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Abstract

Combinatory Categorial Grammar (CCG) is a lexical-
ized grammar formalism in which words are associated
with categories that, in combination with a small uni-
versal set of rules, specify the syntactic configurations
in which they may occur. Previous work has shown that
learning sequence models for CCG tagging can be im-
proved by using priors that are sensitive to the formal
properties of CCG as well as cross-linguistic univer-
sals. We extend this approach to the task of learning
a full CCG parser from weak supervision. We present
a Bayesian formulation for CCG parser induction that
assumes only supervision in the form of an incomplete
tag dictionary mapping some word types to sets of po-
tential categories. Our approach outperforms a base-
line model trained with uniform priors by exploiting
universal, intrinsic properties of the CCG formalism to
bias the model toward simpler, more cross-linguistically
common categories.

Introduction
Supervised learning of natural language parsers of various
types (context-free grammars, dependency grammars, cate-
gorial grammars, and the like) is by now a well-understood
task with plenty of high-performing models—when train-
ing data is abundant. Learning from sparse, incomplete in-
formation is, naturally, a greater challenge. To build parsers
for domains and languages where resources are scarce, we
need techniques that take advantage of very limited kinds
and amounts of supervision. The strategy we pursue in this
paper is to approach the problem in a Bayesian framework,
using priors built from linguistic knowledge such as gram-
mar universals, linguistic typology, and cheaply obtained an-
notations from a linguist.

We focus on the task of learning parsers for Combinatory
Categorial Grammar (CCG) (Steedman 2000; Steedman and
Baldridge 2011) without having access to annotated parse
trees. CCG is a lexicalized grammar formalism in which ev-
ery constituent in a parse is assigned a category that de-
scribes its grammatical role in the sentence. CCG categories,
in contrast to the labels used in standard phrase structure
grammars, are not atomic labels like ADJECTIVE or VERB
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PHRASE, but instead have a detailed recursive structure. In-
stead of VERB, a CCG category might encode information
such as “this category can combine with a noun phrase to
the right (an object) and then a noun phrase to the left (a
subject) to produce a sentence.”

Practical interest in CCG has grown in the last few years
within an array of NLP applications—of particular note are
semantic parsing (Zettlemoyer and Collins 2005) and ma-
chine translation (Weese, Callison-Burch, and Lopez 2012).
As these tasks mature and move into new domains and lan-
guages, the ability to learn CCG parsers from scarce data will
be increasingly important. In this regard, CCG has particu-
lar appeal—both theoretical and practical—in the setting of
weakly-supervised learning because the structure of its cat-
egories and its small set of universal rules provide a foun-
dation for constructing linguistically-informative priors that
go beyond general preferences for sparseness that are com-
monly expressed with generic priors. In this paper, we show
that the intrinsic structure of CCG categories can be exploited
cross-linguistically to learn better parsers when supervision
is scarce.

Our starting point is the method we presented in Gar-
rette et al. (2014) for specifying a probability distribution
over the space of potential CCG categories. This distribu-
tion served as a prior for the training of a hidden Markov
model (HMM) supertagger, which assigns a category to each
word in a sentence (lexical categories are often called “su-
pertags”). The prior is designed to bias the HMM toward the
use of cross-linguistically common categories: those that are
less complex or those that are modifiers of other categories.
This method improves supertagging performance in limited
data situations; however, supertags are just the start of a full
syntactic analysis of a sentence, and—for all but very short
sentences—an HMM is very unlikely to produce a sequence
of supertags that can actually be combined into a complete
tree. Here we model the entire tree, which additionally re-
quires supertags for different words to be compatible with
each other.

Bisk and Hockenmaier (2013) present a model of CCG
parser induction from only basic properties of the CCG for-
malism. However, their model produces trees that use only
a simplified form of CCG consisting of just two atomic cat-
egories, and they require gold-standard part-of-speech tags
for each token. We wish to model the same kinds of complex



categories encoded in resources like CCGBank or which
are used in hand-crafted grammars such as those used with
OpenCCG (Baldridge et al. 2007), and to do so by starting
with words rather than gold tags.

