
Advances in Neural Information Processing Systems, Vol. 18: Proceedings of the 2005 Conference (NIPS)
Y. Weiss, B. Schoelkopf, J. Platt (Eds.), MIT Press, 2006.

Subsequence Kernels for Relation Extraction

Razvan C. Bunescu
Department of Computer Sciences

University of Texas at Austin
1 University Station C0500

Austin, TX 78712
razvan@cs.utexas.edu

Raymond J. Mooney
Department of Computer Sciences

University of Texas at Austin
1 University Station C0500

Austin, TX 78712
mooney@cs.utexas.edu

Abstract

We present a new kernel method for extracting semantic relations be-
tween entities in natural language text, based on a generalization of sub-
sequence kernels. This kernel uses three types of subsequence patterns
that are typically employed in natural language to assert relationships
between two entities. Experiments on extracting protein interactions
from biomedical corpora and top-level relations from newspaper corpora
demonstrate the advantages of this approach.

1 Introduction

Information Extraction (IE) is an important task in natural language processing, with many
practical applications. It involves the analysis of text documents, with the aim of identifying
particular types of entities and relations among them. Reliably extracting relations between
entities in natural-language documents is still a difficult, unsolved problem. Its inherent
difficulty is compounded by the emergence of new application domains, with new types
of narrative that challenge systems developed for other, well-studied domains. Tradition-
ally, IE systems have been trained to recognize names of people, organizations, locations
and relations between them (MUC [1], ACE [2]). For example, in the sentence “protesters
seized several pumping stations”, the task is to identify a LOCATED AT relationship be-
tween protesters (a PERSON entity) and stations (a LOCATION entity). Recently, substan-
tial resources have been allocated for automatically extracting information from biomedical
corpora, and consequently much effort is currently spent on automatically identifying bi-
ologically relevant entities, as well as on extracting useful biological relationships such as
protein interactions or subcellular localizations. For example, the sentence “TR6 specifi-
cally binds Fas ligand”, asserts an interaction relationship between the two proteins TR6
and Fas ligand. As in the case of the more traditional applications of IE, systems based on
manually developed extraction rules [3, 4] were soon superseded by information extractors
learned through training on supervised corpora [5, 6]. One challenge posed by the biolog-
ical domain is that current systems for doing part-of-speech (POS) tagging or parsing do
not perform as well on the biomedical narrative as on the newspaper corpora on which they
were originally trained. Consequently, IE systems developed for biological corpora need
to be robust to POS or parsing errors, or to give reasonable performance using shallower
but more reliable information, such as chunking instead of parsing.

Motivated by the task of extracting protein-protein interactions from biomedical corpora,
we present a generalization of the subsequence kernel from [7] that works with sequences
containing combinations of words and word classes. This generalized kernel is further
tailored for the task of relation extraction. Experimental results show that the new relation

kernel outperforms two previous rule-based methods for interaction extraction. With a
small modification, the same relation kernel is then applied on the problem of extracting
top-level relations from ACE corpora, providing better results than a recent approach based
on dependency tree kernels.

2 Background

One of the first approaches to extracting protein interactions is that of Blaschke et al., de-
scribed in [3, 4]. Their system is based on a set of manually developed rules, where each
rule (or frame) is a sequence of words (or POS tags) and two protein-name tokens. Be-
tween every two adjacent words is a number indicating the maximum number of interven-
ing words allowed when matching the rule to a sentence. An example rule is “interaction
of (3) <P> (3) with (3) <P>”, where ’<P>’ is used to denote a protein name. A sen-
tence matches the rule if and only if it satisfies the word constraints in the given order and
respects the respective word gaps.

In [6] the authors described a new method ELCS (Extraction using Longest Common Sub-
sequences) that automatically learns such rules. ELCS’ rule representation is similar to
that in [3, 4], except that it currently does not use POS tags, but allows disjunctions of
words. An example rule learned by this system is “- (7) interaction (0) [between | of]
(5) <P> (9) <P> (17) .”. Words in square brackets separated by ‘|’ indicate disjunctive
lexical constraints, i.e. one of the given words must match the sentence at that position.
The numbers in parentheses between adjacent constraints indicate the maximum number
of unconstrained words allowed between the two.

