
Integrating Logical Representations with
Probabilistic Information using Markov Logic

Dan Garrette
University of Texas at Austin
dhg@cs.utexas.edu

Katrin Erk
University of Texas at Austin

katrin.erk@mail.utexas.edu

Raymond Mooney
University of Texas at Austin
mooney@cs.utexas.edu

Abstract

First-order logic provides a powerful and flexible mechanism for representing natural language
semantics. However, it is an open question of how best to integrate it with uncertain, probabilistic
knowledge, for example regarding word meaning. This paper describes the first steps of an approach
to recasting first-order semantics into the probabilistic models that are part of Statistical Relational
AI. Specifically, we show how Discourse Representation Structures can be combined with distribu-
tional models for word meaning inside a Markov Logic Network and used to successfully perform
inferences that take advantage of logical concepts such as factivity as well as probabilistic informa-
tion on word meaning in context.

1 Introduction

Logic-based representations of natural language meaning have a long history. Representing the meaning
of language in a first-order logical form is appealing because it provides a powerful and flexible way to
express even complex propositions. However, systems built solely using first-order logical forms tend
to be very brittle as they have no way of integrating uncertain knowledge. They, therefore, tend to have
high precision at the cost of low recall (Bos and Markert, 2005).

Recent advances in computational linguistics have yielded robust methods that use weighted or prob-
abilistic models. For example, distributional models of word meaning have been used successfully to
judge paraphrase appropriateness. This has been done by representing the word meaning in context as
a point in a high-dimensional semantics space (Erk and Padó, 2008; Thater et al., 2010; Erk and Padó,
2010). However, these models typically handle only individual phenomena instead of providing a mean-
ing representation for complete sentences. It is a long-standing open question how best to integrate the
weighted or probabilistic information coming from such modules with logic-based representations in a
way that allows for reasoning over both. See, for example, Hobbs et al. (1993).

The goal of this work is to combine logic-based meaning representations with probabilities in a
single unified framework. This will allow us to obtain the best of both situations: we will have the
full expressivity of first-order logic and be able to reason with probabilities. We believe that this will
allow for a more complete and robust approach to natural language understanding. In order to perform
logical inference with probabilities, we draw from the large and active body of work related to Statistical
Relational AI (Getoor and Taskar, 2007). Specifically, we make use of Markov Logic Networks (MLNs)
(Richardson and Domingos, 2006) which employ weighted graphical models to represent first-order
logical formulas. MLNs are appropriate for our approach because they provide an elegant method of
assigning weights to first-order logical rules, combining a diverse set of inference rules, and performing
inference in a probabilistic way.

While this is a large and complex task, this paper proposes a series of first steps toward our goal.
In this paper, we focus on three natural language phenomena and their interaction: implicativity and
factivity, word meaning, and coreference. Our framework parses natural language into a logical form,
adds rule weights computed by external NLP modules, and performs inferences using an MLN. Our
end-to-end approach integrates multiple existing tools. We use Boxer (Bos et al., 2004) to parse natural



language into a logical form. We use Alchemy (Kok et al., 2005) for MLN inference. Finally, we use the
exemplar-based distributional model of Erk and Padó (2010) to produce rule weights.

2 Background

Logic-based semantics. Boxer (Bos et al., 2004) is a software package for wide-coverage semantic anal-
ysis that provides semantic representations in the form of Discourse Representation Structures (Kamp
and Reyle, 1993). It builds on the C&C CCG parser (Clark and Curran, 2004). Bos and Markert (2005)
describe a system for Recognizing Textual Entailment (RTE) that uses Boxer to convert both the premise
and hypothesis of an RTE pair into first-order logical semantic representations and then uses a theorem
prover to check for logical entailment.

Distributional models for lexical meaning. Distributional models describe the meaning of a word
through the context in which it appears (Landauer and Dumais, 1997; Lund and Burgess, 1996), where
contexts can be documents, other words, or snippets of syntactic structure. Distributional models are able
to predict semantic similarity between words based on distributional similarity and they can be learned
in an unsupervised fashion. Recently distributional models have been used to predict the applicability
of paraphrases in context (Mitchell and Lapata, 2008; Erk and Padó, 2008; Thater et al., 2010; Erk and
Padó, 2010). For example, in “The wine left a stain”, “result in” is a better paraphrase for “leave” than is
“entrust”, while the opposite is true in “He left the children with the nurse”. Usually, the distributional
representation for a word mixes all its usages (senses). For the paraphrase appropriateness task, these
representations are then reweighted, extended, or filtered to focus on contextually appropriate usages.

