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Activity Retrieval in Closed Captioned Videos
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Supervisor: Raymond J. Mooney

Recognizing activities in real-world videos is a difficult problem exacer-

bated by background clutter, changes in camera angle & zoom, occlusion and rapid

camera movements. Large corpora of labeled videos can be used to train automated

activity recognition systems, but this requires expensive human labor and time. This

thesis explores how closed captions that naturally accompany many videos can act

as weak supervision that allows automatically collecting ‘labeled’ data for activ-

ity recognition. We show that such an approach can improve activity retrieval in

soccer videos. Our system requires no manual labeling of video clips and needs

minimal human supervision. We also present a novel caption classifier that uses

additional linguistic information to determine whether a specific comment refers

to an ongoing activity. We demonstrate that combining linguistic analysis and au-

tomatically trained activity recognizers can significantly improve the precision of

video retrieval.
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Chapter 1

Introduction

Due to the growing popularity of multimedia content, the need for auto-

mated video classification and retrieval systems is becoming increasingly impor-

tant. Annotating and indexing videos will be crucial for managing the worlds ever-

growing creation of digital videos. Video classification and retrieval systems have

wide practical use, such as in surveillance, video search and digital libraries. A

video classifier classifies a video clip whether it belongs to a pre-specified set of

categories. Video retrieval systems, on the other hand, are required to extract rele-

vant clips from a video and rank them according to their relevance to either a text or

video query. Video classification and retrieval often require activity or action recog-

nition. Activity recognition is very hard because camera motion and zoom along

with well-known static image recognition problems, such as illumination, occlu-

sion, view point difference, make visual cues extremely ambiguous. In the past,

video activity recognition and retrieval systems focussed on datasets recorded in

simplified settings that did not have much noise (for e.g. KTH (Schuldt, Laptev, &

Caputo, 2004) and Weizmann (Blank, Gorelick, Shechtman, Irani, & Basri, 2005)

datasets). Recently, significant progress has been made on activity recognition sys-

tems that detect specific human actions in real-world videos (Efros, Berg, Mori, &

Malik, 2003; Laptev, Marszalek, Schmid, & Rozenfeld, 2008). One application of
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recent interest is retrieving clips of particular events in sports videos such as base-

ball broadcasts (Fleischman & Roy, 2007b). Activity recognition in sports videos is

particularly difficult because the settings in which the videos are recorded are less

structured and there is rapid change in view point, zoom and angle. Currently, the

most effective techniques for activity recognition rely on supervised training data

in the form of labeled video clips for particular classes of actions. Unfortunately,

manually labeling videos is an expensive, time-consuming task.

As an alternative, broadcast and DVD videos increasingly have closed cap-

tions. Closed captions are timestamped transcription of the audio portion of the

program 1. These closed captions can provide useful information about possible

activities in videos for “free.” To reduce human labor, one can exploit the weak

supervisory information in captions such as sportscaster commentary. A number

of researchers have proposed using closed captions or other linguistic informa-

tion to enhance video retrieval, video classification, or sound recognition systems

(Babaguchi, Kawai, & Kitahashi, 2002; Cour, Jordan, Miltsakaki, & Taskar, 2008;

Fleischman & Roy, 2007a, 2007b, 2008; Laptev et al., 2008) (see Chapter 2).

We propose a new approach that uses captions to automatically acquire

“weakly” labeled clips for training a supervised activity recognizer. Our approach

is quite scalable in acquiring a large amount of automatically labeled data given a

large corpus of captioned videos. First, one selects keywords specifying the events

to be detected. As an example, we present results for four activity keywords for

1http://en.wikipedia.org/wiki/Closed_captioning
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(a) Kick: “I do not

think there is any

real intent, just try-

ing to make sure

he gets his body

across, but it was a

free kick .”

(b) Save: “I think

brown made a won-

derful fingertip save

there.”

(c) Throw: “If you

are defending a

lead, your throw

back takes it that

far up the pitch and

gets a throw-in.”

(d) Touch: “Look at

that, Henry, again,

he had time on the

ball to take another

touch and prepare

that ball properly.”

(e) Kick: “Lovely

kick.”

(f) Save: “And it

is a really chopped

save”

(g) Throw: “And

Carlos Tevez has

won the throw.”

(h) Touch: “Nice

touch”

(i) Kick: “Goal

kick.”

(j) Save: “Good

save as well.”

(k) Throw: “An-

other shot for a

throw.”

(l) Touch: “All

it needed was a

touch.”

(m) Kick:

“Karagounis’

free kick on to the

head of no question,

he had the job done

before he slipped”

(n) Save: “Good

save , though , by

Trinidad Tobago.”

(o) Throw: “Quick

throw in, fines.”

(p) Touch: “When

they are going to

pass it in the back,

it is a really pure

touch.”

Figure 1.1: Examples of class ‘kick’, ‘save’, ‘throw’, and ‘touch’ along with their

associated captions.
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soccer videos: kick, save, throw and touch. Sample captioned clips are shown in

Figure 1.1. The system then finds these keywords (and their morphological vari-

ants) in captions of a video corpus and extracts video clips surrounding each re-

trieved caption. Although captions in sports video are useful clues about activities

in video, they are not definitive. Apart from the events in the game, sportscasters

also talk about facts and events that do not directly refer to current activities. For

example, a sportscaster might say ‘He scored a great goal in the last game’. There-

fore, the labeled data collected in this manner is very noisy. However, we show that

there is enough signal in captions to train a useful activity recognizer. Although the

accuracy of the weakly-trained recognizer is quite limited, it can be used to rerank

the caption-retrieved clips to present the most likely instances of the desired activ-

ity first. We present results on real soccer video showing that this approach can

use video content to improve the precision of caption-based video retrieval without

requiring any additional human supervision. Though we present our experiments

on soccer games, we believe the approach is generic as it does not use previous

knowledge of the game, such as structure of the soccer game.

To further increase precision, we also propose using a word-subsequence

kernel (Bunescu & Mooney, 2005; Lodhi, Saunders, Shawe-Taylor, Cristianini, &

Watkins, 2002) to classify captions as to whether or not they actually refer to a

current event. The classifier learns subsequences of words indicating a description

of a current event versus an extraneous comment. Training this classifier requires

some human labeling of captions; however this process is independent of the ac-

tivities to be recognized and only needs to be done once for a given domain, such

4



as sportscasting. To show this generality, we present experimental results showing

transfer learning from soccer captions to baseball captions, when the classifier is

trained on soccer captions and a part of baseball captions and tested on rest of the

baseball captions. Transfer learning aims to improve accuracy on a target domain

by using knowledge acquired while learning on the source domains (Thrun & Pratt,

1998).

