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Abstract

This chapter describes a multistrategy system that employs independent

modules for deductive, abductive, and inductive reasoning to revise an ar-

bitrarily incorrect propositional Horn-clause domain theory to �t a set of

preclassi�ed training instances. By combining such diverse methods, Ei-

ther is able to handle a wider range of imperfect theories than other theory

revision systems while guaranteeing that the revised theory will be consistent

with the training data. Either has successfully revised two actual expert

theories, one in molecular biology and one in plant pathology. The results

con�rm the hypothesis that using a multistrategy system to learn from both

theory and data gives better results than using either theory or data alone.

1 INTRODUCTION

The problem of revising an imperfect domain theory to make it consistent

with empirical data is a di�cult problem that has important applications

in the development of expert systems

[

Ginsberg et al., 1988

]

. Knowledge-

base construction can be greatly facilitated by using a set of training cases

to automatically re�ne an imperfect, initial knowledge base obtained from

a text book or by interviewing an expert. The advantage of a re�nement

approach to knowledge-acquisition as opposed to a purely empirical learning

approach is two-fold. First, by starting with an approximately-correct the-

ory, a re�nement system should be able to achieve high-performance with

signi�cantly fewer training examples. Therefore, in domains in which train-

ing examples are scarce or in which a rough theory is easily available, the

re�nement approach has a distinct advantage. Second, theory re�nement re-

sults in a structured knowledge-base that maintains the intermediate terms
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and explanatory structure of the original theory. Empirical learning, on the

other hand, results in a decision tree or disjunctive-normal-form (DNF) ex-

pression with no intermediate terms or explanatory structure. Therefore, a

knowledge-base formed by theory re�nement is much more suitable for sup-

plying meaningful explanations for its conclusions, an important aspect of

the usability of an expert system.

We have developed a multistrategy approach to revising an arbitrarily

incorrect propositional Horn-clause domain theory to �t a set of preclassi�ed

training instances. The system we have developed, Either (Explanation-

Based and Inductive THeory Extension and Revision), is modular and con-

tains independent subsystems for deduction, abduction, and induction. Each

of these reasoning components makes an important contribution to the overall

goal of the system. Either can also be viewed as integrating knowledge-

intensive (deductive and abductive) and data-intensive (inductive) learning

methods.

The remainder of this paper is organized as follows. Section 2 presents an

overview of the Either system and the problem it is designed to solve. Sec-

tions 3-6 discuss each ofEither's reasoning strategies (deduction, abduction,

and induction) as well as the minimal covering algorithms that coordinate

the interaction of these components. Section 7 presents empirical results on

two real knowledge bases that Either has re�ned. Section 8 discusses how

Either compares to related work and section 9 presents some conclusions

and directions for future work.

2 EITHER OVERVIEW

The Either system combines deduction, abduction, and induction to pro-

vide a focused correction to an incorrect theory. The deductive and abductive

parts of the system identify the failing parts of the theory, and constrain the

examples used for induction. The inductive part of the system determines

the speci�c corrections to failing rules that render them consistent with the

supplied examples.

2.1 Problem de�nition

Stated succinctly, the purpose of Either is:
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Figure 1: EITHER Components

Given: An imperfect domain theory for a set of categories and a set of

classi�ed examples each described by a set of observable features.

Find: A minimally revised version of the domain theory that correctly clas-

si�es all of the examples.

Figure 1 shows the architecture for the Either system. So long as the

inference engine correctly classi�es test cases, no additional processing is

required. In the event that a misclassi�ed example is detected, Either is

used to correct the error.

Horn-clause logic (if-then rules) was chosen as the formalism for the Ei-

ther system. This provides a relatively simple and useful language for ex-

ploring the problems associated with theory revision. Theories currently are

restricted to an extended propositional logic that allows numerical and multi-

valued features as well as binary attributes. In addition, domain theories are

required to be acyclic and therefore a theory de�nes a directed acyclic graph

(DAG). For the purpose of theory re�nement, Either makes a closed-world

assumption. If the theory can not prove that an example is a member of a

category, then it is assumed to be a negative example of that category. Due

to the restrictions of propositional logic, Either is primarily useful for clas-

si�cation { assigning examples to one of a �nite set of prede�ned categories.
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1. cup  stable ^ liftable ^ open-vessel

2. stable  has-bottom ^ at-bottom

3. liftable  graspable ^ lightweight

4. graspable  has-handle

5. graspable  width=small ^ styrofoam

6. graspable  width=small ^ ceramic

7. open-vessel  has-concavity ^ upward-pointing-concavity

Figure 2: The Cup Theory

Propositions that are used to describe examples (e.g. color=black) are

called observables. To avoid problems with negation as failure, only observ-

ables can appear as negated antecedents in rules. Propositions that represent

the �nal concepts in which examples are to be classi�ed are called categories.

It is currently assumed that the categories are disjoint. In a typical domain

theory, all of the sources (leaves) of the DAG are observables and all of

the sinks (roots) are categories. Propositions in the theory that are neither

observables nor categories are called intermediate concepts.

It is di�cult to precisely de�ne the adjective \minimal" used to char-

acterize the revision to be produced. Since it is assumed that the original

theory is \approximately correct" the goal is to change it as little as possible.

Syntactic measures such as the total number of symbols added or deleted are

reasonable criteria. Either uses various methods to help insure that its

revisions are minimal in this sense. However, �nding a revision that is guar-

anteed to be syntactically minimal is clearly computationally intractable.

When the initial theory is empty, the problem reduces to that of �nding a

minimal theory for a set of examples.

A sample theory suitable for Either is a version of the cup theory

[

Win-

ston et al., 1983

]

shown in Figure 2. Figure 3 shows six examples that are

consistent with this theory, three positive examples of cup and three neg-

ative examples. Each example is described in terms of twelve observable

features. There are eight binary features: has-concavity, upward-pointing-

concavity, has-bottom, at-bottom, lightweight, has-handle, styrofoam and ce-

ramic; three multi-valued features: color, width, and shape; and a single real-

valued feature: volume. Given various imperfect versions of the cup theory

and these six examples, Either can regenerate the correct theory. For ex-
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Figure 3: Cup Examples

ample, if rule 4 is missing from the theory, examples 2 and 3 are no longer

provable as cups. If the antecedent width=small is missing from rule 5, then

negative example 5 becomes provable as a cup. Either can correct either

or both of these errors using the examples in Figure 3.