Markov Logic. An MLN consists of a set of weighted first-order clauses. It provides a way of softening
first-order logic by making situations in which not all clauses are satisfied less likely but not impossible
(Richardson and Domingos, 2006). More formally, let X be the set of all propositions describing a world
(i.e. the set of all ground atoms), F be the set of all clauses in the MLN, wi be the weight associated
with clause fi ∈ F , Gfi be the set of all possible groundings of clause fi, and Z be the normalization
constant. Then the probability of a particular truth assignment x to the variables in X is defined as:

P (X = x) =
1

Z
exp

∑
fi∈F

wi

∑
g∈Gfi

g(x)

 =
1

Z
exp

∑
fi∈F

wini(x)

 (1)

where g(x) is 1 if g is satisfied and 0 otherwise, and ni(x) =
∑

g∈Gfi
g(x) is the number of groundings

of fi that are satisfied given the current truth assignment to the variables in X . This means that the
probability of a truth assignment rises exponentially with the number of groundings that are satisfied.

Markov Logic has been used previously in other NLP application (e.g. Poon and Domingos (2009)).
However, this paper marks the first attempt at representing deep logical semantics in an MLN.

While it is possible learn rule weights in an MLN directly from training data, our approach at this time
focuses on incorporating weights computed by external knowledge sources. Weights for word meaning
rules are computed from the distributional model of lexical meaning and then injected into the MLN.
Rules governing implicativity and coreference are given infinite weight (hard constraints).

3 Evaluation and phenomena

Textual entailment offers a good framework for testing whether a system performs correct analyses and
thus draws the right inferences from a given text. For example, to test whether a system correctly handles
implicative verbs, one can use the premise p along with the hypothesis h in (1) below. If the system
analyses the two sentences correctly, it should infer that h holds. While the most prominent forum using
textual entailment is the Recognizing Textual Entailment (RTE) challenge (Dagan et al., 2005), the RTE
datasets do not test the phenomena in which we are interested. For example, in order to evaluate our
system’s ability to determine word meaning in context, the RTE pair would have to specifically test word



sense confusion by having a word’s context in the hypothesis be different from the context of the premise.
However, this simply does not occur in the RTE corpora. In order to properly test our phenomena, we
construct hand-tailored premises and hypotheses based on real-world texts.

In this paper, we focus on three natural language phenomena and their interaction: implicativity and
factivity, word meaning, and coreference. The first phenomenon, implicativity and factivity, is concerned
with analyzing the truth conditions of nested propositions. For example, in the premise of the entailment
pair shown in example (1), “arrange that” falls under the scope of “forget to” and “fail” is under the scope
of “arrange that”. Correctly recognizing nested propositions is necessary for preventing false inferences
such as the one in example (2).

(1) p: Ed did not forget to arrange that Dave fail1
h: Dave failed

(2) p: The mayor hoped to build a new stadium2

h*: The mayor built a new stadium

For the second phenomenon, word meaning, we address paraphrasing and hypernymy. For example,
in (3) “covering” is a good paraphrase for “sweeping” while “brushing” is not.

(3) p: A stadium craze is sweeping the country
h1: A stadium craze is covering the country

h2*: A stadium craze is brushing the country

The third phenomenon is coreference, as illustrated in (4). For this example, to correctly judge the
hypothesis as entailed, it is necessary to recognize that “he” corefers with “Christopher” and “the new
ballpark” corefers with “a replacement for Candlestick Park”.

(4) p: George Christopher has been a critic of the plan to build a replacement for Candlestick Park.
As a result, he won’t endorse the new ballpark.

h: Christopher won’t endorse a replacement for Candlestick Park.

Some natural language phenomena are most naturally treated as categorial, while others are more
naturally treated using weights or probabilities. In this paper, we treat implicativity and coreference as
categorial phenomena, while using a probabilistic approach to word meaning.