The caption classifier ranks captions based on its prediction whether or not

they refer to an event. Our results on video retrieval show that using this caption

classifier to rerank retrieved clips to prefer those commenting on a current event also

improves precision. Finally, we also show that combining the weakly-trained video

classifier and the caption classifier improves precision more than either approach

alone.

Our main contribution is a system to retrieve and ‘weakly’ label video clips

using closed captions, and to integrate a video activity classifier trained using the

weakly labeled video clips with a novel caption classifier. Earlier approaches have

focussed on either activity recognition using manually labeled video clips, or ac-

quiring the labeled data using scripts associated with videos. Scripts are detailed

description of scenes and actions, in addition to the dialogues in the video. An

example of script text is shown in Table 1.1 (see Laptev et al., 2008). As we can

see, the description ‘Rick sits down with Ilsa’ is a very strong cue for a sitting

action. Scripts, however, are not available for most of the videos, for example,

sports videos. We show in this thesis that the closed captions associated with such

videos provide enough information about the activities, and can be effectively used
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Rick: Why weren’t you honest with me? Why did you keep your marriage a secret?

01:20:17 - 01:20:23 Rick sits down with Ilsa.

Ilsa: Oh, it wasn’t my secret, Richard. Victor wanted it that way.

Not even our closest friends knew about our marriage.

Table 1.1: An example of dialogues and detailed description of actions in a script.

Script, though a valuable cue, is not available for most of the videos, for example,

sports videos.

to build a useful retrieval system. Our approach can acquire weakly labeled video

clips without using scripts, and we present out results on closed captioned soccer

videos.

A pictorial overview of the complete system is shown in Figure 1.2. First,

videos clips are retrieved and automatically labeled using the closed captions. We

then build a video classifier using the labeled set. A caption classifier is separately

built using labeled closed captions. During testing, given a query and a video, we

retrieve clips using the closed captions and rank them using the video classifier and

the caption classifier.

The rest of the thesis is organized as follows: Chapter 2 discusses related

work, Chapter 3 provides some background needed in remainder of the thesis,

Chapter 4 presents our approach, Chapter 5 describes our experimental method-

ology and results, and Chapter 6 and 7 present future work and conclusions.
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Chapter 2

Related Work

Activity recognition in videos has attracted significant attention in recent

years. In the past, activity classifiers were trained mainly using human labeled video

clips. Recently, there has been increasing interest in using textual and audio infor-

mation along with visual information for various tasks. Textual information can

be acquired from closed captions, scripts or meta-data such as tags, associated text

on the webpages. The textual cues can be used for improving video classification,

indexing and retrieval. In addition, they provide useful indication of labels of the

video clips. Researchers have recently begun to use such textual cues for obtaining

labels of associated videos. Closed captions is an interesting source given its ready

availability, but is nonetheless challenging due to the loose association between the

caption and video, and the inherent ambiguity of text. The activity recognition sys-

tems in literature can be mainly subdivided on the basis of supervision needed for

acquiring labels of videos. Supervision required by a activity recognition system is

a crucial issue because human labeling of videos is a very labor intensive task, and

as there has been a steep increase in amount of video generation, we need systems

to automatically annotate them. Next, we describe and contrast the related work

according to the supervision required by the systems.
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Human Supervision

Historically, human supervision is used for obtaining labels of video exam-

ples. Many researchers have developed activity recognizers using only visual cues

and hand-labeled video clips while training a video classifier (Blank et al., 2005;

Efros et al., 2003; Ke, Sukthankar, & Hebert, 2007; Schuldt et al., 2004; Wang,

Sabzmeydani, & Mori, 2007). Most of the activity classifiers can be broadly cate-

gorized into local and global approaches, described in detail in Section 3.1. Textual

information can also be incorporated by either training a multi-modal classifier that

uses both text and visual cues, or training a text classifier that classifies a clip just

on the basis of textual cues, again obtained from human labeled video clips. Labels

can also be acquired using semi-supervised classification techniques that require a

small set of labeled data and a large set of unlabeled data. The labeled data is mostly

obtained from human supervision. Gupta, Kim, Grauman, and Mooney (2008) used

captions and visual information in sports video as two views for semi-supervised

classification with co-training. Co-training assumes that each example is described

using two different feature sets that provide different, complementary information

about the instance. Closed captions and visual information can act as two different

‘views’ for co-training. Wang et al. (2007) proposed a semi-supervised recognition

model using latent topic models, where each frame in a video sequence corresponds

to a ‘word’. Though, human labeling is very reliable, it is costly and time consum-

ing.

9



Closed Captions and Additional Cues

Closed captions and additional cues, such as scripts and audio information,

can provide ‘weak’ labels for the video clips. Though the labels obtained are noisy,

they provide enough information to build a useful classification or retrieval sys-

tem. Everingham, Sivic, and Zisserman (2006), Laptev et al. (2008) and Cour et al.

(2008) incorporated visual information, closed-captioned text, and movie scripts

(with scene descriptions) to automatically annotate videos in movies and then use

them for classification, retrieval and annotation of videos. An example of script

text is shown in Table 1.1. Scripts provide detail description of scenes and actions.

These methods thus cannot be used for domains such as sports videos that do not

have associated scripts. Laptev et al. (2008) used captions and scripts of labeled

clips to learn a text classifier to identify whether the text corresponding to a clip

is representative of the clip activity. Then, using a set of extracted representative

clips, they trained a video classifier to classify human actions. Marszalek, Laptev,

and Schmid (2009) exploited contextual relationships between activities and static

objects like car, trees to improve accuracy of activity recognition and object detec-

tion. Cour et al. (2008) parsed a video into a hierarchy of shots and scenes using the

video’s script and closed captions. They then built a generative model for scene seg-

mentation, alignment and shot threading. Their work is again focussed on videos

that have associated scripts. Wang, Duan, Xu, Lu, and Jin (2007) use co-training

to combine visual and textual ‘concepts’ to categorize TV ads. They retrieved text

from videos using OCR and used external sources to expand the textual features.