3 Extraction using a Relation Kernel

Both Blaschke and ELCS do interaction extraction based on a limited set of matching
rules, where a rule is simply a sparse (gappy) subsequence of words or POS tags anchored
on the two protein-name tokens. Therefore, the two methods share a common limitation:
either through manual selection (Blaschke), or as a result of the greedy learning procedure
(ELCS), they end up using only a subset of all possible anchored sparse subsequences.
Ideally, we would want to use all such anchored sparse subsequences as features, with
weights reflecting their relative accuracy. However explicitly creating for each sentence a
vector with a position for each such feature is infeasible, due to the high dimensionality
of the feature space. Here we can exploit dual learning algorithms that process examples
only via computing their dot-products, such as the Support Vector Machines (SVMs) [8].
Computing the dot-product between two such vectors amounts to calculating the number
of common anchored subsequences between the two sentences. This can be done very
efficiently by modifying the dynamic programming algorithm used in the string kernel
from [7] to account only for common sparse subsequences constrained to contain the two
protein-name tokens. We further prune down the feature space by utilizing the following
property of natural language statements: when a sentence asserts a relationship between
two entity mentions, it generally does this using one of the following three patterns:

• [FB] Fore–Between: words before and between the two entity mentions are si-
multaneously used to express the relationship. Examples: ‘interaction of 〈P1〉
with 〈P2〉‘, ‘activation of 〈P1〉 by 〈P2〉‘.

• [B] Between: only words between the two entities are essential for asserting the
relationship. Examples: ‘〈P1〉 interacts with 〈P2〉‘, ‘〈P1〉 is activated by 〈P2〉‘.

• [BA] Between–After: words between and after the two entity mentions are simul-
taneously used to express the relationship. Examples: ‘〈P1〉 – 〈P2〉 complex‘,
‘〈P1〉 and 〈P2〉 interact‘.

Another observation is that all these patterns use at most 4 words to express the relationship
(not counting the two entity names). Consequently, when computing the relation kernel,
we restrict the counting of common anchored subsequences only to those having one of

the three types described above, with a maximum word-length of 4. This type of feature
selection leads not only to a faster kernel computation, but also to less overfitting, which
results in increased accuracy (see Section 5 for comparative experiments).

The patterns enumerated above are completely lexicalized and consequently their perfor-
mance is limited by data sparsity. This can be alleviated by categorizing words into classes
with varying degrees of generality, and then allowing patterns to use both words and their
classes. Examples of word classes are POS tags and generalizations over POS tags such as
Noun, Active Verb or Passive Verb. The entity type can also be used, if the word is part of
a known named entity, as well as the type of the chunk containing the word, when chunk-
ing information is available. Content words such as nouns and verbs can also be related to
their synsets via WordNet. Patterns then will consist of sparse subsequences of words, POS
tags, general POS (GPOS) tags, entity and chunk types, or WordNet synsets. For example,
‘Noun of 〈P1〉 by 〈P2〉‘ is an FB pattern based on words and general POS tags.

4 Subsequence Kernels for Relation Extraction

We are going to show how to compute the relation kernel described in the previous section
in two steps. First, in Section 4.1 we present a generalization of the subsequence kernel
from [7]. This new kernel works with patterns construed as mixtures of words and word
classes. Based on this generalized subsequence kernel, in Section 4.2 we formally define
and show the efficient computation of the relation kernel used in our experiments.

4.1 A Generalized Subsequence Kernel

Let Σ1,Σ2, ...,Σk be some disjoint feature spaces. Following the example in Section 3, Σ1
could be the set of words, Σ2 the set of POS tags, etc. Let Σ× = Σ1 × Σ2 × ... × Σk be
the set of all possible feature vectors, where a feature vector would be associated with each
position in a sentence. Given two feature vectors x, y ∈ Σ×, we denote with c(x, y) the
number of common features between x and y. The next notation follows that introduced
in [7]. Thus, let s, t be two sequences over the finite set Σ×, and let |s| denote the length
of s = s1...s|s|. The sequence s[i : j] is the contiguous subsequence si...sj of s. Let

i = (i1, ..., i|i|) be a sequence of |i| indices in s, in ascending order. We define the length

l(i) of the index sequence i in s as i|i| − i1 + 1. Similarly, we define j as a sequence of

indices in t.