4 Transforming natural language text to logical form

In transforming natural language text to logical form, we build on the software package Boxer (Bos et al.,
2004). We chose to use Boxer for two main reasons. First, Boxer is a wide-coverage system that can deal
with arbitrary text. Second, the DRSs that Boxer produces are close to the standard first-order logical
forms that are required for use by the MLN software package Alchemy. Our system transforms Boxer
output into a format that Alchemy can read and augments it with additional information.

To demonstrate our transformation procedure, consider again the premise of example (1). When
given to Boxer, the sentence produces the output given in Figure 1a. We then transform this output to the
format given in Figure 1b.

Flat structure. In Boxer output, nested propositional statements are represented as nested sub-DRS
structures. For example, in the premise of (1), the verbs “forget to” and “arrange that” both introduce
nested propositions, as is shown in Figure 1a where DRS x3 (the “arranging that”) is the theme of “forget
to” and DRS x5 (the “failing”) is the theme of “arrange that”.

In order to write logical rules about the truth conditions of nested propositions, the structure has to
be flattened. However, it is clearly not sufficient to just conjoin all propositions at the top level. Such an
approach, applied to example (2), would yield (hope(x1) ∧ theme(x1, x2) ∧ build(x2) ∧ . . .), leading
to the wrong inference that the stadium was built. Instead, we add a new argument to each predicate that

1Examples (1) and (16) and Figure 2 are based on examples by MacCartney and Manning (2009)
2Examples (2), (3), (4), and (18) are modified versions of sentences from document wsj 0126 from the Penn Treebank



x0 x1

named(x0,ed,per)
named(x1,dave,per)

¬

x2 x3

forget(x2)
event(x2)
agent(x2,x0)
theme(x2,x3)

x3:
x4 x5

arrange(x4)
event(x4)
agent(x4,x0)
theme(x4,x5)

x5:
x6

fail(x6)
event(x6)
agent(x6,x1)

(a) Output from Boxer

transforms to−−−−−−−→

named(l0, ne per ed d s0 w0, z0)
named(l0, ne per dave d s0 w7, z1)
not(l0, l1)
pred(l1, v forget d s0 w3, e2)
event(l1, e2)
rel(l1, agent, e2, z0)
rel(l1, theme, e2, l2)
prop(l1, l2)
pred(l2, v arrange d s0 w5, e4)
event(l2, e4)
rel(l2, agent, e4, z0)
rel(l2, theme, e4, l3)
prop(l2, l3)
pred(l3, v fail d s0 w8, e6)
event(l3, e6)
rel(l3, agent, e6, z1)

(b) Canonical form

Figure 1: Converting the premise of (1) from Boxer output to MLN input

names the DRS in which the predicate originally occurred. Assigning the label l1 to the DRS containing
the predicate forget, we add l1 as the first argument to the atom pred(l1, v forget d s0 w3, e2).3 Having
flattened the structure, we need to re-introduce the information about relations between DRSs. For this
we use predicates not, imp, and or whose arguments are DRS labels. For example, not(l0, l1) states that
l1 is inside l0 and negated. Additionally, an atom prop(l0, l1) indicates that DRS l0 has a subordinate
DRS labeled l1.

One important consequence of our flat structure is that the truth conditions of our representation no
longer coincide with the truth conditions of the underlying DRS being represented. For example, we do
not directly express the fact that the “forgetting” is actually negated, since the negation is only expressed
as a relation between DRS labels. To access the information encoded in relations between DRS labels, we
add predicates that capture the truth conditions of the underlying DRS. We use the predicates true(label)
and false(label) that state whether the DRS referenced by label is true or false. We also add rules that
govern how the predicates for logical operators interact with these truth values. For example, the rules in
(5) state that if a DRS is true, then any negated subordinate must be false and vice versa.

∀ p n.[not(p, n)→ (true(p)↔ false(n)) ∧ (false(p)↔ true(n))] (5)

Injecting additional information into the logical form. We want to augment Boxer output with addi-
tional information, for example gold coreference annotation for sentences that we subsequently analyze
with Boxer. In order to do so, we need to be able to tie predicates in the Boxer output back to words in
the original sentence. Fortunately, the optional “Prolog” output format from Boxer provides the sentence
and word indices from the original sentence. When parsing the Boxer output, we extract these indices
and concatenate them to the word lemma to specific the exact occurrence of the lemma that is under
discussion. For example, the atom pred(l1, v forget d s0 w3, e2) indicates that event e2 refers to the
lemma “forget” that appears in the 0th sentence of discourse d at word index 3.