10



Closed Captions

Closed captions alone can also provide weak supervision for obtaining la-

bels for video clips. It is especially important for videos that do not have associ-

ated scripts but have easily available closed captions. Recent work by Fleischman

and Roy is the most closely related prior research. Fleischman and Roy (2007a)

used both captions and motion descriptions for baseball video to retrieve relevant

clips given a textual query. Additionally, Fleischman and Roy (2007b) presented

a method for using speech recognition on the soundtrack to further improve re-

trieval. They used an unsupervised Author Topic Model, a generalization of La-

tent Dirichlet Allocation, to learn correlations between caption text and encoded

event representations. Unlike our approach, their system performed extensive video

preprocessing to extract high-level, domain-specific video features, like “pitching

scene” and “outfield”. Training these high-level feature extractors for preprocess-

ing videos required collecting human-labeled video clips. Babaguchi et al. (2002)

suggested event-based video indexing using collaborative processing of visual and

closed caption streams of sports videos. Their approach requires domain knowl-

edge of the sport to construct a tree structure required for describing events and the

sequence of keywords related to an event. Nitta, Babaguchi, and Kitahashi (2000)

annotated sports video by associating text segments with image segments. Their ap-

proach uses prior knowledge of the game and the key phrases generally used in its

commentary. Many researchers have worked on associating objects and scenes in

closed captioned news videos. Ozkan and Duygulu (2006) associated news videos

with words to perform scene and object recognition, but used keyframes for recog-

11



nition and thus did not use motion cues. Duygulu and Hauptmann (2004) associated

news videos with words and improve video retrieval performance using clustering

of shots and co-occurrence metric. Their work is expected to improve correspon-

dence accuracy between videos and captions. This approach is difficult to work with

videos recorded in less structured setting because clustering of shots in videos with

sheer variety in scale, zoom, background noise, such as sports videos, can result

in highly inaccurate clusters. Also, they used color histogram as a cue for clus-

tering, which cannot be used for activity recognition in sports videos since nearly

all sports-related shots have similar color histograms. Another interesting applica-

tion of using closed captions in TV broadcasts proposed by Buehler, Everingham,

and Zisserman (2009) is to learn sign language in TV videos using weakly aligned

closed captions.

In contrast to this prior work, our approach uses words in captions as noisy

labels for training a general-purpose, state-of-the-art, supervised activity recognizer

without requiring any human labeling of video clips. In addition, our work does not

need associated scripts, which are a rich source of explicit event descriptions, but

are not available for most videos. We also present a novel caption classifier that

classifies sentences in sports commentary as referring to a current event or not.

This caption classifier is generic and independent of the activities to be detected

and only requires humans to label a corpus of representative captions.

12



Chapter 3

Background

3.1 Activity Recognition in Videos

In this section, we will introduce two main types of approaches in activ-

ity recognition, and describe in detail the recognition system we use in our work.

Action or activity recognition in videos has similar problems as object recognition

in static images, such as illumination, different views, appearance and occlusion.

Apart from that, camera motion, zoom and quick change in the viewpoint add diffi-

culty to the problem. However, motion in a video can also act as an additional cue.

For example, the difference between jogging and running could be captured by tak-

ing variations in the time axis into account. Most of the approaches proposed in the

literature for activity recognition can be broadly divided into local patch based and

holistic approaches. Holistic approaches rely on global information like silhouettes,

body shapes, three dimensional shapes (e.g. Gorelick, Blank, Shechtman, Irani,

& Basri, 2007; Wang & Suter, 2007; Bobick & Davis, 2001). These approaches

require building complex models for recognizing body shapes and building three

dimensional models. On the other hand, local based approaches use information

from local patches and model significant variation in those patches (e.g. Schuldt

et al., 2004; Laptev, 2005; Willems, Tuytelaars, & Gool, 2008). These models can

provide a compact yet effective solution to action recognition. Figure 3.1 shows

13



Image Gradients Keypoint DescriptorFrame with detected

interest points

Figure 3.1: An example of local based interest point detector and descriptor.

an example of interest point detection and description using a keypoint descriptor,

such as SIFT (Lowe, 2004). SIFT descriptor is scale and rotation invariant, and

partially invariant to illumination changes, camera viewpoint, occlusion and clutter.

Selecting one approach over another is dependent on the dataset as holistic and lo-

cal approaches emphasize different aspects of activities (Sun, Chen, & Hauptmann,

2009). Local approaches are known to work better with datasets with high back-

ground noise and clutter as they focus on local motion instead of the figure shape.

Holistic approaches generally work better with datasets with less background noise

and more inter-class similarity as they focus on global information like figure shape.

Laptev (2005) introduced a local descriptor based approach for activity

recognition and later extended it in (Laptev et al., 2008). To detect spatio-temporal

events, Laptev et al. (2008) builds on Harris and Forstner’s interest point opera-

tors (Forstner & Gulch, 1987; Harris & Stephens, 1988) and detects local structures

where the image values have significant local variation in both space and time. They

estimate the spatio-temporal extent of the detected events by maximizing a normal-

14



ized spatio-temporal Laplacian operator over multiple spatial and temporal scales.

Specifically, the extended spatio-temporal “cornerness” H at a given point is com-

puted as introduced in Laptev (2005):

µ = g(.; σ2
i , τ

2
i ) ∗





L2
x LxLy LxLt

LxLy L2
y LyLt

LxLt LyLt L2
t



 (3.1)

H = det(µ) − k trace3(µ), (3.2)

where ‘∗’ represents convolution, g(.; σ2
i , τ

2
i ) is a 3D Gaussian smoothing kernel

with a spatial scale σ and a temporal scale τ , and Lx, Ly and Lt are the gradient

functions along the x, y and t directions, respectively. In Equation 3.1, µ represents

a second order spatio-temporal matrix. The points that have a large value of H are

selected as interest points. The interest points can be described by either Histogram

of Oriented Gradients, Histogram of Optical Flow, or both. We use this approach

to activity recognition for describing the activities in our dataset. We choose the

spatio-temporal interest point approach over a dense optical flow-based approach in

order to provide a scale-invariant, compact representation of activity in the scene.

We use bag-of-words approach for representing each video clip, as described in

Section 4.2.

3.2 Ensemble Learning

We use DECORATE, a ensemble classifier, for classifying video clips in our

system. Ensemble Learning combines multiple learned models under the assump-

tion that a diverse committee of learned models produces more accurate results.
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The final prediction on a test example aggregates the predictions of these multi-

ple learned models. Boosting (Freund & Schapire, 1996) and bagging (Breiman,

1996) are two popular approaches. Bagging uses different random subsamples of

the training data to generate multiple classifiers. Boosting, on the other hand, itera-

tively learns a sequence of classifiers, each one trained to overcome the mistakes of

the previous one. At each iteration, it assigns higher weights to examples that are

misclassified by the previous classifier, and adds a new classifier to the committee

trained on the reweighted examples.