Let Σ∪ = Σ1 ∪ Σ2 ∪ ... ∪ Σk be the set of all possible features. We say that the sequence
u ∈ Σ∗

∪ is a (sparse) subsequence of s if there is a sequence of |u| indices i such that
uk ∈ sik

, for all k = 1, ..., |u|. Equivalently, we write u ≺ s[i] as a shorthand for the
component-wise ‘∈‘ relationship between u and s[i].

Finally, let Kn(s, t, λ) (Equation 1) be the number of weighted sparse subsequences u of

length n common to s and t (i.e. u ≺ s[i], u ≺ t[j]), where the weight of u is λl(i)+l(j),
for some λ ≤ 1.

Kn(s, t, λ) =
∑

u∈Σn
∪

∑

i:u≺s[i]

∑

j:u≺t[j]

λl(i)+l(j) (1)

Because for two fixed index sequences i and j, both of length n, the size of the set
{u ∈ Σn

∪|u ≺ s[i], u ≺ t[j]} is
∏n

k=1 c(sik
, tjk

), then we can rewrite Kn(s, t, λ) as in
Equation 2:

Kn(s, t, λ) =
∑

i:|i|=n

∑

j:|j|=n

n
∏

k=1

c(sik
, tjk

)λl(i)+l(j) (2)

We use λ as a decaying factor that penalizes longer subsequences. For sparse subsequences,
this means that wider gaps will be penalized more, which is exactly the desired behavior

for our patterns. Through them, we try to capture head-modifier dependencies that are
important for relation extraction; for lack of reliable dependency information, the larger
the word gap is between two words, the less confident we are in the existence of a head-
modifier relationship between them.

To enable an efficient computation of Kn, we use the auxiliary function K
′

n with a similar
definition as Kn, the only difference being that it counts the length from the beginning of
the particular subsequence u to the end of the strings s and t, as illustrated in Equation 3:

K
′

n(s, t, λ) =
∑

u∈Σn
∪

∑

i:u≺s[i]

∑

j:u≺t[j]

λ|s|+|t|−i1−j1+2 (3)

An equivalent formula for K
′

n(s, t, λ) is obtained by changing the exponent of λ from
Equation 2 to |s| + |t| − i1 − j1 + 2.

Based on all definitions above, Kn can be computed in O(kn|s||t|) time, by modifying the
recursive computation from [7] with the new factor c(x, y), as shown in Figure 1. In this
figure, the sequence sx is the result of appending x to s (with ty defined in a similar way).

K
′

0(s, t) = 1, for all s, t

K
′′

i (sx, ty) = λK
′′

i (sx, t) + λ
2
K

′

i−1(s, t) · c(x, y)

K
′

i (sx, t) = λK
′

i (s, t) + K
′′

i (sx, t)

Kn(sx, t) = Kn(s, t) +
∑

j

λ
2
K

′

n−1(s, t[1 : j − 1]) · c(x, t[j])

Figure 1: Computation of subsequence kernel.

4.2 Computing the Relation Kernel

As described in Section 2, the input consists of a set of sentences, where each sentence con-
tains exactly two entities (protein names in the case of interaction extraction). In Figure 2
we show the segments that will be used for computing the relation kernel between two ex-
ample sentences s and t. In sentence s for instance, x1 and x2 are the two entities, sf is the
sentence segment before x1, sb is the segment between x1 and x2, and sa is the sentence

segment after x2. For convenience, we also include the auxiliary segment s
′

b = x1sbx2,

whose span is computed as l(s
′

b) = l(sb) + 2 (in all length computations, we consider x1
and x2 as contributing one unit only).

sf

ft ta

sa

1 2y y

t

t’

b

b

1 2x x

s

s’b

b

s =

t =

Figure 2: Sentence segments.