The need for Either processing is signaled by incorrectly classi�ed ex-

amples, as shown in the Figure 1. In making corrections, Either operates

in batch mode, using as input a set of training examples. The incorrectly

classi�ed examples, or failing examples, are used to identify that there is an

error and to control the correction. The correctly classi�ed examples are used

to focus the correction and to limit the extent of the correction. An impor-

tant property of the Either algorithm is that it is guaranteed to produce a

revised theory that is consistent with the training examples when there is no

noise present in the data. That is, the following statements will be true for

every example:

T [ E j= C

E

; (1)

8C

i

(C

i

6= C

E

) T [ E 6j= C

i

) (2)

where T represents the corrected theory, E represents the conjunction of

facts describing any example in the training set, C

E

is the correct category
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of the example, and C

i

is any arbitrary category. A proof of this consistency

property is given in

[

Ourston, 1991

]

.

2.2 Types of theory errors

Figure 4 shows a taxonomy for incorrect propositional Horn-clause theo-

ries. At the top level, theories can be incorrect because they are either

overly-general or overly-speci�c. An overly-general theory entails category

OVERLY 
SPECIFIC

OVERLY 
GENERAL

MISSING
RULE

ADDITIONAL
ANTECEDENT

EXTRA
RULE

MISSING
ANTECEDENT

INCORRECT THEORY

Figure 4: Theory Error Taxonomy

membership for examples that are not members of the category. One way a

theory can be overly-general is by having rules that lack required antecedents,

providing proofs for examples that should have been excluded. Another way

a theory can be overly-general is by having completely incorrect rules. By

contrast, an overly-speci�c theory fails to entail category membership for

members of a category. This can occur because the theory is missing a rule,

or because an existing rule has additional antecedents that exclude category

members. Note that these de�nitions allow a theory to be both overly-general

and overly-speci�c.
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The following terminology is used in the remainder of this chapter. \The

example is provable," is used to mean \the example is provable as a member

of its own category." A failing positive refers to an example that is not

provable as a member of its own category. A failing negative refers to an

example that is provable as a member of a category other than its own.

Notice that a single example can be both a failing negative and a failing

positive.

2.3 EITHER components

As shown in Figure 5, Either uses a combination of methods to revise a

theory to make it consistent with the examples. It �rst attempts to �x failing

positives by removing antecedents and to �x failing negatives by removing

rules since these are simpler and less powerful operations. Only if these

operations fail does the system resort to the more powerful technique of

using induction to learn rules to �x failing positives and to add antecedents

to existing rules to �x failing negatives.

Horn-clause deduction is the basic inference engine used to classify ex-

amples. Either initially uses deduction to identify failing positives and

negatives among the training examples. It uses the proofs generated by de-

duction to �nd a near-minimal set of rule retractions that would correct all

of the failing negatives. During the course of the correction, deduction is also

used to assess proposed changes to the theory as part of the generalization

and specialization processes.

Either uses abduction to initially �nd the incorrect part of an overly-

speci�c theory. Abduction identi�es sets of assumptions that allow a failing

positive to become provable. These assumptions identify rule antecedents

that, if deleted, would properly generalize the theory and correct the failing

positive. Either uses the output of abduction to �nd a near-minimal set of

antecedent retractions that would correct all of the failing positives.

Induction is used to learn new rules or to determine which additional

antecedents to add to an existing rule. In both cases, Either uses the output

of abduction and deduction to determine an appropriately labelled subset of

the training examples to pass to induction in order to form a consistent

correction. Either currently uses a version of Id3

[

Quinlan, 1986

]

as its

inductive component. The decision trees returned by Id3 are translated into

equivalent Horn-clause rules

[

Quinlan, 1987

]

. The remaining components
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Figure 5: EITHER Architecture

of the Either system constitute generalization and specialization control

algorithms that identify the types of corrections to be made to the theory.

One of the main advantages of Either's architecture is its modularity.

Because the control and processing components are separated from the de-

ductive, inductive, and abductive components, these latter components can

be modi�ed or replaced as better algorithms for these reasoning methods are

developed.

The following sections describe each of Either's components and their

interactions in details. The discussion focuses on the basic multistrategy

approach employed in Either. Recent enhancements to the system are dis-

cussed in

[

Ourston and Mooney, 1991; Mooney and Ourston, 1991a; Mooney

and Ourston, 1991b

]

and a complete description is given in

[

Ourston, 1991

]

.
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3 THE DEDUCTIVE COMPONENT

The deductive component of Either is a standard backward-chaining, Horn-

clause theorem prover similar to Prolog. Our particular implementation is

based on the deductive retrieval system from

[

Charniak et al., 1987

]

. De-

duction is the �rst step in theory revision. The system attempts to prove

that each example is a member of each of the known categories. Failing pos-

itives (examples that cannot be proven as members of the correct category)

indicate overly-speci�c aspects of the theory and are passed on to the ab-

ductive component. Failing negatives (examples that are proven as members

of incorrect categories) indicate overly-general aspects of the theory and are

passed on to the specialization procedure. In order to satisfy the require-

ments of specialization, the deductive component �nds all possible proofs of

each incorrect category and returns all of the resulting proof trees.

The deductive component also forms the basic performance system and is

used during testing to classify novel examples. If during testing an example

is provable as a member of multiple categories, the system picks the provable

category that is most common in the training set. If an example fails to be

provable as a member of any category, it is assigned to the most common

category overall. This assures that the system always assigns a test example

to a unique category.

The deductive component is also used to check for over generalization

and over specialization when certain changes to the theory are proposed.

