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A diverse set of intelligent activities, including natural language under-
standing, diagnosis, and scientific theory formation, requires the ability to construct
explanations for observed phenomena. In this thesis, we view explanation as ab-
duction, where an abductive explanation is a consistent set of assumptions which,
together with background knowledge, logically entails a set of observations.

To explore the practical feasibility of such a general abductive approach to
explanation, we have successfully built a domain-independent system called ACCEL.
In our system, knowledge about a variety of domains is uniformly encoded in first-
order Horn-clause axioms. A general-purpose abduction algorithm, AAA, efficiently
constructs explanations in the various domains by caching partial explanations to
avoid redundant work. Empirical results show that caching of partial explanations
can achieve more than an order of magnitude speedup in run time, We have applied
our abductive system to two general tasks: plan recognition in text understanding,
and diagnosis of medical diseases, logic circuits, and dynamic systems. The results
indicate that ACCEL is a general-purpose system capable of plan recognition and
diagnosis, yet efficient enough to be of practical utility, ' '

In the plan recognition domain, we defined a novel evaluation criterion,
called ezplanatory coherence, and tested ACCEL on 50 short narrative texts. Empir-
ical results demonstrate that coherence is a better evaluation metric than simplicity
in the plan recognition domain, and that our system is sufficiently general to be able
to handle similar plan recognition problems not known to the system developer in
advance. : '

In medical diagnosis, we prove that ACCEL computes the same diagnoses as
the GSC model of Reggia, and present empirical results demonstrating the efficiency
of AccEL in diagnosing 50 real-world patient cases using a sizable knowledge base
with over six hundred symptom-disease rules.

ACCEL also realizes model-based diagnosis, which concerns inferring faults
from first principles given knowledge about the correct structure and behavior of a
system. ACCEL has successfully diagnosed logic circuits (a full adder) and dynamic
systems (a proportional temperature controller and the water balance system of the
human kidney). '
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Chapter 1

Introduction

Finding explanations for events and actions is an important aspect of gen-
eral intelligent behavior. A diverse set of intelligent activities, including natural
language understanding, diagnosis, scientific theory formation, and image interpre-
tation, requires the ability to construct explanations for the phenomena observed.
For instance, in text understanding, a reader infers the high-level goals and plans
of the characters in a text in order to explain the events and actions described in
the text. In dialog understanding, a participant infers the goals and plans of other
participants based on the utterances exchanged in a conversation. We call this kind
of inference plan recognition, which is known to be an important component of text
and dialog understanding [Allen, 1987).

Similarly, in medical diagnosis, based on the observed symptoms of a pa-
tient, a physician infers the possible diseases that may explain the symptoms. In
physical device diagnosis, based on the observed misbehavior of a physical device, a
diagnostician infers the possible faults that may explain the misbehavior. In image
interpretation, based on a two-dimensional image, a vision system infers the ob jects
present in the scene that may explain the image.

. In this thesis, we view explanation as abduction. The philosopher C.S.
Peirce [Peirce, 1958) defined. abduction as the process of finding the best explanation
for a set of observations; i.e. inferring cause from effect. The standard logical formal-
ization of abduction within artificial intelligence (AI) defines an abductive explana-
tion as a consistent set of assumptions which, together with background knowledge,
logically entails a set of observations [Charniak and McDermott, 1985], Abduction
has been proposed as a unifying formalism for explanation in a variety of tasks in-
cluding natural language understanding, diagnosis, scientific theory formation, and
image interpretation {Pople, 1973; Charniak and McDermott, 1985].

Formulating the generation of explanatory hypotheses as abduction has
some advantages over the traditional “expert system” approach. In an expert system,
heuristic rules of the form e — h are used to encode the fact that some evidence e
may suggest hypothesis h. A separate inference engine deduces the set of possible
hypotheses that are “implied” by the evidence. Conflict resolution strategies are
employed to decide which rules should be fired first and hence to determine the
most plausible hypotheses. Such an approach requires reversing the causal links
between hypothesis and evidence. Also, control information about what to deduce
is mixed with declarative knowledge about the relationship between hypothesis and
evidence. This is in contrast to abduction, which encodes the relevant knowledge in
its most natural form as “hypothesis A — evidence e”. Abduction also relies on
separate evaluation criterion such as simplicity to determine which of the candidate
hypotheses best explain some evidence. Abduction is therefore a more natural and
declarative approach to modeling the generation of explanatory hypotheses.
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While it has been realized for quite some time within AI that abduction
s a general model for explanation, there have been no empirical explorations into
the practical feasibility of such a general abductive approach to explanation. Many
important questions remain unexplored. For example, is it possible to have a generai-
purpose yet efficient algorithm that can be used for making useful abductive inference
in all the various domains? Do we need special-purpose control heuristics separately
tailored for each domain? Do the criteria for selecting the best explanations vary
according to the domain? How difficult is it to encode the knowledge necessary for
constructing explanations in the various domains?

To address these important issues, we have successfully built a domain-
independent system called ACCEL (Abductive Construction of| Cansal Explanations
in Logic). In our system, knowledge about a variety of domains is uniformly en-
coded in first-order Horn-clause axioms. A general-purpose abduction algorithm,
AAA (ATMS-based Abduction Algorithm), efficiently constructs explanations in
these domains. We have applied our abductive system to two general tasks: plan
recognition in text understanding, and diagnosis of medical diseases, logic circuits,
and dynamic systems. We believe our approach represents a good trade-off between
generality and efficiency — ACCEL is a general-purpose system capable of performing
all of the above tasks, yet efficient enough to be of practical utility. In this thesis,
we will present extensive empirical results demonstrating the efficacy and efficiency
of our system in performing the above tasks.

Previous abduction algorithms and systems, when compared to ACCEL,
are either too restrictive, too inefficient, or both. Although the ATMS algorithm
of [de Kleer, 1986] has been proven to be a general abduction algorithm for propo-
sitional Horn-clause theories [Levesque, 1989], many interesting abduction tasks re-
quire the expressibility of first-order predicate logic. For example, the tasks of plan
recognition in narrative texts, as well as abductive diagnosis of logic circuits and
continuous dynamic systems, require that the domain theory be expressed in first-
order predicate logic. Furthermore, in first-order logic, the important operation of
unifying assumptions (factoring) becomes relevant. Frequently, simple and coherent
explanations can only be constructed by unifying initially distinct assumptions so
that the resulting combined assumption explains several observations [Pople, 1973;
Stickel, 1988a]. This important problem does not arise in the propositional case.

On the other hand, the general-purpose first-order abduction algorithm
proposed in {Stickel, 1988a] tends to perform a great deal of redundant work in that
partial explanations are not cached and shared among multiple explanations. The
ATMS algorithm, though it caches and reuses partial explanations in order to avoid
redundant work, has not been extended to perform general first-order abduction.
Also, the ATMS algorithm exhaustively computes all minimal explanations, which is
computatjonally very expensive for large problems. Even in the propositional case,
computing all minimal explanations is a provably exponential problem [McAllester,
1985; Selman and Levesque, 1990]. This indicates that resorting to heuristic search
to find the best explanations is the most reasonable approach to building a practical
abductive system.

Another important issue in abduction concerns the evaluation of the qual-
ity of explanations, i.e., what are the distinguishing features of a good explanation,
and how can evaluation metrics be formulated so as to select and keep only the good
explanations among the exponentially large number of explanations. Simplicity of
explanations, defined as making the least number of assumptions in an abductive ex-
planation, is a widely used metric to select the best explanations [Reggia et al., 1983;
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Charniak, 1986; Kautz and Allen, 1986). In Chapter 3, we will give convincing evi-
dence that simplicity is inadequate as an evaluation metric for explanations in text
understanding.

Our algorithm AAA overcomes both the generality and efficiency problems
in that it is an abduction algorithm for first-order Horn-clauses, and it uses ATMS-
style caching to avoid redundant work. In Chapter 6, we will present empirical results
which demonstrate that caching of partial explanations can achieve more than an
order of magnitude speedup in run time. The AAA algorithm also incorporates a
form of heuristic beam search in order to limit the computational efforts expended in
finding the best explanations. Explanations are ranked according to their evaluation
metric values and only the best explanations within the beéam width of the beam
search algorithm are kept.

Although ACCEL provides a more declarative approach to the generation
of explanatory hypotheses than a traditional expert system, it is often necessary
that axioms be formulated carefully so that the system will perform the desired
task correctly and efficiently. As in traditional logic programming, it is frequently
insufficient to just “state the correct knowledge” and expect the desired answers to
be inferred. Appropriate programming methodologies must be developed so that a
user knows how to akiomatize a problem to correctly and efficiently compute the
desired answers [Poole, 1989a). This is also true in “abductive logic programming”.
By successfully applying ACCEL to the tasks of plan recognition and diagnosis, we
have demonstrated via many examples how a general abductive system can be used
to achieve these tasks.

We now give a brief overview of the various domains on which ACcEL has
been tested:

1. Plan recognition: We define a novel evaluation criterion, called ezplanatory
coherence, and give empirical results demonstrating that coherence.is a better
evaluation metric than simplicity in plan recognition. We also give supporting
evidence that our system is sufficiently general to be able to handle similar
plan recognition problems not known to the system developer in advance.

2. Set covering diagnosis: We prove that, given the appropriate form of axioms,
ACCEL computes the same diagnoses as those of the set-covering method of
Reggia [Reggia et al., 1983; Peng and Reggia, 1990]. We also present empiri-
cal results demonstrating the efficiency of ACCEL at diagnosing 50 real-world
patient cases using a sizable knowledge base with over six hundred rules.

3. Model-based diagnosis: We use abduction to perform model-based diagnosis,
which concerns inferring faults from first principles given knowledge about
the correct structure and behavior of a system. The approach is applied to
diagnosing logic circuits (a full adder) and dynamic systems (a proportional
temperature controller and the water balance system of the human kidney).
Empirical results are presented illustrating the capability of Accgr in abduc-
tive diagnosis.

1.1 "Org-anization of the Thesis

The rest of this thesis is organized as follows:



Chapter 2 gives a formal definition of the abduction problem that we are ad-
dressing, and describes the AAA algorithm.

Chapter 3 concerns abduction in the plan recognition domain. — -

Chapter 4 concerns the use of general abduction to achieve diagnosis based on
the set covering method.

Chapter 5 presents ACCEL’s abductive approach of model-based diagnosis.

Chapter 6 presents empirical results on the speedup obtained through the use
of caching in the AAA algorithm. :

Chapter 7 presents related work.
Chapter 8 discusses future work.
Chapter 9 gives the conclusion.

Appendices A, B, and C list the knowledge base and test data used in the plan
recognition, set covering, and model-based diagnosis domain, respectively.



Chapter 2

Problem Definition and Algorithms

2.1 Problem Definition

The abduction problem that we are addressing can be defined as follows.
Given:

o A set of universa.]ly'quamtiﬁed first-order Horn-clause axioms T (the domain
theory), where an axiom is either of the form
CE‘Ul,.. .,vk; — Pi{vy,...,0) A A Pr(v1,..., ) (2 Tule), or

F(v1,...,v) (a fact)
e An existentially quantified conjunction O of atoms (the input atoms) of the
form . o ‘

oty v O1(v1y o, ) A L A Op(1,. ++3 Uk)
Fin_d: _ , _ _
All ezplanations with minimal (w.r.t. varient-subset) sets of assumptions. -
We define erplanqtion, variant-subset, and minimality as follows,

Definition 2.1 Let A (the assumptions) be an ezistentz’aliy quantified conjunction
of atoms of the form

or, vk Aa(vr, )AL A An(vr, .., m)
where n 2 0,AUT |= O, and AUT is consistent. An assumption set A (together

with its corresponding proof) is referred to as an explanation (or an abductive proof}
of the input atoms.

We will write A as the set {A;,..., A,} with the understanding that all variables in
the set are existentially quantified and that the set denotes a conjunction,

Definition 2.2 An assumption set A is a variant-subset of another assumption set
B if there is a renaming substitution o such that Ao C B.

For example, A = {p(X,5)} is a variant-subset of B =.{p(¥, b),q(Y)} with the
renaming substitution ¢ = {X/Y}.t

IIn this thesis, we denote variables by uppercase letters, and constants by lowercase letters.

5



Definition 2.3 A set of explanations § is minimal if there is no ezplanation in §
whose assumption set is a variant-subset of the assumption set of another ezplanation
inS. .

Since the definition of abduction requires consistency of the assumed atoms
with the domain theory, the abduction problem is in general undecidable. In our
implemented system AGCEL, consistency checking is accomplished in two ways:

1. Using a pre-determined list of nogoods, where a nogbod is a set of assumptions
{A1(w1,..., %), ..., An(v1,...,vx)} such that

Vor,.c0, 0 A1{v1, .0, )AL A An{Dy, ..., 08) = false.

Consistency checking ensures that an assumed set of atoms is not subsumed
by any nogoods (i.e., no instance of 2 nogood is a subset of an assumed set of
atoms);

2. Using procedural code to check for inconsistency of assnmptions (for efficiency
reasons). .

2.2 The SAA Algorithm

Stickel has proposed an algorithm for computing the set of all first-order
Horn-clause abductive proofs [Stickel, 1988a]. His algorithm, which we will call SAA
(Stickel’s Abduction Algorithm), operates by applying inference rules to generate
goal clauses. The initial goal clause is the input atoms Oy, ...,0,,. Each atom in a
goal clause can be marked with one of proved, assumed, or unsolved. All atoms in the
initial goal clause are marked as unsolved. A final goal clause must consist entirely
of proved or assumed atoms.

Let G be a goal clause @4, ..., Q,, where the leftmost unsolved atom is .
The algorithm SAA repeatedly applies the following inference rules to goal clauses
G with unsolved atoms:

¢ Resolution with a fact. If (); and a fact F are unifiable with a most general
unifier (mgun) o, the goal clause Q;a,.. ., @no can be derived, where Q;o is
marked as proved.

» Resolution with a rule. Let C — Py A...A P, be a rule where @; and C are
unifiable with a mgu o. Then the goal clause

@o,...,Qiu10,Pyo,...,P0,Qi0,..., QOno

can be derived, where Q);o is marked as proved and each Pro is marked as
unsolved.

» Making an assumption. If Q; is assumable, then @1y...,8Qn can be derived with
Q; marked as assumed. By assumable, we mean that Q; has been designated
as an atom that the algorithm is allowed to assume. The algorithm also checks
that all assumptions made are consistent with the domain theory.

* Factoring with a proved or assumed atom. ¥ Q; and Q; (7 < i) are unifiable
with.a mgu o, the goal clause

Qla1 ey Qi—la$ Qi'+lo's e 7Qn‘7

can be derived.




2.2.1 A Simple Example

To illustrate the working of the SAA algorithm, consider the following
simple example. Suppose the knowledge base consists of the following axioms:

p(X,Y)—q(X,ZYAr(Z,Y). B

r(X,Y) — s(Y)A g(X,Y).

s{a). :

Suppose the input atom is p(a, a). Then one possible sequence of inferences

leading to an abductive proof for p(a,a) with the assumption set {g(a,a)} is shown
in Figure 2.1,

2.2.2 Problems with the SAA Algorithm
The SAA algorithm as described above suffers from two problems.

Combinatorial Explosion It has been shown that, even in the propositional
case, computing all minimal (w.r.t. subset) explanations is provably exponential
[McAllester, 1985; Selman and Levesque, 1990], since in the worst case, the num-
ber of minimal explanations is exponentially large. The SAA algorithm computes
all first order Horn-clause abductive explanations and therefore it is also at least
an exponential algorithm. (Actually, since the SAA algorithm includes consistency

checking of the assumptions, it is in general undecidable.) '

However, in practice, what is needed is only the best explanation, or the
best few explanations. To avoid combinatorially explosive computation, [Stickel,
1988a; Hobbs et al., 1988] proposed the use of a cost metric to rank and heuristically
search the more promising explanations first. Fach input atom is assigned a cost
of assuming that input atom. The antecedents Ai,..., A, of every rule R in the
knowledge base are assigned relative costs C1,...,C, 30 that when the algorithm
backward-chains on a subgoal G using a rule R, the cost of each new antecedent

subgoal 4; is cost(G) x C;/ 3°%, C;. The best explanation has assumptions with the
least cumulative cost.

Simplicity, defined as making the minimum number of assumptions in an
explanation (known as the minimum explanation), is another commonly used metric
to select the best explanations [Reggia et al., 1983; Charniak, 1986; Kautz and Allen,
1986). However, previous work has shown that finding the minimum abductive ex-
planation is NP-hard [Reggia et al., 1983; Reggia et al., 1985; Allemang et al., 1987;
Bylander et al., 1989},

In this thesis, we used a form of beam search to overcome the computa-
tional intractability problem. Evaluation metrics including a coherence metric and
a simplicity metric are used to determine the quality of an abductive proof, and a
limited list of the best abductive proofs are maintained during the search.

Redundant Inference Even with the use of heuristic search to restrict the com-
putation expended in finding the good explanations, the SAA algorithm can still
perform a-great deal of redundant work in that partial explanations are not cached
and shared among multiple explanations. To see why this is the case, consider the
two examples shown in Figures 2.2 and 2.3.
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a <-—bac
a =— bad
b =— eaf
b= eag o a

¢ Thj <N

......

Figure 2.3: Duplicating inference: example 2.
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In the first example, after backward-chaining on the rule @ — bAc A d,

- the SAA algorithm can either make b an assumption, or backward-chain on the rule

b «— e A f. This introduces two partial abductive proofs, both have the identical
subgoals ¢ and d. The SAA algorithm will then duplicate the same inferences in
expanding the subgoals ¢ and d in the two partial proofs. Since the proof tree rooted
at the subgoals ¢ and d can be arbitrarily deep, substantial effort will be wasted
duplicating inferences. :

In the second example, each time a subgoal (like a, b, and e) is expanded
by backward-chaining, two partial proofs are generated, and inferences will be du-
plicated across the two successor partial proofs. For instance, the rule b « e A fis
applied twice, the rule e + h A i is applied four times, ete. :

Note that this problem of duplicating inference arises in deductive theorem
proving too. However, we believe that duplicating inference poses a more serious
problem in abduction because multiple abductive proofs must usually be pursued in
the search for a best explanation, whereas in deduction, we are usually interested
in a single deductive proof. The need for multiple abductive proofs tends to result
in more duplicate inferences being made. Also, note that the situation in example
1 arises each time an assumption is made, and since making assumptions occurs
frequently in abduction, duplicating inferences almost always arise in abduction. In
Chapter 6, we present empirical results showing that avoiding duplicate inferences
can achieve more than an order of magnitude speedup.

2.2.3 Variant-subsets

The explanations generated by the SAA algorithm may include some that
are variant-subsets of another. For instance, given the following axioms:

inst(G, going) «~ inst(S, shopping) A go-step(S, G).
goer(G, P} « inst(S, shopping) A go-step($, G} A shopper(S, P).

and the input atoms inst(gol, going) and goer(gol, Jjohnl), we can derive the expla-
nation F* with assumptions Ap = {inst(X, shopping), go-step( X, gol), inst(Y, shop-
ping), go-step(Y, gol), shopper(Y, johnl)} by backward-chaining on the two axioms.
Applying the factoring operation, we can obtain another explanation E with assump-
tions Ag = {inst(X, shopping), go-step(X, gol), shopper(X, john1)}. But note that
although Ag ¢ Ap, Ago C Ar with the renaming substitution o = {X/ Y}.

Note that the variant-subset relation is a special case of subsumption. A4
subsumes B if Ao C B for some substitution ¢. However, for A to be a variant-subset
of B, the substitution ¢ must be a renaming substitution.

_ Since explanations that are variant-supersets of other explanations are es-
sentially redundant, they need to be eliminated. Unfortunately, it can be readily
shown that determining variant-subset relation is an NP-complete problem by re-
duction from directed subgraph isomorphism, a known NP-complete problem {Garey
and Johnson, 1979, page 202]. A directed graph G = (V, E} is transformed into an
assumption set A as follows: for every vertex v € V, add the assumption N(X,) to A4,
where X, is a variable; for every directed edge e = (v1,v) € E, add the assumption
E(X,,, Xy) to A, where X,,, X, are variables. That is, |A| = V] + |E|. It follows
that (7, is isomorphic to a subgraph of G, if and only if A; is a variant-subset of
Az. Hence; determining variant-subsets introduces yet another source of computa-
tional complexity when finding the minimal explanations in a first-order Horn-clause
theory. : ' '
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KB: -
a == bac

a ==— bad

b — eaf a {a, b, bd, efc, egc,

b - eag efd,egd,...}

“Ae, ...

Figure 2.4: Caching and sharing inference steps.

2.3 The AAA’ Algorithm

. We now present the abduction algorithm used in ACCEL, called AAA
(ATMS-based Abduction Algorithm). This algorithm is much like the SAA algo-
rithm, except that the abductive proofs for a subgoal G are cached and reused when
the subgoal G or an instance of G is encountered subsequently in the search for the
best abductive proofs. ' '

To illustrate the idea of proof caching in AAA, consider the example shown
in Figure 2.3. In the AAA algorithm, each of the rules b — eA f, b — eAg, e «— hA1,
etc., will be applied only once. Associated with each proved subgoal, we store all the
abductive proofs of that subgoal. Figure 2.4 shows the abductive proofs associated
with each subgoal in finding the abductive proofs for a in the AAA algorithm. |

When the subgoal b is first encountered as an antecedent in the rule a «
bAc, its abductive proofs are constructed by backward-chaining on the rules b — eA £
b+ e A g, etc., in the knowledge base in a depth-first search order. When all the
abductive_proofs of b are found, they are associated with b and stored in a cache.
Subsequently, backward-chaining using the second rule a «— b A d will encounter the
subgoal b again. At this time, all the previously found abductive proofs of b will be
reused without recomputing them again.
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2.3.1 Definition and Algorithm

The use of proof caching is very much in the style of an Assumption-based
Truth Maintenance System (ATMS) [de Kleer, 1986), which caches and reuses partial
explanations to avoid redundant work. The ATMS is a general facility for managing
logical relationships among propositional formulas. It maintains multiple contexts
at once and is particularly suitable for problem solving that involves constructing
and comparing multiple explanations. In the ATMS, each problem solving datum
is associated with a node. A node in the ATMS can be further designated as an
assumption. Nodes are related via justifications. A justification is a propositional
Horn-clause of the form A; A...A A, — C, where each A; is an antecedent node
and C is the consequent node. An environment is a set of assumptions. Associated
with each node is a set of environments called its label. The difference between
AAA and the ATMS is that AAA constructs first-order Horn-clause proofs while
the ATMS only deals with propositional Horn-clauses. Also, AAA is a backward-
chaining algorithm while the traditional ATMS is forward-chaining.

We now give a formal description of the AAA algorithm. We will use
similar terminology as in the ATMS,

Definition 2.4 Let E = (A, o), where A is a set of assumptions {A1(v1,. 00, 00)5 .00,
An(v1,...,v%)} to be interpreted as an ezistentially quantified conjunction of assump-
tions, end o 15 a substitution. We sey that an atom G has an environment E iff
AUT = Go and AUT is consistent. '

Note that a substitution o is included as part of an environment E. This allows us

+ to know directly from an environment E = (4, 0) associated with an atom (7 which

instance of G is provable from the assumptions A.

Definition 2.5 The label of an atomn G (denoted label(G)) is a set of environments

{E1, ..., E,}, to be interpreted as a disjunction of environments Ey V...V E,,, where
E; = (A, 07), such that :

o (Soundness) A; UT = Goy;
o (Consistency) A; UT is consistent;

o (Completeness) For any consistent set of assumptions A where AUT =G, A
is a subsumed by some A;; and

(Minimality) No A; is a variant-subset of some other Aj.

The label of an atom is thus the set of all minimal (w.r.t. variant-subset) explanations
of the atom G. Note that the set of explanations in a label is minimal w.r.t. to
variant-subset but not subsumption. This is because a set of assumptions A that is
obtained by factoring another set of assumptions B is such that A4 is subsumed by
B (since A = Bo for some substitution ¢), but we do not want to remove A from
the label since factoring frequently results in better explanations.

Without loss of generality, we can assume that the task of abduction is
to find all minimal explanations of an atom O(wv1,...,v), since all explanations of
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compute-label(G,D)
if cache-lookup(G,D?) succeeds then return
label(G) — 9
if G is assumable then
- label(@) < {{{G}, {})}
for each fact F unifiable with G
rename the variables in F
o — mgu(F,G)
label{G) « label{G) U{(0, o)}
backward-chain(G,D)
store (G,D label(G)) in the cache

Table 2.1: The AAA Algorithm: compute-label.

O1{vey v oy 0k) Ao o A Op(vy, ..., 1) is the same as all explanations of O(v1,...,v)
once we add the rule

015+ 2y 08) = O1(V15en s D) A o A O(on, - ., 22

to the domain theory.

The AAA algorithm is presented in Tables 2.1-2.5. The top level proce-
dure is compute-label(G, D), which will compute and return all possible abductive
proofs of depth D or less of the atom'G. In order to limit the search to the promis-
ing explanations, the algorithm will only maintain at most B;n., number of best
explanations for each subgoal encountered in the search, where the quality of an ex-
planation is determined by some evaluation metric (such as coherence or simplicity).
When Sintre = 00, all possible abductive proofs of depth D are computed. Binsrg i5
thus the beam width of the heuristic beam search used to limit the computational
efforts expended in finding the best explanations. We used beam search instead of
best-first search since best-first search requires maintaining the complete list of par-
tial explanations and so is too memory-consuming. If we let S;nipp = 1, the beam
search algorithm becomes a hill-climbing algorithm.

The AAA algorithm presented in this thesis supersedes a previous version
reported in [Ng and Mooney, 1991b; Ng and Mooney, 1991a] which is incomplete.
Specifically, the previous version misses explanations that are obtained when, during
resolution of a subgoal with a fact or the consequent of a rule, the most general
unifier is such that some variables in the subgoal are instantiated.