Atomic formulas. We represent the words from the sentence as arguments instead of predicates in order
to simplify the set of inference rules we need to specify. Because our flattened structure requires that
the inference mechanism be reimplemented as a set of logical rules, it is desirable for us to be able to
write general rules that govern the interaction of atoms. With the representation we have chosen, we
can quantify over all predicates or all relations. For example, the rule in (6) states that a predicate is
accessible if it is found in an out-scoping DRS.

3The extension to the word, such as d s0 w3 for “forget”, is an index providing the location of the original word that
triggered this atom; this is addressed in more detail shortly.



signature example
managed to +/- he managed to escape � he escaped

he did not manage to escape � he did not escape
refused to -/o he refused to fight � he did not fight

he did not refuse to fight 2 {he fought, he did not fight}

Figure 2: Implication Signatures

∀ l1 l2.[outscopes(l1, l2)→ ∀ p x.[pred(l1, p, x)→ pred(l2, p, x)]] (6)

We use three different predicate symbols to distinguish three types of atomic concepts: predicates,
named entities, and relations. Predicates and named entities represent words that appear in the text.
For example, named(l0, ne per ed d s0 w0, z0) indicates that variable z0 is a person named “Ed” while
pred(l1, v forget d s0 w3, e2) says that e2 is a “forgetting to” event. Relations capture the relationships
between words. For example, rel(l1, agent, e2, z0) indicates that z0, “Ed”, is the “agent” of the “forgetting
to” event e2.

5 Handling the phenomena

Implicatives and factives

Nairn et al. (2006) presented an approach to the treatment of inferences involving implicatives and fac-
tives. Their approach identifies an “implication signature” for every implicative or factive verb that
determines the truth conditions for the verb’s nested proposition, whether in a positive or negative en-
vironment. Implication signatures take the form “x/y” where x represents the implicativity in the the
positive environment and y represents the implicativity in the negative environment. Both x and y have
three possible values: “+” for positive entailment, meaning the nested proposition is entailed, “-” for
negative entailment, meaning the negation of the proposition is entailed, and “o” for “null” entailment,
meaning that neither the proposition nor its negation is entailed. Figure 2 gives concrete examples.

We use these implication signatures to automatically generate rules that license specific entailments
in the MLN. Since “forget to” has implication signature “-/+”, we generate the two rules in (7).
(7) (a) ∀ l1 l2 e.[(pred(l1, “forget”, e) ∧ true(l1) ∧ rel(l1, “theme”, e, l2) ∧ prop(l1, l2))→ false(l2)]]

4

(b) ∀ l1 l2 e.[(pred(l1, “forget”, e) ∧ false(l1) ∧ rel(l1, “theme”, e, l2) ∧ prop(l1, l2))→ true(l2)]

To understand these rules, consider (7a). The rule says that if the atom for the verb “forget to” appears
in a DRS that has been determined to be true, then the DRS representing any “theme” proposition of that
verb should be considered false. Likewise, (7b) says that if the occurrence of “forget to” appears in a
DRS determined to be false, then the theme DRS should be considered true.

Note that when the implication signature indicates a “null” entailment, no rule is generated for that
case. This prevents the MLN from licensing entailments related directly to the nested proposition, but
still allows for entailments that include the factive verb. So he wanted to fly entails neither he flew nor he
did not fly, but it does still license he wanted to fly.

Ambiguity in word meaning

In order for our system to be able to make correct natural language inference, it must be able to handle
paraphrasing and deal with hypernymy. For example, in order to license the entailment pair in (8), the
system must recognize that “owns” is a valid paraphrase for “has”, and that “car” is a hypernym of
“convertible”.

(8) p: Ed has a convertible
h: Ed owns a car

4Occurrence-indexing on the predicate “forget” has been left out for brevity.



In this section we discuss our probabilistic approach to paraphrasing. In the next section we discuss
how this approach is extended to cover hypernymy. A central problem to solve in the context of para-
phrases is that they are context-dependent. Consider again example (3) and its two hypotheses. The first
hypothesis replaces the word “sweeping” with a paraphrase that is valid in the given context, while the
second uses an incorrect paraphrase.