For example, when an antecedent retraction is proposed, all of the examples

are reproven with the resulting theory to determine whether any additional

failing negatives are created. Analogously, when a rule retraction is proposed,

all of the examples are reproven to determine whether any additional failing

positives are created. If so, then the proposed revision is not made and the

system resorts to learning new rules or adding antecedents. Better book-

keeping methods, such as truth-maintenance techniques, could potentially

be used to avoid unnecessary reproving of examples. For example, existing

proofs of all examples could be used to more directly determine the e�ect of

a rule deletion and partial proofs of negative examples could be used to more

directly determine the e�ect of antecedent deletions. However such methods

would be fairly complicated and incur a potentially large overhead.

9



4 THE ABDUCTIVE COMPONENT

If an example cannot be proven as a member of its category, then abduction

is used to �nd minimal sets of assumptions that would allow the example to

become provable. The normal logical de�nition of abduction is:

Given: A domain theory, T , and an observed fact O.

Find: All minimal sets of atoms, A, called assumptions, such that A [ T is

logically consistent and A [ T j= O.

The assumptions A are said to explain the observation. Legal assumptions

are frequently restricted, such as allowing only instances of certain predicates

(predicate speci�c abduction) or requiring that assumptions not be provable

from more basic assumptions (most-speci�c abduction)

[

Stickel, 1988

]

.

In Either, an observation states that an example is a member of a cat-

egory (in the notation introduced earlier, E ! C

E

). In addition, Either's

abductive component backchains as far as possible before making an assump-

tion (most-speci�c abduction), and the consistency constraint is removed. As

a result, for each failing positive, abduction �nds all minimal sets of most-

speci�c atoms, A, such that:

A [ E [ T j= C

E

(3)

where minimal means that no assumption set is a subset of another. The

proof supported by each such set is called a partial proof. Either currently

uses an abductive component that employs exhaustive search to �nd all par-

tial proofs of each failing positive example

[

Ng and Mooney, 1989

]

. Partial

proofs are used to indicate antecedents that, if retracted, would allow the

example to become provable. The above de�nition guarantees that if all of

the assumptions in a set are removed from the antecedents of the rules in

their corresponding partial proof, the example will become provable. This is

because not requiring a fact for a proof has the same generalizing e�ect as

assuming it.

As a concrete example, assume that rule 4 about handles is missing from

the cup theory. This will cause example 2 from Figure 3 to become a failing

positive. Abduction �nds two minimal sets of assumptions: fwidth=small

6

g

and fwidth=small

5

, styrofoam

5

g. The subscripts indicate the number of the

rule to which the antecedent belongs, since each antecedent of each rule must
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be treated distinctly. Notice that removing the consistency constraint is crit-

ical to the interpretation of assumptions as antecedent retractions. Assuming

width=small is inconsistent when width=medium is known; however, retract-

ing width=small as an antecedent from one of the graspable rules is still a

legitimate way to help make this example provable.

5 THE MINIMUM COVER COMPONENTS

In Either, a cover is a complete set of rules requiring correction. There are

two types of covers: the antecedent cover and the rule cover. The antecedent

cover is used by the generalization procedure to �x all failing positives. The

rule cover is used by the specialization procedure to �x all failing negatives.

There is an essential property that holds for both types of cover: If all of the

elements of the cover are removed from the theory, the examples associated

with the cover will be correctly classi�ed. Speci�cally, if all of the antecedents

in the antecedent cover are removed, the theory is generalized so that all

of the failing positives are �xed and if all of the rules in the rule cover are

removed, the theory is specialized so that all of the failing negatives are �xed.

In each case, Either attempts to �nd a minimum cover in order to minimize

change to the initial theory. The details of the minimum cover algorithms

are given in the next two subsections. Either initially constructs covers

containing only rules at the \bottom" or \leaves" of the theory; however, if

higher-level changes are necessary or syntactically simpler, non-leaf rules can

also be included

[

Ourston and Mooney, 1991; Ourston, 1991

]

.

5.1 The minimum antecedent cover

The partial proofs of failing positives generated by the abductive component

are used to determine the minimum antecedent cover. In a complex prob-

lem, there will be many partial proofs for each failing positive. In order to

minimize change to the initial theory, Either attempts to �nd the minimum

number of antecedent retractions required to �x all of the failing positives.

In other words, we want to make the following expression true:

E

1

^ E

2

^ ::: ^ E

n

(4)
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where E

i

represents the statement that the ith failing positive has at least

one completed partial proof, that is,

E

i

� P

i1

_ P

i2

_ ::: _ P

im

(5)

where P

ij

represent the statement that the jth partial proof of the ith failing

positive is completed, that is,

P

ij

� A

ij1

^A

ij2

::: ^A

ijp

(6)

where the A

ijk

means that the antecedent represented by the kth assump-

tion used in the jth partial proof of the ith example is removed from the

theory. In order to determine a minimum change to the theory, we need to

�nd the minimum set of antecedent retractions (A's) that satisfy this ex-

pression. Pursuing the example of the cup theory that is missing the rule

for handles, both failing positives (examples 2 and 3) have the same partial

proofs, resulting in the expressions:

E

2

� width = small

6

_ (width = small

5

^ styrofoam

5

)

E

3

� width = small

6

_ (width = small

5

^ styrofoam

5

)

In this case, the minimum antecedent cover is trivial and consists of retracting

the single antecedent width=small

6

.

Since the general minimum set covering problem is NP-Hard

[

Garey and

Johnson, 1979

]

, Either uses a version of the greedy covering algorithm to

�nd the antecedent cover. The greedy algorithm does not guarantee to �nd

the minimum cover, but will come within a logarithmic factor of it and runs

in polynomial time

[

Johnson, 1974

]

. The algorithm iteratively updates a

partial cover, as follows. At each iteration, the algorithm chooses a partial

proof and adds the antecedent retractions associated with the proof to the

evolving cover. The chosen partial proof is the one that maximizes bene�t-

to-cost, de�ned as the ratio of the additional examples covered when its

antecedents are included, divided by the number of antecedents added. The

set of examples that have the selected partial proof as one of their partial

proofs are removed from the examples remaining to be covered. The process

terminates when all examples are covered. The result is a near-minimum set

of antecedent retractions that �x all of the failing positives.