2.3.2 Indexing and Cache Lookup

The label of a subgoal, once computed, is stored in the cache indexed under
the subgoal. The cache indexing scheme implemented in ACCEL is discrimination
tree indexing, as described in {Norvig, 1992).

_ When AAA queries the cache for some subgoal G, if there exists in the
cache some previous subgoal G that is an alphabetic variant of G or is more general
than G (i.e., G = G'o for some substitution o), then the appropriate subset of G'’s
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backward-chain(G,D)
if D = 0 then return
for each rule C «~ P A...A P,
rename the variables in the rule
o «— unify(C,G)
if o # fail then
P Pao,...,P, — Po
compute-label( P, D ~ 1)
partial-envs «— 0
for each environment (4, A) € label(P;)
partial-envs « partial-envs U{{4,0)}}
for each P, € {Py,..., P}
partial-envs « cross-product(partial-envs,P;,D)
variant-subset-minimize(partial-envs) '
if |partial-envs| > Bintrq then
sort partial-envs by the evaluation metric
truncate the size of partial-envs to Binspe
label(G) +~ label(G) U partial-envs
variant-subset-minimize(label(G))
if label(G)} > Bintrs then
sort label(G) by the evaluation metric
truncate the size of label(G) to Bintra

Table 2.2: The AAA Algorithm: backward-chain.

cross-product(partial-envs,P,D)
old-partial-envs « partial-envs
partial-envs « §
for each Ey = {Ay,0,) € old-partial-envs
compute-label{Poy, D — 1)
for each By = (A3,03) € label(Pay)
E — (Alo'z U AQ,G']O'Z)
if E is consistent then
partial-envs « partial-envs U factoring(E, 405 Az)
return(partial-envs)

Table 2.3: The AAA Algorithm: cross-product.

15
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As: ({g(b,V), s(V,),8(V)}, {Y/V, X/b})

The second environment E; of the label of ¢(X,Y) has the substitution
{X/a,Y/Z}, so another recursive call compute-label(r(Z,a),00) is made. How-
ever, since the more general subgoal r(Y, X) has been encountered previously and
its abductive proofs are cached, AAA reuses the appropriate subset of the la-
bel of r(¥,X) in the cache. The environments returned from the call compute-
label(r(Z,a),00) are (after renaming) Gy = ({r(Y",a)},{Z/Y’,X'/a}) and G, =
{({s(U',a),t(U")},{Z/U'}). Taking the union of the appropriately instantiated en-
vironment F; and the environments G and G yields two additional abductive
explanations for the label of p(X):

As : {{s8(a,Y"),r(Y",a)}, {X/a,Y/Y", Z/Y', X" [a})
As : {({s(a, U"),s(U',a), {U")},{X/a,Y/U', Z/U'})

Finally, factoring of the assumptions s(a,U’) and s(U’,a) in Ag yields an
additional abductive explanation for the label of p(X):

A7 : ({s(e,a),H(a)},{X/e,Y/e,Z[a,U"[a})
The label of p(X) computed is {4;,...,Ar}.

2.3.4 Enhancements to AAA

The AAA algorithm presented above is actually a slight simplification of
the one implemented in ACCEL. For the sake of clarity in exposition, we have omitted
some less essential details of the algorithm in Tables 2.1-2.5. We now describe the
enhancements to the basic algorithm to make it more useful and efficient:

¢ As described above, an environment only has a set of assumptions and a sub-
stitution, which gives the set of assamptions sufficient to prove the instantiated
atom using the domain theory. In plan recognition for natural language sto-
ries, the evaluation metric used, coherence, requires the structure of the proof
in order for the coherence metric to be computed. As such, an environment
is extended to include also the rules needed to prove the atom, in addition to
the assumptions. These rules are collected as the algorithm backward-chains
through the rules in the domain theory.

o In addition to D and Bintra, the AAA algorithm has a few additional parame-
ters so that the algorithm can be specialized to execute more efficiently in each
of the different domains.

1. Binter: This parameter controls the number of explanations kept after
processing each of the input atoms in the conjunction Oy A...AO,, given
to ACCEL. It is always the case that Sinser < Bintra, since Binsyrq determines
the number of explanations kept at every subgoal, and so the number of
explanations kept at an input atom can be no more than B;psra.

2. Factoring: This is a parameter to control if factoring should be performed.
Factoring is essential in the plan recognition domain and the set-covering
diagnosis domain, but it is turned off in the model-based diagnosis domaijn.
The reason for the choices will be explained in subsequent chapters.
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3. Variant-superset: Since eliminating variant-supersets is an expensive op-
eration, there is a parameter to control whether it should be used. Elimi-
nating variant-supersets is necessary in the plan recognition domain, but
it is turned off in the model-based diagnosis domain (the reason will be
explained in subsequent chapters). It is specialized to removing (sim-
ple) supersets in the set-covering domain, since the set-covering domain
is propositional.

4. Evaluation metric: Each domain has its own explanation evaluation metric
to determine the quality of a given explanation. In the plan recognition
domain, coherence is a better evaluation metric, whereas in the diagnosis
domains, the simplicity metric suffices. '

9. Assumable predicates: The atoms that are assumable vary according to
the domain. In the plan recognition domain, all atoms are assumable. In
the diagnosis domain, only atoms corresponding to diseases or behavioral
modes (normality, fault modes, abnormality} are assumable. Abduction
in which the assumable atoms are restricted to a pre-determined set of

predicates is known as predicate specific abduct_z'on [Stickel, 1988a].

¢ Taking thé cross product of two labels L; and L; (i.e., for each environment

E; € L, and each environment E; € L,, form the environment E; U E;) is
a Vvery expensive operation and so the algorithm tries to minimize generating
at once all the possible combined environments in the cross product of two

‘labels. It accomplishes this by heuristically estimating the goodness of the two

individual environments and their combined environment without first gener-
ating the complete combined environment. More details on this will be given
in subsequent chapters on the various domains.

In the procedure backward-chain, the algorithm skips to the next rule if partial-
envs = {) at any point while taking cross product of the labels of the antecedents
of a rule C « Py A...A P,. This is because when the ‘computed partial-
envs for a subset of the antecedents Pj,..., P; is empty, then regardless of the
labels of P;y4,..., P, partial-envs for the entire conjunction of the antecedents
Py A...A P, will still be empty. ' :

Before expanding a subgoal G (i.e., making it an assumption, or resolving
it with facts or rules), first check that G is consistent with the input atoms
O1,...,0; processed so far, since if G is inconsistent with 01,...,0;, then its
explanations are of no interest in the context of finding abductive proofs for

‘the input atoms Oy A...A Oy,



Chapter 3

Plan Recognition

3.1 Introduction

According to Charniak and McDermott {Charniak and McDermott, 1985],
“the principal component of understanding is the extraction of as many correct and
useful inferences as possible from an utterance or text.” A particularly useful form
of inference is plan recognition — determining the goals and plans of characters in
a narrative or participaats in a dialog based on their observed actions or utterances.
Plan recognition has proven to be a critical aspect of generating appropriate responses
to questions as well as resolving ambiguities and anaphora [Allen, 1987].

In this thesis, we model plan recognition as abduction. Natural language
understanding has recently been studied in terms of abduction. Specifically, abduc-
tion has been used to solve problems ranging from resolving anaphoric references and
‘syntactic ambiguity [Hobbs et al., 1988] to resolving lexical ambiguity and recogniz-
ing c]ha.ra.cters’ plans in a narrative text {Charniak, 1986; Charniak and Goldman,
1991]. : ‘ :

We do not focus on the parsing aspect of natural language understanding,
and ACCEL does not accept natural language input. Instead, we assume the existence
of some appropriate parser that translates a given set of input sentences into a logical
representation consisting of an existentially quantified conjunction of input atoms.
Given such a logical representation of the literal meaning of a narrative text, ACCEL
infers an “embellished” interpretation by constructing an abductive proof in which
a set of higher-level plans is assumed and the assumed plans logically entail the
characters’ observed actions. An abductive proof is considered an interpretation of
the input sentences.

_ We will present 2 novel evaluation criterion, called explanatory coher-

ence, for evaluating abductive explanations in the plan recognition domain [Ng and
Mooney, 1990). We have tested ACCEL on a set of 50 short narrative texts. The first
25 narrative texts were taken from Goldman’s thesis [Goldman, 1990} in which they
were used to test a probabilistic approach to natural language understanding. After
the knowledge base has been developed to successfully process the first 25 texts,
an additional set of 25 narrative texts unknown to the system developer is used to
further evaluate the performance of our system. We will also present empirical re-
sults showing that our coherence metric is a better measure for selecting the best
explanation in the plan recognition domain than an alternative approach based on
simplicity. It also performs as well as another approach based on probability, but
without requiring elaborate engineering of the appropriate probabilities.

20




21

3.2 Explanatory Coherence
3.2.1 Motivation

In previous research on abduction for text understanding and plan recogni-
tion, simplicity has been proposed as a metric for selecting the best explanation. For
instance, in [Charniak, 1986}, the best interpretation is one that maximizes E — 4,
where E = the number of explained observations, and A = the number of assump-
tions made. The work of Kautz explicitly incorporates the assumption of minimizing
the number of top-level events in deducing the plan that an agent is pursuing [Kautz
and Allen, 1986]. . :

Though an important factor, the simplicity criterion is not sufficient by
itself to select the best explanation. In the area of language understanding, we ar-
gue that some notion of explanatory coherence is more important in deciding which
explanation is the best. Consider the sentences: “Mary had a heart attack, John
is depressed.” The sentences translate into the conjunction of the following atoms:
name(m,mary), has(m,h), heart-attack(h), name(j,john), and depressed(j). A knowl--
edge base of axioms relevant to these input atoms are:

depressed(X) « like(X,Y) A bad(condition(Y)) A irreplaceable(Y)
depressed(X) «— pessimist(X)

bad(condition(X}) < has(X,Y) A illness(Y)

illness(X) « heart-attack(X)

Based on the above axioms, there are two possible interpretations of these sentences,
as shown in Figure 3.1. Suppose the simplicity metric is defined as the inverse of
the number of assumptions made, where every leaf node in the proof graph counts
as an assumption, including input atoms that are not explained (the assumptions
in Figure 3.1 are underlined). Relying on this simplicity metric results in selecting
the interpretation that John is depressed because he is a pessimist, someone who
always feels gloomy about life (Figure 3.1b). This is in contrast to our preferred
interpretation of the sentences — John is depressed because John likes Mary and
Mary had a heart attack (Figure 3.1a).

Note that varying the definition of simplicity somewhat will not help here.
For instance, using the simplicity criterion of [Reiter, 1987 based on subset minimal.
ity does not work well for this example — it is indifferent towards both interpreta-
tions, instead of choosing the preferred one. If we decide not to count input atoms as
assumptions, then the preferred interpretation still makes more assumptions (four)
compared to only one assumption in the other interpretation. Charniak’s simplicity
metric of E — A also will not work, since both explanations would explain exactly
one input atom, that John is depressed. :

Intuitively, it seems that the first interpretation (Figure 3.1a) is better
because the input atoms are connected more “coherently” than in the second inter-
pretation (Figure 3.1b). We manage to connect “Joha is depressed” with “Mary had
a heart attack™ in the first interpretation, whereas in the second interpretation, they
are totally unrelated. This is the intuitive notion of what we mean by ezplanatory
coherence, i.e., how well the various parts of the input sentences are “tied together”
in the interpretation.

. That sentences in a natural language text are connected in a coherent way
is reflected in the well known “Grice’s conversational maxims” [Grice, 1975], which
are principles governing the production of natural language utterances, such as “be
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"Mary had a heart attack. John is depressed.”
name(m, mary) name(j, john) depressed (j)
llkﬁ(.Lm). bad (condition{m)) mplaggahlg_(_m)_
has(m. h) :illne_ss(h)

heart-attack(h)
Interpretation #1
Simplicity metric=1/A=1/6
Coherence menic = (1+1)/(5%4/2) = 0.2

la
w has(m, h) heart-attack(h) pame(i. john) depressed(j)
A

imist(i

Interpretation #2
Simplicity metric = 1/A = 1/5
Coherence metric =0

1b

.Figure 3.1: The importance of explanatory coherence..
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relevant”, “be informative”, etc. Although the notion that natural language text is
coherently structured has long been recognized by researchers in natural langnage
processing (see [Allen, 1987]), our work is the first to incorporate the notion of
coherence in the context of evaluating an abductive explanation.” — -

3.2.2 Definition

We would like to formulate our coherence metric so as to possess several
desirable properties. In particular, explanations with more connections between any
pair of input atoms should have higher coherence metric values. Also, a coherence
metric with values lying in a unit range 0-1 will facilitate the comparison of explana-
tions. We have developed a formal characterization of what we mean by explanatory

- coherence in the form of a coherence métric satisfying these properties, -

Definition 3.1 The coherence metric C is defined as follows:

> Wiy
_ 1<igd
C=-1vp

where _ _

I = the total number of input atoms; o :

N;ij = 1 if there is some node n in the proof graph such that there is
a (possibly empty) sequence of directed edges from n to n; and a (possibly empty)
sequence of directed edges from n to n;, where n; and n; are input atoms. Otherwise,
Ni; =0. ' C

The numerator of this metric is the total number of pairs of input atoms
that are connected. The denominator of the metric scales the sum according to the
size of the explanation so that the final metric value falls between 0 and 1. Note that
the definition of coherence given in this thesis is a slight modification of the one given
in [Ng and Mooney, 1990; Ng and Mooney, 1989]. The new definition remedies the
anomaly reported in {Norvig and Wilensky, 1990] of occasionally preferring spurious
interpretations of greater depths.

To illustrate the computation of the coherence metric, consider the expla-
nation in Figure 3.1a. Let ny = (name m mary), ny = (name j john), ng = (depressed
i), n4 = (has m h), and n; = (heart-attack h). The total number of input atoms [ =
5. In this explanation, N34 = 1, since there is a node n4 such that there is a directed
path from n4 to n3 and also a directed path from n4 to ny (the trivial empty path).
Similarly, Nas = 1. All other N;; = 0. This results in the coherence metric ¢ = 0.2,
as shown in Figure 3.1a. :

The coherence metric C has the following properties:

1. 0 £C€ £ 1. C =0 when the input atoms are totally unrelated. For instance,
C = Oin the interpretation of Figure 3.1b. C = 1if the proof graph is completely
connected, i.e., for each pair of input atoms, there is some node connecting both
input atoms.
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. C attempts to take into account pairwise connectivity between any two input

atoms. Thus, a proof graph that is split into several partitions will have low co-
herence value, since any two input atoms n; and n; from two disjoint partitions
of the proof graph have N;; = 0. - T T

We note here some advantages of our coherence metric:

. Coherent explanations are often simple explanations. This is because in a co-

herent explanation, propositions tend to be more tightly connected together.
This increases the likelihood of assumptions being unified, and leads to a re-
duction in the number of assumptions made and thus a simpler explanation. -

. Compared to the simplicity metric, the coherence metric is less vulnerable to

changes in the underlying representation of the knowledge base. It is relatively
easy to encode the axioms in a knowledge base in a slightly different way so
as to change the number of assumptions made in an explanation. However,
connections between propositions are less dependent (relatively speaking) on
such changes. For example, suppose we change the axioms in the given example
slightly so that as long as a person likes something that is in a bad condition
(but not necessarily irreplaceable), then that person is depressed. Also, suppose
one has to be poor as well as a pessimist to be depressed. Given this modified
set of axioms, the first interpretation now requires only five assumptions, while
the second interpretation requires six. So all of a sudden, the first interpretation
becomes the simpler explanation of the two. However, the coherence metric
values of both interpretations remain unchanged. -

. Evaluating éxpla.nations based on coherence also nicely resolves a problem in
abduction, that of deciding on the appropriate level of specificity of explana-

tions. Previous approaches fall into several categories: most specific abdue-
tion, least specific abduction, cost-based (weighted) abduction, and predicate
specific abduction. In most specific abduction, the assumptions made must be
basic, i.e., they cannot be “intermediate” assumptions that are themselves prov-
able by assuming some other (more basic) assumptions {Cox and Pietrzykowski,
1987]. In least specific abduction, the only allowable assumptions are the in-
put atoms [Stickel, 1988a]. In cost-based abduction, costs (or weights) are
assigned to the antecedents of backward-chaining rules in order to influence
the decision on whether to backward-chain on a rule [Hobbs et al., 1988]. In
predicate specific abduction, the assumptions made must have predicates from
a pre-determined set of predicates.

However, none of the above approaches is completely satisfactory. Least specific
abduction is too restrictive since frequently, assumptions other than the input
atoms must be made, such as those to be inferred by a reader. Most specific
abduction is also too rigid since it is not always the case that we want to ex-
plain everything in terms of every available cause, since the causes that explain
different input atoms may be completely unrelated to one another. Cost-based
abduction could presumably arrive at the correct explanation given the “ap-
propriate” set of costs, but it is unclear how the costs can be assigned in general
to work on all problems. Predicate specific abduction is not suitable for text
understanding since the assumptions made by a reader in text understanding

-are not restricted to a fixed set of predicates.

In our approach, the desired specificity of an explanation is one which maxi-
mizes coherence. That is, we backward-chain on rules to prove the subgoals
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in an explanation only if doing so increases its overall coherence, and thus we
make assumptions just specific enough to connect the input atoms. Coherence
has been successfully used to determine the appropriate level of specificity of
explanations for the 50 narrative texts processed by Accer. Hence; we be-
lieve our coherence-based approach is better than the alternative approaches
in determining the specificity of explanations.

Finally, we want to point out that it is not our belief that simplicity is com-
Pletely irrelevant to the selection of explanations. {In fact, in the diagnosis domain,
we rely on simplicity as our evaluation metric.) Rather, we consider explanatory
coherence to be a more important criterion in selecting good explanations in the do-
main of text understanding and plan recognition. As such, we evaluate explanations
in the plan recognition domain based on their coherence. When there is a tie be-
tween the coherence metric values of two explanations, we then rely on the simplicity
metric to break the tie, where the simplicity metric is defined here as 1/4 (A = the
total number of assumptions made in an explanation). Our empirical Tesults to be
presented later in this chapter confirm that coherence is indeed a better measure in
the plan recognition domain.

3.2.3 Computing the Coherence Metric

The coherence metric as defined above can be efficiently computed, We
assume that the proof graph contains no cycles, since circular justification is not
considered a good trait of an explanation. Using a standard depth-first graph search
algorithm {Aho et al., 1974}, it can be readily shown that C can be computed in time

O(*>-N+1-¢)

where

! = the total number of input atoms,

N = the total number of nodes in the proof graph, and

e = the total number of directed edges in the proof graph.

The depth-first search algorithm maintains a bit vector of size ! at each
node in the proof graph. The i-th position of the bit vector at each node is to record
if there is a directed path from this node to the input atom n;. After each child node
and its descendant nodes are visited in a depth-first manner, a bit-or operation is
taken on the bit vector of the parent node and that of the child node in order to
update the parent node’s bit vector. After traversing in depth-first order all the nodes
in the proof graph so that every bit vector at each node is updated, the algorithm
will consider each pair of input atoms and look at the corresponding positions in the
bit vector at every node to see if there is some node that connects each pair of input
atoms. The number of such pairs of connected input-atoms is the sum Ya<icj<t Nij.

3.3 Finding Coherent Explanations

As mentioned in Chapter 2, finding the simplest abductive explanation has
been shown to be NP-hard [Reggia et al., 1983; Reggia et al., 1985; Allemang et al.,
1987; Bylander et al., 1989]. Unfortunately, finding the most coherent explanation is
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also NP-hard. We present a proof that a specialized instance of our problem of finding
the most coherent explanation is NP-hard. The specialized optimization problem
is: finding the maximally coherent explanation that satisfies simple contradiction
restrictions in a two-level, propositional abduction model.

We will denote the coherence value of an explanation E as C(£). We show
that the corresponding decision problem is NP-complete.

3.3.1 An NP-Completeness Proof
‘Definition 3.2 MaxiMarLy CORERENT EXPLANATION (MCE)

INSTANCE : A set O of observations, a set A of assumptions, a relation M C Ax O
(where (a,0) € M denotes a —» o), a collection C of subsets of A (where each subset
.of A in C is taken to mean that the conjunction of the assumptions in the subset is
contradictory), and a positive real number K < 1. Define an explanation E to be a
graph (O U A', M") with nodes O U A’ and edges M’ such that A' C A, M' C M,
{al{a,0) € M’} = A, and for every C; € C, C; € A’. (The last condition ensures
that A’ is consistent.})

QUESTION : Is there an ezplanation E = (O U A', M') such that C(E)> K ¢
Theorem 3.1 The MCE problem is NP-complete.

Proof 7

1t is clear that MCE is in NP. A nondeterministic algorithm for it need
only guess some graph (OUA’, M’} and check to see whether the graph constitutes an
explanation and whether C(E) > K. This can be easily done in (nondeterministic)
polynomial time.

To satisfy the second requirement of NP-completeness, we will reduce the

known NP-complete problem HITTING SET [Garey and Johnson, 1979] to MCE.
The HITTING SET problem is : ' :

INSTANCE : A collection D of subsets of a set 5, and a positive integer L.

QUESTION : Does S contain a hitting set for D of size L or less, that is, a subset
5" C § with |§’| < L and such that S’ contains at least one element from each subset
in D? '

Given an instance of the HITTING SET problem (S, D, L), where |S} =
n, we construct an instance of the MCE problem as follows:

O = {01102,-”,02n—1’02n}
A=8={a,az,...,a,}

M= {(ﬁ'.], 01)7 (ala 02)! (a2! 03), <a2, 04)1 ey (ans 0211-1), (am 0271)} -
C=D

r n=L
K= 2n{2n—1}/2

Clearly, the construction of such an instance takes deterministic polynomial time. It
remains to prove that D has a hitting set H of size L or less if and only if there is
an explanation £ = (O U A’, M") such that C(E) > K. :
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(=) Suppose D has a hitting set H where |H| < L. Let E= fOUA’, M’} where A’ =

(

S"’_H = {ail yBipy ... 1 @i mdy M= {<ai1_y 021'1-_-1)1 (aig » 024 )’ Qiyy 02:'2—1)g (aigs 02_1'2), vee
That is, there are two edges connecting every assumption in A’ to its two correspond-
ing observations in the explanation. Then

n— |H|

C(E) = 2n(2n — 1)/2

Since in addition K = z2=k-rr and |H| < L, it follows that C(E) > K.

To prove that for each C; € C, C; € A’, assume otherwise. Then for some

C; € C,C; C A'. Since HN A’ = §, this implies H N C; = 0, contradicting the fact

that H is a hitting set for D (= C).

(«=) Suppose there is an explanation £ = (O U A’, M') such that C(E) > K.

1A

C(E) = 2n(2n — 1)]2

Since C(E) 2 K = gofi=Ler, it follows that |4’) > n ~ L.

Let H= 8§ — A’. Then |H| = n~ |A’} < L. To prove that H is a hitting
set for D, assume otherwise. That is, there is a subset D; € D such that DinH =4{.
Since in addition A’ = § — H, and D; C 5, it follows that D; C A, Since D; € C,
this implies that the set of assumptions A’ is inconsistent, which contradicts that
fact that F is an explanation. O

3.3.2 Heuristic Search

Since our abduction problem of finding the most coherent. explanation
contains as a special case the abduction model formalized in the proof, our problem
is clearly computationally intractable. This justifies the use of heuristic beam search
in the AAA algorithm to compute the (approximately) best explanations, where the
best explanations are those with the highest coherence metric, and ties are broken
based on the simplicity metric of 1/A (A is the number of assumptions made). Note
that our use of beam search to efficiently find the best explanations in the plan
recognition domain is in contrast to the work of {Charniak, 1986; Charniak and
Goldman, 1991} which used marker passing to restrict the search for explanations.

3.4 The AAA Algorithm in Plan Recognition

We now describe some aspects of the AAA algorithm that are specific to
the plan recognition domain.

3.4.1 " Computing Cross Products

As mentioned in Chapter 2 where the AAA algorithm is presented, com-
puting the cross product of two labels (i.e., combining some environment of a label
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with some environment of a second label) is an expensive operation. Hence, when
generating the combined environments in the cross product of two labels, the al-
gorithm tries to generate the promising combined environments first. As soon as
the number of combined environments generated exceeds fintra, AAA-returns these
combined environments as the cross product of the two labels. This is justified since
only the best B;n4r, environments are retained anyway. Considerable computational
efforts can be saved in this way by not computing the entire cross product.

In order to quickly identify and compute the promising combined environ-
ments first, AAA estimates the goodness of a combined environment E; u E; by
the number of action types (like shopping, robbing, etc.) that are common to both
environments E; and E;. The higher the number of shared action types, the better
the estimated quality of the combined environment, since shared action types usually
result in more unified assumptions and hence a higher coherence. Ties are broken
based on 1/A, where A = the sum of the number of assumptions in E; and F;.

~We use this estimate instead of the actual coherence metric value of a
combined environment since this estimate can be more quickly computed than the
coherence metric, and hence serves the useful role of rapidly focusing the algorithm
on generating the most promising environments first. Once the algorithm decides to
combine two environments E; and E;, E; U E; is generated and its coherence metric
value is computed.

3.4.2 Consistency Checking

In the plan recognition domain, consistency checking is accomplished in
the following ways:

1. There is a list of assumption-nogoods, where each assumption-nogood consists
of a list of assumptions E such that an explanation whose agsumptions in-
clude Eo (some instance of the assumptions in an assumption-nogood) is un-
acceptable. These assumption-nogoods are used to ensure that appropriate

role-filler assumptions are made when some high-level plan/action is assumed.
For instance, (go-step(S, G), goer(G, P)) is an assumption-nogood, where go-
step(S, G) denotes “the go-step of § is G” and goer(G, P) denotes “the goer of
G (i.e., the agent of the go-action G) is P”. This assumption-nogood ensures
that when an explanation assumes that a go-action Gis a substep of some high-
level plan S, it is not allowed to simply assume the role-filler goer(G, P), but
must also assume that some appropriate role-filler exists between S and P, such
as shopper(S, P) (“the shopper of § is P”), or robber($, P) (“the robber of § is
P7}, etc. Strictly speaking, an explanation that violates an assumption-nogood
is not inconsistent; it is simply not a preferred explanation since inappropriate
role-filler assumptions are made. For convenience, we have chosen to enforce
this explanatjon preference as part of consistency checking.