To incorporate paraphrasing information into our system, we first generate rules stating all paraphrase
relationships that may possibly apply to a given predicate/hypothesis pair, using WordNet (Miller, 2009)
as a resource. Then we associate those rules with weights to signal contextual adequacy. For any two
occurrence-indexed words w1, w2 occurring anywhere in the premise or hypothesis, we check whether
they co-occur in a WordNet synset. If w1, w2 have a common synset, we generate rules of the form
∀ l x.[pred(l, w1, x) ↔ pred(l, w2, x)] to connect them. For named entities, we perform a similar
routine: for each pair of matching named entities found in the premise and hypothesis, we generate a
rule ∀ l x.[named(l, w1, x)↔ named(l, w2, x)].

We then use the distributional model of Erk and Padó (2010) to compute paraphrase appropriateness.
In the case of (3) this means measuring the cosine similarity between the vectors for “sweep” and “cover”
(and between “sweep” and “brush”) in the sentential context of the premise. MLN formula weights are
expected to be log-odds (i.e., log(P/(1−P )) for some probability P ), so we rank all possible paraphrases
of a given word w by their cosine similarity to w and then give them probabilities that decrease by
rank according to a Zipfian distribution. So, the kth closest paraphrase by cosine similarity will have
probability Pk given by (9):

Pk ∼ 1/k (9)

The generated rules are given in (10) with the actual weights calculated for example (3). Note that
the valid paraphrase “cover” is given a higher weight than the incorrect paraphrase “brush”, which allows
the MLN inference procedure to judge h1 as a more likely entailment than h2.5 This same result would
not be achieved if we did not take context into consideration because, without context, “brush” is a more
likely paraphrase of “sweep” than “cover”.

(10) (a) -2.602 ∀ l x.[pred(l, “v sweep p s0 w4”, x)↔ pred(l, “v cover h s0 w4”, x)]

(b) -3.842 ∀ l x.[pred(l, “v sweep p s0 w4”, x)↔ pred(l, “v brush h s0 w4”, x)]

Since Alchemy outputs a probability of entailment and not a binary judgment, it is necessary to
specify a probability threshold indicating entailment. An appropriate threshold between ”entailment”
and ”non-entailment” will be one that separates the probability of an inference with the valid rule from
the probability of an inference with the invalid rule. While we plan to automatically induce a threshold
in the future, our current implementation uses a value set manually.

Hypernymy

Like paraphrasehood, hypernymy is context-dependent: In “A bat flew out of the cave”, “animal” is
an appropriate hypernym for “bat”, but “artifact” is not. So we again use distributional similarity to
determine contextual appropriateness. However, we do not directly compute cosine similarities between
a word and its potential hypernym. We can hardly assume “baseball bat” and “artifact” to occur in similar
distributional contexts. So instead of checking for similarity of “bat” and “artifact” in a given context, we
check “bat” and “club”. That is, we pick a synonym or close hypernym of the word in question (“bat”)
that is also a WordNet hyponym of the hypernym to check (“artifact”).

A second problem to take into account is the interaction of hypernymy and polarity. While (8) is a
valid pair, (11) is not, because “have a convertible” is under negation. So, we create weighted rules of
the form hypernym(w, h), along with inference rules to guide their interaction with polarity. We create

5Because weights are calculated according to the equation log(P/(1 − P )), any paraphrase that has a probability of less
than 0.5 will have a negative weight. Since most paraphrases will have probabilities less than 0.5, most will yield negative
rule weights. However, the inferences are still handled properly in the MLN because the inference is dependent on the relative
weights.



these rules for all pairs of words w, h in premise and hypothesis such that h is a hypernym of w, again
using WordNet to determine potential hypernymy.

(11) p: Ed does not have a convertible
h: Ed does not own a car

Our inference rules governing the interaction of hypernymy and polarity are given in (12). The rule
in (12a) states that in a positive environment, the hyponym entails the hypernym while the rule in (12b)
states that in a negative environment, the opposite is true: the hypernym entails the hyponym.