Once the antecedent cover is formed, Either attempts to retract the

indicated antecedents of each rule in the cover. If a given retraction is not an
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over generalization (i.e. it does not result in any additional failing negatives

as determined by the deductive component), then it is chosen as part of the

desired revision. If a particular retraction does result in additional failing

negatives, then the inductive component is instead used to learn a new rule

(see section 6.1).

5.2 The minimum rule cover

The proofs of failing negatives generated by the deductive component are

used to determine the minimum rule cover. In order to minimize change to

the initial theory, Either attempts to �nd the minimum number of leaf-rule

retractions required to �x all of the failing negatives. In analogy with the

previous section, we would like to make the following expression true:

:E

1

^ :E

2

^ ::: ^ :E

n

(7)

where E

i

represents the statement that the ith failing negative has a complete

proof, that is,

:E

i

� :P

i1

^ :P

i2

^ ::: ^ :P

im

(8)

where P

ij

represent the statement that the jth proof of the ith failing negative

is complete, that is,

:P

ij

� :R

ij1

_ :R

ij2

::: _ :R

ijp

(9)

where :R

ijk

represents the statement that the kth leaf rule used in the jth

proof of the ith failing negative is removed, i.e. a proof is no longer complete

if at least one of the rules used in the proof is removed.

As with assumptions, Either attempts to �nd a minimum cover of rule

retractions using greedy covering. If this case, the goal is to remove all proofs

of all of the failing negatives. Note that in computing retractions, Either

removes from consideration those rules that do not have any disjuncts in their

proof path to the goal since these rules are needed to prove any example. At

each step in the covering algorithm, the eligible rule that participates in the

most faulty proofs is added to the evolving cover until all the faulty proofs

are covered.

As an example, consider the cup theory in which the width=small an-

tecedent is missing from rule 5. In this case, example 5 becomes a failing
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negative. The minimum rule cover is the overly-general version of rule 5:

graspable  styrofoam

since it is the only rule used in the faulty proof with alternative disjuncts

(rules 4 and 6).

Once the rule cover is formed, Either attempts to retract each rule in

the cover. If a given retraction is not an over specialization (i.e. it does

not result in any additional failing positives as determined by the deductive

component), then it is chosen as part of the desired revision. If a particular

retraction does result in additional failing negatives, then the inductive com-

ponent is instead used to specialize the rule by adding additional antecedents

(see section 6.2).

6 THE INDUCTIVE COMPONENT

If retracting an element of the antecedent cover causes new failing negatives

or if retracting an element of the rule cover causes new failing positives,

then the inductive component is used to learn new rules or new antecedents,

respectively. The only assumption Either makes about the inductive com-

ponent is that it solves the following problem:

Given: A set of positive and negative examples of a concept C described by

a set of observable features.

Find: A Horn-clause theory, T that is consistent with the examples, i.e. for

each positive example description, P , P [T j= C and for each negative

example description, N , N [ T 6j= C.

As mentioned previously, Either currently uses Id3 as an inductive com-

ponent by translating its decision trees into a set of rules; however, any

inductive rule-learning system could be used. An inductive system that di-

rectly produces a multi-layer Horn-clause theory would be preferable but

current robust inductive algorithms produce decision trees or DNF formulas.

In Either, inverse resolution operators

[

Muggleton, 1987; Muggleton and

Buntine, 1988

]

are used to introduce new intermediate concepts and produce

a multi-layer theory from a translated decision tree

[

Mooney and Ourston,

1991a

]

.
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6.1 Rule addition

If antecedent retraction ever over-generalizes, then induction is used to learn

a new set of rules for the consequent (C) of the corresponding rule. The

rules are learned so they cover the failing positives associated with the an-

tecedent retraction without introducing any new failing negatives. The pos-

itive examples of C are those that have a partial proof completed by the

given antecedent retraction (i.e. the failing positives covered by the given

assumptions). The negative examples of C are examples that become failing

negatives when C is assumed to be true (i.e. this is a proof by contradiction

that they are :C since a contradiction is derived when C is assumed).

Again consider the example of missing rule 4 from the cup theory. Based

on the antecedent cover, Either �rst attempts to remove width=small from

rule 6; however, this results in example 6 becoming a failing negative. There-

fore, induction is used to form a new rule for graspable. The positive examples

are the original failing positives, examples 2 and 3. The negative examples

are examples 4, 5 and 6, which become provable when graspable is assumed to

be true. Since has-handle is the only single feature that distinguishes exam-

ples 2 and 3 from examples 4, 5 and 6, the inductive system (Id3) generates

the required rule:

graspable  has-handle

If an element of the antecedent cover is not an observable, then a rule is

learned directly for it instead for the consequent of the rule in which it

appears. For example, if both rules for graspable are missing from the

cup theory, then most-speci�c abduction returns the single assumption set:

fgraspableg for all of the failing positives (examples 1, 2 and 3). Since remov-

ing the graspable antecedent results in all of the negative examples becoming

failing negatives, Either decides to learn rules for graspable. All of the

positive examples are used as positive examples of graspable and all of the

negatives are used as negative examples of graspable and the system learns

the approximately correct rules:

graspable  has-handle

graspable  width=small ^ styrofoam
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6.2 Antecedent addition

If rule retraction ever over-specializes, then induction is used to learn addi-

tional antecedents to add to the rule instead of retracting it. Antecedents are

learned so they �x the failing negatives associated with the rule retraction

without introducing any new failing positives. The positive examples of C

are those examples that become unprovable (failing positives) when the rule

is retracted. The negative examples of C are the failing negatives covered by

the rule.