The relation kernel computes the number of common patterns between two sentences s and

t, where the set of patterns is restricted to the three types introduced in Section 3. Therefore,
the kernel rK(s, t) is expressed as the sum of three sub-kernels: fbK(s, t) counting the
number of common fore–between patterns, bK(s, t) for between patterns, and baK(s, t)
for between–after patterns, as in Figure 3.

rK(s, t) = fbK(s, t) + bK(s, t) + baK(s, t)

bKi = Ki(sb, tb, 1) · c(x1, y1) · c(x2, y2) · λ
l(s

′

b
)+l(t

′

b
)

fbK(s, t) =
∑

i,j

bKi · K
′

j(sf , tf , λ), 1 ≤ i, 1 ≤ j, i + j < fbmax

bK(s, t) =
∑

i

bKi, 1 ≤ i ≤ bmax

baK(s, t) =
∑

i,j

bKi · K
′

j(s
−

a , t
−

a , λ), 1 ≤ i, 1 ≤ j, i + j < bamax

Figure 3: Computation of relation kernel.

All three sub-kernels include in their computation the counting of common subsequences

between s
′

b and t
′

b. In order to speed up the computation, all these common counts can be
calculated separately in bKi, which is defined as the number of common subsequences of

length i between s
′

b and t
′

b, anchored at x1/x2 and y1/y2 respectively (i.e. constrained to
start at x1/y1 and to end at x2/y2). Then fbK simply counts the number of subsequences
that match j positions before the first entity and i positions between the entities, constrained
to have length less than a constant fbmax. To obtain a similar formula for baK we simply
use the reversed (mirror) version of segments sa and ta (e.g. s−a and t−a). In Section 3
we observed that all three subsequence patterns use at most 4 words to express a relation,

therefore we set constants fbmax, bmax and bamax to 4. Kernels K and K
′

are computed
using the procedure described in Section 4.1.

5 Experimental Results

The relation kernel (ERK) was evaluated on the task of extracting relations from two cor-
pora with different types of narrative, which will be described in more detail in the follow-
ing sections. In both cases, we assume that the entities and their labels are known. All
preprocessing steps – sentence segmentation, tokenization, POS tagging and chunking –

were performed using the OpenNLP1 package. If a sentence contains n entities (n ≥ 2),

it is replicated into
(

n
2

)

sentences, each containing only two entities. If the two entities are
known to be in a relationship, then the replicated sentence is added to the set of correspond-
ing positive sentences, otherwise it is added to the set of negative sentences. During testing,

a sentence having n entities (n ≥ 2) is again replicated into
(

n
2

)

sentences in a similar way.

We used the relation kernel in conjunction with SVM learning in order to find a decision
hyperplane that best separates the positive examples from negative examples. We modified

the LibSVM2 package by plugging in the kernel described above. In all experiments, the
decay factor λ was set to 0.75. The performance was measured using precision (percent-
age of correctly extracted relations out of total extracted) and recall (percentage of cor-
rectly extracted relations out of total number of relations annotated in the corpus). When
precision-recall graphs are reported, the precision and recall were computed using output
from 10-fold cross-validation, while the graph points were obtained by varying a thresh-
old on the minimum acceptable extraction confidence – for this, we used the probability

1URL: http://opennlp.sourceforge.net
2URL:http://www.csie.ntu.edu.tw/˜cjlin/libsvm/

estimates output by LibSVM.

5.1 Interaction Extraction from AImed

We did comparative experiments on the AImed corpus, which has been previously used
for training the protein interaction extraction systems in [6]. It consists of 225 Medline
abstracts, of which 200 are known to describe interactions between human proteins, while
the other 25 do not refer to any interaction. There are 4084 protein references and around
1000 tagged interactions in this dataset.

We compare the following three systems on the task of retrieving protein interactions from
AImed (assuming gold standard proteins):

• [Manual]: We report the performance of the rule-based system of [3, 4].

• [ELCS]: We report the 10-fold cross-validated results from [6] as a precision-
recall graph.

• [ERK]: Based on the same splits as ELCS, we compute the corresponding
precision-recall graph. In order to have a fair comparison with the other two sys-
tems, which use only lexical information, we do not use any word classes here.