Our inputs are unannotated sentences and an incomplete
tag dictionary mapping some words to their potential cate-
gories, and we model CCG trees with a probabilistic context-
free grammar (PCFG). The parameters of the PCFG are es-
timated using a blocked sampling algorithm based on the
Markov chain Monte Carlo approach of Johnson, Griffiths,
and Goldwater (2007). This allows us to efficiently sam-
ple parse trees for sentences in an unlabeled training cor-
pus according to their posterior probabilities as informed by
the linguistically-informed priors. This approach yields im-
provements over a baseline uniform-prior PCFG. Further, as
a demonstration of the universality of our approach in cap-
turing valuable grammatical biases, we evaluate on three di-
verse languages: English, Italian, and Chinese.

Combinatory Categorial Grammar
In the CCG formalism, every constituent, including those at
the lexical level, is associated with a structured CCG cate-
gory that provides information about that constituent’s rela-
tionships in the overall grammar of the sentence. Categories
are defined by a simple recursive structure, where a category
is either atomic, which may potentially have features that re-
strict the categories with which they can unify, or a function
from one category to another, as indicated by one of two
slash operators:

C → {s, sdcl, sadj, sb, n, np, npnb, pp, ...}
C → {(C/C), (C \C)}

Categories of adjacent constituents can be combined us-
ing one of a set of combination rules to form categories
of higher-level constituents, as seen in Figure 1. The direc-
tion of the slash operator gives the behavior of the function.
A category (s\np)/pp might describe an intransitive verb
with a prepositional phrase complement; it combines on the
right (/) with a constituent with category pp, and then on the
left (\) with a noun phrase (np) that serves as its subject.

We follow Lewis and Steedman (2014) in allowing only a
small set of generic, linguistically-plausible grammar rules.
More details can be found there; in addition to the stan-
dard binary combination rules, we use their set of 13 unary
category-rewriting rules, as well as rules for combining with
punctuation to the left and right. We further allow for a
merge rule “X X→ X” since this is seen frequently in the
corpora (Clark and Curran 2007).

Because of their structured nature, CCG categories (un-
like the part-of-speech tags and non-terminals of a standard
PCFG) contain intrinsic information that gives evidence of
their frequencies. First, simple categories are a priori more
likely than complex categories. For example, the transitive
verb “buy” appears with supertag (sb\np)/np 342 times in
CCGbank, but just once with (((sb\np)/pp)/pp)/np. Sec-
ond, modifier categories, those of the form X/X or X\X ,
are more likely than non-modifiers of similar complexity.
For example, a category containing six atoms may, in gen-
eral, be very unlikely, but a six-atom category that is merely

s

np

np/n n

s\np

(s\np)/pp
pp

pp/np np
The man walks to work

Figure 1: CCG parse for “The man walks to work.”

a modifier of a three-atom category (like an adverb modify-
ing a transitive verb) would be fairly common.

Baldridge (2008) used this information to bias supertag-
ger learning via an ad hoc initialization of Expectation-
Maximization for an HMM. Garrette et al. (2014) built upon
these concepts to introduce a probabilistic grammar over
CCG categories that provides a well-founded notion of cat-
egory complexity. The ideas are described in detail in pre-
vious work, but we restate some of them here briefly. The
category grammar captures important aspects of what makes
a category complex: smaller categories are more likely (de-
fined by pterm > 1

2 , the probability of generating a terminal,
atomic, category), some atomic categories are more likely
than others (patom), modifier categories are more likely than
non-modifiers (pmod), and slash operators may occur with
different likelihoods (pfwd). This category grammar defines
the probability distribution PG via the following recursive
definition (let p denote 1− p):
C → a pterm ·patom(a)

C → A/A pterm ·pfwd ·pmod ·PG(A)

C → A/B, A 6= B pterm ·pfwd ·pmod ·PG(A) ·PG(B)

C → A\A pterm ·pfwd ·pmod ·PG(A)

C → A\B, A 6= B pterm ·pfwd ·pmod ·PG(A) ·PG(B)

where A,B,C are recursively defined categories and a is an
atomic category: a ∈ {s, sdcl, sadj, sb,n,np,pp, . . . }.

Supertagging accuracy was improved further by comple-
menting the language-universal knowledge from CCG with
corpus-specific information extracted automatically. Counts
were estimated using a tag dictionary and unannotated data,
then used to empirically set the parameters of the prior.