For example, again consider the case of missing the antecedent width=small

from rule 5. Based on the rule cover,Either �rst removes the overly-general

rule 5:

graspable  styrofoam

and tests for additional failing positives. Since example 1 becomes unprov-

able in this case, Either decides to add additional antecedents. Example 1

(the failing positive created by retraction) is used as a positive example and

example 5 (the original failing negative) is used as a negative example. Since

width is the only feature that distinguishes these two examples, Id3 learns

the rule:

positive  width=small.

This is combined with the original rule to obtain the correct replacement

rule:

graspable  width=small ^ styrofoam.

7 EMPIRICAL RESULTS

Either has revised two real expert-provided rule bases, one in molecular

biology and one in plant pathology. This section presents details on our

results in these domains. Further information on these tests, including the

actual initial and revised theories, is given in

[

Ourston, 1991

]

.

7.1 Single category: DNA results

Either was �rst tested on a theory for recognizing biological concepts in

DNA sequences. The original theory is described in

[

Towell et al., 1990

]

, it

contains 11 rules with a total of 76 propositional symbols. The purpose of
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the theory is to recognize promoters in strings of nucleotides (one of A, G,

T, or C). A promoter is a genetic region that initiates the �rst step in the

expression of an adjacent gene (transcription), by RNA polymerase. The

input features are 57 sequential DNA nucleotides. The examples used in

the tests consisted of 53 positive and 53 negative examples assembled from

the biological literature. The initial theory classi�ed none of the positive

examples and all of the negative examples correctly, thus indicating that the

initial theory was entirely overly speci�c.

Figure 6 presents learning curves for this domain. In each test, classi�-
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Figure 6: Results for the DNA Theory

cation accuracy was measured on 26 disjoint test examples. The number of

training examples was varied from one to eighty, with the training and test

examples selected at random. The results were averaged over 21 training/test

divisions. Id3's performance is also shown in order to contrast theory re�ne-

ment with pure induction.

The accuracy of the initial promoter theory is shown in the graph as

Either's performance with 0 training examples { it is no better than ran-

dom chance (50%). With no examples, Id3 picks a category at random and
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exhibits the same accuracy. However, as the number of training examples

increases, Either use of the existing theory results in a signi�cant perfor-

mance advantage compared to pure induction. A one-tailed Student t-test

on paired di�erences showed that the Either's superior accuracy compared

to Id3 is statistically signi�cant (p<.05) for every non-zero point plotted on

the learning curves. Overall, Either improves the accuracy of the theory by

35 percentage points. An additional reason for including Id3 in the perfor-

mance graphs is that it represents Either's performance without an initial

theory, since in this case every example is a failing positive and induction is

used to learn a set of rules from scratch. Therefore including Id3's learning

curve, provides a clear illustration of the advantage provided by theory-based

learning. In fact, if a di�erent inductive system were substituted for Id3, the

absolute performance of both learning systems might change, but the rela-

tive advantage of Either compared to the purely inductive system should

remain approximately the same.

Another way of looking at the performance advantage provided by an

initial theory is to consider the additional examples required by Id3 in order

to achieve equal performance with Either. For example, at 75% accuracy,

Id3 requires over sixty additional training examples to achieve equal perfor-

mance with Either. Therefore, in some sense, the information contained in

the theory is equivalent to 60 examples.

The initial theory is primarily revised by deleting antecedents in various

ways. In general, Either's changes made sense to the expert. In particular,

the subconcept conformation was removed from the promoter concept in

its entirety. This correction was validated by the biologist who encoded the

theory (Noordewier), who indicated that conformation was a weakly-justi�ed

constraint when it was originally introduced.

This domain theory was also used to test theKbann system

[

Towell et al.,

1990

]

, which translates the initial theory into an equivalent neural net, and

then applies the backpropagation algorithm

[

Rumelhart et al., 1986

]

to revise

the network. Kbann's accuracy is somewhat better than Either's in this

domain (a test set accuracy of 92% with 105 training examples). The likely

explanation for the performance advantage is that the DNA task involves

learning a concept of the form N out of these M features must be present.

Experiments comparing backpropagation and Id3 report that backpropaga-

tion is better at learning N out of M functions

[

Fisher and McKusick, 1989

]

.

Some aspects of the promoter concept �t the N out of M format where, for
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example, there are several potential sites where hydrogen bonds can form

between the DNA and the protein; if enough of these bonds form, promoter

activity can occur. Either attempts to learn this concept by learning a sep-

arate rule for each potential con�guration by deleting di�erent combinations

of antecedents from the initial rules, which makes this a comparatively dif-

�cult learning task for a rule-based system. Finally, it should be noted that

when Kbann translated its results into Horn clauses, the resulting theory

was signi�cantly more complicated than Either's

[

Towell and Shavlik, 1991

]

.

This is because Either's goal is to produce a minimally revised Horn-clause

theory and Kbann has no such bias.

7.2 Multiple categories: Soybean results

In order to demonstrate Either's ability to revise multiple category theories,

Either was used to re�ne the expert rules given in

[

Michalski and Chilausky,

1980

]

. This is a theory for diagnosing soybean diseases that distinguishes

between nineteen possible soybean diseases using examples that are described

with thirty �ve features. The original experiments compared expert rules to

induction from examples. By revising the expert rules to �t the examples,

we hoped to show that one could produce better results than using just the

examples or just the rules.

The original expert rules associated probabilistic weights with certain dis-

ease symptoms. In addition, some groups of disease symptoms were regarded

as signi�cant while other groups were regarded as con�rmatory. The rules

were translated to propositional Horn-clause format by only including the

signi�cant symptoms and by deleting any symptom from the theory that

had a weight less than 0.8. After translation, the theory contained 73 rules

with 325 propositional symbols.

Unfortunately, the classi�cation performance of the Horn-clause version

was seriously de�cient compared to the original probabilistic rules. For ex-

ample, the Horn-clause theory obtained a 12.3% classi�cation performance

compared to the accuracy of 73% reported in the original paper. To circum-

vent the problem, a \exible" matcher was used to classify the test examples,

based on the updated theory provided by Either. The exible matcher ac-

counts for two possible classi�cation problems with a multi-category theory.

