorithm such as

MCMC on this ground Markov network. MC-SAT (Poon

& Domingos, 2006) is currently the best inference method

for MLNs.

As previously mentioned, learning an MLN consists of two

tasks: structure learning and weight learning. The weight

learning component is independent of the structure learn-

ing one. It can learn weights for clauses produced by struc-

ture learning or written by a human expert. There are two

approaches to weight learning: generative and discrimina-

tive. The former is used when there is no specific target

predicate, and the latter when we know which predicate is

to be queried. The current state-of-the-art discriminative

weight learner is preconditioner scaled conjugate gradient

(PSCG) (Lowd & Domingos, 2007). This algorithm uses

samples from MC-SAT to approximate the intractable ex-

pected counts of satisfied clauses w.r.t. the current model.

These counts are needed to compute the gradient and Hes-

sian of the conditional log-likelihood (CLL) of an MLN.

The inverse diagonal Hessian is used as the preconditioner

in this method.

Regarding structure learning, there are currently two al-

gorithms for learning clauses for MLNs. The first algo-

rithm was proposed by Kok and Domingos (2005). This

algorithm uses a top-down approach and can perform ei-

ther beam-search or shortest-first search over the space of

clauses. The candidate clauses are scored using weighted

pseudo log-likelihood (WPLL) (Kok & Domingos, 2005).

In contrast, the second algorithm, BUSL (Mihalkova &

Mooney, 2007) follows a more bottom-up approach. It

first constructs Markov network templates from the data

and then generates candidate clauses from these network

templates. All candidate clauses are also evaluated using

WPLL, and added to the final MLN in a greedy manner.

Both of these algorithms can be constrained to only learn

clauses that contain a given target predicate by setting their

“ne” (non-evidence) parameter to that predicate. However,

they are not designed for discriminative learning since they

try to find a set of clauses which maximizes WPLL, a non-

discriminative measure.

ALCHEMY (Kok et al., 2005) is an open source software

system for MLNs. It has implementations of all the ex-
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isting algorithms for structure learning, generative weight

learning, discriminative weight learning, and inference for

MLNs. It is also a framework for developing new algo-

rithms for MLNs. Our proposed algorithm is implemented

in this framework.

3. Discriminative MLN Algorithms

In this section, we describe our two-step process for dis-

criminatively learning both the structure and parameters of

an MLN. The first step uses ALEPH to learn a large set

of potential clauses. The second step learns the weights

for these clauses, preferring to eliminate useless clauses by

giving them zero weight.

3.1. Discriminative Structure Learning

Ideally, the search for discriminative MLN clauses would

be directly guided by the goal of maximizing their con-

tribution to the predictive accuracy of a complete MLN.

However, this would require evaluating every proposed re-

finement to the existing set of learned clauses by relearn-

ing weights for all of the clauses and performing full prob-

abilistic inference to determine the CLL of each of the

query atoms. This process is computationally expensive

and would have to be repeated for each of the combinatori-

ally large number of potential clause refinements. Evaluat-

ing clauses in standard ILP is quicker since each clause can

be evaluated in isolation based on the accuracy of its logi-

cal inferences about the target predicate. Consequently, we

take the heuristic approach of using a standard ILP method

to generate clauses; however, since the logical accuracy of

a clause is only a rough approximation of its value in a fi-

nal MLN, we generate a large number of candidates whose

accuracy is at least markedly greater than random guessing

and allow subsequent weight learning to determine their

value to an overall MLN.

In order to find a set of potentially good clauses for an

MLN, we use a particular configuration of ALEPH. Specif-

ically, we use the induce cover command and m-estimate

evaluation function. The induce cover command imple-

ments a variant of PROGOL’s MDIE greedy covering al-

gorithm (Muggleton, 1995) which does not remove previ-

ously covered examples when scoring a new clause. The

normal ALEPH induce command scores a clause based

only on its coverage of currently uncovered positive exam-

ples. However, this scoring is not reflective of its use in a

final MLN, and we found that the induce cover approach

produces a larger set of more useful clauses that signif-

icantly increases the accuracy of our final learned MLN.