DECORATE (Melville & Mooney, 2003) is an ensemble classifier that has

been shown to be superior to boosting and bagging when learning from training

sets that are small and/or noisy (Melville, Shah, Mihalkova, & Mooney, 2004). It

generates a diverse ensemble of classifiers using additional artificially-constructed

training examples. The algorithm generates ensembles iteratively using both the

original training data and a set of artificial data labeled by the algorithm itself in

the previous step. At each iteration, artificial data is generated from a simple prob-

abilistic model generated from the training data. These artificial examples are la-

beled such that the true labels differ maximally from the predictions of the current

ensemble. This ensures that the next member of the ensemble will disagree with

the current ensemble on these examples. The result is a very diverse committee

that generalizes well and prevents over-fitting. DECORATE is appropriate for our

problem setting because the labeled data are automatically obtained from captioned

videos and the labels are very noisy.
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3.3 Subsequence Kernel

We use a subsequence kernel based classifier for training the caption classi-

fier in our system. Kernel-based methods such as support vector machines (SVMs),

allow using a linear classifier to solve a non-linear problem by implicitly mapping

the examples into a higher dimensional space where they become linearly separable

(Cristianini & Shawe-Taylor, 2000). A kernel computes an inner product between

the mapped data points in a higher dimensional space. Intuitively, a kernel defines

a measure of similarity between two examples in this higher-dimensional space. A

subsequence kernel (Lodhi et al., 2002) measures the similarity of two strings by

computing an inner product in the feature space composed of all possible subse-

quences. A subsequence is any ordered sequence of tokens occurring either con-

tiguously or non-contiguously in a string. The similarity of two sequences is defined

as the total number of subsequences that they share. For example, the phrase ‘time

flies like an arrow’ is more similar to ‘time moves quickly just like an arrow’ than

‘an arrow moves quickly just like time’, and this similarity can be captured by a

subsequence kernel, which will find the common subsequence ‘time like an arrow’

between the first two phrases. The subsequences are weighted by an exponential

decay factor that penalizes longer subsequences.

The subsequences can be over multiple information sources, for example

words, characters, part-of-speech (POS) tags. Bunescu and Mooney (2005) pro-

posed a generalization of subsequence kernels that integrates information from mul-

tiple subsequence patterns, in the following way. Let Σ1, Σ2, ..., Σk be several dis-

joint feature spaces. In our work, Σ1 is the set of words and Σ2 is the set of POS

17



tags. Let Σ× = Σ1 × Σ2 × ... × Σk be the set of all possible feature vectors, where

a feature vector is associated with each word in a sentence. Given two feature vec-

tors x, y ∈ Σ×, let c(x, y) denote the number of common features between x and

y. Let s, t be two sequences over the finite set Σ×, and let |s| denote the length of

s = s1...s|s|. The sequence s[i:j] is the contiguous subsequence si...sj of s. Let

i = (i1, ..., i|i|) be a sequence of |i| indices in s, in ascending order. The length l(i)

of the index sequence i in s is defined as i|i| − i1 + 1. Similarly, j is a sequence of

|j| indices in t.

Let Σ∪ = Σ1∪Σ2∪ ...∪Σk be the set of all possible features. The sequence

u ∈ Σ∗
∪ is a (sparse) subsequence of s if there is a sequence of |u| indices i such

that uk ∈ sik , for all k = 1, ..., |u|. Equivalently, u ≺ s[i] is defined as a shorthand

for the component-wise ‘∈‘ relationship between u and s[i].

They define Kn(s, t, λ), shown in Equation 3.3, as the number of weighted

sparse subsequences u of length n common to s and t (i.e. u ≺ s[i], u ≺ t[j]),

where the weight of u is λl(i)+l(j), for some λ ≤ 1. λ is a decay factor that penalizes

longer subsequences.

Kn(s, t, λ) =
∑

i:|i|=n

∑

j:|j|=n

n
∏

k=1

c(sik , tjk
)λl(i)+l(j) (3.3)

Since subsequences of words take word order into account, a subsequence

kernel can exploit syntactic cues unavailable to a standard unordered “bag of words”

text classifier (Sebastiani, 2002); therefore, we found in our experiments that it ob-

tained superior accuracy for determining caption relevance. In our example above,
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a bag-of-words based similarity measure will give equal score to both ‘time moves

quickly just like an arrow’ and ‘an arrow moves quickly just like time’.
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Chapter 4

Approach

We first describe our procedure for automatically collecting labeled clips

from captioned videos. We then explain the encoding of videos using motion de-

scriptors and how to use them to train a video classifier. Next, we describe our

caption classifier, and finally we explain the overall system for retrieving and rank-

ing relevant clips.

4.1 Automatically Acquiring Labeled Data

Videos, particularly sports broadcasts, generally have closed captions that

provide weak supervision about activities in the corresponding video. We use a

simple method for extracting labeled video clips using these captions. Captions in

sports broadcasts are frequently broken into overlapping phrases. We first recon-

struct full sentences from the stream of closed captions using a simple heuristic.

Next, we identify all closed-caption sentences in a soccer game that contain exactly

one member of a given set of activity keywords (currently, save, kick, touch, and

throw). We also match alternative verb tenses, for example save, saves, saved, and

saving. In our experiments, the number of potential clips that are rejected because

their captions contained multiple query terms was about 2%, and thus constraining
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the system to choose clips with exactly one keyword in their captions does not affect

the system much. We then extract a fixed-length clip around the corresponding time

in the video. In our dataset, we qualitatively found that extracting 8 second clips

mostly captures activities in the videos. In live sports broadcasts, there is a signifi-

cant lag between the video and the closed captions. We correct the correspondence

between the caption timestamp and the video time to account for this lag. Each

clip is then labeled with the corresponding keyword. For example, if the caption

“What a nice kick!” occurs at time 00:30:00, we extract a clip from time 00:29:56

to 00:30:04 and label it as ‘kick’. The algorithm for acquiring labeled clips could

be made more sophisticated by exploiting additional linguistic and visual informa-

tion, but our results demonstrate that even this simple approach suffices to obtain

useful results. Given a large corpus of captioned video, this approach can quickly

assemble many labeled examples with no additional human assistance.

4.2 Motion Descriptors and Video Classification

Next, we extract visual features from each labeled video clip and represent

it as a “bag of visual words.” We use features that describe both salient spatial

changes and interesting movements. In order to capture non-constant movements

that are interesting both spatially and temporally, we use the spatio-temporal motion

descriptors developed by Laptev et al. (2008) (see Section 3.1). These features are

shown to have worked well with human activity recognition in real-world videos

(Laptev & Perez, 2007; Laptev et al., 2008; Marszalek et al., 2009). In addition,

this approach can be used for detecting activities in many domains as it does not
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(a) kick (b) save

(c) throw (d) touch

Figure 4.1: Example frames from the four query classes with detected motion fea-

tures

use any domain-specific features or prior knowledge of the game.