The �rst problem occurs when a test example is provable as a member of

more than one category. The second problem occurs when a test example is
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Figure 7: Results for the Soybean Theory

not provable as a member of any category. With the standard Either tester,

such examples are assigned to the most common category. In contrast, the

original soybean tests assigned a match score to each possible category and

chose the category with the highest score. The exible matcher used by Ei-

ther is a simple approximation to the original technique. If an example is

assigned to multiple categories, the tester selects the category that makes the

most use of the example's features. This is done by choosing the category

whose proof of category membership contains the greatest number of fea-

tures. If an example is assigned to no category, the exible matcher chooses

the category that comes closest to being provable. This is done by choosing

the category with a partial proof of category membership that has the least

number of assumptions.

Learning curves for the soybean experiments are shown in Figure 7. In

each test, accuracy was measured against 75 disjoint test examples. The

number of training examples was varied from one to one hundred, with the

training and test examples drawn at random from the entire example pop-

ulation. The results were averaged over 22 train/test divisions. Note that

even with the exible matcher, the accuracy of the original rules was only
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51%, as compared to 73% for the original results presented in

[

Michalski and

Chilausky, 1980

]

. Overall, the accuracy of the initial rules is increased by 26

percentage points and Either maintains its initial performance advantage

compared to pure induction over the entire training interval. A one-tailed

Student t-test on paired di�erences showed that the superior performance

of Either is statistically signi�cant (p<.05) for every point plotted on the

learning curves. Therefore, employing both rules and examples is better than

using either one alone.

Since comparing a system with exible matching (Flex-Either) to one

without it (Id3) is somewhat inequitable, we also tested a version of Id3

that uses the same exible matcher as Flex-Either. However, there was

no signi�cant di�erence between the performance of Id3 and Flex-Id3 in

this domain. Since Id3 has a bias for very simple, general descriptions, the

case in which an example is not initially categorized into any category (and

therefore requires partial matching) rarely occurred.

8 RELATED WORK

As discussed in

[

Langley, 1989

]

, any incremental inductive learning system

can be viewed as continually re�ning a knowledge base formed from previ-

ous examples. However, existing incremental inductive systems

[

Reinke and

Michalski, 1988; Utgo�, 1989

]

employ \at" representations such as decision

trees and DNF expressions, as opposed to multi-layer theories with interme-

diate concepts. In addition, attempts to initialize an incremental inductive

system with a user-supplied domain theory have met with mixed results

[

Ma-

honey and Mooney, 1991; Thompson et al., 1991

]

.

Most systems for integrating explanation-based and similarity-based meth-

ods cannot re�ne arbitrarily imperfect theories. Some systems are only ca-

pable of generalizing an overly-speci�c (incomplete) theory

[

Wilkins, 1988;

Danyluk, 1989; Whitehall, 1990

]

while others are only capable of specializing

an overly-general theory

[

Flann and Dietterich, 1989; Mooney and Ourston,

1989; Cohen, 1990

]

. Many systems do not revise the theory itself but instead

revise the operational de�nition of a concept

[

Bergadano and Giordana, 1988;

Hirsh, 1990; Pazzani et al., 1991

]

. Still other systems rely on active exper-

imentation rather than a provided training set to detect and correct errors

[

Rajamoney, 1990

]

.

Recent experiments with Anapron

[

Golding and Rosenbloom, 1991

]

, a
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system that integrates case-based and rule-based reasoning, also demonstrate

that combining initial rules and data performs better than either individually.

However, this system stores speci�c cases as exceptions to rules rather than

modifying the rules themselves.

Kbann

[

Towell et al., 1990

]

and Rtls

[

Ginsberg, 1990

]

are theory revi-

sion systems that come the closest to handling as many types of imperfections

as Either. However, neither integrates independent components for deduc-

tion, abduction, and induction. Modularity allows Either to easily take

advantage of improvements in each of these areas of automated reasoning.

Also, neither Kbann nor Rtls guarantee consistency with all of the training

data when given an arbitrary initial theory.

The Ductor

[

Cain, 1991

]

is a recent Either-inspired system that inte-

grates deduction, abduction, and induction. However, it does not generate

all proofs and partial proofs nor attempt to �nd a minimum cover of theory

changes. Consequently, it is less focused on �nding a minimal revision to the

initial theory.

9 FUTURE RESEARCH

Either su�ers from a number of shortcomings that we hope to address

in future research. First, although it has been e�cient enough to apply to

several real theories, the current implementation can be quite slow at revising

large rule bases (its takes 90 minutes on a Texas Instruments Explorer II to

�t the soybean theory to 100 examples). Computation of all the partial

proofs of failing positives is the primary bottleneck in the current system.

By incorporating improved deductive and abductive components, we hope

to dramatically improve system e�ciency. Speci�cally, we plan to employ an

abduction system that uses heuristic search to compute only a subset of the

partial proofs with the fewest assumptions

[

Ng and Mooney, 1991

]

. Another

approach to improving e�ciency is to only partially �t the theory to the

training data. Existing experiments with a version of Either that computes

only partial covers of the failing positive and failing negative examples have

demonstrated that this technique can signi�cantly increase e�ciency without

signi�cantly a�ecting accuracy

[

Mooney and Ourston, 1991b

]

. This method

was originally developed to deal with noisy data.

Second, the current system cannot handle theories that employ negation

as failure. Antecedents of the form not(P) complicate the revision process
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since generalizing or learning a rule that concludes P actually specializes the

overall theory by preventing this antecedent from being satis�ed. Conversely,

specializing or eliminating a rule for P may actually generalize the overall

theory. Therefore, the system will have to consider standard generalization

operators as specializers in certain contexts and vice versa.

Third, the current system assumes all examples are instances of exactly

one of the top-level categories. It cannot directly accept examples of interme-

diate concepts nor deal with overlapping categories. A truly robust theory

revision system should be able to accept examples of any of its concepts

and use them to revise the rules for that concept directly or to revise other

concepts indirectly.