The m-estimate (Džeroski, 1991) is a Bayesian estimation

of the accuracy of a clause (Cussens, 2007). The m param-

eter defining the underlying prior distribution is automat-

ically set to the maximum likelihood estimate of its best

value. The output of induce cover is a theory, a set of high-

scoring clauses that cover all the positive examples. How-

ever, these clauses were selected based on an m-estimate

of their accuracy under a purely logical interpretation, and

may not be the best ones for an MLN. Therefore, in ad-

dition to these clauses, we also save all generated clauses

whose m-estimate is greater than a predefined threshold (set

to 0.6 in our experiments). This provides a large set of

clauses of potential utility for an MLN. We use the name

ALEPH++ to refer to this version of ALEPH.

3.2. Discriminative Weight Learning

Compared to ALCHEMY’s current discriminative weight

learning method (Lowd & Domingos, 2007), our method

embodies two important modifications: exact inference and

L1-regularization. This section describes these two modi-

fications.

First, given the restricted nature of the clauses constructed

by ALEPH, we can use an efficient exact probabilistic infer-

ence method when learning their weights instead of the ap-

proximate inference algorithm that ALCHEMY uses to han-

dle the general case. Since these clauses are non-recursive

definite clauses in which the target predicate only appears

once, multiple query atoms will not appear together in any

grounding of any clause. For MLNs, this means that the

Markov blanket of a query atom only contains evidence

atoms. Consequently, the query atoms are independent

given the evidence. Let Y be the set of query atoms and

X be the set of evidence atoms, the conditional log likeli-

hood of Y given X in this case is:

log P (Y = y|X = x) = log

n
∏

j=1

P (Yj = yj |X = x)

=

n
∑

j=1

log P (Yj = yj |X = x)

and,

P (Yj = yj |X = x) =

exp(
∑

i∈FYj
wini(x, y[Yj=yj ]))

exp(
∑

i∈FYj

wini(x, y[Yj=0])) + exp(
∑

i∈FYj

wini(x, y[Yj=1]))

(2)

where FYj
is the set of all MLN clauses with at least one

grounding containing the query atom Yj , ni(x, y[Yj=yj ])
is the number groundings of the ith clause that evaluate

to true when all the evidence atoms in X and the query

atom Yj are set to their truth values, and similarly for

ni(x, y[Yj=0]) and ni(x, y[Yj=1]) when Yj is set to 0 and 1

respectively. Then the gradient of the CLL is:
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∂
∂wi

log P (Y = y|X = x) =

n
∑

j=1

[ni(x, y[Yj=yj ]) − P (Yj = 0|X = x)ni(x, y[Yj=0])

−P (Yj = 1|X = x)ni(x, y[Yj=1])]

Notice that the sum of the last two terms in the gradient is

the expected count of the number of true grounding of the

i’th formula. In general, computing this expected count re-

quires performing approximate inference under the model.

For example, Singla and Domingos (2005) ran MAP in-

ference and used the counts in the MAP state to approxi-

mate the expected counts. However, in our case, using the

standard closed world assumption for evidence predicates,

all the ni’s can be computed without approximate infer-

ence since there is no ground atom whose truth value is un-

known. This is a result of restricting the structure learner to

non-recursive definite clauses. In fact, this result still holds

even when the clauses are not Horn clauses. The only re-

striction is that the target predicate appears only once in

every clause. Note that given a set of weights, computing

the conditional probability P (y|x), the CLL, and its gradi-

ent requires only the ni counts. So, in our case, the con-

ditional probability P (Yj = yj|X = x), the CLL, and its

gradient can be computed exactly. In addition, these counts

only need to be computed once, and ALCHEMY provides

an efficient method for computing them. ALCHEMY also

provides an efficient way to construct the Markov blanket

of a query atom, in particular it ignores all ground formulae

whose truth values are unaffected by the value of the query

atom. In our case, this helps reduce the size of the Markov

blanket of a query atom significantly since many ground

clauses are satisfied by the evidence. As a result, our exact

inference is very fast even when the MLN contains thou-

sands of clauses.

Given a procedure for computing the CLL and its gra-

dient, standard gradient-based optimization methods can

be used to find a set of weights that optimizes the CLL.

However, to prevent overfitting and select only the best

clauses, we follow the approach suggested by Lee et al.