(12) (a) ∀ l p1 p2 x.[(hypernym(p1, p2) ∧ true(l) ∧ pred(l, p1, x))→ pred(l, p2, x)]]

(b) ∀ l p1 p2 x.[(hypernym(p1, p2) ∧ false(l) ∧ pred(l, p2, x))→ pred(l, p1, x)]]

Making use of coreference information

As a test case for incorporating additional resources into Boxer’s logical form, we used the coreference
data in OntoNotes (Hovy et al., 2006). However, the same mechanism would allow us to transfer in-
formation into Boxer output from arbitrary additional NLP tools such as automatic coreference analysis
tools or semantic role labelers. Our system uses coreference information into two distinct ways.

The first way we make use of coreference data is to copy atoms describing a particular variable
to those variables that corefer. Consider again example (4) which has a two-sentence premise. This
inference requires recognizing that the “he” in the second sentence of the premise refers to “George
Christopher” from the first sentence. Boxer alone is unable to make this connection, but if we receive
this information as input, either from gold-labeled data or a third-party coreference tool, we are able to
incorporate it. Since Boxer is able to identify the index of the word that generated a particular predicate,
we can tie each predicate to any related coreference chains. Then, for each atom on the chain, we can
inject copies of all of the coreferring atoms, replacing the variables to match. For example, the word
“he” generates an atom pred(l0, male, z5)6 and “Christopher” generates atom named(l0, christopher, x0).
So, we can create a new atom by taking the atom for “christopher” and replacing the label and variable
with that of the atom for “he”, generating named(l0, christopher, x5).

As a more complex example, the coreference information will inform us that “the new ballpark”
corefers with “a replacement for Candlestick Park”. However, our system is currently unable to handle
this coreference correctly at this time because, unlike the previous example, the expression “a replace-
ment for Candlestick Park” results in a complex three-atom conjunct with two separate variables: pred(l2,
replacement, x6), rel(l2, for, x6, x7), and named(l2, candlestick park, x7). Now, unifying with the atom
for “a ballpark”, pred(l0, ballpark, x3), is not as simple as replacing the variable because there are two
variables to choose from. Note that it would not be correct to replace both variables since this would
result in a unification of “ballpark” with “candlestick park” which is wrong. Instead we must determine
that x6 should be the one to unify with x3 while x7 is replaced with a fresh variable. The way that we can
accomplish this is to look at the dependency parse of the sentence that is produced by the C&C parser is
a precursor to running Boxer. By looking up both “replacement” and “Candlestick Park” in the parse, we
can determine that “replacement” is the head of the phrase, and thus is the atom whose variable should
be unified. So, we would create new atoms, pred(l0, replacement, x3), rel(l0, for, x3, z0), and named(l0,
candlestick park, z0), where z0 is a fresh variable.

The second way that we make use of coreference information is to extend the sentential contexts
used for calculating the appropriateness of paraphrases in the distributional model. In the simplest case,
the sentential context of a word would simply be the other words in the sentence. However, consider the
context of the word “lost” in the second sentence of (13).

(13) p1: In [the final game of the season]1, [the team]2 held on to their lead until overtime
p2: But despite that, [they]2 eventually lost [it all]1

6Atoms simplified for brevity



Here we would like to disambiguate “lost”, but its immediate context, words like “despite” and
“eventually”, gives no indication as to its correct sense. Our procedure extends the context of the sentence
by incorporating all of the words from all of the phrases that corefer with a word in the immediate
context. Since coreference chains 1 and 2 have words in p2, the context of “lost” ends up including
“final”, “game”, “season”, and “team” which give a strong indication of the sense of “lost”. Note that
using coreference data is stronger than simply expanding the window because coreferences can cover
arbitrarily long distances.

6 Evaluation

As a preliminary evaluation of our system, we constructed a set of demonstrative examples to test our
ability to handle the previously discussed phenomena and their interactions and ran each example with
both a theorem prover and Alchemy. Note that when running an example in the theorem prover, weights
are not possible, so any rule that would be weighted in an MLN is simply treated as a “hard clause”
following Bos and Markert (2005).

Checking the logical form. We constructed a list of 72 simple examples that exhaustively cover cases
of implicativity (positive, negative, null entailments in both positive and negative environments), hyper-
nymy, quantification, and the interaction between implicativity and hypernymy. The purpose of these
simple tests is to ensure that our flattened logical form and truth condition rules correctly maintain the
semantics of the underlying DRSs. Examples are given in (14).