Generative Model
Our CCG parsing model assumes the following genera-
tive process. First, the parameters that define our PCFG are
drawn. We generate a distribution σ over root categories,
a conditional distribution θt over binary branching non-
terminal productions given each category t, a conditional
distribution πt over unary non-terminal productions given
each category t, and a conditional distribution µt over termi-
nal (word) productions given each category t. Each of these
parameters is drawn from a Dirichlet distribution parame-
terized by a concentration parameter (ασ, αθ, απ, αµ) and a
prior mean distribution (σ0, θ0, π0, µ0

t). By setting each α
close to zero, we can bias learning toward relatively peaked
distributions. The prior means, explained in detail below, are
used to encode both universal linguistic knowledge as well
as information automatically extracted from the weak super-
vision.



Note that unlike a standard phrase-structure grammar
where the sets of terminal and non-terminal labels are non-
overlapping (part-of-speech tags vs. internal nodes), a CCG
category may appear at any level the tree and, thus, may
yield binary, unary, or terminal word productions. There-
fore, we also generate a distribution λt for every category t
that defines the mixture over production types (binary, unary,
terminal) yielded by t. For simplicity, these parameters are
generated by draws from an unbiased Dirichlet.

Next, the process generates each sentence in the corpus.
This begins by generating a root category s and then recur-
sively generating subtrees. For each subtree rooted by a cat-
egory t, with probability determined by λt, we generate ei-
ther a binary (〈u,v〉), unary (〈u〉), or terminal (w) produc-
tion from t; for binary and unary productions, we generate
child categories and recursively generate subtrees. A tree is
complete when all branches end in terminal words.

Borrowing from the recursive generative function nota-
tion of Johnson, Griffiths, and Goldwater (2007), our pro-
cess can be summarized as:

Parameters:

σ ∼ Dirichlet(ασ, σ
0) root categories

θt ∼ Dirichlet(αθ, θ
0) ∀t ∈ T binary productions

πt ∼ Dirichlet(απ, π
0) ∀t ∈ T unary productions

µt ∼ Dirichlet(αµ, µ
0
t) ∀t ∈ T terminal productions

λt ∼ Dir(〈1, 1, 1〉) ∀t ∈ T production mixture

Sentence:
s ∼ Categorical(σ)

generate(s)
where

function generate(t) :
z ∼ Categorical(λt)

if z = 1 : 〈u,v〉 | t ∼ Categorical(θt)

Tree(t, generate(u), generate(v))
if z = 2 : 〈u〉 | t ∼ Categorical(πt)

Tree(t, generate(u)))
if z = 3 : w | t ∼ Categorical(µt)

Leaf(t, w)

Root prior mean (σ0)
Since σ is a distribution over root categories, we can use PG,
the probability of a category as defined above in terms of
the category grammar, as its prior mean, biasing our model
toward simpler root categories. Thus, σ0(t) = PG(t).

Non-terminal production prior means (θ0 and π0)
Our model includes two types of non-terminal productions:
binary productions of the form “A→ B C”, and unary pro-
ductions of the form “A → B”. As with the root distribu-
tion prior, we would like our model to prefer productions
that yield high-likelihood categories. To provide this bias,

we again use PG:

θ0(〈u,v〉) = PG(u) · PG(v)

π0(〈u〉) = PG(u)

Terminal production prior means (µ0t)

Because we model terminal productions separately, we are
able to borrow directly from Garrette et al. (2014) to de-
fine the terminal production prior mean µ0

t in a way that ex-
ploits the dictionary and unlabeled corpus to estimate the
distribution over words for each supertag. Terminal produc-
tions in our grammar are defined as “word given supertag,”
which is exactly the relationship of the emission distribution
in an HMM supertagger. Thus, we simply use the supertag-
ger’s emission prior mean, as defined in the previous work,
for our terminal productions:

µ0
t(w) = Pem(w | t)

If C(w) is the number of times of word w appears in the
raw corpus, TD(w) is the set of supertags associated with w
in the tag dictionary, and TD(t) is the set of known words
(words appearing in the tag dictionary) for which supertag
t ∈ TD(w), the count of a word/tag pair for a known word is
estimated by uniformly distributing the word’s (δ-smoothed)
raw counts over its tag dictionary entries:

Cknown(t, w) =

{
C(w)+δ
|TD(w)| if t ∈ TD(w)

0 otherwise

To address unknown words, we employ the concept of tag
“openness”, estimating the probability of a tag t applying
to some unknown word: if a tag is known to apply to many
word types, it is likely to also apply to some new word type.