As described in Section 3.1, first a set of interest points are extracted from a

video clip. At each interest point, we extract a HoG (Histograms of oriented Gradi-

ents) feature and a HoF (Histograms of optical Flow) feature computed on the 3D

video space-time volume. The patch is partitioned into a grid with 3x3x2 spatio-

temporal blocks. Four-bin HOG and five-bin HoF descriptors are then computed
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for all blocks and concatenated into a 72-element and 90-element descriptors, re-

spectively. We then concatenate these vectors to form a 162-element descriptor. A

randomly sampled set of the motion descriptors from all video clips is then clustered

to form a vocabulary or “visual codebook”. We use K-means (k=200) with 117,000

feature vectors sampled randomly from the corpus of clips. Finally, a video clip is

represented as a histogram over this vocabulary. The final “bag of visual words”

representing a video clip consists of a vector of k values, where the i’th value rep-

resents the number of motion descriptors in the video that belong to the i’th cluster.

Figure 4.1 shows example frames of query classes with detected motion features.

We can see that the motion features are detected mostly on the interesting and useful

patches. However, when the players are very small in size and there is background

clutter, many interest points are detected in the background as well.

We then use the labeled clip descriptors to train an activity recognizer. The

activity recognizer takes a video clip as input and classifies whether it belongs to the

output action category. We tried several standard supervised classification methods

from WEKA (Witten & Frank, 2005), including SVMs and bagged decision trees.

However, we obtained the highest accuracy with DECORATE, an ensemble algo-

rithm that has been shown to perform well with small, noisy training sets (Melville

& Mooney, 2003; Melville et al., 2004) (see Section 3.2).

The high degree of noise in the automatically extracted supervision made

DECORATE a particularly successful method. We use WEKA’s J48 decision trees

as the base classifier for both DECORATE and bagging. We use an RBF kernel

(γ=0.01) for SVMs. We build a binary classifier for each activity class, consider-
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ing the automatically labeled clips for that class as positive examples and clips that

belong to other classes as negative examples. We also tried multiclass classifiers,

but they gave inferior performance. This is expected since generally binary classi-

fication (one-against-all) performs better than multiclass (one-against-one) classifi-

cation.

Our approach creates a category model and one can retrieve and rank video

clips in a dataset for each category concept. In a real life application system, the

system needs to have pre-specified finite number of categories, which is realistic in

most domains.

4.3 Identifying Relevant Captions

Sportscaster commentaries often include sentences that are not related to the

current activities in the video. These sentences introduce noise in the automatically

labeled video clips. For example, if one of the captions is “They really need to win

this game to save their reputation.”, the algorithm will extract a clip corresponding

to this sentence and label it as a ‘save’, which is obviously a mistake. Therefore,

we also train a caption classifier that determines whether or not a sentence actually

refers to a current event in the video. When training the classifier, we use sample

caption sentences manually labeled as relevant (1) or irrelevant (0). Examples of

labeled captions are shown in Table 4.1. We expect the system to learn that sub-

sequences like ‘last game’, ‘this weekend’, ‘needed touch’ are irrelevant to events

going on in the video, and subsequences like ‘earns kick’, ‘first touch’, ‘gets ball’,

‘conceding this time’ are relevant. As explained in Section 3.3, a subsequence ker-
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Sentence Label

Beautiful pull-back. 1

Not only goals , but experience in the Germans’ favor but this is the semifinal. 0

That is a fairly good tackle. 1

I think I would have saved that myself. 0

Turkey can be well-pleased with the way they started. 0

Mcgeady gets the ball and works it into a nice shot

and Van der sar comes across and makes a beautiful save. 1

They scored in the last kick of the game against the Czech Republic. 0

Got kicked in the face. 0

And Dempsey , with the first touch. 1

Gary Neville conceding the throw this time. 1

Mehmet Aur Elio , all it needed was a touch from Semih Senturk. 0

Cuba earns a corner kick. 1

Got kicked in the face. 0

Pushed ahead, Bradley . 1

Galaxy and other teams missing prominent player this weekend

because of world cup qualifying. 0

Mertesacker getting in the way. 1

Conversation going on . 0

Throwing here for cuba . 1

Take your time when you are throwing. 0

Beautifully placed to Philipp Lahm. 1

Table 4.1: Some examples of captions with their labels in our dataset. Label ‘1’

means that the caption is relevant to some event in the game.
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nel is apt for learning such subsequences, which otherwise is not captured by most

commonly used bag-of-words approach. An n-gram model, which uses n-1 words

of prior context, might perform better than bag-of-words in this scenario. N-gram

models have been used in speech recognition, OCR recognition etc. But we expect a

subsequence kernel to outperform an n-gram based approach. The reason is that an

n-gram approach cannot skip words and needs proper smoothing for rarer phrases.

For example, the number of common 2-grams in ‘kick ball’ and ‘kick the ball’ is

zero. On the other hand, the phrases share the subsequence ‘kick ball’, though the

similarity score of the subsequence kernel will be penalized for skipping a word.

We use an SVM string classifier that uses a subsequence kernel (Lodhi et al.,

2002), which measures the number of subsequences shared by two strings (see Sec-

tion 3.3). We use two subsequence patterns: word subsequences and Part-of-Speech

(POS) subsequences. The Stanford POS tagger (Toutanova, Klein, Manning, &

Singer, 2003) was used to obtain POS tags for each word and we used LibSVM

(Chang & Lin, 2001) to learn a probabilistic caption classifier using this kernel.

Note that the caption classifier is trained once and is independent of the

number or type of activities to be recognized. Also, humans labeled the captions

in the training data without viewing the corresponding video. This may introduce

some noisy supervision but avoids the additional human burden of watching the

video. One might expect to need both video and text association while labeling the

captions but as can be seen from the captions in Table 4.1, labels of the captions are

pretty intuitive, especially when labeling them sequentially.
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4.4 Retrieving and Ranking Videos

Given a new soccer game, our task is to retrieve video clips that contain

a particular activity and present them in ranked order from most to least relevant.

Given an activity keyword, we first retrieve videos using the captions alone as ex-

plained in Section 4.1. As previously mentioned, we have considered four queries:

kick, save, throw and touch. For each query i, a set of clips Si are retrieved from the

game. The goal is to rank the clips in Si so that the truly relevant clips are higher in

the ordered list of retrievals. The ranking is evaluated by comparing it to a correct

human-labeling of the clips in Si. Note that we use human-labeled video clips only

to evaluate the quality of ranked retrievals.