2. Other consistency checks are achieved via procedural code, including:

o There is a list of binary predicates, known as unique-predicates, which is
used by the consistency checking procedure to ensure that any two atoms
—that have the same unique-predicate and the same first argument must
also have the same second argument. Examples of these unique-predicates
include source-go(G, §) (the source of a go-action G is ), dest-go(G, D)
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(the destination of a go-action G is D), etc. That is, consistency checking
enforces rules such as : :
source-go(G, S1) A source-go(G, 52) — 51 = 82 o
which states that the source of a go-action must be unique.”

e The sort (type) of an object introduces an important constraint in the
plan recognition domain. The knowledge base for this domain includes
a subsort-supersort hierarchy that explicitly gives the various sort rela-
tionship, like a gun is a weapon, a bus is a vehicle, etc. During consis-
tency checking, if some object is discovered to be of two non-compatible-
sorts, then a contradiction is detected. Two sorts sl and s2 are non-

- compatible if an object cannot be of both sorts simultaneously. Non-
compatibility of sorts is inferred from the subsort-supersort hierarchy in
the knowledge base. Also, during consistency checking, if two assumptions
inst(X,s1) (“X is an instance of objects of sort s1”) and inst( X, s2)
are found in an environment such that sl is a subsort of 52, then the
rule inst(X,s1) — inst(X,s2) will be added to the explanation and
inst(X, s2) will be removed from the environment (since it is subsumed
by inst( X, s1)).

In addition, there are rules in the knowledge base of the form inst(X, A)
A role-filler(X,Y) — insi(Y, B) that constrains the sorts of objects.
An example of such a rule is inst(R, robbing) A weapon-rob(R, W) —
inst(W, weapon). This rule states that the weapon W used in a robbing
plan R (weapon-rob{ R,W)) is of type weapon. Consistency checking en-
forces such rules, and it also adds the rule to an explanation and removes
the subsumed consequent inst(W,weapon) if it finds the three assump-
tions inst(R, robbing), weapon-rob(R, W), and inst(W, weapon) in an en-
vironment. '

Note that checking and adding rules like inst(X,sl) — inst(X, s2) and
inst(X, A) A role-filler(X,Y) — inst(Y, B) represent a limited form of
forward-chaining during consistency checking.

¢ Consistency checking also enforces temporal constraints, including rules
such as: ‘
plan-step(X, X)) — false ' :
plan-step(X,Y) A precede(X,Y) — false ‘
inst(X, plan) A step-1(X, S1) A step-2(X, 52) — precede(S1, 52)
plan-step(X,Y) A precede(X, Z) — precede(Y, Z)
plan-step(X,Y) denotes “Y is a substep of plan X7, precede(X,Y) de-
‘notes “X precedes Y7, step-1(X, §1) denotes “S1 is the first substep of
plan X7, and step-2( X, §2) denotes 52 is the second substep of plan X,

3.5 An Illustrative Examp_le

Consider the following example which is one of the 50 narrative texts that
ACCEL was tested on: '

“Bill went to the liquor-store.

He pointed a gun at the owner.”
The sentences translate into the following conjunction of atoms:
inst(go6, going) A goer(go6,bill6) A name(bill6, bill)A
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dest-go(go6,1s6) A inst(ls6, liquor-store) A precede(gob, point6)A
inst(point6, pointing) A agent-poini(point6, bill6) A instr-poini(point6, gun6)A
inst(gun6, gun} A patient-point(point6, 06) A own(o6,1s6) —

The knowledge base axioms relevant to this example are listed below:

inst(G, going) «— insi(S, shopping) A go-step(S,G)
goer(G,P) « inst(S,shopping) A go-step(S,G) A
shopper(S, P)
dest-go(G,P) « inst(S,shopping) A go-step(S,G) A
' store(S, P) '
insi(S, ligst-shopping) A store(S, P)
inst(R,robbing) A go-step(R, G)
inst( R, robbing) A go-step(R,G) A -
robber( R, A) _
dest-go(G,P) «— inst(R,robbing) A go-step(R,G) A
place-rob( R, P)
inst( R, robbing) A point-weapon-step(R, P)
inst( R, robbing) A point-weapon-step(R, P) A
. robber(R, A) '
instr-point(P,W) <« inst(R,robbing) A point-weapon-step(R, P) A
. weapon-rob( R, W) -
patient-point(P, A) «- inst(R, robbing) A point-weapon-step( R, P) A
victim-rob( R, A)

T

inst( P, liguor-store)
inst(G, going)
goer(G, A)

1

T

inst( P, pointing)
agent-point( P, A)

1

T

The first axiom asserts that if $'is a shopping event and the go-step of §
is G, then G is a going event; the second axiom asserts that if §is a shopping event,
the go-step of § is G, and the shopper of § is P, then the goer of G (i.e., the agent of
the going event (7) is P; and so on. These axioms are formulated in such a way that
higher-level plans (like shopping and robbing) together with the appropriate role-filler
assumptions (like shopper(S, P), robber(R, A)) imply the input atoms representing
the observed actions (like going to a store and pointing a gun).

After the first sentence is processed, the best interpretation ACCEL com-
puted (as determined by the coherence metric) is shown in Figure 3.2. The inter-
pretation is that Bill was shopping in the liquor-store. After processing the second
sentence, the best interpretation changes to one where Bill was robbing the liquor-
store (Figure 3.3). The total time ACCEL took to process these two sentences is (.83
minutes on a Sun Sparc 2 workstation.

Note that ACCEL is able to pick the shopping interpretation over the rob-
bing interpretation (Figure 3.4) after processing sentence 1 since liquor-store shop-
ping explains why Bill went to the liquor-store, but robbing does not explain why
Bill went to the liquor-store (as opposed to say a supermarket or a bank). Since the
coherence metric favors explanations that connect together more input atoms, the
shopping interpretation is preferred.

For comparison, we also ran ACCEL using simplicity as the criterion for
selecting the best explanation. In this case, ACCEL is indifferent between the robbing
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““Bill went to the liguor-store."

inst(go6, going)

inst(S, shopping)

goer{gob, bill6)
go'SEep(Si 806)

name(biil6, bill)

shopper(S, bill6)

. dest-go(gob, Is6)
store(S, 1s6)

insy(S, ligst-shopping) inst(ls6, liquor-store)

Coherence metric=6/{5* 4 /2) =0.60
Simplicity metric =1 /5 =020

Figure 3.2: The shopping interpreta‘:?;ion after the first sentence.

interpretation (Figure 3.3) and the shopping interpretation (Figure 3.5) after process-
ing the two sentences. Both interpretations have the same number of assumptions
(12). Note that even if we change the definition of simplicity so that input atoms
do not count as assumptions, simplicity will still pick the wrong interpretation since
the shopping interpretation will then have fewer assumptions (4) than the robbing

_interpretation (7). Charniak’s metric of £ — A does not help either, since for the

shopping interpretation, £ — A = 4~4 = 0, and for the robbing interpretation, E — A

=T7-~T7T=0.

3.6 Empirical Results

Evaluating natural language processing systems is becoming an increas-
ingly important issue. For instance, there is ongoing work to evaluate NLP systems
that perform information extraction from unconstrained texts [Lehnert and Sund-
heim, 1991]. We have completed an evaluation of ACCEL on a test suite of 25
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**Bill went 1o the liquor-store.
He pointed a gun at the owner”
inst{go6, going)
inst(R, robbing)
goer(gob, bill6)
go-step(R, go6)
name{bill6, bill)
robber(R, bill6)
dest-go(gob, 1s6)
place-rob(R, Is6) _
inst(ls6, liquor-store)
precede(go6, point6)
point-weapon-step(R, point6)

inst(point6, pointing)

agent-point(point6, bill6)

weapon-rob(R, gun6)
instr-point(point6, gun6)
_ inst(gunb, gun)
victim-rob(R, 06)
patient-point(points, o6)
 own{o6, 1s6)

Coherence metric =21/ (12 * 11 /2) = 0.32
Simplicity metric = 1/12=0.08

Figure 3.3: The robbing interpretation after the second sentence.

examples taken from Robert Goldman’s PhD thesis [Goldman, 1990]. We chose this
set of examples to test our system since we are aware of no other pre-existing set
of test data for plan recognition, and it also facilitates comparison between different
approaches. .

The knowledge base was initially constructed so as to handle this set of 25
examples. In order to test for generality, Ray Mooney came up with another 25 test
examples unbeknown to the knowledge base builder (the author). The intent is that
these additional examples will test for other novel combinations and sequences of
actions that the knowledge base constructed for the initial 25 examples in principle
should be able to handle. We will call the first set of 25 examples the training
examples, and the second set of 25 examples the test examples. Note that our
evaluation methodology is similar to that of Goldman, except that we tested ACCEL
on a different set of 25 test examples whereas Goldman tested his system’s ability to
pair up an additional set of 25 similar examples to the initial 25 examples. Hence,
our evaluation criterion is tougher.

The plans in the knowledge base include shopping, robbing, restaurant
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*"Bill went to the liquor-store.”
inst(go6, going)
inst(R, robbing)
goer{go6, bill6)
go-sep(R, gob)
name(bills, bill)
robber(R, bill6)
dest-go(go6, Is6)
place-rob(R, 1s6)
inst(1s6, liquor-store)
Coherence metric=3/(5*4/2)=0.30
Simplicity metric =1/6 =0.17

Figure 3.4: The robbing interpretation after the first sentence.

dining, traveling in a vehicle (bus, taxi, or plane), partying, and jogging. Each of
these plans in turn has subplans, and some of the plans contain recursive subplans.
For instance, traveling by plane includes the subplan of traveling (in some vehicle)
to the airport to catch a plane. For each example, a set of input atoms representing
the sentences is given to ACCEL. To give a sense of the size of our examples and
the knowledge base used, there is a total of 107 KB rules, 45 assumption-nogoods,
and 70 taxonomy-sort symbols. Every taxonomy-sort symbol p will add an axiom
(in addition to the 107 KB rules) of the form inst(X, p) — inst(X, supersort-of-p).
"The average number and maximum number of input atoms per example are 12.6 and
26 respectively. The knowledge base and the 50 examples are included in Appendix
A.

For each example, the correct explanation was determined based on the
author’s intuition before running the example. To measure the quality of an expla-
nation computed by ACCEL, we compared it to the correct explanation and recorded
three error rates: the recall error rate R = the number of missing assumptions di-
vided by the number of assumptions in the correct explanation, the precision error
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**Bill went to the liquor-store.
He pointed a gun at the owner”

inst(go6, going) -

insi(S, shopping)
goer(go6, bill6)

go-5tep(S, £o6) _

name(bill6, bill)

shopper(S, bill6)
dest-go(gob, Is6)

store(S, Is6)

inst(1s6, liguor-store)

inst(S, kigst-shopping)
precede(gob, point6)

inst(points, pointing)
agent-point(point6, bill6)
instr-point(point$, gun6)
inst(gun6, gun)
patient-point(point6, 06)
own(cb, 1s6)

Coherence metric =6/ (12 * 11 /2) = 0.09
Simplicity metric =1/12=0.08

Figure 3.5: The shopping interpretation after the second sentence.

rate P = the number of excess assumptions divided by the number of assumptions
in the computed explanation, and the overall error rate O = the average of the recall
and precision error rates. (We used similar quality measures and terminology as in
[Leknert and Sundheim, 1991).) For example, a computed explanation that matches
exactly the correct explanation has R = P = O = 0%, and a computed explanation
with abductive assumptions that are completely disjoint from those of the correct
explanation has B = P = O = 100%. If more than one best explanations are com-
puted for an example, we take the error rates for the example to be the average of
the error rates over all the best explanations.

We set the beam widths of AAA at By = 10 and Bintra = 30 when
processing the set of 50 examples. We ran ACCEL on all the examples (training
and test) using two different evaluation metrics: the coherence metric (breaking ties
based on simplicity) and the simplicity metric. The empirical results are surnmarized
in Table 3:1, which shows the average recall (R), precision (P), and overall (O) error
rates for the training examples, test examples, and all examples. The average run
time per example is 1.83 minutes on a Sun Sparc 2 workstation. '




.35

. Example Coherence . Simplicity

type R | P 0 R P} O

Training | 0.2% | 0% | 0.1% | 26% | 25% | 256%

| Test | 2% |2%| 2% |39% |38% | 38% | — -
All 111% | 1% | 1% | 32% | 31% | 32%

Table 3.1: Empirical results comparing coherence and simplicity.

As demonstrated by our empirical results, coherence consistently performs
better than simplicity on the set of 50 examples. The empirical evidence supports
our claim that coherence is a better measure than simplicity for determining the
quality of an explanation for a narrative text. '

: In a few of the examples (training example #17, 23, 24, test examples
#21, 22), there are several equally coherent interpretations computed by AcCcCEL.
For instance, on training example #24, “Bill toock a taxi”, ACCEL found that there
are four best, equally coherent interpretations, namely, Bill went shopping, robbing,
restaurant dining, or took the taxi to a place so as to board some other vehicle for
further traveling. Similar situations occurred in each of the other four examples
mentioned above. In all these cases of equally best coherent interpretations, the
human reader’s best interpretation is not to abduce any high-level plans (i.e., infer
nothing other than Bill fock a taxi). In such situations, a reasonable strategy. that
a system like ACCEL could adopt is'not to settle on any one of the interpretations if
there are multiple best interpretations. As such, we assign a perfect score (R = P =
O = 0%) for these examples in which there are multiple most coherent interpretations
and the best interpretation is just assuming the input atoms. (If we adopt a more
-stringent criterion and take the error rates for these five examples to be the average
of the error rates over all their best explanations, then the overall error rate for all
the 50 examples increases to 6.5%.) : '

The correct best explanations are selected for all but one of the 25 training
examples. The one training example that AccEeL did not score perfectly is example
#21. The sentences of this example are: “Bill took a bus to a restaurant. He drank
a milkshake. He pointed a gun at the owner. He got some money from him.” ACCEL
correctly inferred that Bill was dining at the restaurant as well as robbing it. It
correctly abduced 24 of the 25 assumptions of the correct abductive explanation,
missing only one assumption, go-step(D, go21) (i.e., that going to the restaurant is
also a substep of dining at the restaurant, in addition to being a substep of robbing).
Note that Goldman’s system made a similar error of not connecting the going action
to both dining and robbing. ACCEL committed this mistake because it assumed that
an action cannot be a part of two high-level plans, which is not true in general. In
addition to allowing an action to be part of two plans, ACCEL must also consider
non-minimal explanations in order to process this example correctly. This is because
both assumptions go-step(D, go21) and go-step(R, g021) are needed in the preferred
explanation but either one of them is sufficient to explain inst(go21,going) (i.e., Bill’s
going to the restaurant). '

On the test set of 25 examples, ACCEL correctly processed 22 of them
using the coherence metric. On test example #19 “Mary got a gun. She went to
the supermarket. She found the milk on the shelf. She got some money from the
cashier.” ACCEL made a similar mistake of not abducing that the go-action is a
substep of shopping in addition to a substep of robbing. :
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On test example #8 “Fred got a gun. He went to the restaurant. He packed
a suitcase.”, ACCEL could not arrive at the interpretation that Fred was packing a
suitcase so as to escape and get away with his robbery, since the knowledge base did
not have an escape substep in its rob plan. Furthermore, AcCEL tried to connect
the input sentences “overzealously”. In addition to inferring that Fred robbed the
restaurant, ACCEL also inferred that Fred packed a suitcase so as to catch a plane
to go to and dine at the same restaurant! ACCEL chose this interpretation since
the interpretation connected the packing of suitcase in the third sentence to the
restaurant mentioned in the second sentence.

On test example #11 “Jane took a taxi to the airport. She pointed a gun
at the taxi-driver.”, ACCEL erroneously inferred that the taxi-trip was the going-
step of the robbing event and that the airport is the place of robbery, although it did
correctly infer that the victim of the robbery is the taxi-driver and the gun-pointing
action is part of the robbing event. These problems indicate that more common
sense knowledge about plans is needed to achieve effective plan recognition.

3.7 Comparison with Other Approaches

Several research efforts have focused on abduction as an important infer-
ence process in natural language understanding [Hobbs et al., 1988] and plan recog-
nition [Charniak, 1986]. In the area of natural language understanding, [Hobbs et al.,
1988] describes the use of abduction in solving the four local pragmatics problems
of text understanding. This work differs from ours in that unlike their emphasis on
linguistic issues like reference resolution and syntactic ambiguity resolution, AcceL
is concerned with recognizing high level plans from the actions given in a text.

The work of [Charniak, 1986] and {Charniak and Goldman, 1989; Charniak
and Goldman, 1991] are most similar to ours. However, explanations are evaluated
based on explanatory coherence in our work, as opposed to the simplicity criterion
of [Charniak, 1986] and the probability criterion of [Charniak and Goldman, 1989;
Charniak and Goldman, 1991]. The empirical results reported in the last section
support our claim that the coherence metric is superior to the simplicity metric.

Charniak and Goldman [Charniak and Goldman, 1989; Charniak and Gold-
man, 1991] have adopted the Bayesian probabilistic approach to plan recognition and
text understanding. In this approach, an explanation is selected based on the condi-
tional probabilities of the abduced events given the observations stated in the input
text. As mentioned earlier, the first 25 training examples used in our system were
taken from Goldman’s thesis and these examples have been successfully processed
based on finding the most probable explanation.

As reported in the last section, ACCEL achieved results similar to Gold-
man’s system on the 25 training examples, Note that almost all the best explanations
are found even though our knowledge base does not contain any probabilistic or like-
lihood information. : ' ' :

This may seem surprising. In the probabilistic approach, the primary pur-
pose of & priori probabilitiés is to select a most likely explanation when there are
otherwise multiple competing explanations. For instance, in the sentence “John went
to the supermarket.”, higher a priori probability of someone shopping at the super-
market as Compared to robbing the supermarket enables the supermarket shopping
interpretation to be selected over the supermarket robbing interpretation. In our
system, we achieve an analogous effect by having an axiom in the knowledge base
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Hunting (H) Robbing (R) Shopping (S) —

Get Gun (G) _Enter Store (E)

Figure 3.6: The Bayesian network for “John got a gun. He entered the grocery
store.”

that explains supermarket in terms of supermarket shopping, but the knowledge base
does not have the corresponding axiom for “supermarket robbing” that explains su-
permarket. That is, we have the following axiom in the knowledge base:

 inst(S, smarket-shopping) A store(S, P) — inst(P, smarket)
but not ' |
inst(S, smarket-robbing) A store(S, P) — inst(P, smarket)

This is justified since supermarket shopping is a commonly occurring plan, but not
supermarket robbing. (In fact, the knowledge base does not have the high-level plan
- supermarket-robbing. Only robbing is present as a high-level plan in the knowledge
base.) It then follows that supermarket shopping is a more coherent interpretation
of “John went to the supermarket.” since supermarket shopping explains and thus
connects both supermarket and the going action, whereas robbing only explains the
going action but not supermarket.

_ With this style of axiomatization and the use of the coherence metric, Ac-
CEL is able to select the correct explanation without resorting to the use of numeric
probabilities. In essence, what is achieved by numeric probabilities in the proba-
bilistic approach is accomplished by the judicious use of logical axioms. This is in
contrast to the probabilistic approach which critically depends on knowledge about
the numerous prior and posterior probabilities of the nodes in a Bayesian network
constructed from the input sentences. In practice, such knowledge may not always
be available in the required form. For example, in the probabilistic approach, in
order to understand the sentences “John got a rope. He killed himself.”, one needs
to know the prior probability of a hanging event, the prior probability of an entity
being a rope, etc, which in turn necessitates making the assumptions that there are
10?0 things in the world, out of which there are 10° ropes, 105 get events, 10° hang-
ings, etc. Engineering an appropriate set of probabilities is a major weakness of the
probabilistic approach to text understanding,

In addition, the most probable interpretation selected depends quite crit-
ically on the specific values assigned to the various probabilities, and reasonable
probability values may result in the wrong interpretation being selected. For exam-
ple, consider the sentences “John got a gun. He entered the grocery store.” Figure
3.6 shows a simple Bayesian network constructed for these sentences.
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Suppose we adopt the following reasonable estimates for the various prior
and posterior probabilities:

P(R)=10"%P(r)=10"%P(s) =102 - — -

P(g | h,r)=0.95;P(g | h,7) = P(g | h,7) = 0.90; P(g | k,7) = 0.01
Ple|r,s)=0.95Pe|r,3) = Pe|T,s) = 0.90; P(e | 7,3) = 0.01

Note that under the above probability estimates, shopping is more probable
than either hunting or robbing a priori. It follows that these estimates will specify
a complete and consistent joint probability distribution function [Pearl, 1988]. The
joint distribution corresponding to this Bayesian network is:

P(H,R,S,G,E)= P(H)- P(R)- P(S)- P(G| H,R)-P(E| R,S)

We can now compute the needed conditional probabilities by the method
of [Pearl, 1988] or [Lauritzen and Spiegelhalter, 1988]. Alternatively, since this net-
work is relatively simple, a straightforward summation of P(H, R, S, G, E) over
various variable combinations yields P(r. | g,e) = 0.038, P(h | g,e) = 0.080,
P(s | g,e) = 0.459, and P(h,s | g,e) = 0.038. Since the conditional probability
of shopping given the observations get-gun and enter-store is the highest, the cho-
sen interpretation is that John is shopping in the store! Even though the chosen
probability estimates are quite reasonable, the preferred interpretation that John is
robbing the grocery store is not selected. Furthermore, suppose all the above prior
and posterior probabilities remain the same except that P(r} = 1.222+ 10~4. Then
- P(r| g,e) = P(s] g,e) = 0.3249, and for P(r) > 1.222+10%, P(r | g, €) becomes the
highest of all the conditional probabilities. This suggests that the selected interpre-
tation is quite sensitive to slight variation in the estimated subjective probabilities.
- Note that the correct interpretation that John is robbing the store will be selected
using our coherence metric, since the robbing interpretation has a positive coherence
value compared to the zero coherence of hunting or shopping. '

Besides the problem of engineering the numerous prior and posterior prob-
abilities of the nodes in a Bayesian network, the probabilistic approach does not take
into account the importance of text coherence. Selecting an interpretation based
solely on the probability of propositions about the situation being described is ig-
noring the fact that these propositions are adjacent sentences in a natural language
text, not just random facts observed in the world.

Cost-based abduction is another scheme proposed by [Hobbs et al., 1988] to
select an interpretation based on the cost of an abductive proof. However, as shown
in {Charniak and Shimony, 1990}, cost-based abduction can be given a probabilistic
semantics. Therefore, cost-based abduction can be regarded as a kind of probabilistic
approach, and it suffers from the same problems.

In summary, our method yields the correct interpretations without the
heavy machinery of the probabilistic approach, and consistently produces more ac-
curate interpretations than a metric based on simplicity. The approach generalized
well to novel test examples, although the system sometimes constructed implausible
connections between events. Our empirical results indicate that maximizing connec-
tions between observations is an important property of a good explanation in plan
recognition. ' :




Chapter 4

Diagnosis Based on Set Covering

In this chapter, we present the Generalized Set Covering (GSC) model

of diagnosis [Peng and Reggia, 1990] and show how ACCEL can compute the same
diagnoses as the GSC model. Furthermore, we present empirical results of AccglL
efficiently diagnosing 50 real patient test cases using a moderately sized background
knowledge base. This supports our claim that a general abductive system can effi-
ciently diagnose real problems of sizable complexity.

4.1 Generalized Set Covering

Ower the past -&eca.de, Reggia and his colleagues have developed an increas- -
ingly sophisticated theory of diagnosis based on set covering and applied the theory
primarily to medical disease diagnosis [Peng and Reggia, 1990). .

Definition 4.1 The basic diagnostic problem in the Generalized Set Covering (GSC)
model is defined by four sets: (D, M,C, M*)

D: A finite set of potential disorders
M: A finite set of potential ﬁianifest&tions (symptoms)
C C D x M: A causation relation where (d, m) G C means “d may cause m”

M* C M: The set of oﬁserved manifestations for the current case

"E C'D is called a cover of M* iff for each m € M* there exists d € E such that
(d,m) € C. A cover is said to be minimem if its cardinality is the smallest among
all covers and irredundant (minimal) if none of its proper subsets is also a cover.

Depending on the domain, one may consider all minimum or all minimal covers of
the observed symptoms as the best diagnoses. :

4.2 Set-Covering-Based Diagnosis as Abduction

- We can map a GSC diagnostic problem into an abduction problem in
ACCEL as follows: Let the domain theory T be the set of axioms {d - m}(d,m) € C},

and let the input atoms O = Amepr+ m. We use predicate specific abduction such
that only atoms d € D are assumable. S
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Theorem 4.1 The set of covers of GSC = the set of explanations in ACCEL.

Proof Let E = {d;,...,d.}, M+ = {m,,...,m,}.
{=>) Let E be a cover of MT.
Note that dy A...A d, AT is consistent.

Since E is a cover of M*, for each m; € M+, there exists d; € E such that (d;,m;) €
. That is,
AT | my

It follows that dy A ... Ad, AT |= m; for each m; € M+. Hence,
dlA...Ad,.ATizmlA...Am,

Therefore, E is an explanation for my A... A m,.
' (<) Let E be an explanation for m; A ...A m,. That is,

diA...Nd ATEMA...Am,

Since T = {d — m|(d, m) € C}, it follows that foreach m; € M*, there exists d; € E
such that {d;,m;) € C. (Forif thereisnosuch d; € E,then dy A ... Ad, AT A -m;
is consistent, contradicting di A...Ad: AT Emi A...Am,.)