(2006) and introduce a Laplacian prior with zero mean,

P (wi) = (β/2) · exp(−β|wi|), on each weight, and then

optimize the posterior conditional log likehood instead of

the CLL. The final objective function is:

log P (Y |X)P (w) = log P (Y |X) + log P (w)

= log P (Y |X) + log(
∏

i

P (wi))

= CLL +
∑

i

log (
β

2
· exp(−β|wi|))

= CLL − β
∑

i

|wi| + constant

There is now an additional term β
∑

i |wi| in the objec-

tive function, which penalizes each non-zero weight wi by

β|wi|. So, the larger β is (corresponding to a smaller vari-

ance of the prior distribution), the more we penalize non-

zero weights. Therefore, placing a Laplacian prior with

zero mean on each weight is equivalent to performing an

L1-regularization of the parameters. An important property

of L1-regularization is its tendency to force parameters to

zero by strongly penalizing small terms (Lee et al., 2006).

In order to learn weights that optimize the L1-regularized

CLL, we use the OWL-QN package which implements the

Orthant-Wise Limited-memory Quasi-Newton algorithm

(Andrew & Gao, 2007).

This approach to preventing over-fitting contrasts with the

standard L2-regularization used in previous work on learn-

ing weights for MLNs, which is equivalent to assuming a

Guassian prior with zero mean on each weight and does not

penalize non-zero weights as severely. Since ALEPH++

generates a very large number of potential clauses, L1-

regularization encourages eliminating the less useful ones

by setting their weights to zero. In agreement with prior re-

sults on L1-regularization (Ng, 2004; Dudı́k et al., 2007),

our experiments confirm that it results in simpler and more

accurate learned models compared to L2-regularization.

4. Experimental Evaluation

In this section, we present experiments that were designed

to answer the following questions:

1. How does our method compare to existing methods,

specifically:

(a) Extant discriminative learning for MLNs, viz.

ALCHEMY.

(b) Traditional ILP methods, viz. ALEPH.

(c) “Advanced” ILP methods, viz. kFOIL

(Landwehr et al., 2006), TFOIL (Landwehr

et al., 2007), and RUMBLE (Rückert & Kramer,

2008).

2. How does each of our system’s major novel compo-

nents below contribute to its performance:

(a) Generation of a larger set of potential clauses by

using ALEPH++ instead of ALEPH.

(b) Exact MLN inference for non-recursive definite

clauses instead of general approximate inference.

(c) L1-regularization instead of L2.

4.1. Data

We employed four benchmark data sets previously used

to evaluate a variety of ILP and relational learning algo-

rithms. They concern predicting the relative biochemical
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activity of variants of Tacrine, a drug for Alzheimer’s dis-

ease (King et al., 1995).2 The data contain background

knowledge about the physical and chemical properties of

substituents such as their hydrophobicity and polarity, the

relations between various physical and chemical constants,

and other relevant information. The goal is to compare var-

ious drugs on four important biochemical properties: low

toxicity, high acetyl cholinesterase inhibition, good rever-

sal of scopolamine-induced memory impairment, and inhi-

bition of amine re-uptake. For each property, the positive

and negative examples are pairwise comparisons of drugs.

For example, less toxic(d1, d2) means that drug d1’s tox-

icity is less than d2’s. These ordering relations are transi-

tive but not complete (i.e. for some pairs of drugs it is un-

known which one is better). Therefore, this is a structured

(a.k.a. collective) prediction problem since the output la-

bels should form a partial order. However, previous work

has ignored this structure and just predicted the examples

separately as distinct binary classification problems. In this

work, in addition to treating the problem as independent

classification, we also use an MLN to perform structured

prediction by explicitly imposing the transitive constraint

on the target predicate. Table 1 shows some background

facts and examples from one of the datasets, and Table 2

summarizes information about all four datasets.

Table 2. Summary statistics for Alzheimer’s data sets.

Data set #Examples % Positive # Predicates

Alzheimer acetyl 1326 50% 30
Alzheimer amine 686 50% 30
Alzheimer memory 642 50% 30
Alzheimer toxic 886 50% 30

4.2. Methodology

To answer the above questions, we ran experiments with

the following systems:

ALCHEMY: Uses the structure learning (Kok & Domin-

gos, 2005) in ALCHEMY and the most accurate ex-

isting discriminative weight learning PSCG (Lowd &

Domingos, 2007) with the “ne” (non-evidence) pa-

rameter set to the target predicate.

BUSL: Uses BUSL (Mihalkova & Mooney, 2007) and

PSCG discriminative weight learning with the “ne”

(non-evidence) parameter set to the target predicate.