P (unk | t) ∝ |known words w s.t. t ∈ TD(w)|

We can calculate P (t | unk) using Bayes’ rule, which allows
us to estimate word/tag counts for unknown words:

P (t | unk) ∝ P (unk | t) · PG(t)

Cunk(t, w) = C(w) · P (t | unk)

Finally, we can calculate a probability estimate consider-
ing the relationship between t and all known and unknown
words:

Pem(w | t) =
Cknown(t, w) + Cunk(t, w)∑
w′ Cknown(t, w′) + Cunk(t, w′)

Decoding

In order to parse with our model, we seek the highest-
probability parse tree for a given sentence w:

ŷ = argmaxy P (y | w).

This can be computed efficiently using the well-known prob-
abilistic CKY algorithm.



Posterior Inference
Since inference about the parameters of our model using
a corpus of unlabeled training data is intractable, we re-
sort to Gibbs sampling to find an approximate solution. Our
strategy is based on that of Johnson, Griffiths, and Goldwa-
ter (2007), using a block sampling approach. We initialize
our parameters by setting each distribution to its prior mean
(σ = σ0, θt = θ0, etc.) and λt = 〈 13 ,

1
3 ,

1
3 〉. We then al-

ternate between sampling trees given the current model pa-
rameters and observed word sequences, and sampling model
parameters (σ, θ, π, µ, λ) given the current set of parse trees.
To efficiently sample new model parameters, we exploit
Dirichlet-multinomial conjugacy. We accumulate all parse
trees sampled across all sampling iterations and use them to
approximate the posterior quantities.

Our inference procedure takes as input each of the dis-
tribution prior means (σ0, θ0, π0, µ0), along with the raw
corpus and tag dictionary. During sampling, we always re-
strict the possible supertag choices for a word w to the cat-
egories found in the tag dictionary entry for that w: TD(w).
Since real-world learning scenarios will always lack com-
plete knowledge of the lexicon, we, too, want to allow for
unknown words. Thus, we use incomplete tag dictionaries
in our experiments, meaning that for a word w not present in
the dictionary, we assign TD(w) to be the full set of known
categories, indicating maximal ambiguity. It is also possible
that the “correct” supertag for a given word is not present
in the tag dictionary, though in these scenarios we hope that
the parse will succeed through a different route.

Our Gibbs sampler, based on the one proposed by Good-
man (1998) and used by Johnson, Griffiths, and Goldwa-
ter (2007), uses a block sampling approach to sample an en-
tire parse tree at once. The procedure is similar in principle
to the Forward-Filter Backward-Sampler algorithm used by
Garrette et al. (2014) for the HMM supertagger, but sampling
trees instead of sequences (Carter and Kohn 1996). To sam-
ple a tree for a sentence w, the strategy is to use the Inside
algorithm (Lari and Young 1990) to inductively compute, for
each potential non-terminal position (i, j) (spanning words
wi through wj−1) and category t, going “up” the tree, the
probability of generating wi, . . . , wj−1 via any arrangement
of productions that is rooted by yij = t:

p(yi,i+1 = t | wi) = λt(3) · µt(wi)

+
∑
t→u

λt(2) · πt(〈u〉) · p(yij = u | wi:j−1)

p(yij = t | wi:j−1) =∑
t→u

λt(2) · πt(〈u〉) · p(yij = u | wi:j−1)

+
∑

t→u v

∑
i<k<j

λt(1) · θt(〈u,v〉)
· p(yik = u | wi:k−1)
· p(ykj = v | wk:j−1)

We then pass through the chart again, this time “downward”
starting at the root and sampling productions until we reach
a terminal word on all branches:

y0n ∼ σt · p(y0n = t | w0:n−1)

x | yij ∼
〈
θyij (〈u,v〉) · p(yik = u | wi:k−1)

· p(ykj = v | wk:j−1) ∀ yik, ykj ,
πyij (〈u〉) · p(y′ij = u | wi:j−1) ∀ y′ij ,
µyij (wi)

〉
where x is either a split point k and pair of categories
yik, ykj resulting from a binary rewrite rule, a single cate-
gory y′ij resulting from a unary rule, or a word w resulting
from a terminal rule.