Hence E is a cover of M+, O

It follows from this theorem that the set of all minimal covers of GSC is
identical to the set of all minimal explanations in ACCEL.

That all minimal covers of GSC are all minimal explanations in abduc-
tion also follows as a corollary of two published theorems. In [Reiter, 1987], Reiter
proves (Theorem 7.1) that by appropriately axiomatizing the knowledge base, his
consistency-based model can solve the GSC problem. In [Poole, 1988], Pocle proves
(Theorem 4.2) that, for propositional knowledge bases, proper axiomatization re-
sults in consistency-based and abductive diagnosis computing the exact same diag-
noses. Since Poole uses the same representation of diagnostic knowledge to make
consistency-based diagnosis model abduction as Reiter uses to make consistency-

“based diagnosis model GSC, it follows that abduction solves the GSC problem.

Since the logical abduction approach is based on a more expressive repre-
sentation language, it can accommodate more naturally “causal chaining” {Peng and
Reggia, 1990}, incompatible disorders, and symptoms caused by combinations of dis-
orders. Causal chaining can be achieved in logical abduction by allowing backward-
chaining of depth greater than one. Incompatible disorders can be enforced through
consistency checking by adding nogoods dyAds — false. A symptom s that is caused
by multiple, simultaneous disorders dy,...,d, can be encoded as d; A ... A d, — s.

A standard concern with the logical approach is that a disorder may not
always cause all of its manifestations. In this case, the axiom d — m is too strong

since assuming d would be inconsistent if -m is observed. As described in [Poole,
1988]; this problem is easily handled by makingd — m a potential assumption rather
than an axiom when the symptom is not deterministic. If assumptions are required
to be atomic (as in ACCEL), then one can achieve the same effect by adding an
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extra unique antecedent to rules for nondeterministic symptoms, d A & — m, where
a represents the assumption that d actually causes m in the current case.!

Since GSC diagnostic problems can be nicely represented as abduction
problems, the remaining question js whether a general abductive system can solve
such problems efficiently. As the GSC diagnostic problem is NP-hard [Reggia et
al., 1985), the issue then becomes whether a general abductive system can solve real
problems in reasonable time and is competitive with existing set-covering algorithms.
To address this issue, we tested ACCEL on the medical problem studied in [Tuhrim
et al., 1991), which involves determining the areas of the brain that were damaged
in a stroke. We will present empirical results showing the performance of ACCEL on

this domain in a later section in this chapter.

4.3 The AAA Algorithm in Set-Covering Diagnosis

Aspects of the AAA algorithm that are specific to the set-covering-based
diagnosis domain include: : .

* No consistency checking of assumptions is performed, since in the set covering
model, it is assumed that all possible disorders can consistently explain any
observed symptoms. . - :

o Factoring of assumptions is performed. Since the knowledge base axioms are
propositional, factoring assumptions degenerates into collapsing identical as-
sumptions. : : .

e Since the knowledge base axioms are propositional, eiimina.ting ‘variant su-

persets becomes eliminating simple supersets. Such elimination of redundant
supersets is performed.

4.4 An Hlustrative Example

To illustrate set-covering diagnosis, consider the following example which
is one of the 50 patient cases used to test ACCEL. The symptoms observed are:

¢ a decreased consciousness (with severity level described as drowsy),

¢ eye movement impairment (of type right, horizontal gaze palsy),

facial weakness (of type right, central},
e motor weakness (of type right hemiparesis),

o decreased rapid alternating movements (of type right, mild),

deep tendon reflex abnormality (of type right, hyperreflexia), and

'I{ minimum covers are desired, then the extra assumptions should not count as contributing to
the size of the cover.
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¢ abnormal plantar response (of type right).

In this case, there is only one minimum diagnosis: that the left frontal
lobe of the brain is damaged. The knowledge base axioms used to consiruct the best
explanation are:

decloc-degree(drowsy)
abneom-type{ hgaze-right)
facial-side-type(right-central)
weakness-type(hemiparesis-right)
decram-side(right-mild)
abndtrs-side(right-incdtr)
babs-side(right)

le ft- frontal-lobe(present)
le ft- frontal-lobe(present)
le fi- frontal-lobe(present)
left- frontal-lobe(present)
left- frontal-lobe(present)
lef1- frontal-lobe(present)
le fi- frontal-lobe(present)

rrTrr1r1r1r1

Other non-minimum diagnoses require assuming that two or more regions of the
brain are damaged. ACCEL computed this minimum diagnosis in 1.8 seconds and
this minimum diagnosis also agrees with the diagnosis of a human physician.

4.5 Empirical Results

We tested ACCEL on the medical problem studied in [Tuhrim et al., 1991],
which specifies 25 brain areas (e.g. right frontal lobe) whose damage can explain 37
basic symptom types (e.g. impaired gag reflex). The knowledge base is quite large,
consisting of 648 rules of the form: d — m. We were only able to obtain 50 of the
-original 100 cases from the authors of the initial study, each consisting of an average
of 8.56 symptoms. E

AccEL efficiently computed all of the minimal explanations in an average
of 2.4 seconds per case on a Sun Sparc 2 workstation. Unfortunately, we could not
compare.this result to that obtained in the original study, since no information on
run time was provided. However, it is clear that a general abductive system can
solve real diagnostic problems in reasonable time.

The original study compared the diagnosis of an expert physician to that
obtained with set covering using several explanation-evalaation criteria: minimum,
minimal, most-probable, and minimum-collapsed covers. The most-probable ex-
planation is computed using methods described in [Peng and Reggia, 1990]. The
nllljm';num-collapse_d criterion is domain-specific and based on the spatial layout of
the brain.

Since abduction computes the same explanations as set covering when
given the same evaluation criteria, ACCEL should replicate the accuracy results of
the original study. As discussed in the original study, minimality is too unrestrictive
to produce useful results (ACCEL returned an average of 26.6 minimal diagnoses per
case). With mirimum cardinality, ACCEL produced an average of only 4.6 diagnoses
per case. In 44% of the cases, one of these diagnoses matches the expert’s exactly; and
in another 46% of the cases, one of the system’s diagnoses was a subset or superset
of the expert’s (called a “close match” in [Tuhrim et al., 1991]). The remaining 10%
of the cases have a diagnosis that either partially matches the expert’s (2%) or all
of the diagnoses are totally wrong {8%). These results are slightly better than those
reported in the original study: 6.5 diagnoses/case with 40% exact, 38% close, 5%
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partial, 17% wrong. This is presumably due to the fact that our results are based on
only 50 of the original 100 cases. The most-probable and minimum-collapsed metrics
reported in the original study performed even better. In [Tuhrim et al., 1991], it is
claimed that, although there have been no direct comparisons, the results from any
of the covering metrics appear more promising than those obtained from standard
rule-based approaches to this problem.

An alternative diagnostic accuracy measure is as follows. For each case,
we count the number of disorders (n) that ACCEL correctly identifies as being either
present or absent from the case. Let N be the total number of possible disorders,
(¥ =25 in the current study since there are 25 possible brain areas.) n/N gives the
proportion of the possible disorders whose presence or absence are correctly predicted
by AccCEL. (If there are multiple minimum diagnoses for a case, we take the average
over all minimum diagnoses.) Using this measure, ACCEL achieved an average of
91% accuracy over all 50 patient cases.. : -

In summary, the results presented in this chapter demonstrate that our
general-purpose logic-based abductive system can effectively represent and efficiently
solve large realistic problems suitable for set-covering methods. Consequently, the
desirability of the existing special-purpose approach for such problems is lessened.
The logical approach is more general and flexible, yet capable of efficiently solving
problems in this more restrictive class. - - ' S




Chapter 5

Model-Based Diagnosis

5.1 Introduction

Model-based diagnosis has recently been an active area of research in ar-
tificial intelligence. In model-based diagnosis, an underlying model of a device’s
correct structure and behavior is given to a diagnostic system. Diagnosis proceeds
from first principles using such a model of a device to explain discrepancies between
its faulty and normal behavior. This model-based approach has some advantages
over the associational, heuristic rule-based approach of conventional expert systems.
The model-based approach is compositional in that it lets us define models for a
library of basic components, and it works on all systems composed from those com-
__ponents. The system designer can focus on getting the component models right,

 leading to more robust and sound diagnostic systems. The potential is also better
for verification of the underlying knowledge base.

However, much of the research in model-based diagnosis has taken the
consistency-based approach and has been applied primarily to devices with static,
persistent states such as combinational logic circuits [Davis, 1984; de Kleer and
Williams, 1987; Reiter, 1987; de Kleer and Williams, 1989]. In the consistency-
based approach, a diagnosis is a set of normality and abnormality assumptions about
the device components that are consistent with the observations and the system
description. This is in contrast with an abductive approach to diagnosis, in which
normality and abnormality assumptions about the device components together with
the system description must imply or ezplain the observations. The work of [de Kleer
and Williams, 1987; Reiter, 1987; de Kleer and Williams, 1989} applied consistency-
based diagnosis to logic circuits, while the work of [Ng, 1991; Ng, 1990] dealt with
consistency-based diagnosis for continuous dynamic systems.

David Poole has convincingly argued that both consistency-based and ab-
ductive approaches appear able to solve the same range of diagnostic problems given
the appropriate axiomatization of domain knowledge [Poole, 1988; Poole, 1989b).
Specifically, he showed that the two approaches are equivalent for propositional the-
ories. Konolige extended the conditions under which equivalence holds to general
first-order causal theories allowing for correlations, uncertainty, and acyclicity in the
causal structure [Konolige, 1992]. In view of such formal equivalence results, issues
such as ease of representation and computational efficiency are most important. In
this chapter, we present empirical results suggesting that a number of diagnostic
problems, ranging from combinational logic circuits to continuous dynamic systems
such as a proportional temperature controller and the water balance system of the
human kidney, can be effectively represented and efficiently diagnosed using an ab-
ductive approach.

Research in model-based diagnosis can also be classified according to whe-
ther information about fault models is utilized in diagnosis. The normality-based
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approach of [Reiter, 1987; de Kleer and Williams, 1987] does not utilize fault models
and any misbehavior differing from the correct functioning of a device can be diag-
nosed. However, the lack of fault models may result in hypothesizing implausible
faults. On the other hand, the work of {Dvorak and Kuipers, 1989] is_fault-based in
that the fault models are @ priori determined and given to the diagnostic system.
Hence, unanticipated faults are not detected. Finally, the diagnostic systems Sher-
lock [de Kleer and Williams, 1989), GDE+ [Struss and Dressler, 1989] as well as
AcCEL combine both normality-based and fault-based diagnosis in that information
about fanlt models is used in diagnosis and any deviation from the correct behavior
can be diagnosed. '

5.2 The AAA Algorithm in Model-Based Diagnosis

We now describe some aspects of the AAA algorithm that are specific to
the model-based diagnosis domain. :

¢ We use predicate specific abduction. The assumable atoms include component
behavioral mode assumptions, which are of three types: (1) a component is
normal; (2) a component is in some known fault mode; or (3) a component is
abnormal but not in any known fault mode. Other assumable atoms are “aux-
iliary” assumptions which include assumptions that the input values of a device
are as given, and in dynamic system diagnosis, that some qualitative magnitude
is positive/negative, that two qualitative values obey the corresponding value
constraint, etc. (More details about these auxiliary assumptions will be pro-
vided in later sections when we give the knowledge base axioms of the various
devices.)

* Both factoring of assumptions and removing variant supersets are not per-
formed. Each explanation of the input atoms consists of different combina-
tions of component behavioral mode assumptions (normality, fault mode, and
abnormality) and so factoring and removing supersets are not needed.

» Explanations are evaluated based on simplicity, where the best explanation is
one with the least number of components that are not normal, which include
components that are in some known fault mode and those that are not. Nor-
mality assumptions and auxiliary assumptions are “free” and do not affect the
stmplicity metric of an explanation. If two explanations have the same number
of components that are not normal, then the one with the most number of
components that are in some known fault mode is preferred.

* Asin the plan recognition domain, when generating the combined environments
in the cross product of two labels, the algorithm tries to generate the promising
combined environments first. In this domain, the simplicity of the combined
environment E, U E; of two environments Ey and E, can be precisely computed
without first generating F, U E, by summing the number of compounents that
are not pormal in both F, and E;. At the time of generating the combined
environment, the algorithm also performs consistency checking to ensure that
a component cannot be in two different behavioral modes.

o Other consistency checking measures used in diagnosing dynamic systems en-
sure that the auxiliary assumptions are consistent, for instance, that a qualita-
tive magnitude cannot be both positive and negative, that assumptions about




46

Figure 5.1: A full adder.

corresponding magnitudes are consistent. Such consistency checks are accom-
plished by using a pre-determined list of nogoods in the knowledge base, and
- by procedural code, :

5.3 Diagnosing Logic Circuits

Much of model-based diagnosis research has involved diagnosing logic cir-
cuits [Davis, 1984; Genesereth, 1984; de Kleer and Williams, 1987; Reiter, 1987;
de Kleer and Williams, 1989). In this section, we describe how the abductive ap-
proach of ACCEL is used to diagnose a full adder which is representative of standard,
combinational logic circuits. :

Figure 5.1 shows a full adder which consists of 2 exclusive-or gates (x1,
xzﬁ, two and gates (al, a2), and one or gate (ol). We assume that each gate has 4
behavioral modes: '

1. normal: the output bit reflects the correct gate behavior at all times;
2. stuck-at-0: the output bit is stuck at 0 regardless of the input bits:
3. stuck-at-1: the output bit is stuck at 1 regardless of the input bits; and

4. abnormal: the behavior of the gate is unconstrained.

The knowledge base axiom that describes the correct behavior of an exclu-
sive-or gate is: _
out(X,W,T) « - zorg(X) A inl(X,U,T) A in2(X, V,T) A
norm(X) A zor(U,V,W)
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The axiom asserts that if X is an exclusive-or gate (zorg(X)), the first input of X
Is U at time T (inl(X, U, T)), the second input of X is V at time T (in2(X,V,T)),
X is normal (norm(X)), and the exclusive-or of U and V is W (zor(U,V, W)), then
- the output of X is W at time T (out(X,W,T)). In addition we have the facts
zor(0,0,0), zor(0,1,1), zor(1,0,1), and zor(1,1,0). The axioms describing and
gates and or gates are similar. . '

The following two axioms describe the two fault modes, stuck-ai-0 and
stuck-at-1, for all gates: : :

out(X,0,T) « inl(X,U,T)Ain2(X,V,T) A stuck-at-0(X)
oui(X,1,T) « inl(X,U,T)A n2(X,V,T)A stuck-at-1(X)

Note that when a gate is assumed to be abrormal, no prediction can be
made about its output bit. However, abduction requires that the observations be
proved from the component behavioral mode assumptions (including the abnormality
assumptions). To overcome this problem, we employ a technique used by David Poole
{Poole, 1989b] to “parameterize” the abnormality assumption as follows:

out(X, W, T) « inl(X,U,T) A in2(X,V,T) A ab(X,U,V,W,T)

The antecedent ab(X,U,V,W,T) in the rule is to be interpreted as “X
is abnormal in such a way that at time T, given input bits U and V, its output
bit is W”. Note that for any input bits U and V, and any output bit W, the
above axiom always allows us to assume that the component is abnormal by making
the assumption eb(X,U,V,W,T), This axiom achieves our ob jective of being able
to prove the output observations from the parameterized abnormality assumption
ab( X, U, V,W,T). - '

So far, the axioms given are not specific to the full adder; they are used to
model the behavior of exclusive-or gates, and gates, and or gates. We now give the
axioms that specify the connections among the gates in the given adder:

inl(al, X,T) « inl(z1,X,T)
in2(al, X, T) « in2(z1,X,T)

We also need facts that identify the five components: zorg(zl),zorg(z2), etc.

In addition, in order to allow backward-chaining to terminate at the ter-
mjnal input values of the full adder (these terminal input values cannot be further
explained in terms of the other gate values), we have the following three axioms:

inl(z1,X,T) « given-inl(z1,X,T)
in2(zl, X,T) « given-in2(zl,X,T)
inl(e2,X,T) «— given-inl(a2,X,T)

and we let given-inl(...) and given-in2(...) be assumable atoms. They are auxiliary
assumptions, and do not affect the simplicity metric of an explanation.
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5.3.1 An Illustrative Example

Consider a scenario in which there are two faults in the full adder: stuck-at-
0(al) and stuck-at-0(a2). By an I/0 tuple, we mean a particular combination of
input and output values of the full adder. Suppose the first I/ tuple given to
ACCEL consists of the following input atoms:

inl{z1,0,11),in2(x1,1,11),in1(a2,1,11),
out(z2,0,11), and oui(ol,0,11).

There are two best explanations after ACCEL processes these input atoms:
{given-inl(z1,0,11), given-in2(21, 1,11), given-inl(a2,1,11),
norm{z1), norm(z2), stuck-at-0(a2), norm(al), norm(ol)}

{given—inl(&:l, 0,11), given-in2(21,1,11), given-in(a2,1,11),
norm(z1), norm(x2), norm(a2), norm(al), stuck-at-0(ol)}

The assumptions with predicates given-inl and given-in2 are the auxiliary assump-
tions. The diagnoses that correspond to these best explanations are {stuck-at-0(a2)}
and {stuck-at-0(o1)}. Suppose additional measurements are taken on the interme-
diate output of the full adder: ' '

out(z1,1,11), out(al, 0, 1), and out(a2,0,t1).

The best explanation after processing these input atoms becomes
{given-inl(x1,0,11), given-in2(z1,1,11), given-inl(a2, 1,11),
norm(z1), norm{z2), stuck-at-0(a2), norm(al), norm(ol)}

which corresponds to the diagnosis {stuck-at-0(a2)}.

A second I/0O tuple and the corresponding intermediate values are given
to ACCEL:

inl(z1,1,12),in2(21,0,12),inl(a2,1,12),
out(z2,0,12), out(ol,0,12),
out(zl, 1,12), out(al,0,2), and out(a2,0, t2).
The best explanation becomes
{given-in1(x1,0,11), given-in2(z1,1,11), given-inl(a2,1,11),
norm(z1), norm(x2), stuck-at-0(a2), norm(al), norm(ol),
given-ini(z1,1,12), given-in2(x1,0,12), given-inl(a2,1,12)}
while the best diagnosis remains unchanged at {stuck-at-0(a2)}.

ACCEL is then given a third I/O tuple consisting of the following input
atoms: : '

inl(z1,1,13),in2(z1, 1,3), in1 (a2, 0,13),
out(z2,0,13), and out(ol,0,13).

At this point, the best diagnoses change to {stuck-at-0(al), stuck-at-0(a2)}, and
{stuck-ai-9(ol), stuck-at-0(a2)}.

When AccEL is given an additional intermediate value out(z1,0,13), the
best diagnoses remain unchanged. Finally, ACCEL is given the intermediate value




49

out(al, 0; t3). The best diagnosis becomes the correct diagnosis {stuck-at-0(al), stuck
-at-0(a2)} at this point. The time taken for ACCEL to compute the correct diagnosis
for this example is 30 seconds on a Sun Sparc 2 workstation.

5.3.2 Empirical Results

In order to assess the performance of ACCEL on diagnosing the full adder,
we randomly generated 10 scenarios by assuming that the various behavioral modes
of each gate occur with the following probabilities: norm 65%, stuck-at-0 15%, stuck-
at-1 15%, and @b 5%. Each of the 10 scenarios that was actually generated had one
or two gates that were faulty, and the scenarios included some where a gate was
abnormal (ab). The example presented in the last section is one of the 10 scenarios
tested.

_For each scenario, we gave ACCEL I/0O tuples where the input-output bits
of the adder differed from those of a correctly functioning adder. For each I/0 tuple,
we first gave the three input bits and the two output bits of the adder, and then the
output bits of the three gates x1, al, and a2, in that order. For each scenartio, we
stopped as soon as the best diagnosis found by AcCEL is the correct diagnosis. We
recorded the number of I/O tuples needed to converge on the correct diagnosis for
each scenario,

On a Sun Sparc 2 workstation, ACCEL took an average of 17 seconds to
identify the correct diagnosis for the 10 scenarios tested. The average number of I/0O
tuples needed before the correct diagnosis was found is 2.1.

5.4 Diagnosing Dynamic Systems

As we have discussed previously, much research in model-based diagnosis
has focused on diagnosing static, discrete devices like logic circuits. However, many
devices and biological systems are continuous and dynamic and require reasoning
- about changes in behavior over time. Although there has been a great deal of re-
search on modeling and simulating such systems [Kuipers, 1986; Forbus, 1984], there
have been few attempts to apply general, model-based diagnostic methods to them.
'The work of [Ng, 1991; Ng, 1990] attempts to address this deficiency by diagnosing

dyramic systems using the consistency-based approach. In this section, we present
- an abductive approach to diagnosing continuous, dynamic systems. Specifically, Ac-
CEL has been used to diagnose a proportional temperature controller (previously

diagnosed by [Ng, 1991; Ng, 1996]) and the water balance system of the human
kidney.

5.4.1 Representing Dynamic Behavior as Qualitative States

We adopt the representation of continuous dynamic systems used in the
work of Kuipers’ qualitative simulation (QSIM) [Kuipers, 1986; Kuipers, 1984]. The
continuously changing behavior of a dynamic system over time is represented as a
sequence of gualitative states, where a qualitative state consists of the qualitative
values_of the variables of the system. A qualitative value has two components:
a qualitative magnitude (gmag) and a qualitative direction (gdir). A qualitative
magnitude can either be a landmark value or an open interval between two landmark
values, where a landmark value is a value of special significance that a variable takes
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Figure 5.2: A temperature controller.

on at some point in time. A qualitative direction can be one of increasing (inc),
decreasing (dec), or steady (std).

To illustrate the representation of dynamic behavior as qualitative states,
consider a proportional temperature controller as shown in Figure 5.2. The function

of this device is to control the temperature Tf® in the room, so that if the device is
connected to a power source with power P, the power switch is turned on (repre-
sented as W = on), and the temperature 7% set by the temperature control knob
differs from the temperature T¢ in the room, heat flow H F;y (in the form of hot air
or cold air, depending on the direction of temperature difference) will be generated.
Furthermore, the amount of heat flow generated is proportional to the temperature
difference T2* — T2,

We might observe on a cold winter day that the temperature controller is
connected to the power sourece, the power switch is turned on, the temperature set
by the control knob is at a desired room temperature, but the temperature in the
room falls below the set room temperature and stabilizes at the outdoor tempera-
ture, with no heat flow generated. This observed misbehavior can be represented
as three successive qualitative states sy, sy, and 82, as shown in Table 5.1. In the
qualitative state sp, the qualitative value of T is (T}, dec), where T, is the qual-
itative magnitude (the room temperature) and dec is the qualitative direction. In a
later subsection, we will step through this faulty scenario and show how ACCEL can

. correctly identify the faulty components.
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Sp 81 $2
T2° {Tem, std) (Trm,std) | {Trm, std)
T?® | (Tom,dec) | ((Cold, Tyn), dec) | (Cold, std)
Pob | (Pyyp, std) (Poup, std} | (Poupystd) | _ -
w (on, std) (om, std) (on, std)
HF, {0, std) {0, std) {0, std)

Table 5.1; Qualitative states of the faulty behavior of the temperature controller.

5.4.2 Representation of Dynamic Systems

The behavior of each dynamic system is governed by a set of qualitative

- constraints. Examples of qualitative constraints that we have used to model the

temperature controller and the water balance system of the human kidney include:

1L X=Y
2. X-Y=2
3.X.Y=2
4. X/Y = Z
5. d/di(X)=Y
6. m(X)=Y

where X, Y, and Z are variables. The first four constraints represent equality,
difference, multiplication, and division relations. The fifth constraint asserts that Y is
the derivative of X. The last constraint asserts that there is a strictly monotonically
increasing function between X and Y. However, the exact form of this monotonic
function is unspecified. This accounts for the qualitative nature of the constraint,

Note that we have added some qualitative constraints (=, /) in addition to
those of QSIM (+,,d/dt, mJ), although these additional constraints can be equiv-
alently expressed using existing QSIM constraints. The reason for adding these
constraints will be apparent when we discuss the logical representation of dynamic
systems in ACCEL for the purpose of abductive diagnosis.

We now illustrate the use of such qualitative constraints in representing
the temperature controller and the water balance system of the human kidney.

The Temperature Controller The qualitative constraints on the temperature

controller are as follows (each constraint is preceded by a name identifying that
constraint):

1. S:T"Ob—_-—ﬂ

2. K:T% =T,
3.C:T,~Ti=e
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4. C3:m¥(e)=a
5 0:P%.W=PpP
6. E:a-P=HF,,

The first constraint reflects the fact that if the temperature sensor is work-
ing normally, then the observed temperature in the room {T°%) is the same as the
temperature actually recorded by the sensor (7;). Similarly, the second constraint
asserts that if the temperature control knob is working normally, then the observed
temperature set by the knob (7°) is the same as the temperature actually recorded
by the knob (T,). The third and fourth constraints require 2 normal working propor-
tional controller to determine the adjustment amount (a) that regulates heat flow to
be proportional to the difference (e) between the temperature set (7}) and the tem-
perature in the room (T;). The fifth constraint implies that if the on/off power switch
is functioning properly, then the power input (P) to the electric heating/cooling com-
ponent is the same as the product of the observed power input (P°®) and the on/off
control W, where W = on(1) if the switch is on and W = of f(0) otherwise. The
last constraint requires the heating/cooling component to output the correct amount
of heat flow (H F},) according to the product of the adjustment amount {a) and the
power supply (P).