One way to rank clips is to just use the automatically trained video clas-

sifier (called VIDEO). The video classifier assigns a probability to each retrieved

clip (P (label|clip)) according to the confidence it has that the clip belongs to the

particular class, and the clips are ranked according to this probability. Another way

to rank the clips is to just use the caption classifier (called CAPTION). The caption

classifier assigns a probability (P (relevant|clip-caption)) to each clip based on

whether its corresponding caption is believed to describe an event currently occur-

ring in the game. The classifier is expected to assign a higher probability to relevant

clips. Since these two approaches use different information to determine relevance,

we also aggregate their rankings using a linear combination of their probability

assignments (called VIDEO+CAPTION):

P (label|clip with caption) = αP (label|clip)

+(1 − α)P (relevant|clip-caption)
(4.1)
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The value of α is determined empirically as described in Section 5.2.
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Chapter 5

Experiments

5.1 Dataset

Our primary dataset consists of 23 soccer games recorded from live tele-

casts. These games include corresponding time-stamped captions. Each game is

around 1 hour and 50 minutes with an average of 1,246 caption sentences. The

difficulty and diversity of the dataset can be seen from Figure 1.1. There is a wide

difference in camera angle and zoom among the clips for a category. Sometimes, the

players are so small that even humans have difficulty in labeling the clips. Also, in

some clips, the activity is occluded and the background noise is very high. Compare

the examples of our dataset in Figure 1.1 from the ones from KTH and Weizmann

dataset shown in Figures 5.2 and 5.3. KTH and Weizmann datasets are recorded in

simplified settings with little or no camera motion and the size of objects do not vary

much. We extracted clips for four activity keywords: {kick, save, throw, touch},

as discussed in Section 4. The total number of clips extracted was 624. For eval-

uation purposes only, we manually labeled this data to determine the correct clips

for each class, i.e. ones that actually depict the specified activity. For each category

class, a set of video clips are retrieved from the video dataset, and they are labeled

with the category label if they depict the corresponding activity, irrespective of the

fact that some of them have multiple activities. For example, if a clip is retrieved
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for category class ‘save’ and it has both ‘save’ and ‘kick’ activities, it is labeled

‘save’. However, if the clip depicts only a kicking event, it is labeled ‘kick’. If

a clip doesn’t depict activities any of the categories, then it is labeled incorrect.

The system itself never uses these gold-standard labels. Figure 5.1 shows the the

number of correct and incorrect clips for each class. Note that the automatically

labeled data extracted using captions is extremely noisy. We can see that the noise

level (percentage of clips that are not correct) is particularly high for classes kick

and throw. The query class ‘kick’ has most noise, interestingly because apart from

unrelevant captions, ‘kick’ word is generally used to convey two meanings in soc-

cer commentary: kicking of a ball and kicking of a person. We are considering the

former meaning for the query ‘kick’.
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Figure 5.1: The number of total number of clips for each category, and indicating

the number of correct and incorrect clips

The caption classifier is trained using a disjoint set of four games. Each
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(a) Walking (b) Boxing (c) Jogging (d) Waving

Figure 5.2: Examples from KTH dataset for four classes. Note that all examples

are recorded in simplified and less noisy settings.

(a) Skip (b) One hand wave (c) Two hand wave (d) Robust

Figure 5.3: Examples from Weizmann dataset. There is no camera motion and there

is very less viewpoint and zoom change.

sentence in the text commentary of these games is manually labeled as relevant or

irrelevant to the current activity in the game. To reduce human time and effort,

this labeling is performed without examining the corresponding video. All 4,368

labeled captions in this data are used to train the caption classifier. The dataset

consists of 1,371 captions labeled as relevant.

5.2 Methodology

We performed experiments using a leave-one-game-out methodology, anal-

ogous to k-fold cross validation. In each fold, we left out one of the 23 games for
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testing and used the remaining 22 games for collecting automatically labeled data

for training the video classifier. To select the value for α in Equation 4.1, in ev-

ery fold, we randomly selected two games in the training set as a held out set and

trained on the remaining games. We then selected the value of α that performed

the best on the held-out portion of the training data and finally retrained on the full

training set and tested on the test set. We also tried selecting different α for different

classes but unexpectedly it gave worse performance. The intuition behind learning

different α for each class is that for some classes the video classifier might perform

better than the caption classifier and vice-versa for the other classes.

For each query (kick, save, throw, touch), we retrieve and rank clips in the

test game as explained in Section 4.4. We measure the quality of a ranking using

Mean Average Precision (MAP), a common evaluation metric from information

retrieval that averages precision across all levels of recall for a given set of ranked

retrievals (Manning, Raghavan, & Schütze, 2008). If the set of retrieved clips for

a query qi ∈ Q is {clip1, clip2, ..., clipmi
} and Lik is the subset of the k highest-

ranked clips, then

MAP (Q) =
1

|Q|

|Q|
∑

i=1

1

mi

mi
∑

k=1

Precision(Lik)

where Precision(Lik) is defined as ratio of the number of correct clips in Lik over

the total number of clips in Lik. We compare our approach to a simple baseline

in which the clips are ranked randomly (called BASELINE). BASELINE doesn’t

depend on the video classifier. We also compare our system to an idealized version

in which the video classifier is trained using only the correct clips for each category
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as positive examples as determined by the human labeling (called GOLD-VIDEO).

5.3 Results

Ranking using the Video Classifier

Classifier DECORATE Bagging SVM

BASELINE 65.68 65.68 65.68

VIDEO 70.749 69.31 66.34

GOLD-VIDEO 67.8 70.5 67.20

Table 5.1: Retrieval Results: MAP scores when ranking the retrieved clips using a

video classifier.

Classifier DECORATE SVM

Majority Class Baseline 33.9 33.9

VIDEO 19.8 28.18

GOLD-VIDEO 20.4 31.30

Table 5.2: Classification Results: Macro-average F-measure of the video classifiers

and baseline when classifying video clips.

Table 5.1 shows MAP scores for ranking the clips using the video classifier

trained using different learning methods. VIDEO performs ~5 percentage points

better than the baseline when DECORATE is used, which is the best classifier due

to its advantage for noisy training data (see Section 3.2). One interesting result

is that, when using DECORATE, VIDEO even performs better than GOLD-VIDEO.

For Bagging and SVM, GOLD-VIDEO performs better than VIDEO, as expected.

We suspect the reason why VIDEO performs better when using DECORATE is be-

cause the noise in the training examples actually helps build an even more diverse
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ensemble of classifiers, and thereby prevents over-fitting the gold-standard training

examples in the data. VIDEO with SVM performs the worst. To avoid overfitting

in SVM, we tried several values of the regularization parameter (C) and present the

best results. Since bagging is also known to be fairly robust to noise, we suspect

that SVM is overfitting the highly-noisy training data. In rest of the retrieval results,

the video classifier is trained with DECORATE since it performs the best.

Video Classifier The video classifier can also be used for classifying video clips.