Resampling the parameters uses the just-sampled parse
trees y to compute Croot(t), the count of trees in which the
root category is t, C(t → 〈u,v〉), the count of binary non-
terminal productions whose category is t that are producing
the pair of categories 〈u,v〉, the count of unary non-terminal
productions C(t→ 〈u〉), and the count of terminal produc-
tions C(t → w). We then sample, for each t ∈ T where
T is the full set of valid CCG categories (and V is the full
vocabulary of known words):

σ ∼ Dir
(
〈ασ · σ0(t) + Croot(t)〉t∈T

)
θt ∼ Dir

(
〈αθ · θ0(〈u,v〉) + C(t→〈u,v〉)〉u,v∈T

)
πt ∼ Dir

(
〈απ · π0(〈u〉) + C(t→〈u〉)〉u∈T

)
µt ∼ Dir

(
〈αµ · µ0

t(w) + C(t→ w)〉w∈V
)

λt ∼ Dir (〈 1 +
∑

C(t→〈u,v〉),
1 +

∑
C(t→〈u〉),

1 +
∑

C(t→w) 〉)

These distributions are derived from the conjugacy of the
Dirichlet prior to the multinomial; note that the result se-
lects parameters based on both the data (counts) and the bias
encoded in the prior.

After 50 sampling iterations have completed, the parame-
ters are estimated as the maximum likelihood estimate of the
pool of trees resulting from all sampling iterations. Dramatic
time savings can be obtained by generating and reusing a
chart that compactly stores all possible parses for all possi-
ble sentences. This allows avoiding calculation for subtrees
and productions that never participate in a complete parse.

As a further optimization, we enforce the use of punctua-
tion as phrasal-boundary indicators, a technique used previ-
ously by Ponvert, Baldridge, and Erk (2011) and Spitkovsky,
Alshawi, and Jurafsky (2011). This means that when we at-
tempt to parse a sentence (or sample a parse tree for a sen-
tence), we do not allow constituents that cross punctuation
without covering the whole inter-punctuation phrase. For
example, the sentence “On Sunday, he walked.”, the con-
stituent “Sunday , he” would be disallowed. Since punctu-
ation does regularly mark a phrasal boundary, this choice
has negligible effect on accuracy while reducing runtime and
memory use. In cases where a punctuation-as-boundary re-
quirement (along with the tag dictionary) renders a sentence
unparseable according to the CCG rules, we lift the punctua-
tion requirement for that sentence.



English Chinese Italian
1. uniform 53.38 35.94 58.16
2. PG 54.75 40.08 59.21
3. PG, Pem 55.69 42.00 60.04

(a) Main results.

English Chinese Italian
0.001 0.01 0.1 0.001 0.01 0.1 0.001 0.01 0.1
56.62 61.30 56.46 34.88 41.24 47.42 60.29 59.91 54.72
57.79 61.93 56.69 41.59 42.86 47.74 58.58 60.76 53.31
60.12 62.11 57.20 43.42 43.84 49.40 59.60 60.02 53.39

(b) Increasing degrees of artificial tag dictionary pruning (see text). The pruning cutoff
is given at the top of each column.

Table 1: Experimental results: test-set dependency accuracies. (1) uses uniform priors on all distributions. (2) uses the category
prior PG. (3) uses the tag dictionary and raw corpus to automatically estimate category prior and word production information.
Table (a) gives the results obtained when no artificial tag dictionary pruning was performed; table (b) shows performance as the
artificial pruning is increased.

Experiments
We evaluated our approach on the three available CCG
corpora: English CCGBank (Hockenmaier and Steedman
2007), Chinese Treebank CCG (Tse and Curran 2010),
and the Italian CCG-TUT corpus (Bos, Bosco, and Mazzei
2009). Each corpus was split into four non-overlapping
datasets: a portion for constructing the tag dictionary, sen-
tences for the unlabeled training data, development trees
(used for tuning α, pterm, pmod, and pfwd hyperparameters),
and test trees. We used the same splits as Garrette et
al. (2014). Since these treebanks use special representations
for conjunctions, we chose to rewrite the trees to use con-
junction categories of the form (X\X)/X so that additional
special rules would not need to be introduced.

We ran our sampler for 50 iterations.1 For the category
grammar, we used pterm=0.7, pmod=0.1, pfwd=0.5. For the
priors, we use ασ=1, αθ=100, απ=10,000, αµ=10,000.2
We trained on 1,000 sentences for English and 750 for Chi-
nese, but only 150 for Italian since it is a much smaller cor-
pus.