The results, summarized in Figure 4(a), show that the relation kernel outperforms both
ELCS and the manually written rules.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

P
re

c
is

io
n
 (

%
)

Recall (%)

ERK
Manual

ELCS

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

P
re

c
is

io
n
 (

%
)

Recall (%)

ERK
ERK-A

(a) ERK vs. ELCS (b) ERK vs. ERK-A

Figure 4: PR curves for interaction extractors.

To evaluate the impact that the three types of patterns have on performance, we compare
ERK with an ablated system (ERK-A) that uses all possible patterns, constrained only to
be anchored on the two entity names. As can be seen in Figure 4(b), the three patterns (FB,
B, BA) do lead to a significant increase in performance, especially for higher recall levels.

5.2 Relation Extraction from ACE

To evaluate how well this relation kernel ports to other types of narrative, we applied it
to the problem of extracting top-level relations from the ACE corpus [2], the version used
for the September 2002 evaluation. The training part of this dataset consists of 422 docu-
ments, with a separate of 97 documents allocated for testing. This version of the ACE cor-
pus contains three types of annotations: coreference, named entities and relations. There
are five types of entities – PERSON, ORGANIZATION, FACILITY, LOCATION, and GEO-
POLITICAL ENTITY – which can participate in five general, top-level relations: ROLE,
PART, LOCATED, NEAR, and SOCIAL. A recent approach to extracting relations is de-
scribed in [9]. The authors use a generalized version of the tree kernel from [10] to com-
pute a kernel over relation examples, where a relation example consists of the smallest
dependency tree containing the two entities of the relation. Precision and recall values are

reported for the task of extracting the 5 top-level relations in the ACE corpus under two
different scenarios:

– [S1] This is the classic setting: one multi-class SVM is learned to discriminate among
the 5 top-level classes, plus one more class for the no-relation cases.

– [S2] One binary SVM is trained for relation detection, meaning that all positive relation
instances are combined into one class. The thresholded output of this binary classifier is
used as training data for a second multi-class SVM, trained for relation classification.

We trained our relation kernel, under the first scenario, to recognize the same 5 top-level
relation types. While for interaction extraction we used only the lexicalized version of the
kernel, here we utilize more features, corresponding to the following feature spaces: Σ1
is the word vocabulary, Σ2 is the set of POS tags, Σ3 is the set of generic POS tags, and
Σ4 contains the 5 entity types. We also used chunking information as follows: all (sparse)
subsequences were created exclusively from the chunk heads, where a head is defined as
the last word in a chunk. The same criterion was used for computing the length of a subse-
quence – all words other than head words were ignored. This is based on the observation
that in general words other than the chunk head do not contribute to establishing a relation-
ship between two entities outside of that chunk. One exception is when both entities in the
example sentence are contained in the same chunk. This happens very often due to noun-
noun (’U.S. troops’) or adjective-noun (’Serbian general’) compounds. In these cases, we
let one chunk contribute both entity heads. Also, an important difference from the inter-
action extraction case is that often the two entities in a relation do not have any words
separating them, as for example in noun-noun compounds. None of the three patterns from
Section 3 capture this type of dependency, therefore we introduced a fourth type of pattern,
the modifier pattern M. This pattern consists of a sequence of length two formed from the
head words (or their word classes) of the two entities. Correspondingly, we updated the
relation kernel from Figure 3 with a new kernel term mK, as illustrated in Equation 4.

rK(s, t) = fbK(s, t) + bK(s, t) + baK(s, t) + mK(s, t) (4)

The sub-kernel mK corresponds to a product of counts, as shown in Equation 5.

mK(s, t) = c(x1, y1) · c(x2, y2) · λ
2+2

(5)

We present in Table 1 the results of using our updated relation kernel to extract relations
from ACE, under the first scenario. We also show the results presented in [9] for their best
performing kernel K4 (a sum between a bag-of-words kernel and the dependency kernel)
under both scenarios.

Table 1: Extraction Performance on ACE.

Method Precision Recall F-measure

(S1) ERK 73.9 35.2 47.7
(S1) K4 70.3 26.3 38.0

(S2) K4 67.1 35.0 45.8

Even though it uses less sophisticated syntactic and semantic information, ERK in S1 sig-
nificantly outperforms the dependency kernel. Also, ERK already performs a few per-
centage points better than K4 in S2. Therefore we expect to get an even more significant
increase in performance by training our relation kernel in the same cascaded fashion.