Fourth, Either is basically restricted to revising propositional theories.

We have already developed a prototype of a successor system called Forte

which is capable of revising �rst-order Horn-clause theories

[

Richards and

Mooney, 1991

]

. This system is undergoing continued development to improve

its e�ciency and capabilities.

Finally, Either is restricted to revising purely logical theories and many

rule bases employ some form of probabilistic reasoning. Some previous work

has addressed the problem of re�ning the probabilities or certainty factors

attached to rules

[

Ling and Valtorta, 1991; Ginsberg et al., 1988

]

; however,

such numerical adjustments have not been integrated with more symbolic

revisions such as learning new rules. We are currently developing a system

that �rst \tweaks" certainty factors until no more improvement is possible

and then resorts to learning new rules. The system cycles between \tweaking"

and rule learning until it converges to 100% accuracy on the training data.

10 CONCLUSIONS

The development and testing of Either has demonstrated how deduction,

abduction, and induction can be successfully integrated to revise imperfect

domain theories. By combining such diverse methods, Either is able to

handle a wider range of imperfect theories than other systems while guar-

anteeing that the revised theory will be consistent with the training data.

Results on revising two actual expert theories has demonstrated Either's

abilities and generality and con�rmed the conjecture that learning from both

theory and data gives better results than using either one alone.

23



Acknowledgements

We would like to thank Mick Noordewier and Jude Shavlik for providing the

DNA theory and data and helping us interpret the results; Je� Mahoney

for translating the soybean theory and data and implementing the exible

matcher; and Hwee Tou Ng for providing the abduction component. This

research was supported by the NASA Ames Research Center under grant

NCC 2-629 and by the National Science Foundation under grant IRI-9102926.

Equipment was donated by the Texas Instruments Corporation.

References

[

Bergadano and Giordana, 1988

]

F. Bergadano and A. Giordana. A knowl-

edge intensive approach to concept induction. In Proceedings of the Fifth

International Conference on Machine Learning, pages 305{317, Ann Ar-

bor, MI, June 1988.

[

Cain, 1991

]

T. Cain. The DUCTOR: A theory revision system for proposi-

tional domains. In Proceedings of the Eighth International Workshop on

Machine Learning, pages 485{489, Evanston, IL, June 1991.

[

Charniak et al., 1987

]

E. Charniak, C. Riesbeck, D. McDermott, and

J. Meehan. Arti�cial Intelligence Programming (2nd Ed). Lawrence Erl-

baum and Associates, Hillsdale, NJ, 1987.

[

Cohen, 1990

]

William W. Cohen. Learning from textbook knowledge: A

case study. In Proceedings of the Eighth National Conference on Arti�cial

Intelligence, pages 743{748, Boston, MA, July 1990.

[

Danyluk, 1989

]

A. P. Danyluk. Finding new rules for incomplete theories:

Explicit biases for induction with contextual information. In Proceedings

of the Sixth International Workshop on Machine Learning, pages 34{36,

Ithaca, NY, June 1989.

[

Fisher and McKusick, 1989

]

D. H. Fisher and K. B. McKusick. An empirical

comparison of ID3 and backpropagation. In Proceedings of the Eleventh

International Joint conference on Arti�cial intelligence, pages 788{793,

Detroit, MI, Aug 1989.

24



[

Flann and Dietterich, 1989

]

N. S. Flann and T. G. Dietterich. A study

of explanation-based methods for inductive learning. Machine Learning,

4(2):187{226, 1989.

[

Garey and Johnson, 1979

]

M. Garey and D. Johnson. Computers and In-

tractability: A Guide to the Theory of NP-Completeness. Freeman, New

York, NY, 1979.

[

Ginsberg et al., 1988

]

A. Ginsberg, S. M. Weiss, and P. Politakis. Auto-

matic knowledge based re�nement for classi�cation systems. Arti�cial

Intelligence, 35:197{226, 1988.

[

Ginsberg, 1990

]

A. Ginsberg. Theory reduction, theory revision, and re-

translation. In Proceedings of the Eighth National Conference on Arti�cial

Intelligence, pages 777{782, Detroit, MI, July 1990.

[

Golding and Rosenbloom, 1991

]

A. R. Golding and P. S. Rosenbloom. Im-

proving rule-based systems through case-based reasoning. In Proceedings

of the Ninth National Conference on Arti�cial Intelligence, pages 22{27,

Anaheim, CA, July 1991.

[

Hirsh, 1990

]

H. Hirsh. Incremental Version-Space Merging: A General

Framework for Concept Learning. Kluwer Academic Publishers, Hingham,

MA, 1990.

[

Johnson, 1974

]

D. S. Johnson. Approximation algorithms for combinatorial

problems. Journal of Computer and System Sciences, 9:256{278, 1974.

[

Langley, 1989

]

P. Langley. Unifying themes in empirical and explanation-

based learning. In Proceedings of the Sixth International Workshop on

Machine Learning, pages 2{4, Ithaca, NY, June 1989.

[

Ling and Valtorta, 1991

]

X. Ling and M. Valtorta. Revision of reduced the-

ories. In Proceedings of the Eighth International Workshop on Machine

Learning, pages 519{523, Evanston, IL, June 1991.

[

Mahoney and Mooney, 1991

]

J. J. Mahoney and R. J. Mooney. Initializing

ID5R with a domain theory: Some negative results. Technical Report

AI91-154, Arti�cial Intelligence Laboratory, University of Texas, Austin,

TX, March 1991.

25



[

Michalski and Chilausky, 1980

]

R. S. Michalski and S. Chilausky. Learning

by being told and learning from examples: An experimental comparison

of the two methods of knowledge acquisition in the context of developing

an expert system for soybean disease diagnosis. Journal of Policy Analysis

and Information Systems, 4(2):126{161, 1980.

[

Mooney and Ourston, 1989

]

R. J. Mooney and D. Ourston. Induction over

the unexplained: Integrated learning of concepts with both explainable and

conventional aspects. In Proceedings of the Sixth International Workshop

on Machine Learning, pages 5{7, Ithaca, NY, June 1989.