ALEPH: Uses ALEPH’s standard settings with a few mod-

ifications. The maximum number of literals in an ac-

ceptable clause was set to 5. The minimum number

of positive examples covered by an acceptable clause

2Since the current ALCHEMY does not support real valued
variables, we could not test our approach on the other standard
ILP benchmark data sets in molecular biology.

was set to 2. The upper bound on the number of neg-

ative examples covered by an acceptable clause was

set to 300. The evaluation function was set to auto m,

and the minimum score of an acceptable clause was

set to 0.6. The induce cover command was used to

learn the clauses. We found that this configuration

gave somewhat better overall accuracy compared to

those reported in previous work.

ALEPHPSCG: Uses the discriminative weight learner

PSCG to learn MLN weights for the clauses in the fi-

nal theory returned by ALEPH. Note that PSCG also

uses L2-regularization.

ALEPHExactL2 : Uses the limited-memory BFGS al-

gorithm (Liu & Nocedal, 1989) implemented in

ALCHEMY to learn discriminative MLN weights for

the clauses in the final theory returned by ALEPH. The

objective function is CLL with L2 regularization. The

CLL is computed exactly as described in Section 3.2.

ALEPH++PSCG: Like ALEPHPSCG, but learns weights

for the larger set of clauses returned by ALEPH++.

ALEPH++ExactL2: Like ALEPHExactL2, but learns

weights for the larger set of clauses returned by

ALEPH++.

ALEPH++ExactL1: Our full proposed approach using ex-

act inference and L1-regularization to learn weights

on the clauses returned by ALEPH++.

To force the predictions for the target predicate to prop-

erly constitute a partial ordering, we also tried adding to

the learned MLNs a hard constraint (i.e. a clause with in-

finite weight) stating the transitive property of the target

predicate, and used the MC-SAT algorithm to perform pre-

diction on the test data. This exploits the ability of MLNs

to perform collective classification (structured prediction)

for the complete set of test examples.

In testing, only the background facts are provided as evi-

dence to ensure that all predictions are based on the chem-

ical structure of a drug. For all systems except ALEPH, a

threshold of 0.5 was used to convert predicted probabilities

into boolean values. The predictive accuracy of these algo-

rithms for the target predicate were compared using 10-fold

cross-validation. The significance of the results were eval-

uated using a two-tailed paired t-test test with a 95% confi-

dence level. To compare the quality of the predicted prob-

abilities, we also report the average area under the ROC

curve (AUC-ROC) for all probabilistic systems by using

the AUCCalculator package (Davis & Goadrich, 2006).
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Table 1. Some background evidence and examples from the Alzheimer toxic dataset.

Background evidence Examples

r subst 1(A1,H), r subst 1(B1,H), r subst 1(D1,H), x subst(B1,7,CL), x subst(D1,6,OCH3), polar(CL,POLAR3), less toxic(B1,A1)
polar(OCH3,POLAR2), great polar(POLAR3,POLAR2), size(CL,SIZE1), size(OCH3,SIZE2), alk groups(A1,0), less toxic(A1,D1)

alk groups(B1,0), alk groups(D1,0), great size(SIZE2,SIZE1), flex(CL,FLEX0), flex(OCH3,FLEX1) less toxic(B1,D1)

Table 3. Average predictive accuracies and standard deviations for all systems. Bold numbers indicate the best result on a data set.

Data set ALCHEMY BUSL ALEPH ALEPH ALEPH ALEPH++ ALEPH++ ALEPH++
PSCG ExactL2 PSCG ExactL2 ExactL1

Alzheimer amine 50.1 ± 0.5 51.3 ± 2.5 81.6 ± 5.1 64.6± 4.6 83.5 ± 4.7 72.0± 5.2 86.8± 4.4 89.4 ± 2.7
Alzheimer toxic 54.7 ± 7.4 51.7 ± 5.3 81.7 ± 4.2 74.7± 1.9 87.5 ± 4.8 69.9± 1.2 89.5± 3.0 91.3 ± 2.8
Alzheimer acetyl 48.2 ± 2.9 55.9 ± 8.7 79.6 ± 2.2 78.0± 3.2 79.5 ± 2.0 76.5± 3.7 82.1± 2.1 85.1 ± 2.4
Alzheimer memory 50 ± 0.0 49.8 ± 1.6 76.0 ± 4.9 60.3± 2.1 72.6 ± 3.4 65.6± 5.4 72.9± 5.2 77.6 ± 4.9