6 Related Work

In [10], a tree kernel is defined over shallow parse representations of text, together with
an efficient algorithm for computing it. Experiments on extracting PERSON-AFFILIATION

and ORGANIZATION-LOCATION relations from 200 news articles show the advantage of
using this new type of tree kernels over three feature-based algorithms. The same kernel
was slightly generalized in [9] and applied on dependency tree representations of sentences,

with dependency trees being created from head-modifier relationships extracted from syn-
tactic parse trees. Experimental results show a clear win of the dependency tree kernel over
a bag-of-words kernel. However, in a bag-of-words approach the word order is completely
lost. For relation extraction, word order is important, and our experimental results support
this claim – all subsequence patterns used in our approach retain the order between words.

The tree kernels used in the two methods above are opaque in the sense that the semantics
of the dimensions in the corresponding Hilbert space is not obvious. For subsequence
kernels, the semantics is known by definition: each subsequence pattern corresponds to
a dimension in the Hilbert space. This enabled us to easily restrict the types of patterns
counted by the kernel to the three types that we deemed relevant for relation extraction.

7 Conclusion and Future Work

We have presented a new relation extraction method based on a generalization of subse-
quence kernels. When evaluated on a protein interaction dataset, the new method showed
better performance than two previous rule-based systems. After a small modification, the
same kernel was evaluated on the task of extracting top-level relations from the ACE cor-
pus, showing better performance when compared with a recent dependency tree kernel.

An experiment that we expect to lead to better performance was already suggested in Sec-
tion 5.2 – using the relation kernel in a cascaded fashion, in order to improve the low recall
caused by the highly unbalanced data distribution. Another performance gain may come
from setting the factor λ to a more appropriate value based on a development dataset.

Currently, the method assumes the named entities are known. A natural extension is to
integrate named entity recognition with relation extraction. Recent research [11] indicates
that a global model that captures the mutual influences between the two tasks can lead to
significant improvements in accuracy.

References

[1] R. Grishman, Message Understanding Conference 6, http://cs.nyu.edu/cs/faculty/grishman/
muc6.html (1995).

[2] NIST, ACE – Automatic Content Extraction, http://www.nist.gov/speech/tests/ace (2000).

[3] C. Blaschke, A. Valencia, Can bibliographic pointers for known biological data be found auto-
matically? protein interactions as a case study, Comparative and Functional Genomics 2 (2001)
196–206.

[4] C. Blaschke, A. Valencia, The frame-based module of the Suiseki information extraction sys-
tem, IEEE Intelligent Systems 17 (2002) 14–20.

[5] S. Ray, M. Craven, Representing sentence structure in hidden Markov models for information
extraction, in: Proceedings of the Seventeenth International Joint Conference on Artificial In-
telligence (IJCAI-2001), Seattle, WA, 2001, pp. 1273–1279.

[6] R. Bunescu, R. Ge, R. J. Kate, E. M. Marcotte, R. J. Mooney, A. K. Ramani, Y. W. Wong,
Comparative experiments on learning information extractors for proteins and their interactions,
Artificial Intelligence in Medicine (special issue on Summarization and Information Extraction
from Medical Documents) 33 (2) (2005) 139–155.

[7] H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, C. Watkins, Text classification using
string kernels, Journal of Machine Learning Research 2 (2002) 419–444.

[8] V. N. Vapnik, Statistical Learning Theory, John Wiley & Sons, 1998.

[9] A. Culotta, J. Sorensen, Dependency tree kernels for relation extraction, in: Proceedings of the
42nd Annual Meeting of the Association for Computational Linguistics (ACL-04), Barcelona,
Spain, 2004, pp. 423–429.

[10] D. Zelenko, C. Aone, A. Richardella, Kernel methods for relation extraction, Journal of Ma-
chine Learning Research 3 (2003) 1083–1106.

[11] D. Roth, W. Yih, A linear programming formulation for global inference in natural language
tasks, in: Proceedings of the Annual Conference on Computational Natural Language Learning
(CoNLL), Boston, MA, 2004, pp. 1–8.