The Water Balance System of the Human Kidney The water balance system
of the human kidney is based around anti-diuretic hormone (ADH) [Kuipers, 1985;

Kuipers, 1991]. The qualitative constraints of the system are (each constraint is
preceded by a name identifying that constraint):

1. C; : amt(Na, P)/amit(water, P) = ¢(Na, P)
2. C : m¢ (amt(water, P)) = ¢(NH, P)

3. C3 : m§ (c«(NH, P)) = flow(P-U)

4. C4 : m}(e(Na, P)) = ¢(ADH, P)

5. Cs : m¢ (c(ADH, P)) = flow(U-P)

6. Cs : flow(P-U) — flow(U-P) = netflow(P-U)

7. Cr : net flow(in-P) — net flow(P-U} = net flow(out- P)
8. Cs : d/di(ami(water, P)) =,net flow(out-P)

In this system, two variables are essentially constant (when considered on
the time-scale that the system takes to reach equilibrium):

1. the amount of sodium in the plasma, amt(Na, P), and

2. the rate of water intake, net flow(in-P).
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Figure 5.3: The water balance system of the human kidney.

The first constraint asserts that the concentration of sodium in the plasma (e(Na, P))
is the amount of sodium in the plasma (amt(Na, P)) divided by the amount of water
in the plasma (amt(water, P)). The second constraint asserts that the amount of
water in the plasma affects monotonically the concentration of natriuretic hormone
in the plasma (¢(N H, P)), which in turn affects monotonically the flow of water
from the plasma into the nephron (flow(P-U)) via the third constraint. Similarly,
the fourth constraint asserts that the concentration of sodium in the plasma affects
monotonically the concentration of ADH in the plasma (c(ADH, P)), which in turn
affects the flow of water reabsorbed from the nephron back into the plasma ( flow(U-
P)) via the fifth constraint. The sixth constraint asserts that the netflow of water
from the plasma into the nephron (net flow(P-U 22 is the difference between the flow
of water from the plasma into the nephron and the flow of water reabsorbed in
the other direction. The seventh constraint asserts that the rate of water intake
(net flow(in-P)) minus the netflow rate of water from the plasma into the nephron
is the overall netflow rate of water into the plasma (net flow(out-P)). The last
constraint asserts that the rate of change of the amount of water in the plasma is
the overall netflow rate of water into the plasma. '
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Given knowledge about the structure of a dynamic system, the constraints

governing its correct behavior, and its known fault modes, the diagnostic task is to

" identify the failing components from the qualitative states that represent the device
misbehavior over time. -

5.4.3 Horn-Clause Representation of Qualitative Constraints

We have successfully represented QSIM'’s knowledge about the various
qualitative constraints (=, ~,-, /,d/dt,mg) in Horn-clause axioms in a way suitable
for logic-based abductive diagnosis. Since these Horn-clause axioms encode general
knowledge about QSIM constraints, they are needed in the diagnosis of every dy-
namic system. These axioms encode the various qualitative constraints by defining
a “holds.constraint-type” predicate for each type of qualitative constraint.

For example, the following 9 axioms encode the m{ constraint:

holds.m{ (F,G, M1,inc, M2,inc) «— pos(M1)A pos(M2)A
corr-mag.mg (F,G, M1, M2)
holds.m3 (F,G,M1,std, M2,std) «— pos(M1) A pos(M2) A
corr-mag.mg(F,G, M1, M2)
holds.m{ (F,G, M1,dec, M2,dec) «— pos(M1) A pos(M2) A
‘ corr-mag.md (F,G,M1,M 2)
holds.m}(F,G,M1,ine, M2, inc) + neg(M1) A neg(M2)A
corr-mag.mg (F,G, M1, M2)
holds.m{(F,G, M1,std, M2,std) +« neg(M1)A neg(M2) A
corr-mag.mg(F,G, M1, M2)
holds.m{(F,G, M1,dec, M2,dec) «— mneg(M1)Aneg(M2)A
corr-mag.mg (F,G, M1, M?2)
holds.mg (F,G,0,ine,0, inc)
holds.m$ (F,G,0, std, 0, std)
holds.m3 (F,G,0,dec,0, dec)

holds.m¢(F,G,M1,D1, M 2, D2) asserts that m$ (F) = G holds with the qualitative
value of the variable F = (M1, D1) and the qualitative value of the variable G =
. (M2, D2). pos(M1) (neg(M1)) asserts that the qualitative magnitude M1 is positive
(negative). corr-mag.m}(F,G, M1, M2) asserts that mg(F) = G holds with the
qualitative magnitude of F/ = M1 and the qualitative magnitude of G = M2. In
QSIM, (M1, M2) are referred to as corresponding values. These 9 axioms cover all
the distinct possibilities in which m§ (F) = G holds since the qualitative magnitude

of F' can be positive, negative, or zero, and its qualitative direction can be inc, stid,
or dec.

Other “holds.constraint-type” predicates include holds.—, holds.x, holds./,
and holds-d/dt. Atoms with one of these “holds.constraint-type” predicates are not
assumable. Hence, when ACCEL encounters a subgoal with a holds.m¢ predicate, it
will be forced to pursue each of the 9 alternatives (backward-chain on the first six
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F |G| H=F-G
inc | inc ine

| ine | inc std

1 ine | ine dec -
ine | std ine
ine | dec | ine
std | inc dec
std | sid std
std | dec ine
dec | inc dee

| dee | std dec
dec | dec ine
dec | dee std
dec | dec dec

Table 5.2: Valid combinations of qualitative directions.

rules or unify with the last three facts). Atoms with the predicates pos, neg, and
corr-mag.mg are assumable, and they form the “auxiliary” assumptions in an abduc-
tive explanation. The auxiliary assumptions pos(M) and neg(M ) make explicit the
sign of the qualitative magnitude M, while the assumption corr-mag.mg (F,G, M1,
M?2) enforces the corresponding values constraint in QSIM which asserts that the
two qualitative magnitudes M1 and M2 are valid corresponding values for the
constraint m3(F) = G (i.e., when qﬂrm__q(l"'fl = M1, gmag(G) = M2). Tn addi-
tion, consistency checking in ACCEL uses a list of known corresponding values for
m¢ constraints to ensure that if (M1, M2) are given as corresponding values for
the constraint mg(F) = G, then the assumption corr-mag.md (F,G, M1, M3) {(or
corr-mag.mg (F, G, M3, M2)) is inconsistent for M2 # M3 (or M1 # M3).

Similarly, holds.—(F,G, H, M1, D1, M2, D2, M3, D3) asserts that F—G =

. H holds with F = (M1,D1}, G = (M2,D2),and H = (M3,D3). There are 39 ax-

ioms defining holds. — (F, G, H,M1,D1, M2, D2, M3, D3), and they can be divided
into three equal groups, corresponding to the cases: (1) gmag(F) = gmag(H), gmag

(G) = 0; (2) gmag(F) = gmag(G),qmag(H) = 0; and (3) gmag(F) # qmag(H),
-gmag(F) # gmag(G). The 13 axioms in each group cover all the different possi-

ble combinations of qualitative directions of F, G, and H that obey the first-order
derivative constraint F*—G' = H’. These valid combinations of qualitative directions
are shown in Table 5.2. ' -

- The remaining “holds.constraint-type” predicates, holds.x, ‘holds./, and
holds.d/dt, are defined by 97, 70, and 9 axioms, respectively. The axioms for holds. *
(F,G,H,M1,D1,M2,D2, M3, D3) ensure that, among other things, the first-order
derjvative constraint F . G’ + F' . G = H' is obeyed. The exact axioms for all the
qualitative constraints are listed in Appendix C.

5.4.4 _ Horn-Clause Representation of Dynamic Systems

Besides the above axioms that encode general QSIM qualitative constraints,
there are also Horn-clause axioms that encode knowledge about a specific dynamic
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system. Our Horn-clause representation and diagnosis of a dynamic system is done
at the constraint level, and we assume that each constraint governs the behavior of
one component of a system. Also, we assume that when a dynamic system malfunc-
tions, it is due to one or more components whose behavior violate their respective
constraints. Diagnosis at the constraint level (as opposed to the component level)
is at a more refined level of granularity. This is because if the behavior of some
component C is governed by more than one qualitative constraints, we can always
assume that each constraint corresponds to a mini-component ¢;, so that if any ¢; is
found to be faulty, C is also faulty.

The Temperature Controller The following axioms describe the normal behavior
of each constraint/component of the temperature controller:

qual(ti, M1,D1,T) « mnorm(s)A gval(ti-ob, M1,D1,T)
qval(ts, M1,D1,T) — norm(k) A qual(ts-ob, M1,D1,T)
qual(e, M3,D3,T) « norm(cl)A
qual(ts, M1, D1,T) A qual(ti, M2, D2, T) A
holds. — (ts,ti,e, M1, D1,M2, D2, M3, D3)
qual(e, M2,D1,T) « norm(c2)A quval(e,M1,D1,T)A
holds.mg (e, a, M1, D1, M2, D1)
qval(p, M3,D3,T) «— mnorm(o)A o _
gqual(p-ob, M1, D1,T) A qual(w, M2,D2,T)A -
_ holds. + (p-ob, w,p, M1, D1, M2, D2, M3,D3)
qual(hfin,M3,D3,T) — mnorm(e)A :
' qual(a, M1, D1,T) A qval(p, M2, D2,T) A
holds. x (a,p, hfin, M1, D1, M2, D2, M3, D3)
quel(ti, M1, D1,T) asserts that the qualitative value of the variable # is (M1,D1)
at time (qualitative state) T. The first axiom asserts that if component s is normal,
and the qualitative value of ti-0b is (M1, D1) at time T, then the qualitative value
of #i is also (M1, D1} at time T. This encodes the equality constraint between the
variables #i-ob and #2. The second axiom similarly encodes the equality constraint
between ts-ob and ¢s. The third axiom asserts that if component cl is normal, the
qualitative value of s is (M1, D1) at time T, the qualitative value of #i is (M2, D2)
at time 7', and ts — i = e holds with ts = (M1, D1),ti = (M2, D2),e = (M3, D3},
then the qualitative value of e is (M3, D3) at time T'. The remaining three axioms
are interpreted in a similar way. o

Note that atoms with the predicate gval are not assumable. As such,
in order to allow backward-chaining to terminate at the terminal input values of a

dynamic device (these terminal input values cannot be further explained), we also
need the following axioms:

qual(ti-ob, M1,D1,T) « given-gval (ti-0b, M1, D1,T)

qual(ts-0b, M1,D1,T) « given-qval(ts-ob, M1, D1, )

qual(p-0b, M1,D1,T) «~ given-qual(p-ob, M1, D1, T)
qval(w, M1,D1,T) « given-quel(w, M1, D1,T)

and we let given-qval(...) be assumable. They are part of the “auxiliary” assump-
tions in an abductive explanation. ' '
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. Note the directionality in which one qualitative value is explained in terms
of the other qualitative values. Since abductive diagnosis requires that the input
observations (which consists of the qualitative values of the variables of a dynamic
system) be proved, the axioms are formulated in such a way that the output values:

e.g., qual(hfin,...)) of a dynamic system can be proved from normality assumptions
(e.g., norm(s)), fault mode assumptions, and auxiliary assumptions about the input
values (e.g., given-qual(ti-ob, .. .)) and the qualitative magnitudes and corresponding
values of the variables (these are introduced when AccEr attempts to prove the
holds.constraint-type atoms). The need to express the axioms in the proper causal
direction is the reason we have added the constraint types — and / in addition
to those qualitative constraints already present in QSIM. In addition, as long as
the qualitative constraints are formulated in such a way that output variables are
expressed in terms of input variables, the Horn-clause axioms in ACCEL that represent
the qualitative constraints of a particular dynamic system (i.e., those axioms listed in
this subsection) can be antomatically generated from their description in equational
form (i.e., those presented in subsection 5.4.2).

We also assume that the various components of the temperature controller
have the following fault modes:

o §: stuck-at-0-std, stuck-at-roomtemp-std;

¢ K: stuck-at-0-std;

¢ C1: stuck-at-0-std, stuck-at-1st-in, stuck-at-2nd-in;
o Cp: stuck-atOstd;

o O stuck-a;t-(]estd, stuck-at-1st-in; and

o F: stuck-at-0-std.

Under the fault mode stuck-at-0-std (stuck-at-roomtemp-std), the output of a com-
ponent is (0, std) ({room-temp, std)) regardless of the input values. Under the fault
mode stuck-at-1st-in (stuck-at-2nd-in), the output of a component is stuck at its
first (second) input. One Horn-clause axiom is used to encode one fault mode of a
component, as follows: -

qual(ti,0,std,T) « - stuck-at-0-std(s) A
qual(ti-ob, M1,D1,T)

gual(ti,roomtemp, std, T} « stuck-at-roomtemp-std(s) A
, gqual(ti-ob, M1,D1,T) A pos(roomtemp)
qval(e, M1,D1,T) « stuck-at-1st-in{cl) A
qual(ts, M1, D1,T) A qual(ti, M2, D2, T)
qual(e, M2,D2,T) + stuck-at-2nd-in(cl) A _
- qual(ts, M1, D1,T) A qual(ti, M2, D2, T)
qval(p, M1,D1,T) « stuck-ai- 1st-in(o) A
gqval(p-0b, M1, D1,T) A gval(w, M2, D2, T)
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The Water Balance System of the Human Kidney Similar axioms are used
to represent the kidney water balance system. Note that our Horn-clause axioms
only model the seven constraints Cy,...,C7. We assume that the constraint Cy :
. d/dt(ami(water, P)) = net flow(out-P) is not violated and do.not represent it in
the axioms. This is to avoid causal loops since otherwise netflow(out-P) can be
explained in terms of emt(water, P) via the constraints Cr, Cg, C3, and C but
amt(water, P) can be explained in terms of net flow(out-P) via the constraint Cs.
The fault modes of the system include:

¢ (5 stuck-at-low-std, stuck-at-high-std;
¢ C5: stuck-at-low-std, stuck-at-hjgh-std;
o Cy: stuck-at-loW-std,'_stuck-at-high—std; and
o Cf5: stuck-at-low-std, stuck-at-high-std.

The axioms for the fault modes are:

gval(cnh,cnh—,std,T) +— stuck-at-low-std(c2) A
- gqual(ewp, M1, D1,T) A pos(enh—)
gval(enh,enh+, std, T) « stuck-atl-high-std(c2) A
guval(awp, M1, D1,T) A pos(enh+)

awp and enh are abbreviations for amount(water, P) and ¢(N H, P), respectively.
stuck-at-high-std(c4) or stuck-at-high-std(c5) corresponds to the Syndrome of In-
appropriate Secretion of Anti-Diuretic hormone (SIADH), while stuck-at-low-std(c4)
or stuck-at-low-std(c5) corresponds to Diabetes Insipidus [Kuipers, 1985; Kuipers,
1991].

The Horn-clause axioms in ACCEL that represent the qualitative con-
straints capture the knowledge that QSIM uses to propagate qualitative values across
constraints in order to complete the qualitative values of variables in a qualitative
state. In ACCEL, such knowledge is used for the purpose of diagnosis. However,
since the knowledge is now encoded declaratively, it can also be used for simulation
purpose by a forward-chaining inference procedure. In fact, QSIM can be viewed
as a special-purpose theorem prover for predicting the behavior of dynamic systems
described by qualitative constraints. However, not all of QSIM’s knowledge in simu-
lation has been captured in ACCEL. Specifically, knowledge of continuity constraints
that QSIM uses to generate the next qualitative state(s) from an initial qualitative
state is not encoded in ACCEL, since such knowledge is not needed in diagnosis.

5.4.5 +An Ilustrative Example

Consider the faulty scenario described in subsection 5.4.1, in which the
temperature controller is connected to the power source, the power switch is turned
on, the temperature set by the control knob is at a desired room temperature, but
the temperature in the room falls below the set room temperature and stabilizes
at the outdoor temperature, with no heat flow generated into the room. Suppose
that in this case, there are two faults present in the device, stuck-at-0-std(s) and
stuck-at-0-std(c2). o :
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Suppose the following input atoms representing the initial qualitative state
are given to ACCEL: pes(roomtemp), gval(ts-ob, roomtemp, std, t1), gval(ti-ob, room-
temp, dec,t1), pos(psup), qual(p-ob, psup, std, 1), pos(on), qual(w,on, std,t1), and
qual(hfin,0,std,11). After incrementally processing each of these input atoms, the
best diagnoses (those with the least number of components that are not normal)
computed by ACCEL are:

1. {stuck-at-roomtemp-std(s)},
2. {stuck-at-0-std(cl)},

3. {stuck-at-0-std(c2)},

4. {siuck—at—O-std(o)}, and

5. {stuck-at-0-std(e)}.

Note that the abductive explanation corresponding to each of the diagnoses
includes the behavioral mode assumptions of each component of the device, as well
as the auxiliary assumptions. For instance, the abductive explanation corresponding
to the third diagnosis has the following assumptions: : - :

{norm(s), norm(k}, norm(el), stuck-at-0-std(c2), norm(o), norm(e),
pos{roomtemp), given-qual(ts-ob, roomtemp, std,t1), .
given-qual(ti-ob, roomtemp, dec, 11), pos(psup),
given-qual(p-ob, psup, std, 1), pos(on), given-gval(w;on, std, 1),
pos(P16), corr-mag.x(p-ob, w, p, psup, on, P16)}. '

The a.ux:ilia.ry assumptions include postulating a positive qualitative magnitude P18

-that is the product of psup and on.

Next, we consider the qualitative state corresponding to the immediately
following distinguished time point where the temperature in the room stabilizes at
the outdoor temperature. Assume that the next input atoms consist of the qual-
itative values of the input and output variables at this qualitative state: qvalgts—
ob, roomtemp, std, 12), pos(cold), >(roomtemp, cold), qual(ti-ob, cold, std, 12), qval(p-
ob, psup, std,12), qval(w, on, std, 12), and qual(hfin, 0, std, 12). The best diagnoses
remain unchanged after processing these input atoms.

Now, suppose we start measuring the qualitative values of the intermediate
variables of the device at this quiescent state. (For simplicity, we assume that all
intermediate variables are measurable.} Suppose the next input atom given to ACCEL
is qual(ls, roomtemp, std,t2), which is the temperature actually recorded by the
control knob. Again, the best diagnoses remain unchanged.

Next, ACCEL processes the input atom gval(ti,9, std, t2), which gives the
temperature actually recorded by the temperature sensor. The best diagnoses now
change to: - :

1. {stuck-at-0-std(s), stuck-at-0-std(c1)},
2. {stuck-at-0-std(s), stuck-at-2nd-in(c1)},
3. {stuck-at-0-std(s), stuck-at-0-std(c2)}, and
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4. {stuck-at-(}-.std(.s),stuck-at-o-ﬁtd(e)}.

ACCEL continues to process the next input atom qual{e, roomtemp, std, t2)
- which gives the temperature difference recorded by the controller. The best diagnoses
now become:

1. {stuck-at-0-std(s), stuck-at-0-std(c2)}, and
2. {stuck-at-0-std(s), stuck-at-0-std(e)}.

Finally, ACCEL processes the input atom gqval(e,0,std,?2) (the adjust-
ment amount) and the best diagnosis returned is the correct diagnosis {stuck-at-
0-std(s), stuck-at-0-std(¢2)}. The time taken for ACCEL to arrive at the correct
diagnosis for this scenario is 3.99 minutes.

5.4.6 Empirical Results

We tested ACCEL on 10 scenarios each on the temperature controller and
the water balance system of the human kidney. Measurements of intermediate vari-
ables are made in a fixed order so as to further differentiate and narrow the diagnos-
tic candidates. Although our work does not focus on experimentation, the ability to
intelligently select which component output and which additional sensor values to
measure is important in achieving efficient diagnosis.

The Temperature Controller In-order to generate the faulty scenarios for the
temperature controller, we used a QSIM model (Figure 5.4) of the temperature con-
troller embedded within its surrounding environment [Kuipers, 1991]. This model
‘contains qualitative constraints for the heat flow both between the heating/cooling
element of the temperature controller and the room, and between the room and the
outdoor environment. . :

We randomly generated 10 scenarios where each scenario contains one to
two faults and in which no heat flow was generated into the room. For each scenario,
we gave the input atoms representing the qualitative values of the following variables
in the order listed: ' :

1. T, Tf%, Pob, W, HF,, at the initial qualitative state (¢;);

2, EF;"’), T,-””(,1 P W, HF;, at the next distinguished time-point qualitative state
. t2 ; an .

3. the intermediate variables T,, T}, e,a, P at state 1,.

. In 9 out of the 10 scenarios, ACCEL found the correct diagnosis as its best
diagnosis. The scenario that AccEL failed to find the best diagnosis has two faults
{stuck-at-0-std(cl), stuck-at-0-std(c2)}. In this case, the best diagnosis that ACCEL
found after processing all the intermediate variables is {stuck-at-0-std(c1)}. This is
as it should be, since when cl is stuck at (0,std), the correct behavior of ¢2 if it
is normal is to output e = (0, std) at all times, which is indistinguishable from the
behavior of ¢2 if it is in the fault mode stuck-at-0-std. That c2 is in fact faulty would
be detected when cl is replaced by a normal, working component and the controller
is still found to be malfunctioning,.
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Figure 5.4: The temperature controller and its environment.

Overall, the average run time per scenario is 4.24 minutes, and the average
number of measurements of intermediate variables needed to arrive at the correct
diagnosis is 4.4.

The Water Balance System of the Human Kidney We also tested ACCEL
on 10 faulty scenarios of the kidney water balance system. The 10 scenarios consist
of all the 8 possibilities that one of the constraints Cs,.. -»Cs is stuck at low/high,
and two scenarios that have 2 faults. Each of the 10 scenarios starts with an initial
qualitative state with high water intake into the body, and then reaches equilibrium
over time. For each of the 1-fault scenarios, we gave the input atoms representing
the qualitative values of the following variables in the order listed:

1. ami(Na, P}, amt(water, P), net flow(in-P), net flow(out- P) at the initial qual-
itative state (fy);




Problem Time (min) Inference count
No-cache | Cache | speedup | No-cache | Cache | ratio

trainl 22,191 3.10 7.16 1418 138 | 10.27
train8 043 | 0.24 1.79 118 45|  2.62
trainl3 1142 2.02 5.65 919 120 7.66
test9 >25.04| 2.96 >8.46 >1401 127 | >11.03
test19 >26.78 | 4.17 >6.42 >1561 209 | >7.47
brainb 0.16 | 0.07 2.29 2198 142 | 1548
brainl0 0.07| 0.03 2.33 1004 631 15.94
brain42 0.05| 0.02 2.50 783 100 7.83
adderl 43.77| 0.51| 85.82 157210 749 | -209.89
adderd 3.81| o0.08 47.63 30225 237 | 127.53
adder10 4791 0.12 39.92 38110 265 | 149.45
tcl >72.53 ) 4.70% >1543| >17766 442 | >40.19
tcd >68.08| 435} >15.65| >17766-| 415 | >42.81
tc8 >68.22| 426! >16.01| >17766 385 | >46.15
kidneyl >61.24 | 7.86 >7.79 >8661 470 | >18.42
kidney5 >65.26 | 7.89 >8.27 1 >8577 433 | >19.81
Average 17.07 45.78 .

Table 6.1: Empirical results comparing caching and non-caching performance _

architecture, creates rules to summarize the processing of a subgoal so that future
problem solving in the subgoal can be avoided [Laird et al., 1984].

Previous research on caching has sometimes produced conflicting evidence
as to the utility of caching. Although Elkan achieved good results with the use of
caching in [Elkan, 1989}, he also reported that Stickel had independently discovered
and implemented a caching scheme similar to his, but that the results Stickel obtained
were unfavorable to caching on the class of theorems Stickel investigated at the time.
This is analogous to the utility problem in explanation-based learning [Minton, 1988],
where learning more search control knowledge may or may not improve the overail
performance of a system.

As mentioned in Chapter 2, we believe that duplicating inference poses a
more serious problem in abduction because multiple abductive proofs must usually
be pursued in the search for a best explanation, whereas in deduction, we are usually
interested in a single deductive proof. The need for multiple abductive proofs tends to
result in more duplicate inferences being made, since the multiple abductive _proofs
maintained tend to share many identical subgoals. In [Stickel, 1991], Stickel has
also expressed similar opinions of the “strong motivation” to “eliminate search-space
redundancy” for abduction since “the presence of an additional inference rule that
allows literals to be either assumed or proved makes the search space for abduction
even larger than that for deduction”. Our empirical results confirm that caching is
indeed very effective in improving the efficiency of abduction. :
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Chapter 7

Related Work

There is a great deal of research related to abduction, plan recognition,
and diagnosis. Previous general abduction algorithms and systems are too restric.
tive, too inefficient, and not well tested on real problems. On the other hand, related
research in the areas of plan recognition and diagnosis are too domain specific and
not based on a general, unifying formalism. For example, the generalized set covering
model is propositional and is not applicable to-modeling plan recognition in narra-
tive texts which require the expressive power of first-order predicate logic. Another
example is the ATMS algorithm which only deals with propositional abduction. Our
discussions of related work are divided into the following subsections: general theory
and algorithms, plan recognition and natural language understanding, diagnosis, and
abduction in other domains. ‘

7.1 General Theory and Algoriilzhms.-

Pople was the first researcher to explore a.bdiictive_ reasoning in AI _[Pople,

1973}, although he was mainly concerned with using abduction to perform disease

diagnosis. Charniak and McDermott proposed abduction as a general model for
explanation, and recognized that many diverse Al tasks, including natural language
understanding, diagnosis, and image interpretation, can be elegantly modeled as
abduction [Charniak and McDermott, 1985). Qur work takes this hypothesis one
step further and demonstrates via an implemented system that general and efficient
abduction for the tasks of plan recognition and diagnosis is indeed possible. -

_ The SAA algorithm given in Chapter 2 is a general abduction algorithm for
first-order Horn-clause domain theories [Stickel, 1988a). However, it does not perform
caching of partial explanations and therefore duplicates inferences. To address this
problem, Stickel has proposed a method to formulate a goal-directed, backward-
chaining algorithm “metatheoretically” for execution by a forward-chaining reasoning
system such as hyperresolution [Stickel, 1991). That is, metapredicates such as faet
and goal are used to encode a backward-chaining algorithm using axioms to be
executed by a forward-chaining inference system. In this way, subsumption checks
in the forward-chaining system will ensure that duplicate inferences are not made,
and the goal-directedness of the backward-chaining algorithm can also be preserved.
Such an approach has the advantage that it can be easily implemented on an existing
high-performance, forward-chaining system (such as OTTER [McCune, 1990]). Our
AAA algorithm achieves analogous effects of goal-directedness and non-duplicating
inference in a direct way, via backward-chaining and caching.