Table 5.2 shows macro-average F-measure (see Manning et al., 2008) of the clas-

sifiers in one-against-all class classification with leave-one-game-out cross valida-

tion. The majority class baseline means all clips are labeled with the class that has

the most number of examples, and it is stronger than the random baseline. For ex-

ample, if in a binary classification task there are 70% negative examples, then the

majority class baseline will give 70% accuracy, as it will label all clips as nega-

tive. As can be seen, the video classifier performs worse than the majority class

baseline; however as shown earlier, it is still useful for improving ranking of clips

within each class. For classification, SVM performs better than DECORATE and

Gold-Video performs better than Video. This shows that the probability predictions

by DECORATE used for ranking are better than SVM even if the binary classifica-

tion predictions are worse.

Ranking using the Caption Classifier

As explained in Section 4.4, the caption classifier can also be used to rank

results. The MAP score for ranking with the caption classifier is shown in Table 5.3.
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Approach MAP

BASELINE 65.68

CAPTION 70.747

VIDEO 70.749

VIDEO+CAPTION 72.11

GOLD-VIDEO+CAPTION 70.53

Table 5.3: MAP measures for different approaches

Approach Accuracy

Majority Class Baseline 69.02

Bag-of-Words 69.07

WORD SSK 79.26

WORD+POS SSK 79.81

Table 5.4: Classification accuracy of the caption classifier, when trained and tested

using leave-one-game-out on labeled captions from four games (which are disjoint

from the primary dataset)

CAPTION performs ~5 percentage points better than the baseline, demonstrating the

value of using linguistic knowledge to decide whether or not a caption describes an

ongoing event. It is interesting to note that VIDEO and CAPTION perform almost

the same, although they are trying to capture different aspects.

Caption Classifier The caption classifier performs reasonably well on the classifi-

cation task as well. The classification methodology was leave-one-game-out on the

four games that were used to build the final caption classifier. As Table 5.4 shows,

the classification accuracy of an SVM with a subsequence kernel that includes word

and POS subsequences. (WORD+POS SSK) is 79.81%, compared to a subsequence

kernel that uses just word subsequences (WORD SSK) and to a baseline of 69.02%
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Sentence Label

That bull is hit deep into left center field. 1

Penny used to be much more of a strikeout pitcher. 0

A fastball for a strike. 1

When he went out of the lineup, he was batting. 0

Jason Marquis , only the first batter he faced

has been able to reach base against him. 0

Penny throws the fastball on the inside corner

and Derosa hits the line drive right out of here. 1

I think he is under rated as a pure hitter. 0

And not a bad pitch. 1

Table 5.5: Some examples of captions from the baseball test set. Label ‘1’ means

that the caption is relevant to some event in the game.

Approach Training Dataset Accuracy

Majority Class Baseline Soccer and Baseball 69.23

Bag-of-Words Soccer and Baseball 66.39

WORD SSK Soccer and Baseball 72.07

WORD+POS SSK Soccer and Baseball 66.69

WORD SSK Soccer 71.97

WORD SSK Baseball 67.59

Table 5.6: Classification accuracy of the caption classifier, when trained on soccer

captions and tested on baseball captions

when all captions are labeled with the majority class. The results also show that

the subsequence kernel that uses just the words outperforms the baseline by around

10% accuracy. Using an SVM with a bag-of-words approach gave similar results

as the baseline, signifying the importance of word order and subsequences. In our

video retrieval experiments, we used WORD+POS subsequence kernel, though we

expect similar results with WORD subsequence kernel.

To show generality of the caption classifier across different datasets, we use
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the caption classifier to classify baseball captions when it was trained on soccer cap-

tions and optionally a small number of baseball captions. The content of both sports

commentary are quite different as seen from Table 4.1 and Table 5.5, as sportscast-

ers tend to use sports-specific words and comments. The baseball dataset consists of

985 hand labeled captions from a baseball game labeled as ‘relevant’ or ‘irrelevant’.

Table 5.6 shows results of transfer learning from soccer captions to baseball cap-

tions. Transfer learning is generally performed using a large set of out-of-domain

data and a small or empty set of in-domain data. The training set consisted of all

the labeled soccer captions (4368 examples) and a part of baseball captions dataset.

The baseball dataset was split and tested using five-fold cross validation (that is,

in each iteration, data in four folds was added to the training dataset and the other

fold was used for testing). In the table, ‘Soccer and Baseball’ refers the case when

both soccer and baseball captions are used while training the classifier. ‘Soccer’

refers when only soccer captions (out-of-domain dataset) was used while training

and similarly ‘Baseball’ refers when only baseball captions (in-domain dataset) was

used. WORD SSK using Soccer and Baseball dataset performs the best signifying

the importance of word order and transfer learning. On the other hand, using subse-

quences of Part-of-Speech tags hurts the performance as WORD+POS SSK doesn’t

perform well. As can be seen, WORD SSK using the Baseball dataset performs

worse than the baseline because it had very few examples in the training set. It is

interesting to note that WORD SSK using only the Soccer dataset performs better

than most of the other classifiers even though the training set does not contain a

single example from the baseball domain. Table 5.7 shows a part of test results of
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classifying baseball captions along with the captions true labels, when the classifier

is trained only on soccer captions. We can see that the subsequence kernel predicts

captions with subsequences such as ‘left center’, ‘runner going’, ‘hits line’, ‘watch

upper body’ as relevant and with subsequences such as ‘sunday night’, ‘has been

able’, ‘this year’ as irrelevant. The results and examples presented in Tables 5.6

and 5.7 show that the caption classifier is trying to detect a very abstract linguistic

property (depiction of a current event) and it should generalize fairly well to other

domains as well. An interesting mistake by the caption classifier in Table 5.7 is

classifying ‘He got hit with a shot hit right back at him by Derrek Lee.’ as relevant.

The caption seems relevant to humans too, however, it is irrelevant because the

sportscaster was discussing an injury that happened in a previous game. We hope

that an approach that uses preceding and succeeding captions while classifying a

caption might help.

Aggregating the rankings
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Figure 5.4: MAP scores for each query using different approaches
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Sentence True Label Predicted Label

And to left center. 1 1

Brad Penny hit on the left toot with aline

drive in the first inning. 1 1

The runner going, the ball is popped up. 1 1

Aramis Ramirez takes a ball. 1 1

And that is down the left field line. 1 1

One ball, one strike, the count to him. 1 1

Penny throws the fastball on the inside corner and

Derosa hits the line drive right out of here. 1 1

Cedeno hitting a shot. 1 1

Watch the upper body. 1 1

This was during the first inning. 0 0

Kent who at age 40 can get around on anybody is fastball. 0 0

He always has been able to hit. 0 0

He has had 22 this year and only thrown out 6 times. 0 0

Sunday night baseball from dodger stadium, Los Angeles. 0 0

Throw strikes . 1 0

And Ronny Cedeno throws him out . 1 0

Marquis is a good hitter, as well . 0 1

He got hit with a shot hit right back at him by Derrek Lee. 0 1

Table 5.7: Baseball captions along with their true and predicted labels when the

classifier is trained only on soccer captions.
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Ranking using VIDEO Ranking using CAPTION Ranking using VIDEO +CAPTION

MAP score = 73.33 MAP score = 67.91 MAP score = 80.41

α = 0.3

"Clip1 $Clip7: Lovely touch.
"Clip1: Just trying to

touch it on.