[

Mooney and Ourston, 1991a

]

R. Mooney and D. Ourston. Constructive in-

duction in theory re�nement. In Proceedings of the Eighth International

Workshop on Machine Learning, pages 178{182, Evanston, IL, June 1991.

[

Mooney and Ourston, 1991b

]

R. J. Mooney and D. Ourston. Theory re�ne-

ment with noisy data. Technical Report AI91-153, Arti�cial Intelligence

Laboratory, University of Texas, Austin, TX, March 1991.

[

Muggleton and Buntine, 1988

]

S. Muggleton and W. Buntine. Machine in-

vention of �rst-order predicates by inverting resolution. In Proceedings of

the Fifth International Conference on Machine Learning, pages 339{352,

Ann Arbor, MI, June 1988.

[

Muggleton, 1987

]

S. Muggleton. Duce, an oracle based approach to con-

structive induction. In Proceedings of the Tenth International Joint con-

ference on Arti�cial intelligence, pages 287{292, Milan, Italy, Aug 1987.

[

Ng and Mooney, 1989

]

H. T. Ng and R. J. Mooney. Abductive explanations

for text understanding: Some problems and solutions. Technical Report

AI89-116, Arti�cial Intelligence Laboratory, University of Texas, Austin,

TX, August 1989.

[

Ng and Mooney, 1991

]

H. T. Ng and R. J. Mooney. An e�cient �rst-order

Horn-clause abduction system based on the ATMS. In Proceedings of

the Ninth National Conference on Arti�cial Intelligence, pages 494{499,

Anaheim, CA, July 1991.

[

Ourston and Mooney, 1991

]

D. Ourston and R. Mooney. Improving shared

rules in multiple category domain theories. In Proceedings of the Eighth

26



International Workshop on Machine Learning, pages 534{538, Evanston,

IL, June 1991.

[

Ourston, 1991

]

D. Ourston. Using Explanation-Based and Empirical Meth-

ods in Theory Revision. PhD thesis, University of Texas, Austin, TX,

August 1991.

[

Pazzani et al., 1991

]

M. Pazzani, C. Brunk, and G. Silverstein. A

knowledge-intensive approach to learning relational concepts. In Proceed-

ings of the Eighth International Workshop on Machine Learning, pages

432{436, Evanston, IL, June 1991.

[

Quinlan, 1986

]

J. R. Quinlan. Induction of decision trees. Machine Learn-

ing, 1(1):81{106, 1986.

[

Quinlan, 1987

]

J. R. Quinlan. Generating production rules from decision

trees. In Proceedings of the Tenth International Joint conference on Arti-

�cial intelligence, pages 304{307, Milan, Italy, Aug 1987.

[

Rajamoney, 1990

]

S. A. Rajamoney. A computational approach to theory

revision. In J. Shrager and P. Langley, editors, Computational Models of

Scienti�c Discovery and Theory Formation, pages 225{254. Morgan Kauf-

man Publishers, San Mateo, CA, 1990.

[

Reinke and Michalski, 1988

]

R. E. Reinke and R. S. Michalski. Incremental

learning of concept descriptions. In J. E. Hayes, D. Michie, and J. Richards,

editors, Machine Intelligence (Vol. 11). Oxford University Press, Oxford,

England, 1988.

[

Richards and Mooney, 1991

]

B. Richards and R. Mooney. First-order theory

revision. In Proceedings of the Eighth International Workshop on Machine

Learning, pages 447{451, Evanston, IL, June 1991.

[

Rumelhart et al., 1986

]

D. E. Rumelhart, G. E. Hinton, and J. R. Williams.

Learning internal representations by error propagation. In D. E. Rumelhart

and J. L. McClelland, editors, Parallel Distributed Processing, Vol. I, pages

318{362. MIT Press, Cambridge, MA, 1986.

[

Stickel, 1988

]

M. E. Stickel. A Prolog-like inference system for computing

minimum-cost abductive explanations in natural-language interpretation.

27



Technical Report Technical Note 451, SRI International, Menlo Park, CA,

September 1988.

[

Thompson et al., 1991

]

K. Thompson, P. Langley, and W. Iba. Using back-

ground knowledge in concept formation. In Proceedings of the Eighth In-

ternational Workshop on Machine Learning, pages 554{558, Evanston, IL,

June 1991.

[

Towell and Shavlik, 1991

]

G. Towell and J. Shavlik. Re�ning symbolic

knowledge using neural networks. In Proceedings of the International

Workshop on Multistrategy Learning, pages 257{272, Harper's Ferry,

W.Va., Nov. 1991.

[

Towell et al., 1990

]

G. G. Towell, J. W. Shavlik, and Michiel O. Noordewier.

Re�nement of approximate domain theories by knowledge-based arti�cial

neural networks. In Proceedings of the Eighth National Conference on

Arti�cial Intelligence, pages 861{866, Boston, MA, July 1990.

[

Utgo�, 1989

]

P. E. Utgo�. Incremental induction of decision trees. Machine

Learning, 4(2):161{186, 1989.

[

Whitehall, 1990

]

B. L. Whitehall. Knowledge-Based Learning: An Integra-

tion of Deductive and Inductive Learning for Knowledge Base Completion.

PhD thesis, University of Illinois, Urbana, IL, Oct 1990. Also appears as

Technical Report UILU-ENG-90-1776.

[

Wilkins, 1988

]

D. C. Wilkins. Knowlege base re�nement using apprentice-

ship learning techniques. In Proceedings of the Seventh National Confer-

ence on Arti�cial Intelligence, pages 646{651, St. Paul, MN, August 1988.

[

Winston et al., 1983

]

P. H. Winston, T. O. Binford, B. Katz, and M. Lowry.

Learning physical descriptions from functional de�nitions, examples, and

precedents. In Proceedings of the Third National Conference on Arti�cial

Intelligence, pages 433{439, Washington, D.C., Aug 1983.

28