Levesque has characterized abduction in terms of a formal model of belief
[Levesque, 1989]. He proved that for propositional Horn-clause theories, the ATMS
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[de Kleer, 1986] is an abductive procedure that computes all minimal explanations.
Our AAA algorithm is more general and computes first-order Horn-clause abductive
proofs.

Ginsberg has implemented a first-order ATMS using a multi-valued-logic
theorem prover, MVL [Ginsberg, 1989]. Compared to ACCEL, MVL is a more general
theorem prover for full first-order predicate logic and it is capable of many kinds
of reasoning including defaunlt reasoning, circumscription, temporal reasoning, and
probabilistic reasoning. However, his implementation of the first-order ATMS does
not cache previously computed partial explanations. This is in marked contrast to
the (propositional) ATMS of de Kleer, in which caching and sharing of explanations
are the distinguishing features. Hence, Ginsberg’s system is an “ATMS” only in the
sense that it is an algorithm that computes all possible proofs (explanations). In
addition, his system has not been tested on large problems. '

T Kautz has developed a formal theory of plan recognition based on first-
order predicate logic [Kautz, 1987; Kautz and Allen, 1986). In his theory, an event
hierarchy captures isa relationships between events (abstraction hierarchy) as well
as part-of relationships of events and their components (decomposition hierarchy).
He uses the notion of a minimum covering model to define mc-entailment, where an
observation me-entails a conclusion if and only if the conclusion deductively follows
from the observation, the event hierarchy, completeness assumptions about the event
hierarchy, and the assumption that as few top-level events occur as possible. It
is shown that mc-entailment is related to circumscription [McCarthy, 1980]. The
assumption that as few top-level everts occur as possible is a form of simplicity
measure. This is in contrast to our use of coherence metric, which we have shown to
‘be a better metric than simplicity in the plan recognition domain.

One major difference between Kautz’s theory and our work is’ that his
theory models plan recognition as non-monotonic deduction rather than abduction.
The difference is similar to that between consistency-based diagnosis and abductive
diagnosis. Kautz’s theory of plan recognition is in the style of consistency-based
theories and relies on making completeness assumptions about the event hierarchy
as well as the the assumption that as few top-level events occur as possible. These
additional assumptions enable the deductive inference of plans from observed actions.
On the contrary, our abductive model of plan recognition assumes the existence of
top-level events and other (e.g., role-filler) assumptions in order to prove the observed
actions. In addition, due to considerations of computational efficiency, we restrict
our knowledge base to Horn clauses, whereas Kautz allowed arbitrary first-order
formulas. -

The computational complexity of several abductive problems has been for-
mally analyzed. It has been shown that, even in the propositional case, comput-
ing all minimal explanations is provably exponential [McAllester, 1985; Selman and
Levesque, 1990, since in the worst case, the number of minimal explanations is expo-
nentially large. Reggia et. al. have shown that finding parsimonious (i.e., minimum)
explanations in the GSC model is NP-hard [Reggia et al., 1985]. Bylander et. al.
have investigated the complexity of various classes of abduction in which abduction
is characterized as a problem of finding the most plausible composite hypothesis (a
conjunction of individual hypotheses) that explains all of the data [Bylander et al,,
1989]." The classes of abduction are differentiated by the way hypotheses interact.
They show that unless some very restrictive conditions are satisfied, abduction is
computationally intractable.

|
|
i
|
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, Note that the GSC model and the various classes of abduction studied by
Reggia et. al. and Bylander et. al. only concern propositional abduction in which
abductive proofs are restricted to be of depth one. Similarly, Levesque’s character-
ization of abduction is in terms of propositional beliefs. However, our abduction
model is more general in that it allows first-order Horn clause axioms with variables.

To limit the computational efforts expended in the ATMS, Forbus and de
Kleer introduced a “focusing” technique in which only relevant environments in an
ATMS are maintained and propagated [Forbus and de Kleer, 1988). Dressler and
Farquhar used a similar focusing mechanism in their model-based diagnostic system
Coco to achieve efficient diagnosis of logic circuits [Dressler and Farquhar, 1990].
Such focusing techniques achieve pruning effects similar to our use of heuristic beam
search in the AAA algorithm. Focusing eliminates environments that are not implied
by some focus environments, while our heuristic beam search eliminates envirohments

based on their evaluation metric.

Poole’s implémented-system, Theorist, is a general default and abductive

- reasoning system [Poole, 1989a). Compared to AccCEL, Theorist also deals with

default reasoning, and it handles full first-order predicate logic, However, the hy-
potheses (i.e., assumptions) that Theorist can make must be given to the system a

* priori, while all atoms are assumable in ACCEL (in the plan recognition domain). In

addition, Theorist is not concerned with efficient inference and does not use caching
to avoid redundant work, nor has it been tested on large problems.

7.2 Plan Recognition and Natural Language Understanding

7.2.1 .Abductive Approaches
Charniak and McDermott were the first to formalize the inference of char-

~ acters’ plans and goals from their states and actions as abduction [Charniak and

McDermott, 1985]. That is, understanding is the search for the best explanation
of the causal reasons behind characters’ behavior. This allows us to study such
inferences in the larger context of inferring cause from effect,

Several research efforts have since adopted an abductive approach to text
understanding. In [Charniak, 1988}, it is shown that noun-phrase reference determi-
nation can be achieved by an abductive unification procedure that allows for unifying
two entities if it is consistent to do so. This is equivalent to making the abductive
assumption that the two entities are equal in an abductive proof of the input sen-
tences. ‘

Hobbs et. al. have used abduction to solve the four local pragmatics prob-
lems of text understanding: reference resolution, compound nominal interpretation,
syntactic ambiguity resolution, and metonymy resclution [Hobbs et al., 1988]. It
is claimed that the abductive approach has “resulted in a dramatic simplification
of how the problem of interpreting texts is conceptualized”, and that “it also sug-
gests an elegant and thorough integration of syntax, semantics, and pragmatics”, by
combining the idea of interpretation as abduction and that of parsing as deduction.

The work reported here differs from those of [Charniak, 1988) and [Hobbs
et al., 1988] in that unlike their emphasis on mostly lingnistic issues like noun-phrase
reference determination and syntactic ambiguity resolution, ACCEL is concerned with
recognizing characters’ plans in a narrative text. The work of [Charniak, 1986] also
dealt with plan recognition, but evaluated explanations based on their simplicity, as
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opposed to our coherence metric. In addition, unlike their use of marker passing
to restrict the search for explanations, we used a form of beam search to efficiently
construct explanations. - : '

7.2.2 Probabilistic Appro#ches

Inferring cause from effect is an inherently uncertain process — it is only
plausible inference. There are usually many alternative causes for some observed
effect given the relevant background knowledge. Statistics and probability theory is
the established discipline of study. that deals with uncertainty. As such, it comes
as no surprise that much work in medical diagnosis is concerned with uncertain or
probabilistic reasoning. Within Al, Pearl has done extensive work on probabilistic
reasoning [Pearl, 1988?- - '

Resolving ambiguity in natural language understanding can also be formu-
lated as reasoning under uncertainty. Recently, Charniak and Goldman have adopted
a probabilistic approach to text understanding [Charniak and Goldman, 1989; Char-
niak and Goldman, 1991; Goldman, 1990). In this approach, a Bayesian network is
constructed from the input sentences. Based on knowledge about the various prior
and posterior probabilities of the nodes in a network, and making some appropriate
assumptions about conditional independence, the conditional probabilities of various
abduced events given the observations stated in the text are computed. The abduced
event with the highest conditional probability constitutes the preferred interpretation
of the text. Engineering the numerous prior and posterior probabilities of the nodes
in a network is a weakness of this approach. Furthermore, as we have demonstrated
in Chapter 3, the interpretation selected by this approach depends quite critically on
the specific values assigned to the various probabilities, and that reasonable proba-
bility values may result in the wrong interpretation being selected. Also, selecting
interpretations based solely on probability fails to capture the importance of text
coherence. fo

7.2.3 "Non-Abductive Approaghés

Two early approaches to narrative understanding are script-based and
plan-based understanding. In the script-based approach used by SAM {Cullingford,
1978], knowledge of stereotypical events are used to guide the understanding pro-
cess. In the plan-based approach used by PAM {Wilensky, 1978; Wilensky, 1983],
knowledge about the actions, plans and goals of characters are used to connect the
observed states and actions to their high level plans and goals. The realization that
a complete understanding of narratives requires knowledge of events, plans and goals
characterizes these early approaches [Schank and Abelson, 1977].

Granger’s program also makes inferences about characters’ goals to under-
stand stories {Granger, 1980a). His program prefers the most parsimonious inter-
pretation, defined as one in which “the fewest number of inferred goals of a story
character account for the maximum number of his actions”, As such, his preference
criterion is simplicity as opposed to the coherence metric used in ACCEL.

Alterman proposed a theory of seven coherence relations to relate the
events and states in a narrative [Alterma.n, 1985]. In his research, understanding
a narrative involves finding the coherence relations between the various concepts in
the text. This is accomplished by constructing a dictionary of concepts related by
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the seven coherence relations, matching text against this dictionary, and using the
organization of the concepts in the dictionary to organize the instances of concepts

- that appear in the text.

_ The research of Norvig involves the use of marker passing mechanism to
make inferences from narratives [Norvig, 1987]. The knowledge base is structured
in a semantic network where a link between two nodes can be one of several types.
A predetermined, fixed set of inference paths specified as regular expressions deter-
mine the valid path links that a marker can travel. Collision of markers at some

- intermediate node constitutes a possible inference. Competing inference paths are

then evaluated by a separate evaluator. The weakness of this approach is that in
a sizable knowledge base, the spreading of markers can still lead to many possible
path collisions even when constrained by the predetermined set of allowable inference
paths. Furthermore, the semantics of these predetermined regular-expression-style
inference paths is unclear and the paths appear to be created solely: for the conve-
nience of constraining marker movement to make the inferences desired. :

Previous research tends to ignore the fact that inferences drawn from text

* are only plausible inferences, and as such, they may subsequently turn out to be

erroneous and need to be retracted. (An exception is the work of Granger and Eiselt
who explicitly modeled such interpretation change [Granger, 1980a; Granger, 1980b;

* Eiselt, 1987].) Our abductive approach can handle interpretation change easily, as il-

lustrated by the example in Section 3.5. Another issue in making plausible inferences
from text is the selection of the preferred inferences given many alternatives. This
is the notorious “frame selection” problem [Charniak, 1978] and has not been satis-
factorily dealt with in' previous research. Our work addresses this issue by efficiently
constructing and evaluating alternative interpretations.and selecting one based on
explanatory coherence.” R ' '

. In the area of plan recognition for dialog understanding, Allen and Perrault
were the first researchers to work on the inference of an agent’s intentions from his
utterances [Allen and Perrault, 1980). Plan inference rules and heuristics were used
to control the search for a plan. - Their theory of plan recognition can also account
for when to provide more information than explicitly requested, and how to interpret
sentence fragments and indirect speech acts. However, their theory can only handle
single utterances, and the plan inference rules make plausible deduction i an ad hoc
way. Litman has extended this plan recognition model for dialog understanding to
handle dialogs with sequences of utterances and embedded subdialogs [Litman and

‘Allen, 1987]. She introduces the distinction between domain plans, which are the

speaker plans that form the topic of conversation, and discourse Plans, which are the
speaker plans that relate utterances to the domain plans. Her model can account for
subdialogs such as clarification, correction, and topic change. However, her approach
(?l,s well as that of Allen and Perrault) does not deal with the issue of interpretation
change. . -

One shortcoming of these non-abductive approaches is that the underlying
inference processes tend to be rather ad hoc and not based on any general, logical

~foundation. A logic-based approach offers an expressive representation language —

first-order predicate calculus, with a clear, well-understood semantics. Although the
inferences made in plan recognition are most emphatically not deductive, we believe
that modeling them as inferring the assumptions sufficient to complete a deductive
proof of the input observations is an elegant formalization. Abduction gives plan
recogritiod inference a firm semantic footing. In addition, the inference process,
although itself not deductive, depends on the familiar, well-understood notion of
deduction. o : ' ' '
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7.3 Diagnosis
‘ Reggia et. al. developed the generalized set covering (GSC) model [Reggia
et al., 1983; Reggia et al., 1985] in which each disorder (disease) directly causes a set of
manifestations (symptoms). The GSC model is essentially a propositional abduction
‘model in which abductive proofs are restricted to be of depth one. Allemang et.
al. ‘have used a similar abduction model and an approximate algorithm to compute
parsimonious diagnoses in a system that performs antibody identification in the
domain of red blood cell typing {Allemang et al., 1987]. ACCEL is more general in
that it deals with first-order Horn clauses, and the explanations constructed can be
of any depth.

: Cox and Pietrzykowski have developed a general abductive inference pro-
cedure for computing fundamental causes of any observation stated as a first-order
- predicate calculus sentence [Cox and Pietrzykowski, 1986; Cox and Pietrzykowski,
1987). A cause is any conjunct that logically entails the observation given the back-
ground knowledge, and a fundamental cause is a cause that is minimal (least general),
acceptable (consistent), nontrivial (related to the knowledge base), and basic (not
an intermediate cause). The minimality condition is a form of simplicity measure,
i.e., do not assume anything more than what is sufficient to complete a proof of
the observation. Their theory of abduction falls under the category of most specific
- abduction. However, their inference procedure does not utilize caching to improve
efficiency, and it has been tested only on diagnostic problems in logic circuits.

Model-based diagnosis has recently been a very active area of research in AI
[Reiter, 1987; de Kleer and Williams, 1987; de Kleer and Williams, 1989; Struss and
Dressler, 1989; Hamscher, 1990}, In model-based diagnosis, an underlying model of
a device’s correct structure and behavior is given to a diagnostic system. Diagnosis
proceeds from first principles using such a device model to explain discrepancies
between its faulty and normal behavior.

_ Reiter proposed a formal theory of diagnosis from first principles that rea-
~.sons from the system descriptiorn and observations of the system behavior [Reiter,
- 1987]. In particular, an algorithm is presented that will compute all minimal diag-
noses of a device, including multiple-fault diagnoses. A diagnosis in his theory is a
set.of normality and abnormality assumptions about the device components that are
consistent with the observations and the system description. This theory provides
the iiorma.l justification for the work of [Davis, 1984] and [de Kleer and Williams,
1987].

De Kleer and Williams implemented a diagnostic system, General Diag-
nostic Engine (GDE}, which is capable of diagnosing failures due to multiple faunlts
[de Kleer and Williams, 1987). The system uses an ATMS to efficiently compute
- minimal diagnoses. It can also propose additional measurements to further local-
ize faults. This is achieved via a method that minimizes the expected entropy of
candidate probabilities. GDE has been applied to the diagnosis of logic circuits.

One shortcoming of GDE is that it does not have any knowledge of fault
models, which are the common behavioral modes of 2 malfunctioned component. The
lack of such knowledge may result in GDE proposing highly implausible diagnosis,
like a light bulb is fanlty in such a way that it is lit without any voltage supply.
To overcome this problem, de Kleer and Williams subsequently built Sherlock which
diagnosed-a device based on knowledge about the normal behavior as well as common
fault mode behavior of the components of a device [de Kleer and Williams, 1989].
The ability to diagnose unanticipated faults not known in advance is still retained.
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The GDE+ system of Struss and Dressler has similar capability [Struss and Dressler,
1989]. _

Coco, the system of Dressler and Farquhar, also performs model-based
diagnosis of logic circuits based on an ATMS {Dressler and Farquhar, 1990]. In order
to focus diagnosis on the promising candidates, they used a focusing technique to
restrict the propagation of environments in the ATMS. Empirical results indicate that
significant improvement in diagnostic efficiency can be achieved using the focusing
technique. :

‘ The work of Hamscher applied hierarchical decomposition of a device to
better manage the computational complexity of computing diagnoses [Hamscher,
1990]. His system also incorporated fault models, and was applied to diagnosing

. digital circuits.

- Much research in diagnosis has been applied to diagnosing digital circuits,
which are representative only of physical devices with static, persistent states. Al-
though there has been a great deal of research on modeling and simulating dynamic
systems [Kuipers, 1986; Forbus, 1984], there have been few attempts to apply gen-
eral, model-based diagnostic methods to them. Mimic, the system of fDvorak and
Kuipers, 1989] diagnoses continuous dynamic systems, but it assumes that all the
fault models are pre-enumerated [Dvorak and Kuipers, 1989] (or that only single
faults are present {Dvorak, 1992]). As such, unanticipated faults {or multiple, simul-
taneous, and interacting faults) will not be detected by the system. .

The work of [Ng, 1991; Ng, 1990] attempts to address such deficiency
by diagnosing dynamic systems using a general, model-based approach. It applies
Reiter’s algorithm incrementally to successive qualitative states of a dynamic system.
The resulting algorithm, Inc-Diagnose, handles multiple faults correctly and does not
require explicit fault models. An implicit assumption in Reiter’s algorithm is that all
observations are available at the start of diagnosis, which is often not the case. Since
taking measurements is generally expensive, it is preferable to intermix measurement
with fault hypothesis generation, especially for dynamic, continuous systems. Inc-
Diagnose overcomes such limitations.

So far, the related research in model-based diagnosis cited above falls un-
der the class of consistency-based diagnosis, in which a diagnosis is a set of normality
and abnormality assumptions that are consistent with the observations and the gys-
tem description. This is in contrast with the abductive approach to diagnosis used in
ACCEL, in which normality and abnormality assumptions about the device compo-
nents together with the system description must imply or ezplain the observations.
Even though these two approaches may look quite different at first glance, the work
of {Poole, 1988; Poole, 1989b; Konolige, 1992) has shown that under some restric-
tive conditions, the diagnoses computed by the consistency-based and abductive
approaches are identical. Specifically, Poole showed that the two approaches are
equivalent for propositional theories [Poole, 1988), and Konolige extended the condi-
tions under which equivalence holds to general first-order causal theories allowing for
correlations, uncertainty, and acyclicity in the causal structure. However, Konolige
has reported that “the utility of the consistency based method is open to question”,
since in explanatory diagnostic tasks, “the answers it produces may have elements
that are not relevant to a causal explanation” [Konolige, 1992, page 257]

.
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7.4 Abduction in Other Domains

Thagard has independently proposed a computational theory of explana-
tory coherence and applied it to the evaluation of scientific theories [Thagard, 1989)].
However, his theory of explanatory coherence consists of seven principles — sym-
metry, explanation, analogy, data priority, contradiction, acceptability, and system
coherence. Independent criteria like simplicity and connectedness have been col-
lapsed into one measure which he termed “explanatory coherence”.

O’Rorke ef. al. have modeled scientific theory formation as abduction
[O’Rorke et al., 1989). They illustrated how some of Lavoisier’s key insights during
the Chemical Revolution can be viewed as examples of theory formation by abduc-
tion. It is suggested that “automated abduction is a key to advancing beyond the
“‘routine theory revision’ methods developed in early Al research towards automated
reasoning systems capable of ‘world model revision’ ®. Their system differs from
ACCEL in that it is a theory revision system designed to make changes to the rules
in the underlying domain theory, while ACCEL assumes that its domain theory is
correct. :

Subramanian and Mooney have built a multistrategy learning system,
BRACE, which combines abduction and theory revision to incorporate observations
* into a domain theory [Subramanian, 1992; Subramanian and Mooney, 1991}, BRACE
is capable of changing both assumptions and rules in a domain theory to account
for new observations, in contrast to ACCEL which does not modify the rules in the
domain theory. When an explanation becomes inconsistent, BRACE will attempt to
revise the assumptions to arrive at a consistent explanation, whereas AccEL simply
discards any inconsistent explanations. :




Chapter 8

Fature Work

Future research issues can be broadly classified into three areas: represen-
tation and algorithms, natural language understanding, and diagnosis.

8.1 Representation and Algorithms

The axioms allowed in ACCEL are restricted to first-order Horn-clause ax-
ioms for efficiency reasons, since linear resolution with Horn-clauses is in general more
efficient than binary resolution with general clanses. However, the need for fall first-
order predicate logic representation, and hence, a general full first-order abduction

algorithm may arise in the future. Stickel has already showed how his upside-down

meta-interpretation method for abduction can be extended to deal with non-Horn
clauses [Stickel, 1991). The abduciion algorithms of [Cox and Pietrzykowski, 1987;
Poole, 1989a; Ginsberg, 1989] are also suitable for general first-order theories, al-
though their algorithms do not involve caching. ' R

__In the current version of the AAA algorithm, consistency checking is ac-
complished by using a pre-determined list of nogoods and by procedural code. This

is done purely for efficiency reasons. However, the current method for consistency .

checking is not as general. An earlier version of AcceL [Ng and Mooney, 1991b;
Ng and Mooney, 1991a] performed consistency checking by finding the logical conse-
quences of the assumptions made in an explanation and the domain theory (AU T)
via forward chaining on the Horn clause axioms in T (some of them are of the form
PyA...A P, — false) up to some preset depth limit. If false is not derived within
the depth limit, A U T will be considered consistent, '

.. The efficiency of ACCEL can be further improved by compiling the Horn-
clauses in the knowledge base, in the same way that the efficiency of a deductive
theorem prover can be greatly improved via clause compilation [Stickel, 1988b:
Norvig, 1992].

Orne shortcoming of the AAA algorithm is that the queue of best partial
explanations maintained may become empty at some point in computing the abduc-
tive proofs. This can occur if the beam width Bintra is not sufficiently large and
all best partial explanations become inconsistent after adding a new input atom. A
better approach would have the capability of recovering from an empty beam of ex-
planations by reconciling the contradiction detected in an inconsistent explanation.
Some assumption in a nogood (i.e., the set of assumptions that implies falsity) can
be retracted and the remaining unexplained observations are proved via abduction
again, Such contradiction resolution resembles belief revision for a justification-based
truth maintenance system {Doyle, 1979]." The work of Subramanian addresses this
issue [Subramanian, 1992].
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8.2 Natural Language Understanding

ACCEL is currently only able to deal with the plan recognition aspect of
text understanding. As mentioned in the related work section, abductive reasoning
can also model noun-phrase reference determination {Charniak, 1988] and syntactic
ambiguity resolution {Hobbs et al., 1988]. ACCEL needs to be extended to include
parsing of input sentences, and resolving lexical and syntactic ambiguity.

It is often the case that input atoms are too specific and cannot be di-
rectly deduced from abductive assumptions. This problem has been reported in
[Charniak, 1987; Ng and Moaoney, 1989]. For instance, in the sentences “John went
to the supermarket. He bought some milk.”, assuming that John was shopping at
the supermarket only allows us to derive that he would buy some food, but not nec-
essarily milk. This problem can be overcome by generalizing explanations to include
abductive proofs of logical consequences of the input atoms. The difficulty in this
generalized definition of abductive explanations is to determine what are the relevant
and interesting consequences to derive and explain, since deriving all possible conse-
quences is clearly intractable. An example of methods to control forward inferences
is that developed for automated knowledge integration [Murray, 1988].

The plan recognition knowledge in ACCEL primarily encodes stereotypical
knowledge as in a script-based system like SAM [Cullingford, 1978]. As such, AccEL
is not capable of handling novel plans, which involve actions not explicitly defined as
part of a common plan, yet these actions are causally related and accomplish some
‘high-level goal of an agent. In addition, ACCEL currently fails to handle. common
substeps that are shared by multiple plans, for instance, that a going action is part
of both the supermarket-shopping and robbing plans. Overloading of actions to
simultaneously achiéve multiple goals is known to be a common occurrence [Pollack,
1989). Furthermore, ACCEL is currently restricted to abducing high-level plans froin
observed actions, but not observed states. Hence, it will fail to abduce, for instance,
that an agent has the restaurant-dining plan when told that he is hungry. We can of
course write additional axioms to assert that a high-level plan implies an observed
state, but to do so correctly, we must also assert when a state holds relative to
the time of occurrence of plans and actions. For example, a person is only hungry
before dining at a restaurant but not after. In other words, to properly handle the
abduction of high-level plans from observed states, ACCEL must be able to reason
more generally about time, and the preconditions and effects of actions in terms of
the states that an action enables or disables. Extending ACCEL to correctly handle
these deficiencies is an important area for future research.

Currently, explanations in the plan recognition domain are evaluated solely
on coherence, Future work needs to integrate likelihood information as an part of
the evaluation criterion, perhaps as a measure secondary to coherence.

8.3 Diagnosis

The work of [Poole, 1988; Poole, 1989b; Konolige, 1092] has revealed some
interesting relationships between consistency-based and abductive diagnosis, which
are two major paradigms in model-based diagnosis. To what extent do the two
approaches coincide and differ, especially in practical terms such as ease of represen-
tation and diagnostic efficiency, remains to be investigated.