To limit the amount of spurious ambiguity, we limit com-
binatory rules to forward and backward application, punctu-
ation, and merge:

X/Y Y → X forward application
Y X\Y → X backward application

X .→ X right punctuation
. X → X left punctuation
X X → X merge

We also allow the 13 unary rules proposed by Lewis and
Steedman (2014). CCG composition rules are rarely neces-
sary to parse a sentence, but do increase the overall num-
ber of parses, many of which represent the same underly-
ing grammatical structures. This choice drastically reduces
the time and space requirements for learning, without sac-
rifices in accuracy. Allowing the backward crossed compo-
sition rule—the third most-frequent rule in CCGBank—not

1We experimented with higher numbers of iterations but found
that accuracy was not improved past 50 iterations.

2In order to ensure that these concentration parameters, while
high, were not dominating the posterior distributions, we ran ex-
periments in which they were set much higher (including using the
prior alone), and found that accuracies plummeted in those cases,
demonstrating that there is a good balance with the prior.

only dramatically increases the time and memory require-
ments, but also tends to lower the accuracy of the resulting
parser by 1% or more, likely because it increases ambiguity.

CCG parsers are typically evaluated on the dependencies
they produce instead of their CCG derivations directly. There
can be many different CCG parse trees that all represent the
same dependency relationships (spurious ambiguity), and
CCG-to-dependency conversion can collapse those differ-
ences. To convert a CCG tree into a dependency tree, we tra-
verse the parse tree, dictating at every branching node which
words will be the dependents of which. For binary branching
nodes of forward rules, the right side—the argument side—
is the dependent, unless the left side is a modifier (X/X) of
the right, in which case the left is the dependent. The op-
posite is true for backward rules. For punctuation rules, the
punctuation is always the dependent. For merge rules, the
right side is always made the parent. The results presented
in this paper are dependency accuracy scores: the proportion
of words that were assigned the correct parent (or “root” for
the root of a tree).

During training, we only use sentences for which we are
able to find at least one parse since we cannot sample a parse
tree for a sentence that has no available parses. However,
for testing, we must make extra efforts to find valid parses.
To that end, if we encounter a test sentence that cannot be
parsed given the tag dictionary and CCG rules (either with or
without enforcement of a punctuation-as-boundary require-
ment), then we fall back to a plan in which additional su-
pertag options are added for each token. For a word wi, we
add the set of tags X\X for all X ∈ TD(wi−1), and Y/Y
for all Y ∈ TD(wi+1). SinceX\X and Y/Y represent mod-
ifier categories, the result of these categories is to provide
the parser the option of simply making wi a modifier of one
of its immediate neighbors, resulting in wi simply being as-
signed as a dependent of that neighboring word. This effec-
tively allows the parser to ignore inconvenient tokens as it
searches for the optimal tree. This is similar to the “dele-
tion” strategy employed by Zettlemoyer and Collins (2007)
in which words can be skipped.

Baseline
As a baseline, we trained our model with uniform prior
mean distributions (σ0, θ0, π0, µ0

t). The uniform priors do
not make any distinction among the relative likelihoods of
different CCG categories or words, and thus do not take ad-



vantage of either the universal properties of the CCG formal-
ism (PG), or the initialization information that can be auto-
matically estimated from the type-supervised data (Pem).

Results
The results of our experiments are given in Table 1a. We find
that the use of a well-designed category prior (PG) achieves
performance gains over the baseline across all three lan-
guages. Our results also show that still further gains can
be achieved by using the available weak supervision—the
tag dictionary and unlabeled text—to estimate corpus counts
that can be used to influence the priors on terminal produc-
tions (Pem).

The largest gains are in the Chinese data, though the accu-
racies are lower on Chinese overall, indicating the difficulty
of the Chinese parsing task.

Error analysis
Supertag accuracy degrades roughly 2% for each language
from the uniform prior to the full prior. Inspection of the
errors shows us that this is due in part to the category
prior encouraging simpler categories, e.g., categories like
((s\np)/(s\np))/np being learned as pp/np. It is counter-
intuitive that supertagging accuracy decreases while parsing
performance improves, but note that it may be easier for the
parser to recover correct dependencies, using the merge rule,
when an incorrect supertag is simpler.