↓ ↓ ↓

$Clip2
"Clip1: Just trying to

touch it on.
$Clip7: Lovely touch.

↓ ↓ ↓

$Clip4
"Clip6: Just touched on

by Nani.

"Clip6: Just touched on

by Nani.

↓ ↓ ↓

"Clip6
$Clip2: If he had not

touched it.

$Clip2: If he had not

touched it.

↓ ↓ ↓

$Clip7
$Clip4: I do not think it

was touched.

$Clip4: I do not think it

was touched.

Table 5.8: Rankings, from most relevant to least relevant, using VIDEO, CAPTION

and VIDEO +CAPTION for class ‘touch’ and the respective MAP scores for the

query, for a test game. A check mark means according to the ground-truth labels,

the clip is relevant to the query class and a cross mark means it is not.
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The rankings of the video and caption classifiers leverage two different

sources of information, visual and linguistic, respectively. Table 5.3 shows that

combining the two sources of information (VIDEO and CAPTION) increases the

MAP score another ~1.5 percentage points over the individual classifiers and ~6.5

percentage points over the baseline. All results in Table 5.3 are statistically signifi-

cant as compared to BASELINE on a one-tailed paired t-test with a 95% confidence

level. The average value of α, computed by cross-validation on the held-out set

(see Section 4.4 and Section 5.2), over all the games is 0.46. Figure 5.4 shows

MAP scores for each of the four queries when using different approaches. Some-

times there are no correct instances of a query in a game and the corresponding

MAP score becomes NaN . Note that since we ignore NaN values when averag-

ing MAP scores across the folds of the leave-one-game-out cross-validation, the

final MAP score is not exactly equal to the average of the MAP scores of the indi-

vidual queries shown in Figure 5.4. We can see that VIDEO+CAPTION improves

the MAP score most for the query ‘touch’, and least for ‘kick’. This is expected

since noise in the automatically labeled data was highest for ‘kick’ and lowest for

‘touch’(see Figure 5.1).

Table 5.8 shows MAP scores and rankings (from most to least relevant)

produced by VIDEO, CAPTION, and VIDEO+CAPTION for the query ‘touch’ for

a particular test game. There were seven clips extracted from the game for the

given query. Two clips got same rankings by all three approaches and are thus not

shown in the table. For the test game, α computed as 0.3 was used for aggregating

the rankings. As expected, the MAP score for VIDEO+CAPTION is higher than
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VIDEO and CAPTION individually. The example clearly shows that the VIDEO

and CAPTION classifiers leverage different information, and that aggregating them

produces better results. For example, even though VIDEO incorrectly ranks Clip2

and Clip4 fairly high, CAPTION gives them low rank, thus decreasing their rank

in VIDEO+CAPTION. Similarly, Clip7 was incorrectly ranked the highest by CAP-

TION, but VIDEO gives it a low rank, pushing its rank down when they are aggre-

gated. Clip7, corresponding to the caption ‘lovely touch’, is not actually relevant

to the query ‘touch,’ since commentators were discussing an event that happened

several seconds back and the video clip did not actually capture the event.
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Chapter 6

Future Work

Exploiting the multi-modal character of captioned videos is a vast and little-

explored area, and there are many areas ripe for further investigation. Improving

the supervised activity recognizer is a major area for future research. A promising

approach is to preprocess the video to remove background clutter and focus on the

activity of the players on the field. By focusing the activity recognizer on player

actions, we believe accuracy could be significantly improved.

Since our best video classifier that is trained using noisy caption-based la-

beling already out-performs one trained on gold-standard data, it is not surprising

that we found no improvement when using the video and/or caption classifier to

automatically “clean” the caption-labeled data prior to training. However, given a

better activity recognizer, we believe that using linguistic and video analysis to re-

move some of the false positives from the training data would further improve the

results.

We have shown that our approach improves the precision of a caption-based

video retrieval system by reranking clips that were retrieved using the captions

alone. To further improve precision, it will be interesting to learn temporal patterns

of keywords (Babaguchi et al., 2002) associated with an event from the captioned
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video data. On the other hand, improving recall would require scanning the entire

video with a trained activity recognizer in order to extract additional clips that are

not accompanied by the corresponding activity keyword. Unfortunately, this is a

computationally expensive process, and properly evaluating recall would require

the laborious task of manually labeling all of the relevant events in the entire video.

Therefore, we have left this aspect of the evaluation to future research.

To improve recall, we could also use the video classifier to label other video

clips that do not have the query class keywords in their captions, and then use

captions of the newly classified video clips to learn a text classifier that can classify

captions of video clips that whether or not they are instances of the target. It will

be similar to the text classifier introduced in (Laptev et al., 2008), except that this

would not require any labeled video clips. This, however, requires a video classifier

that would classify human activities having high clutter and background noise with

high accuracy and is thus left to future research in human activity classification.

The caption classifier currently classifies each caption separately. We ex-

pect that a classifier that takes preceding and succeeding captions into account will

perform better for some cases. When commentating on sports videos, sportscast-

ers generally discuss relevant and irrelevant events in sequence and including the

context might improve the classifier.

Another promising direction is to exploit temporal relations between activ-

ities to improve the video classifier as well as help collect more labeled data. For

example, the probability of a video clip being a ‘save’ should be higher if we know

that the clip preceding it in time is a ‘kick’. Hidden Markov Models and Con-

44



ditional Random Fields are known for modeling sequences and might be used to

model these temporal relations.
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Chapter 7

Conclusion

In this thesis, we have shown that closed captions can be used to automat-

ically train an video activity recognizer without requiring any manual labeling of

video clips. We have also demonstrated that this activity recognizer can be used

to improve the precision of caption-based video retrieval. Our experiments show

that DECORATE performs really well for video datasets having ‘noisy’ labels. In

addition, we have shown that training a caption classifier to identify captions that

describe current activities can improve precision even further. We also show that

the caption classifier generalizes well across other sports domains. The encouraging

results from aggregating video retrieval rankings from the video and caption clas-

sifiers further indicates that exploiting the multimodal nature of closed-captioned

video can improve the effectiveness of activity recognition and video retrieval ap-

proaches.
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