(14) (a) The mayor did not manage to build a stadium 2 The mayor built a stadium
(b) Fido is a dog and every dog walks � A dog walks

Examples in previous sections. Examples (1), (2), (3), (8), and (11) all come out as expected. Each
of these examples demonstrates one of the phenomena in isolation. However, example (4) returns “not
entailed”, the incorrect answer. As discussed previously, this failure is a result of our system’s inabil-
ity to correctly incorporate the complex coreferring expression “a replacement for Candlestick Park”.
However, the system is able to correctly incorporate the coreference of “he” in the second sentence to
“Christopher” in the first.

Implicativity and word sense. For example (15), “fail to” is a negatively entailing implicative in a
positive environment. So, p correctly entails hgood in both the theorem prover and Alchemy. However,
the theorem prover incorrectly licenses the entailment of hbad while Alchemy does not. The probabilistic
approach performs better in this situation because the categorial approach does not distinguish between
a good paraphrase and a bad one. This example also demonstrates the advantage of using a context-
sensitive distributional model to calculate the probabilities of paraphrases because “reward” is an a priori
better paraphrase than “observe” according to WordNet since it appears in a higher ranked synset.

(15) p: The U.S. is watching closely as South Korea fails to honor U.S. patents7

hgood: South Korea does not observe U.S. patents
hbad: South Korea does not reward U.S. patents

Implicativity and hypernymy. MacCartney and Manning (2009) extended the work by Nairn et al.
(2006) in order to correctly treat inference involving monotonicity and exclusion. Our approaches to
implicatives and factivity and hyper/hyponymy combine naturally to address these issues because of the
structure of our logical representations and rules. For example, no additional work is required to license
the entailments in (16).

(16) (a) John refused to dance � John didn’t tango
(b) John did not forget to tango � John danced

7Example (15) is adapted from Penn Treebank document wsj 0020 while (17) is adapted from document wsj 2358



Example (17) demonstrates how our system combines categorial implicativity with a probabilistic
approach to hypernymy. The verb “anticipate that” is positively entailing in the negative environment.
The verb “moderate” can mean “chair” as in “chair a discussion” or “curb” as in “curb spending”. Since
“restrain” is a hypernym of “curb”, it receives a weight based on the applicability of the word “curb” in
the context. Similarly, “talk” receives a weight based on its hyponym “chair”. Since our model predicts
“curb” to be a more probable paraphrase of “moderate” in this context than “chair” (even though the
priors according to WordNet are reversed), the system is able to infer hgood while rejecting hbad.

(17) p: He did not anticipate that inflation would moderate this year
hgood: Inflation restrained this year
hbad: Inflation talked this year

Word sense, coreference, and hypernymy. Example (18) demonstrates the interaction between para-
phrase, hypernymy, and coreference incorporated into a single entailment. The relevant coreference
chains are marked explicitly in the example. The correct inference relies on recognizing that “he” in the
hypothesis refers to “Joe Robbie” and “it” to “coliseum”, which is a hyponym of “stadium”. Further,
our model recognizes that “sizable” is a better paraphrase for “healthy” than “intelligent” even though
WordNet has the reverse order.

(18) p: [Joe Robbie]53 couldn’t persuade the mayor , so [he]53 built [[his]53 own coliseum]54.
[He]53 has used [it]54 to turn a healthy profit.8

hgood: Joe Robbie used a stadium to turn a sizable profit
hbad−1: Joe Robbie used a stadium to turn an intelligent profit
hbad−2: The mayor used a stadium to turn a healthy profit

7 Future work

The next step is to execute a full-scale evaluation of our approach using more varied phenomena and
naturally occurring sentences. However, the memory requirements of Alchemy are a limitation that
prevents us from currently executing larger and more complex examples. The problem arises because
Alchemy considers every possible grounding of every atom, even when a more focused subset of atoms
and inference rules would suffice. There is on-going work to modify Alchemy so that only the required
groundings are incorporated into the network, reducing the size of the model and thus making it possible
to handle more complex inferences. We will be able to begin using this new version of Alchemy very
soon and our task will provide an excellent test case for the modification.

Since Alchemy outputs a probability of entailment, it is necessary to fix a threshold that separates
entailment from nonentailment. We plan to use machine learning techniques to compute an appropriate
threshold automatically from a calibration dataset such as a corpus of valid and invalid paraphrases.