Table 6. Average number of clauses learned

Data set ALEPH++ ALEPH++ ALEPH++
ExactL2 ExactL1

Alzheimer amine 7061 5070 3477
Alzheimer toxic 2034 1194 747
Alzheimer acetyl 8662 5427 2433
Alzheimer memory 6524 4250 2471

4.3. Results and Discussion

Tables 3 and 4 show the average accuracy and

AUC-ROC with standard deviation for each system

running on each data set. Our complete system

(ALEPH++ExactL1) achieves significantly higher accu-

racy than both ALCHEMY and BUSL on all 4 data sets and

significantly higher than ALEPH on all except the memory

data set, answering questions 1(a) and 1(b). In turn, ALEPH

has been shown to give higher accuracy on these data sets

than other standard ILP systems like FOIL (Landwehr et al.,

2007). ALCHEMY’s existing non-discriminative structure

learners find only a few (3–5) simple clauses. Two of

them are unit clauses for the target predicate, such as

great ne(a1,a1) and great ne(a1,a2); the others capture the

transitive nature of the target relation. Therefore, even af-

ter they are discriminatively weighted, their predictions are

not significantly better than random guessing.

The ablations that remove components from our over-

all system demonstrate the important contribution of

each component. Regarding question 2(b), the systems

using general approximate inference (ALEPHPSCG

and ALEPH++PSCG) perform much worse than

the corresponding versions that use exact inference

(ALEPHExactL2 and ALEPH++ExactL2). Therefore,

when there is a target predicate that can be accurately

inferred using non-recursive definite clauses, exploiting

this restriction to perform exact inference is a clear win.

Regarding question 2(a), ALEPH++ExactL2 performs sig-

nificantly better than ALEPHExactL2, demonstrating the

advantage of learning a large set of potential clauses and

combining them with learned weights in an overall MLN.

Across the four datasets, ALEPH++ returns an average of

6, 070 clauses compared to only 10 for ALEPH.

Table 5 presents average accuracies with standard devia-

tions for the MLN systems when we include a transitivity

clause for the target predicate. This constraint improves

the accuracies of ALEPHExactL2, ALEPH++ExactL2, and

ALEPH++ExactL1, but sometimes decreases the accuracy

of other systems, such as ALEPHPSCG. This can be ex-

plained as follows. Since most of the predictions of

ALEPH++ExactL1 are correct, enforcing transitivity can

correct some of the wrong ones. However, ALEPHPSCG

produces many wrong predictions, so forcing them to obey

transitivity can produce additional incorrect predictions.

Due to space constraints, we do not report the correspond-

ing AUC-ROC results, which are qualitatively similar.

Regarding question 2(c), using L1-regularization gives sig-

nificantly higher accuracy and AUC-ROC than using stan-

dard L2-regularization. This comparison was only per-

formed for ALEPH++ since this is when the weight-learner

must choose from a large set of candidate clauses by en-

couraging zero weights. Table 6 compares the average

number of clauses learned (after zero-weight clauses are

removed) for L1 and L2 regularization. As expected, the

final learned MLNs are much simpler when using L1-

regularization. On average, L1-regularization reduces the

size of the final set of clauses by 26% compared to L2-

regularization.

Regarding question 1(c), several researchers have tested

“advanced” ILP systems on our datasets. Table 7 compares

our best results to those reported for TFOIL (a combina-

tion of FOIL and tree augmented naive Bayes), kFOIL (a

kernelized version of FOIL), and RUMBLE (a max-margin

approach to learning a weighted rule set). Our results are

competitive with these recent systems. Additionally, unlike

MLNs, these methods do not create “declarative” theories
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Table 4. Average AUC-ROC and standard deviations for all systems. Bold numbers indicate the best result on a data set.

Data set ALCHEMY BUSL ALEPH ALEPH ALEPH++ ALEPH++ ALEPH++
PSCG ExactL2 PSCG ExactL2 ExactL1

Alzheimer amine .483 ± .115 .641 ± .110 .846 ± .041 .904 ± .027 .777 ± .052 .935 ± .032 .954 ± .019
Alzheimer toxic .622 ± .079 .511 ± .079 .904 ± .034 .930 ± .035 .874 ± .041 .937 ± .029 .939 ± .035
Alzheimer acetyl .473 ± .037 .588 ± .108 .850 ± .018 .850 ± .020 .810 ± .040 .899 ± .015 .916 ± .013
Alzheimer memory .452± .088 .426 ± .065 .744 ± .040 .768 ± .032 .737 ± .059 .813 ± .059 .844 ± .052

Table 5. Average predictive accuracies and standard deviations for MLN systems with transitive clause added.