Our research does not focus on gathering additional measurements to fur-
ther differentiate and narrow the diagnostic candidates. Intelligently selecting which
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component output and which additional sensor values to measure is important in
achieving efficient diagnosis. For example, in GDE [de Kleer and Williams, 1987],
additional measurements is gathered via a method that minimizes the expected en-
tropy of candidate probabilities. Future work needs to extend ACCEL o incorporate
intelligent experimentation. o

The use of quantitative information in qualitative simulation can greatly
reduce the ambiguity of the qualitative behavior of a dynamic system [Kuipers and
Berleant, 1988]. "The added precision allows better differential diagnosis [Dvorak,
1992]. The ability to monitor a dynamic system over time and performs diagnosis in
real time as the device operates is also important [Dvorak, 1992]. Extending AccEL
to deal with quantitative knowledge and device monitoring are important future
research issues, : ' : SR

As mentioned earlier, normality-based diagnosis is more flexible but may
generate implausible diagnoses, while fault-based diagnosis requires explicit knowl-
edge of fanlt models. To overcome the limitation of explicitly knowing all fault models
in advance, we can instead develop a method to automatically acquire fault mod-
els over time. This can be accomplished by generalizing the common input-output

‘behavior patterns as summarized by the parameterized abnormality assumptions of

a component (e.g., ab(X,U,V,W,T)). Such a learning module would improve the
diagnostic accuracy of ACCEL by recognizing the commeon fault modes of a device
component,. ) o ' ’ - )




Chapter 9

Conclusion

Finding explanations for observed phenomena underlies a diverse set of in-
telligent activities, ranging from natural language understanding, diagnosis, scientific
theory formation, to image interpretation. The ubiquity of explanation underscores
its importance as a research topic in artificial intelligence. In this thesis, we view ex-
planation as logical abduction, which serves as a unifying formalism for explanation.

This thesis has made several important contributions:

1. We have demonstrated the practical feasibility of a general abductive approach

* to explanation by successfully building 2 domain-independent system, ACCEL,
that is general enough to perform both plan recognition and diagnosis, yet
efficient enough to be of practical utility. We support this claim by extensively
evaluating the system or 50 narrative texts in the plan recognition domain, on
50 real patient cases in the set covering diagnosis domain, and on 10 model-
based diagnosis scenarios each on an adder, a temperature controller, and the
water balance system of the human kidney. Except for the adder circuit, each
of the knowledge bases contains hundreds of Horn-clause rules.

2. We have developed a novel evaluation criterion, explanatory coherence, to eval-
uate the quality of explanations in the plan recognition domain. We present
empirical results indicating that our coherence metric outperforms the simplic-
ity metric in selecting the best explanation in the plan recognition domain.
Our coherence-based approach performs as well as the probabilistic approach
of plan recognition, but without the need to engineer numerous prior and pos-
terior probabilities,

3. We present empirical evidence showing that caching of previously computed
explanations is critical to the efficiency of an abduction algorithm. Specifically,

speedup of more than an order of magnitude has been obtained on our test
problems.

In summary, this thesis has demonstrated via an implemented system that
general and efficient abduction for the tasks of plan recognition and diagnosis is
indeed possible, and the future holds much promise for such a general abductive
approach to explanation.
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Appendix A

Plan Recognition

The knowledge bases and test data are listed in Lisp notation. The Lisp

variables listed in the knowledge bases include:

1

2
3.
4

=,

. *brules*: a list of rules in the domain theory;
. *acts*: a list of facts in the domain theory;
*nogoods*: a list of nogoods;

. *assumption-nogoods*: a list of “assumption-nogoods”, as explained in sub-
section 3.4.2; :

*inter-batch-beam-width*: Bier;

6. *intra-batch-beam-width*: Binira;

7. *bcha.in—depth*: the maximum depth of abductive explanations to pursue for

input atoms;

8. *caching*: a flag to indicate whether caching should be used;

9. *factoring*: a flag to indicate whether factoring of assumptions should be

10.

11.

12.
13.

14,

15.

16.
17.

performed;

*remove-superset?*: a flag to indicate whether supersets should be removed
from the label of a subgoal; - '

*remove-superset-fn*: the function to use for removing supersets in the label
of a subgoal;

*explanation-eval-metric*: the evaluation metric for explanations;

*compute-estimate-fn*: the function for estimating the quality of an individual
environment while taking the cross product of labels: :

*combine-estimates-fn*: the function for estimating the quality of a combined
environment while taking the cross product of labels:

*predicate-specific-abduction*: a flag to indicate whether predicate specific
abduction should be used;

*assumable-predicates*: a list of assumable predicates; and

*{free-assumption-predicates*: a list of predicates that can be assumed without
affecting the simplicity metric. '

Note that in the appendices, variables in Horn-clauses are preceded by “?”,

7
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A.1 Knowledge Base
The knowledge base for the plan recognition domain is listed below.

(setf sbruless *(
: shopping ’

((inst 7g going) <- (inst ?= shopping) (go-step 7s 7g))

({goer ?g 7p) <- (inst 7s shopping) (go-step 7s ?g) (shopper 78 7p))
{(dest~go 7g ?atr) <- (inst ?s shopping) (go-step ?s ?g) (etore 7s ?str))
((inst ?sp shopping-place) <~ (inst ?s shopping) (store ?s 7sp))

{{inst ?f tinding) <- (inst ?s shopping) (find-step ?s 7t))

({finder ?f 7a) <~ (inst 7s shopping) (find-step ?s 7f) (shopper ?s 7a))

((thing-found 7f 7tf) <~ (inst ?s shopping) (find-step 7s 7f)
(thing-shopped-for ?s 7tf))

({inst ?b buying) <- (inst 7?8 shopping) (buy-step 7z 7b))

({buyer 7b ?p) <- (inst ?z shopping) (buy-step 7= 7b) (shopper 7s 7p))

({thing-bought ?b 7tb) <- (inst 7s shopping) (buy-step 7s 7b)
(thing-shopped-for ?s 7tb))

((inst ?p paying) <~ (inst 7b buying) (pay-step ?b ?p))

({(payer ?p 7a) <~ (inst ?b buying) (pay~step 7b 7p) (buyer ?b 7a))

((thing-paid ?p ?tp) <- (inst 7b buying) (pay-step 7b 7p)
(thing~-bought ?b 7tp))

((inst ?str smarket) <~ (inst ?s smarket-shopping) (store 7s 7str))
({inst 7f food) <- (inst ?s smarket-shopping) (thing-shepped-for 7s 7f))

({inst ?1s liquor-store) <~ (inst 7s liqst-shopping) (store ?s ?1s))
({inst 71 liquer) <- (inst 7s ligst-shopping) (thing-shopped-for 7s 71))

; robbing -

((inst 7g getting) <- (inst ?r robbing) (get-weapon-step 7r 7g))
{(agent-get 7g 7a) <- (inst 7r robbing) (get-weapon-step ?r 7g)
(robber ?r 7a))
((patient-get ?g 7w) <- (inst ?r robbing) (get-weapon-atep ?r 7g)
(weapon-rob ?r 7w))

((inst ?g going) <- (inst ?r robbing) (go-step ?r 7g))
((goer 7g 7a) <~ (inst ?r robbing) (go-step 7r 7g) (robber 7r 7a))
-((dest-go ?g 7p) <~ (inst 7r robbing) (go-step 7r ?g) (place-rob 7r p))

((inst ?p pointing):<- (inst ?r robbing) (point-weapon-step 7r 7p))

((agent-point ?p 7a¥ <~ (inst ?r robbing) {point-veapon~step ?r 7p)
(xrobber ?r 7a))

((patient-point ?p ?a) <- (inst 7r robbing) (point-weapon-step ?r 7p)

(victim~rob ?r 7a))

({instr-point 7p 7i) <~ (inst ?r robbing) (point-veapon-step 7r 7p)
(veapon-rob ?r ?i))

({inst ?i weapon) <- (inst 7r robbing) (veapon-rob ?r 7i))
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((inst ?g getting) <- (inst ?r robbing) (get-valuable-step ?r 7g))

{{agent-get 7g 7a) <~ (inst ?r robbing) (get—valuable-step 7r 7g)
(robber Tr 7a)) .-

({patient-get 7g 7t} <~ (inst ?r robbing) (get—valuable-step r 7g)

(thing-robbed ?r 7t))

({from-gat ?g ?a) <- (inst 7r robbing) (get-valuable-step 7r 7g)
{victim-rob ?r 7a))

((inst ?t valuable) <- (inst ?r robbing) (thing-robbed 7r 7t))

; restaurant dining

((inst 7g going) <- (inst 7d rest-dining) (go-step ?d ?7g))

((goer 7g 7a) <- (inst 7d rest-dining) (go-step 7d ?g) (diner 7d 7a))

((dest-go 7g 7r) <~ (inst ?d rest-dining) (go-step 7d 7g)
(restanrant 7d 7r))

((inst 7r restaurant) <- (inst ?d rest-dining) (restaurant ?d 7r))

((inst 7o ordering) <- (inst ?d rest-dining) (order-step 7d 70))
((agent-order ?o 7a) <- (inst ?d rest-dining) (order-step 7d 7o)
(diner 7d 7a))
((patient-order 7o 7p) <- (inst ?d rest-dining) (order-step 7d 7o)
(rest-thing-ordered 7d 7p))

((inst 7o drinking) <- (inst ?d rvest-dining) (drink-step ?7d 7o))
({drinker 7o 7a) <- (inst ?d rest-dining) (drink-step ?d 7o) (diner 7d 7a))
((patient-drink 7o ?p) <- (inst ?d rest-dining) (drink-step ?7d 7o)
_ (rest-thing-drunk ?d ?p))
((instr-drink 7o 7p) <- (inst 7d rest-dining) (drink-step 7d 7o)
(rest-drink-strav ?d 7p))

((inst 7o paying) <- (inst ?d rest-dining) (pay-step ?d %o))
((payer ?o %a) <- (inst 7d rest-dining) (pay~step 7d 7o) (diner 7d 7a))
((thing-paid 7o ?p) <- (inst 7d rest-dining) (pay-step 7d 7o)

' (rest-thing~ordered ?d 7p)) .

((inst ?g getting) <~ (inst ?7d drinking) (get-straw-step 74 7g))
((agent-get 7g 7a) <~ (inst ?d drinking) (get-strav-step 7d 7g)
(drinker ?d 7a))
({patient-get 7g ?p) <- (inst 7d drinking) (get-strav-astep 7d 7g)
(instr-drink ?d 7p))

((inst 7p putting) <- (inst 7d drinking) (put-straw-step ?d 7p))

((agent-put 7p 7a) <- (inst ?7d drinking) (put-strav-step 7d 7p)
(drinker 7d ?a))

((patient~put ?p 7a) <- (inst ?d drinking) (put-straw-step ?d 7p)

(instr-drink 7d ?a)) .

((inst ?a straw) <- (inst 7d drinking) (instr-drink 7d 7a))

((place-put ?p 7a) <- (inst ?d drinking) (put-strav-step 7d p)
(patient-drink 7d 7a))

((inst 7i ingesting) <- (inst ?d drinking) (ingest-step 7d ?7i))

((agent-ingest ?i ?a) <- (inst 7d drinking) (ingest-step ?d 7i)
(drinker ?d 7a))

((patient-ingest 7i 7p) <~ (inst 7d drinking) (ingest-step 7d 7i)
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{patient-drink ?d ?p))
((instr-ingest ?i 7p) <- (inst ?7d drinking) (ingest-step 7d 7i)
(instr-drink 7d 7p))

; going-by-vehicle

((inst ?g going) <- (inst 7v going-by~-vehicle) (go-step ?v 7g))
((goer ?g 7a) <- (inst ?v going-by-vehicle) (go-step 7v ?7g) (goer 7v 7a))
((dest-go 7g ?8) <~ (inst ?v going-by-vehicle) (go-step ?v 7g)

(source-go 7v 7g8))

{(inst 7o getting-on) <- (inst ?v going-by-vehicle) (get-on-step ?v 70))

((agent-get-on 7¢ 7a) <- {inat ?v going-by-vehicle) (get-on-step ?v ?¢)
{goer ?v 7a))

({patient-gat~on 7o 7¥) <- (inst 7v going-by-vehicle) (get-on-step ?v 70)

(vehicle ?v 7¥)) ‘

((place-get-on 7o ?p) <- (inst 7v 501ng-by-veh1c1e) (3et-on—step ?v 7o)
(source-go 7v 7p))

((inst 7w vehicle) <- (inst ?v going-by-vehicle) (wvehicle ?v 7v))

((inst 78 sitting) <- (inst ?v going-by-vehicle) (sit-step ?v 7s))
((agent-sit ?7a ?a)} <~ (inst ?v going-by-vehicle) (sit-atep ?v 7s)
(goer ?v 7a))
((patient-sit 78 7p) <- (inst 7v going-by-vehicle) (sit-step ?v 7=)
(vehicle-seat ?v 7p))
((inst ?p seat) <- (inst ?v going-by-vehicle) (vehicle-seat ?v 7p))
((in ?p ?w) <- (inst ?v going-by-vehicle) (veh:cle-seat v ?p)
(vehicle 7v 7w))

((inst ?o0 getting-off) <~ (inst ?v going-by-vehicle) (get-ocff-step 7v 7o))
((agent-get-off 7o 7a) <- (inst ?v going-by-vehicle) (get-off-step 7v 7o)
(goer ?v %a))
({patient-get-off 7o 7w} <- (inst ?v going-by-vehicle) {(get-off-step ?v 7o)
(vehicle 7v 7w))
({placerget-off %o 7p) <- (inst ?v going-by-vehicle) (get-off-step 7v 7o)
(dest-go ?v 7p))

; going-by-bus, -taxi, -plane

({inst ?v bus) <- (inst 7b going-by-bus) (vehicle 7b 7v))
((imst ?v taxi) <- (inst ?t going-by-taxi) (vehicle 7t 7v))
((inat ?v plane) <~ (inst ?p going-by-plane) (vehicle 7p 7v))

; going-by-bus
((inst ?s bus-station) <- (inst ?v going-by-bus) {source-go 7v ?7s))

((1nat 7g giving) <~ (inst ?b going-by-bus) (give-token-step 7b 7g))
((giver 7g 7a) <- (inst 7b going-by-bus) (give-token-step 7b 7g)
(goer 7b 7a))
((rec1p1ent ?g 7a) <- (inst ?b going-by-bus) (give-token-step 7b 78)
(bus-driver ?b 7a))
({occupation ?a busdriver) <- (inst 7b going-by~bus) (bus-driver 7b 7a))
({(thing-given 7g 7t) <- (inst ?b going-by-bus) (give-token-step 7b 7g)
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(token ?b 7t))
({inst 7t token) <~ (inst 7b going-by-bus) (token ?b 7t))

; going-by-taxi ‘ -

((inst ?p paying) <~ (inst 7b going-by-taxi) (pay-step 7b 7p))
((payer 7p 7a) <~ (inst 7b going-by-taxi) (pay-step 7b 7p) (goer ?b 7a))
((payee 7p 7a) <- (inat 7b going-by-taxi) (pay-step ?b 7p) '
(taxi-driver b 7a))
({occupation 7a taxidriver) <- (inst 7b going-by-taxi)
(taxi-driver 7b ?7a))

3 going-by-plane
({inst ?s airport) <- (inst ?v géing-by—plane) (source-go ?v 78))

((inst ?a packing) <~ (inst ?p going-by-plane) (pack-step 7p 78))
({agent-pack 7z 7a) <- (inst ?p going-by-plane) (pack-step 7p 7s)
(goer 7p 7a))
((patient-pack ?a 71) <- (inst 7p going-by-plane} (pack-step 7p 7a)
(plane-luggage 7p 71)) :
((inst 71 bag) <- (inst 7p going-by-plane) (plane-luggage 7p 71))

({inst ?b buying) <- (inst 7s going-by-plane) (buy-ticket-step 7s 7b))
((buyer ?b 7a) <~ (inst ?s going-by-plane) (buy~-ticket-step 7z 7b)
(goer 7s 7a))

({thing-bought ?b 7t) <~ (inst ?s going-by-plane) (buy-ticket-atep ?s 7b)

{plane-ticket 78 7t)) _
({inst 7t ticket) <- (inst ?s going-by-plane) (plane-ticket ?s 7t))

: jogging

((inst 7d drinking) <- (inst ?j jogging) (drink-step ?7j 7d))
({drinker ?d ?7a) <- (inst 7j jogging) (drink-step ?j 7d} (jogger 7j 7a))
((patient—drink 7d ?a) <- (inst 7j jogging) (drink-step 7j ?d)
(jog-thing~drunk 7j 7a})
({instr-drink ?d ?a) <- (inat ?j jogging) (drink-step ?j 7d)
(jog-drink-straw 7j 7a))

; partying

((inst 7d drinking) <- (inst 7p partying) (drink-step 7p 7d))
((drinker 7d 7a) <- (inst ?p partying) (drink-step ?p 7d)
(agent-party 7p 7a)) :
({patient—drink ?d ?7a) <- (inat ?p partying) (drink-step 7p 7d)
(party-thing-drunk 7p 7a))
((instr-drink ?d 7a) <~ (inst ?p partying) (drink-step 7p 7d}
(party-drink-straw ?p ?a))
»

(setf sfacts* nil)

(setf »nogoodss nil)

81
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(setf *assumption-nogoodss ’(
((go-step 7s 7g) (goer 7g 7p))
({go-step 78 7g) (dest-go 7g 7atr))
((find-step ?&8 ?f) (finder 7f ?a)) ' : =
((find-step ?s ?f) (thing-found 7f ?t1))
((buy-step ?s ?b) (buyer b ?p)) :
((buy-step ?s 7b) (thing-bought ?b 7tb))
({pay-step 7b ?p} {(payer 7p 7a))
({pay-step b ?p} (payee 7p 7a))
({(pay-step 7b ?p)} (thing-paid 7p 7tp))
((get-veapon-step 7r ?7g) (agent-get 7g 7a))
((get~veapon-step 7r 7g) (patient-get 7g 7w))
{(point-veapon-step ?r 7p) (agent-point ?p 7a))
((point-veapon-atep ?r 7p) (patient-point 7p %a))
({point~vweapon-step ?r 7p) (instr-point ?p ?7i))
((get-valuable-step ?r ?g) (agent-get 7g 7a))
((get-valuable-atep ?r ?g) (patient-get 7g 7t))
((get-valuable-step 7r ?g) (from-get 7g 7a))
((order-step 7d 7o) (agent-order 7o 7a))
((order-step ?d 7o) (patient~order ?o 7p))
({drink-step 7d 7o)} (drinker 7¢ ?a))
((drink-step ?d 7o) (patient-drink 7o 7p))
((drink-step ?d 7o) (instr-drink 7o 7p))
((get-strawv-step ?d ?g) (agent-get 7g 7a))
((get-straw-step 7d 7g) (patient-get 7g ?p))
({put-strav-step ?d 7p) (agent-put ?p 7a))
((put-strav-step 7d ?p) (patient-put 7p ?a))
((put-strav-step 7d ?p) (place-put 7p 7a})
((ingest-step 7d 7i) (agent-ingest 7i 7a))
((ingest-step 7d 7i) (patient-ingest 7i 7p))
((ingest-step 7d 7i) (instringest 7i 7p))
((get~on-step ?v 7o) (agent-gat-on 7o 7a))
((get-on-step ?v 7o) (patient-get-on 7o 7w))
({get-on-step ?v 7o) (place-get—on 7o 7p))
({sit-step ?v ?a) (agent-sit 7s 7a}))
((sit-step ?v ?8) (patient-sit ?a 7p))
{(get-off-step 7v o) (agent-get-off 7o 7a))
((get-off-step 7v 7o) (patient-get-off 7o 7w))
((get-off-step ?v 7o) (place-get-off 7o 7p))
((give-token-step 7b 7g) (giver ?g 7a))
((give-token-step ?b ?g) (recipient 7g ?a))
({give-token-step ?b 7g) (thing-given 7g 7t))
((pack-step 7p ?a) (agent-pack 7s 7a))
((pack-step 7p ?3) (patient-pack 7s 71})
((buy-ticket-step 7s 7b) (buyer 7b 7a))
((buy-ticket-step 7s 7b) {thing-bought ?b 7t))
)

(setf =sort-hierarchy* *(
(any . (physical action))
(physical . (apparel bag food gift liquor place
- seat shelf straw ticket token valuable vehicle weapon))
(action . (buying courting drinking finding getting getting-off getting-on -
giving going ingesting jogging ordering packing partying paying
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pointing putting rest-dining robbing shopping sitting working))
{apparel . (shirt skirt trousers uniform)) _
(bag . (suitcasa))
(food . (bread milk milkshake)})
(gift . (flower jewelry))
(ligquor . (bourbon))
(place . (airport bus-station park prisen
restaurant school shopping-place))
(valuable . (money))
(vehicle . (bus plane taxi))
(weapon . {gun knife))
(going . (going-by-vehicle))
(shopping . (liqst-shopping smarket-shopping))
(shopping-place .. (liquor~store smarket))
{going-by-vehicle . (going-by~bus going-by-plane going-by-taxi})-
M

(setf *inter-batch-beam-widths 10)

(setf xintra~batch-beam-gidth* 30)

(setf *bchain-depth* 3)

(setf »caching* t)

(setf »factoring* t)

(setf *remove~superset?s t)

(setf *remove-supersst-fn» ¥#’alphabetic-variant-subaet?)

(setf xexplanation-eval-metrics #’coherence-then-aimplicity)
(sett *compute-estimate-fns #'pr-compute-estinate-coherence)
(setf *combine-estimates-fns. #’pr-combine-estimates-coherence)

(setf spredicate~aspecific-abduction® nil)
(setf *free-assumption-predicatess* nil)

(setf *unique-slot-value-predicatess

’ (go-step goer dest-go source~go vehicle
shopper store thing-shopped=-for
tind-step finder thing-found
buy-step buyer thing-bought
pay-step payer thing-paid
get-strav-step get-veapon-step got~valuable~step
agent-get patient-get from-get
robber weapon-rob place-rob victim-rob thing-robbed
point-weapon-step agent-point patient-point instr-point
diner restaurant rest-thing-erdered
rest-thing-drunk rest-drink-straw
order-step agent-—order patient-order
drink-step drinker patient-drink inatr-drink
jogger jog-thing-drunk jog-drink-straw
agent-party party-thing-drunk party-drink-straw
put-atraw-step agent-put patient-put place-put
ingest-step agent-ingest pPatient-ingest instr-ingest
get-on—step agent-get-on patient-get-on place-get-on
sit-step agent-sit patient-sit vehicle-seat
get-off-step agent-get-off patient-get-off place-get-off
give-token-step giver recipient
occupation thing-given token

v
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taxi-driver bus-driver
pack-step agent-pack patient-pack plane-luggage
buy-ticket-step plane-ticket))

(setf *plan-steps+ )
' ({shopping . (go-step find-step buy-step))
(smarket-shopping . (go-step find-step buy-step))
(ligst-shopping . (go-step find-step buy-step))
(buying . (pay-step))
(robbing . {get-weapon-step go-step point-weapon-step
get-valuable-step})
(rest-dining . (go-step ordex-step drink-step pay-step))
(drinking . (get-strawv-step put-straw-step ingest-step))
(going-by-vehicle . (go-step get-on-step sit-step get-off-step))
(going-by-bus . (go-step give-token-step get-on-step
sit-step get-off-sgtap))
(going-by-taxi . (go-step get-cn-step sit-step
pay-atep get-off-step))
(going-by-plane . (pack-step go-step buy-ticket-step get-on-step
sit-step get-off-step))
(jogging . {drink-step))
(partying . (drink-step)}))

A.2 Training Stories

The 25 training stories are listed below. For each training .story, we give:
(1) the natural language sentences; {2) the input atoms representing the sentences;
and (3) the correct assumptions that AcCEL should abduce. _ :

1. "Jack went to the supermarket.
He found some milk on the shelf.
He paid for it."

((inst gol going) (goer gol jackl) (name jackil jack) (dest-go got sml)
(inst sml smarket) (precede gol findi) (inst findi finding)

(finder find1 jackil) (thing-found findi milk1) (inst milkl milk)

(on milki shfi) (inst shf1 shelf) (precede findl payt)

(inst payl paying) (payer payl jackl) (thing-paid payl milk1))

((inst ?s smarket-shopping) (go-step 7s gol) {(find-step ?s find1)
(buy-step ?s ?b) (pay-step ?b payl) (shopper 7s jackl)

(store 7s sm1) (thing-shopped-for ?s milki) (name jacki jack)
(inst milkl milk) (on milkl shf1) (inst shfi shelf)

(precede gol find1l) (precede find1 payl))

2. "Bill went to the supermarket.
He paid for some milk."

((inst go2 going) (goer go? bill2) (name billZ bill) (dest-go go2 sm2)
(inst sm2-smarket) (precede go2 pay2) (inst pay? paying)
(payer pay2 bill2) (thing-paid pay? milk2) (inst milk2 milk))
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((inst 7s smarket-shopping) (go-step ?s go2) (buy-step ?s ?b)
(pay-step 7b pay2) (shopper ?a bill2) (store 7s sm2)
(thing-shopped-for ?s milk2) (name bill?2 bill) (inst milk? milk)
(precede go2 pay?2)) :

3. "Jack gave the busdriver a token.
. He got off at the supermarket.”

({inst give3 giving) (giver give3 jack3d) (name jack3 jack)
{recipient give3 bd3) (occupation bd3 busdriver)

(thing-given give3 tk3) (inat tk3 token) {precede give3 getoff3)
(inst getoff3 getting-off) (agent-get-off getoff3 jack3)
(place-get~off getoff3 sm3) (inst sm3 smarket))

i ({inst ?s smarket-shopping) (inet ?b going-by-bus) (go-step 7a 7b)

1 (give-token-step 7b give3) (get-off-step 7b getoff3) (shopper 7s jack3)
e (store 7s sm3) (bus-driver 7b bd3) (token ?b tk3) (name jack3 jack)
{precede give3 getoff3))

i 4. "Jack got off the bus at the liquor-store.
He pointed a gun at the owner."