8 Conclusion

In this paper, we have introduced a system that implements a first step towards integrating logical seman-
tic representations with probabilistic weights using methods from Statistical Relational AI, particularly
Markov Logic. We have focused on three phenomena and their interaction: implicatives, coreference,
and word meaning. Taking implicatives and coreference as categorial and word meaning as probabilis-
tic, we have used a distributional model to generate paraphrase appropriateness ratings, which we then
transformed into weights on first order formulas. The resulting MLN approach is able to correctly solve
a number of difficult textual entailment problems that require handling complex combinations of these
important semantic phenomena.

8Only relevent coreferences have been marked



References

Bos, J., S. Clark, M. Steedman, J. R. Curran, and J. Hockenmaier (2004). Wide-coverage semantic
representations from a CCG parser. In Proceedings of COLING 2004, Geneva, Switzerland, pp. 1240–
1246.

Bos, J. and K. Markert (2005). Recognising textual entailment with logical inference. In Proceedings of
EMNLP 2005, pp. 628–635.

Clark, S. and J. R. Curran (2004). Parsing the WSJ using CCG and log-linear models. In Proceedings of
ACL 2004, Barcelona, Spain, pp. 104–111.

Dagan, I., O. Glickman, and B. Magnini (2005). The pascal recognising textual entailment challenge. In
In Proceedings of the PASCAL Challenges Workshop on Recognising Textual Entailment.

Erk, K. and S. Padó (2008). A structured vector space model for word meaning in context. In Proceedings
of EMNLP 2008, Honolulu, HI, pp. 897–906.

Erk, K. and S. Padó (2010). Exemplar-based models for word meaning in context. In Proceedings of
ACL 2010, Uppsala, Sweden, pp. 92–97.

Getoor, L. and B. Taskar (Eds.) (2007). Introduction to Statistical Relational Learning. Cambridge, MA:
MIT Press.

Hobbs, J. R., M. Stickel, D. Appelt, and P. Martin (1993). Interpretation as abduction. Artificial Intelli-
gence 63(1–2), 69–142.

Hovy, E., M. Marcus, M. Palmer, L. Ramshaw, and R. Weischedel (2006). Ontonotes: The 90% solution.
In Proceedings of HLT/NAACL 2006, pp. 57–60.

Kamp, H. and U. Reyle (1993). From Discourse to Logic; An Introduction to Modeltheoretic Semantics
of Natural Language, Formal Logic and DRT. Dordrecht: Kluwer.

Kok, S., P. Singla, M. Richardson, and P. Domingos (2005). The Alchemy system for statistical relational
AI. Technical report, Department of Computer Science and Engineering, University of Washington.
http://www.cs.washington.edu/ai/alchemy.

Landauer, T. and S. Dumais (1997). A solution to Platos problem: the latent semantic analysis theory of
acquisition, induction, and representation of knowledge. Psychological Review 104(2), 211–240.

Lund, K. and C. Burgess (1996). Producing high-dimensional semantic spaces from lexical co-
occurrence. Behavior Research Methods, Instruments, and Computers 28, 203—208.

MacCartney, B. and C. D. Manning (2009). An extended model of natural logic. In Proceedings of the
Eighth International Conference on Computational Semantics (IWCS-8), pp. 140–156.

Miller, G. A. (2009). Wordnet - about us. http://wordnet.princeton.edu.

Mitchell, J. and M. Lapata (2008). Vector-based models of semantic composition. In Proceedings of
ACL, pp. 236–244.

Nairn, R., C. Condoravdi, and L. Karttunen (2006). Computing relative polarity for textual inference. In
Proceedings of Inference in Computational Semantics (ICoS-5), Buxton, UK.

Poon, H. and P. Domingos (2009). Unsupervised semantic parsing. In Proceedings of EMNLP 2009, pp.
1–10.

Richardson, M. and P. Domingos (2006). Markov logic networks. Machine Learning 62, 107–136.

Thater, S., H. Fürstenau, and M. Pinkal (2010). Contextualizing semantic representations using syntac-
tically enriched vector models. In Proceedings of ACL 2010, Uppsala, Sweden, pp. 948–957.