Data set ALCHEMY BUSL ALEPH ALEPH ALEPH++ ALEPH++ ALEPH++
PSCG ExactL2 PSCG ExactL2 ExactL1

Alzheimer amine 50.0 ± 0.0 52.2 ± 5.3 61.4 ± 3.6 87.0 ± 3.3 72.9± 3.5 91.7± 3.5 90.5 ± 3.6
Alzheimer toxic 50.0 ± 0.0 50.1 ± 0.8 73.3 ± 1.8 88.8 ± 4.8 68.4± 1.5 91.4± 3.6 91.9 ± 4.1
Alzheimer acetyl 53.0 ± 6.2 54.1 ± 4.9 80.4 ± 2.7 84.1 ± 3.1 83.3± 2.5 88.7± 2.1 87.6 ± 2.7
Alzheimer memory 50.0 ± 0.0 50.1 ± 0.5 58.9 ± 2.3 76.5 ± 3.5 70.1± 5.2 81.3± 4.8 81.3 ± 4.1

that have a well-defined possible worlds semantics.

5. Related Work

Using an off-the-shelf ILP system to learn clauses for

MLNs is not a new idea. Richardson and Domingos (2006)

used CLAUDIEN, an non-descriminative ILP system that

can learn arbitrary first-order clauses, to learn MLN struc-

ture and to refine the clauses from a knowledge base. Kok

and Domingos (2005) reported experimental results com-

paring their MLN structure learner to learning clauses us-

ing CLAUDIEN, FOIL, and ALEPH. However, since this

previous work used the relatively small set of clauses pro-

duced by these unaltered ILP systems, the performance was

not very good. ILP systems have also been used to learn

structures for other SRL models. The SAYU system (Davis

et al., 2005) used ALEPH to propose candidate features

for a Bayesian network classifier. Muggleton(2000) used

PROGOL, another popular ILP system, to learn clauses for

Stochastic Logic Programs (SLPs).

When restricted to learning non-recursive clauses for clas-

sification, our approach is equivalent to using ALEPH to

construct features for use by L1-regularized logistic re-

gression. Under this view, our approach is closely related

to MACCENT (Dehaspe, 1997), which uses a greedy ap-

proach to induce clausal constraints that are used as fea-

tures for maximum-entropy classification. One difference

between our approach and MACCENT is that we use a two-

step process instead of greedily adding one feature at a

time. In addition, our clauses are induced in a bottom-

up manner while MACCENT uses top-down search; and

our weight learner employs L1-regularization which makes

it less prone to overfitting. Unfortunately, we could not

compare experimentally to MACCENT since “only an im-

plementation of a propositional version of MACCENT is

available, which only handles data in attribute-value (vec-

tor) format” (Landwehr et al., 2007). Additionally, MLNs

are a more expressive formalism that also allows for struc-

tured prediction, as demonstrated by our results that in-

clude a transitivity constraint on the target relation.

6. Conclusions

We have found that existing methods for learning Markov

Logic Networks perform very poorly when tested on sev-

eral benchmark ILP problems in drug design. We have pre-

sented a new approach to constructing MLNs that discrim-

inatively learns both their structure and parameters to opti-

mize predictive accuracy for a stated target predicate when

given evidence specified with a defined set of background

predicates. It uses a variant of an existing ILP system

(ALEPH) to construct a large number of potential clauses

and then effectively learns their parameters by altering ex-

isting discriminative MLN weight-learning methods to uti-

lize exact inference and L1 regularization. Experimental

results show that the resulting system outperforms existing

MLN and ILP methods and gives state-of-the-art results for

the Alzheimer’s-drug benchmarks.
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Table 7. Average predictive accuracies and standard deviations of our best results and other “advanced” ILP systems.

Data set Our best results TFOIL kFOIL RUMBLE

Alzheimer amine 91.7± 3.5 87.5 ± 4.4 88.8 ± 5.0 91.1
Alzheimer toxic 91.9 ± 4.1 92.1 ± 2.6 89.3 ± 3.5 91.2
Alzheimer acetyl 88.7± 2.1 82.8 ± 3.8 87.8 ± 4.2 88.4
Alzheimer memory 81.3 ± 4.1 80.4 ± 5.3 80.2 ± 4.0 83.2
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