The most frequent errors under uniform priors involve
very complex categories, like ((sdcl\np)/(sdcl\np))/np in
Chinese. When the category prior is introduced, these com-
plex categories vanish from the errors; the most complex
common category error with the category prior in Chinese
is (sdcl\np)/np. After bringing the data-based prior in, we
again see more complex categories, plus others that have
high arity, like modifiers of modifiers (np/np)/(np/np).
This suggests that good performance relies on priors that
blend theoretical constraints with empirical guidance.

We also trained the parser on gold-standard trees for an
upper-bound on performance for the given training sen-
tences, obtaining 66%, 48%, and 65% for English, Chinese,
and Italian, respectively.

Supertag dictionary pruning
Tag dictionaries used in experimental setups are typically
extracted from labeled corpora by finding all word/tag pairs
in some set of annotated sentences. As dictionaries, how-
ever, the distinctions between high- and low-frequency tags
are lost, and all tags in the dictionary entry appear equally
valid for a given word. Unfortunately, the inclusion of low-
probability tags in this way tends to cause problems during
training by over-representing the likelihoods of tags that are
only rarely applicable, or even tags that are the result of an-
notation errors and should not have been included in the dic-
tionary at all.

Traditionally, researchers have avoided this problem by
using tag frequency information to automatically prune the
tag dictionary of its low-frequency tags (Merialdo 1994;
Kupiec 1992), leading Banko and Moore (2004), among oth-
ers, to argue that early successes in type-supervised learning

were due, in large part, to the use of that frequency informa-
tion that is not available from unlabeled data alone, under-
cutting the promises of weakly-supervised learning.

Since it is the goal of this research is to develop tech-
niques that can be applied without artificial data cleaning,
we desire models that are robust to noise in the training data.
To see how this noise affects our model, we executed a se-
ries of experiments in which varing degrees of noise were
artificially removed. For different cutoff levels (0.001, 0.01,
0.1), we computed the tag dictionary entry for word w, as
the supertags t where:

TD(w) =
{
t | freq(w,t)∑

t′∈T freq(w,t′) ≥ cutoff
}
.

Results under pruned conditions are given in Table 1b. Ta-
ble 1a can be interpreted as results when cutoff = 0.

From the results, we can see that in most scenarios,
grammar-informed priors still provide benefits to the model.
More notable, however, is that these priors provide more
value in cases where there is less artificial pruning. This tells
us that our constructed priors are most helpful in the noisier,
more difficult, and more realistic learning scenarios.

When only uniform priors are used, the model is not able
to differentiate a priori between probable and improbable
categories. This results in poor performance when artificial
assistance is not given. However, our category prior, with its
knowledge of the intrinsic properties of the CCG formalism,
is able to overcome this problem, allowing the model to dif-
ferentiate between likely and unlikely categories and bias-
ing the model toward better categories even though category
frequency information is not available. Importantly, it also
does this without eliminating tags that (though infrequent)
are useful for parsing.

These results support our hypothesis that when supervised
data is scarce, it becomes more important to take advantage
of linguistic knowledge.

Conclusion and Future Work
We have presented a Bayesian approach to CCG parser learn-
ing that can be trained given only a lexicon and raw text. It
flexibly incorporates linguistically-informed prior distribu-
tions and naturally accommodates the deviations from pure
CCG grammars that have been employed in annotations for
existing CCG corpora, especially CCGBank. The model en-
hances a standard PCFG by factoring in prior distributions
over categories into both non-terminal and terminal produc-
tions; those priors can be derived from a universal prior dis-
tribution, from a distribution built by combining a tag dictio-
nary with raw text, or both. Our results show that using both
sources for defining these priors leads to better performing
CCG parsers in low-resource scenarios.

The idea of incorporating linguistic knowledge into a
model via priors is very appealing when supervised data
is scarce. We have shown how knowledge about the struc-
ture of CCG categories can be used, but a more sophisticated
model may be able to additionally make use of knowledge
about the relative likelihoods of various CCG rules. For ex-
ample, we know that application rules are always preferred,



and that composition rules should only be used when nec-
essary, and in specific scenarios (Baldridge 2002). Further,
rules like merge should only be used as a last resort.

Finally, while a relatively large tag dictionary was used
for the experiments presented here, it may be possible to
learn from even less supervision by generalizing a small
dictionary into a large one, as has been done successfully
for type-supervised part-of-speech tagging (Das and Petrov
2011; Garrette and Baldridge 2013; Garrette, Mielens, and
Baldridge 2013).
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