{(inst getoff4 getting-oft) (agent-get-oftf getofi4 jack4) (name jack4 jack)
(patient-get-off getoff4 bus4) (inst busd bus) (Place-get-off getoffd 1s4)
(inst 184 liquor-store) (precede getoff4 point4) (inst point4 pointing)
(agent-point point4 jack4) (instr-point point4 gun4) (inst gund gun)
(patient-point point4 o4) (own o4 1l24))

((inst ?r robbing) (inat ?b going-by-bus) (go-step 7r 7b)
(get-off-step ?b getoffd) (point-veapon-step 7r point4) (vehicle ?b busd) |
(robber 7r jackd4) (weapon-rob 7r gund) (victim-rob ?r o4) ' '

(place-rob 7r 1s4) (name jack4 jack) (inst 1s4 liquor-store)

. (inst gun4 gun) (own o4 1s4) (precede getoff4 pointd))

i 5. "Jack went to the liquor-stors.
He found some bourbon on the shelf."

: ((inst go5 going) (goer go5 jackS) (name jack§ jack)
Ly (dest-go go5 1s5) (inst 1s5 liquor-store) (procede goS finds)
(inst f£indS finding) (finder finds jackS) (thing-found find$ bourbons5)
rw (inst bourbon5 bourbon) (on bourbon5 shf5) (inst shfs shelf))

((inst ?s ligst-shopping) (go-step ?s go5) (find-step 7s £inds)
(shopper 7s jack5) (store 7s 1s5) (thing-shopped-for ?s bourbonS)
(name jackS jack) (inst bourbon5 bourbon) (on bourbonb shi5)
(inst shfS shelf) (precede goS find5))

6. "Bill went to the liguor-store.
He pointed a gun at the owner.”

((inst_go6 _going) (goer go6 bill6) (name billE bill) (deat-go go6 1s6)
(inst 136 liquor-store) (precede go6 point6) (inst point6€ pointing)
(agent-point point6 bill6) (instr-point point6 guné) :

(inst guné gun) (patient-point point6 o6} (own o6 1s6))
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((inst ?r robbing) (go~step 7r go6) (point-veapon-staep 7r point6)
(robber ?r bill6) (place-rob ?r 1s6) (weapon-rob 7r gun6) .
(victim-rob ?r o6) (name bill6 bill) (inst 186 liguor-atora) - —
(inst guné gun) (own o6 1s6) (precede go6 pointé)) ’

7. "Bill gave the busdriver a token."

((inst give7 giving) (giver give7? bill7) (name bill7 bill)
(recipient give7 bd7) (occupation bd7 busdriver)
(thing-given give? tk7) (inst tk7 token))

((inst 7b going-by-bus) {give-token-step ?b give7) (goer 7b bill7)
(bus-driver 7b bd7) (token ?b tk7) (name bill7 bill))

8. "Fred robbed the liguor-store. oo
Fred pointed a gun at the owner."

({inst rob8 robbing) (robber rob8 freds8) (name freds fred)
(place-rob rob8 1s8) (inst 18 liquor-store) {inst point8 pointing)
(agent-point point8 fred8) (instr-point point8 guns)

{inst gun8 gun) (patient-point point8 o8) (own o8 1aB)}

({inst rob8 robbing) (point-weapon-step rob8 po:i.ntBj (robbef rob8 freds)
(veapon~rob rob8 gun8) (victim-rob rob8 o8) (place-rcb rob8 1s8)
(name fred8 fred) (inst 1s8 liguor-store) (inst gun8 gun) (own o8 1s8))

9. "Bill got a gun.
He went to the supermarket.”

((inst get9 getting) (agent-get get9 bills) (name billd bill)
(patient-get get9 gun9) (inst gund gun) (precede get9 go9) :
(inst go9 going) (goer go9 bill9) (dest-go go9 sm9) (inst sn9 smarket)

({inst ?r robbing) (get-weapon-atep ?r get9) (go-step ?r go9)
(robber ?r bill9) (weapon-reb ?r gun®) (place-rob ?r =m3)
(name bill9 bill) (inst gun9 gun) (inst sm9 smarket) (precede getd go9))

10. "Fred went to the supermarket.
He pointed a gun at the owner.
He packed his bag.
He went to the airport.”

((inst go1Q going) (goer go10 fred10) (name fredi0 fred)

(dest-go gol0 sm10) (inst 2m10 smarket) (precede go10 point10)

(inst point10 pointing) (agent-point point10 fredi0)

(instr-point point10 guni0) (inst guni0 gun) (patient-point point10 o10)
{own 010 sm10) (precede pointl0 pack10} (inst pack10 packing)
(agent-pack pack10 fredi0) (patient-pack packi{ bagi0) (inst bag10 bag)
(precede pack10 golOb) (inat gol0b going) (goer go10b fredid)

(dest-go go10b airport10) (imst airport10 airport))

((inst 7r robbing) (go-step 7r go10) (point-weapon-step ?r pointi0)’
(robber 7r fred10) (place-rob ?r sm10) (veapon-rob ?r guni®)




(victim-rob ?r 010) (inst ?p going-by-plane) (pack-step 7p packi()
£ (go-step ?p gol0b) (goer 7p fredi0) (plane-luggage 7p bagl0)
i (source-go ?p airport10) (name fred10 fred) (inst sm10 smarket)
(inat guni0 gun) (own 010 sm10) (precede gol0 pointi0d)
(precede point1¢ pack10) {(precede packi0 goil0b))

11. "Jack tock the bua to the airport.
He bought a ticket.”

((inst goll going) (goer goll jack1il) (name jackil jack)

(vehicle goll busil) (inst busil bus) (dest-go goil airportil)
(inst airportii airport) (precede goil buy11) (inst buyll buying)
(buyer buy1l jackil) (thing-bought buy1l tk11) (inst tk1l ticket))

({inst ?p going-by-plane) (inst goil going-by-bus) (go-step 7p goil)
(buy-ticket-step 7p buy11) (vehicle goil busil) (goer ?p jackil)
(source-go 7p airport1l) (plane-ticket ?p tkil) (name jack1l jack)
(precede goil buyil))

4
K

12. "Bill packed a suitcase,
He went to the airport.”

((inst packi2 packing) (agent-pack packi? bill12) (name bill12 bill) |
(patient-pack packiZ aci12) (inst sc1? suitcase) (precede pack12 go12) ‘
(inst gol2 going) (goer goi2 bill12) (dest-go gol2 airport12)

(inast airport12 airpert))

i e ((inst ?p going-by-plane) (pack-step 7p packi2) (go-step 7p go12)
G (goer 7p bill12) (plane-luggage ?7p sci2) (source-go ?p airport12)
L (name bill12 bill) (inst 8c12 suitcase) (precede packl2 go12))

13. "Jack got on a bus.
He got off at the park.
Jack went to the supermarket."

((inst getoni3 getting-on) (agent-get-on getoni3 jack13) _

§ i (name jack13 jack) (patient-get-on geton13 busi3) (inst busi3 bus)

' (precede geton13 getoff13) (inst getoffi3 getting-off)
(agent-get-off getoffild jacki3) (place-get-off getoff13 parki3)

Lo (inst parki3 park) (precede getoff13 gol3) (inst gol3 going)

H (goer gol3 jack13) (dest-go go1d sm13) (inat smi3 smarket))

£y ((inst 7b going-by-bus) (get-on-step 7b geton13) (get-off-step b getoff13)
i (goer 7b jack13) (vehicle ?b bus13) (dest-go 7b parki3)

(inst ?s smarket-shopping) (go-step 7s gol3) (shopper 7s jacki3)

(store ?s sm13) (name jack13 jack) (inst parki3 park)

(precede getonl3 getoff13) (precede gatoff13 go13))

14. "Jack gave the busdriver a token.
He got off at the park.
Be went to the airport.
He got on a plane."

((inst-givé14 giving) (giver givel4 jacki4) (name jacki4 jack)
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(recipient givei4 bdi4) (occupation bdi4 busdriver)

(thing-given givel4 tk14) (inst tkil4 token) (precede giveid getoff14)
(inst getoffl4 getting-off) (agent-get-off getoffl4 jacki4)
(place~get-off gotoffi4 parki4) (inst parkil4 park)

(precede getoffl4 goi4) (inst gold going) {goer goid jacki4)

(dest-go gol4 airporti4) (inst airporti4 airport) (precede goi4 getonid)
(inst getonl4 getting-on) (agent-get-on getonid jackisd)

(patient-get-on getoni4 planei4) (inst planei4 plane))

((inst 7?b going-by~bus) (give-token-step 7b giveld)

{get-off-step ?b getoff14) (goer ?b jacki4) (bus~driver 7b bdii)
(token ?b tk14) (dest-go ?b parki4) (imst ?p going-by-plane)
(go-step ?p gold) (get-on-step 7p getonid) (goer 7p jackid)
(source-go 7p airporti4) (vehicle 7p planei4) (name jackl4 jack)
(inst parki4 park) (precede givel4 getoff14) (precede getoffid gold)
(precede gol4 getoni4)) '

15. "Fred sat down on the bus.
He went to the supermarket.”

((inst sit15 sitting) (agent-sit s8it15 fred15) (name fredi5 fred)
(patient-sit s8it15 seat15) (inst seatl5 seat) (in seat15 busi5)
(inst busiS bus) (precede 8it15 goi5) (inst gol5 going)

(goer gol5 fred15) (dest-go golS 2m15) (inst sm15 smarket))

({inst 78 smarket-shopping) (go-step ?s golE) (shopper 7a frediS)
(store 7= smiS) (inst gol5 going-by-bus) (sit-step gol5 sit15)
(vehicle-seat golS5 seati5) (veliicle goiS busiS) (name frediS fred)
(precede 8itl15 gol5)) i

16, "Jack vent to a restaurant.
He got a milkshake,"

((inst gol6 going) (goer gol6 jack16) (mame jackié jack)

(dest-go gol6 restl6) (inst rest16 restaurant) (precede goi6 order16)
(inst order16§ ordering) (agent-order orderif jacki6)

(patient-order orderi6 ms16) (inst ms16 milkshake))

((inst ?d rest-dining) (go-stép ?7d go16) (diner ?d jacki6)
(restaurant 7d rest16) (order-step 7d order1€) (rest-thing-ordered ?d msai6)
(name jacki6 jack) (inst me16 milkshake) (precede gol6é orderi6))

17. "Bill drank a milkshake with a straw.”

({inst drink17 drinking) (drinker drinki17 billi7} (name billi7 bill)
{patient~drink drinki7 ms17) (inat m217 milkshake)
{instr~drink drinki7 stri7) (inst stri7 straw))

({inst drinki17 drinking) (drinker drink17 billi17)
(name billi7 bill) {patient—drink drinki7 ms17)
(inst ms17 milkshake) (instr-drink drinki7 stri?))

18. "Fred got off the bus at a restaurant.
He got a milkshake."
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((inst getoffi8 getting-off) (agent-get-off getoff18 fred1s)

{name fred18 fred) (patient-get-off getoff18 bus18) (inat busi8 bus)
(place-get~off getoff18 resti8) (inst rest18 restaurant)

(precede getoff18 order18) (inet order18 ordering)

(agent-order order18 fredi8) (patient-order orderi$ ms18)

(inst m=218 milkshake)) :

({inst ?d rest-dining) (go-step ?d ?b) (order-step 7d orderi8)

(inat ?b going-by-bus) (get-off-step ?b getoff18) (vehicle 7b busi8)
(diner 7d fred18) (restanrant ?d rest18) (rest-thing-ordered 7d ms18)
(name fredi8 fred) (inst msi8 milkshake) (precede getoff18 order18))

19. "Janet put a sfraw in a milkshaka."

((inst put19 putting) (agemt-put putld janeti9) (name janetlS janet)
(patient-put puti9 stri9) (inst str19 straw) (place-put putl9 ms19)
(inst ms19 milkshake))

{(inst ?d drinking) (put-straw-step 7d put19) (drinker 7d janet19)
(instr-drink ?d str19) (patient-drink ?d ms19) (name janet19 janet)
(inst ms19 milkshake))

20. "Bill got on a busa,
He got off at a restaurant.’ )
He drank a milkshake with a straw."

((inst geton20 getting-on) (agent-get—on geton20 bill20)

(name bill20 bill) (patient-get-on geton20 bus20) (inst bus20 bus)

(precede geton20 getoff20) (inst getoff20 getting-off)

(agent-get-off getoff20 bill20) (place-get-off getoff20 rest20) .
(inst rest20 reataurant) (precede getoff20 drink20) (inst drink20 drinking)
{drinker drink20 bill20) (patient-drink drink20 ms20) (inst ms20 milkshake) .
(instr-drink drink20 str20) (inst str20 straw))

((inst ?d rest-dining) (go~step ?d 7b) (imst ?b going-by-bus)
(get-on-step 7b geton20) (vehicle ?b bus20) (get-off-step 7b getoff20)
(diner 7d bill20) (restaurant ?d rest20) (drink-step ?d drink20)
(rest-thing-drunk ?d ms20) (rest-drink-strav 7d str20) (name bil120 bill)
(inst m820 milkshake) (precede geton20 getoff20)

(precede getoff20 drink20))

21. "Bill took a bus to a restaurant.
He drank a milkshake.
He pointed a gun at the owner.
He got some money from him."

({inst go21 going} (goer go21 bill21) (name Bill?1 bill)

(vehicle go2t bus21) (inst bus21 bus) (dest-go go21 rest?21)

(inst rest21 restaurant) (precede go21 drink21) (inst drink21 drinking)
(drinker drink2{ bill121) (patient-drink drink2! m=21)

(inst ms21 milkshake) (precede drink21 point21) {(inst peint21 pointing)
(agent-point point21 bill21) (instr-point point21 gun21) (inst gun21 gun}.
(patient-point point21 021) (own 021 rest21) (precede point21 get21)
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(inst get21 getting) (agent-get get21 bill21) (patient-get get2l money21)

(inst money2i money) (from-get get2i o21))

((inat 7@ rest-dining) (go-step 7d go21) (diner 7d bill21)

(inst go21 going-by-bus) (restaurant ?d reat21) (drink-step ?d drlnk21)
(rest-thing—drunk 7d ms21) {inst 7r robbing) (go-step 7r go21)
{place-rob 7r rest21) (point-veapon-step ?r point21} (robber ?7r bill21)
(veapon-rob 7r gun2i) (victim-rob ?r 021) (get-valuable-step ?r get21)
(thing-robbed 7r money21) (name bili21 bill) (vehicle go21 busa21)

(inst ms21 milkshake) (inst gun2i gun) (own 021 rest2t)

(inst money21 money) (precede go21 drink21) (precede drink21 point21)
(precede point21 get21))

22. "Fred gave the busdriver a token.
He got off the bus at the park.
He went to a restaurant.
He got some money from the owner.”

((inst give22 giving) (giver give2?2 fred22) (name fred22 fred)
(recipient give22 bd22) (occupation bd22 busdriver)

(thing-given give22 tk22) (inst tk22 token) (precede give22 getoff22)
(inet getoff22 getting-off) (agent-get-off getoff22 frod22)
(patient-get-off getoff22 bus22) (inst bus22 bus)

(place-get-off getoff22 park22) (inst park22 park) (pracede getoff22 go22)

(inst go22 going) (goer go22 fred22) (dest-go goZ2 rest?)

(inst rest22 restaurant) (precede go22 get22) (inst get22 getting)
(agent-get get22 fred22) {patient-get get22 money22)

(inet money22 money) (from-get get22 022) (own 022 rest22))

((inst 7b going-by-bus) (give-token-step ?b give22)

(get-ofi-atep 7b getofi22) (goer 7b fred22) (bus-driver 7b bd22)

{token 7b tk22) (vehicla 7b bus22) (dest-go 7b park22)

(inst ?r robbing) (go-step 7r go22) (get-valuable-step 7r get22)
(robber ?r fred22) (place-rob 7r rest22) (thing-robbed ?r money22)
(victim-rob ?r 022) (name fred22 fred) (inst park22 park)

(inst reet22 restaurant) (inst money22 money) (own 022 rest22) ]
(precede give22 getoff22) (precede getoff22 go22) (preceds go22 get22))

23. "Jack tock a taxi to the park."

((inst go23 going) (goer go23 jack23) (name jack23 jack)
(vehicle go23 taxi23) (inst taxi23 taxi) (dest~go go23 park23)
(inst park23 park))

((inst go23 going-by-taxi) (goer go23 jack23) (name jack23 jack)
(vehicle go23 taxi23) (dest-go go23 park23) (inst park23 park))

24. "Bill took a taxi.”

((inst go24 going) (goer go24 bill24) (name bill24 bill)
(vehicle 3024 taxi24) (inst taxi24 taxi))

({inat go24 going~by-taxi) (goer go24 bill24) (name bill24 bill)
(vehicle go24 taxi24))
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25. "Fred took a taxi to the bus-station.
He got on a bua.”

((inst go25 going) (goer go25 fred2S) (name fred25 fred) _ -
(vehicle go25 taxi25) (inst taxi25 taxi) (dest-go go25 bus-station25)
(inst bus-station25 bus-station) (precede go25 geton25)

(inst geton25 getting-on) (agent-get-on geton25 fred?25)
{patient-get-on geton25 bus25) (inst bus25 bus)).

((inst ?b going-by-bus) (go-step ?b go25) (inst go25 going-by-taxi)
(goer 7b fred25) (source-go 7b bus-station25) (get-on-step 7b geton25)
(vehicle 7b bus25) (name fred25 fred) (vehicle go25 taxi25)

(precede go25 geton25))

A.83 Test Stories

1. "John found the bread.
He paid for it.®

({inst findl finding) (finder findl john1) (name johni john)
(thing-found findl breadl) (inst breadl bread) {precede findl payl)
(inst payl paying) (payer payl johm1) (thing-paid payl breadi))

((inst 7= shopping) (find-step ?s find1) (buy-step ?s 7b) -
(pay-step 7b payl) (shopper ?s john1) (thing-shopped-for ?s breadl)
(inst breadl bread) (name johni john) (precede findi payl))

2. "Bob got a gunm. . .
He got off the bus at the liguor store.”

((inst get2 getting) (agent-get get2 bob2) (name bob2 bob)
(patient-get get2 gun2?) (inst gun2 gun) (precede get2 getoffl)
(inst getoff2 getting-off) (agent-get-off getoff2 bob2)
(patient-get-off getoff2 bus2) (inst bus2 bus)

(place-get-off gatoff2 1s2) (inst 1la2 liquor-store))

((inst ?r robbing) (inst ?b going-by-bus) (get-weapon-step ?r get2)
(go-step 7r 7b) (get-off-step 7b getoff2) (robber ?r bob2)

(veapon-rob ?r gun2) (place-rob ?r 182) (vehicle 7b bus2) (inst gun2 gun)
(inst 1s2 liquor-store) (name bob2 bob) (precede get2 getoffl))

3. "Bob went to the supermarket.
He pointed a gun at the owner."

((inst go3 going) (goer go3 bob3) (name bob2 bab) (dest-go go3 sm3)
(inst sm3 smarket) (precede go3 point3) (inst peint3 pointing)
(agent-point point3 bob3) (instr-point peint3 gun3)

(inst gun3 gun) (patient-point point3 03) (own 03 sm3))

({inst 7r robbing) (go-step ?r go3) {point-veapon-step ?r point3a)
(robber ?r bob3} (place-rob ?r sm3) (weapon-rob 7r gum3)
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(victim-rob 7r 03} (inst sm3 smarket) (inst gun3 gum)
(own 03 sm3) (name bob3 bob) (precede go3 point3))

4. "Bill packed a suitcase, : —
He got off the bus at the airport.” ’

{(inst pack4 packing) (agent-pack pack4 bill4) (name bill4 bill)
(patient-pack pack4 sc4) (inst sc4 suitcase) (precede pack4 getoffd)
(inst getoff4 getting-off) {agent-get—off getoffd billd)
(patient-get-off getoff4 bue4) (inst buad bus)

(place-get—off getoff4 airport4) (inst airportd4 airport))

((inst ?p going-by~plane) (inst 7?b going-by-bus) (pack-step 7p packd)
(go-step ?p 7b) (get-off-step ?b getoff4d) (goer ?p bill4)
(plane-luggage ?p sc4) (vehicle 7b bus4) (source-go 7p airport4d)
(inst sc4 snitcase) (name bill4 bill) (precede pack4 getoff4))

5. "Jack gave the busdriver a token.
He got off at the supermarket.
He paid for some milk."”

((inst giveb giving) (giver give5 jackS) (name jack5 jack)
(recipient give5 bd5) (occupation bdS busdriver) (thing-given give5 tk5) -
(inst tk5 token) (precede giveS getoffS) (inst getoft5 getting-off)
(agent-get-off getoffS jack5) (place-get-off getoffS sm5)

(inst smS smarket) (precede getoff5 payS)} (inst pay5 paying)
{payer pay5 jackS) (thing-paid pay5 milk5) (inst milk5 milk))

((inst ?s smarket-shopping) (inst 7b going-by-bus) (go-step ?s 7b)
(give-token-step 7b give5) (get-off-step 7b getoff5) (buy-step ?s 7u)
(pay-step 7u pay5) (shopper ?s jack5) (bus—driver 7b bd5) (token 7b tk5)
(store 7s sm5) (thing-shopped-for 7s milk5) (inst milk5 milk)

(name jack5 jack) (precede give5 getoff5) (precede getoff5 pay5))

6. "Jack gave the busdriver a token.
He got off at the restaurant.
He paid for =ome milk."

((inst give6 giving) (giver give6 jack6é) (name jacké jack)

(recipient give6 bdé) (occupation bdé busdriver) (thing-given give6 tké)
(inst tk6 token) (precede give getoff6) (insat getoff6 getting-off)
(agent-get-off getoff6 jack6) (place-get-off getoff reste)

(inst rest6 restaurant) (precede getoff6 pay6) (inst payé paying)

(payer pay6 jack6) (thing-paid pay6 milké) (inst milké milk))

((inst ?d rest-dining) (inst 7b going-by-bus) (go-step 7d ?b)
(give-token-step ?b give6) (get-off-step 7b getoffs) (pay~step 7d pay6)
(diner ?d jacké) (bus-driver 7b bd6) (token ?b tk6) (restaurant ?d rest6)
(rest-thing-ordered 7d milké) (inst milk6 milk) (name jacké jack)
(precede give6 getoff6) (precede getoff6 payé))

7. "Fred got a gun.
He got some money from the owner of the supermarket,”
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((inst get7 getting) (agent-get get7 fred7) (name fred7 fred)
(patient-get get7 gun7) (inst gun? gun) (precéde get7 getTb)
(inst get7b getting) (agent-get get7b fred7) (patient-get get7b money?)
(inst money7 money} (from-get get7b o7) (own o7 sm7) (inst sum7 smarket))

((inst ?r robbing) (get-weapon-step ?r get?) {get-valuable-step 7r get’b)
(robber ?r fred7) (weapon-rob ?r gun7) (thing-robbed ?r money7)
(victim-rob ?r o7} (inst gun7 gun) (inst money7 money) (own o7 sm7)
(inst =n7 smarket) (name fred7 fred) (precede get7 get7b))

8. "Fred got a gun.
He went to the restaurant.
He packed a2 suitcase."

((inst getB getting) (agent-get get8 fred8) (name fred8 fred)
(patient-get get8 gun8) (inst gun8 gun) (precede get8 goB)

(inst goB going) (goer goB freds8) (dest-go goB8 rests)

(inst rest8 restaurant) (precede goB8 pack8) (inst packs packing)
{agent-pack pack8 fred8) (patient-pack pack8 sc8) (inst sc8 suitcase))

((inst ?r robbing) (get-weapon-step 7r get8) (go-step 7r go8)

(robber ?r fred8) (veapon-rob 7r gun8) (place-rob ?r rest8) (inst gun8 gun)
(inst rest8 restaurant) (inst ?p going-by-plane) (pack-step 7p pack8)

(goer 7p freds8) (plane-luggage 7p scB) (inst scB8 suitcase) '

(name fred8 fred) (precede get8 goB) (precede go8 packs))

9. "Tom went to the restuarant.
He put a straw in a milkshake.™

((inst go? going) (goer go9 tom9) (name tom9 tom) (dest-go go? rest9)
(inst rest9 restaurant) (precede go9 put9) (inst put9 putting)
(agent-put put9 tom9) (patient-put put9 str9) (inst strd straw)
(place-put put9 ms9) (inst ms9 milkshaka))

({inst ?d rest-dining} (go-step 7d go9) (drink-step ?d 7dk)
(put-strav-step ?dk put9) (diner 7d tom9) (restaurant 7d ress9)
(rest-drink-strav 7d str9) (rest-thing-drunk 7d m=9)

(inst ms9 milkshake) (name tom9 tom} (precede go9 put9))

10. "Bob took a taxi to the liquer store.
He found some bourbon on the shelf.”

{(inst gol0 going) (goer goi0 bobl0) (name bob10 bob)

(vehicle go10 taxi10) (inst taxil0 taxi) (dest-go go10 1s10)

(inst 1810 liquor-store) (precede gol0 find10) (inst find10 finding}
(finder £ind10 bob10) (thing-found find10 bourbon10)

(inst bourbon10 bourbon) {on bourboni0 shf10) (inst shf10 shelf))

((inst ?s3 liqst-shopping) (inst gol0 going-by-taxi) (go-step 7z gol0)
(find-step 7= £ind10) (shopper 7s bob10) (vehicle gol0 taxii0)
(store 7s 1s10) (thing-shopped-for ?s bourbon10) :
(inst bourboni0 bourbon) (on bourboni0 shf10) (inst shf1p shelf)
(name bobl0 bob} (precede gol0 find10))
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11, "Jane took a taxi to the airport.
She pointed a gun at the taxi-driver."

({inst goll going) (goer goll janeil) (name janeil jane) : —
(vehicle goii taxiil) (inst taxiii taxi) (dest-go goil airportil)

(inst airportil airport) (precede goll point11) (inst pointll pointing)
(agent-point pointi1 janell) (instr-point pointil gunii) (inst gunii gun)
(patient-point pointit td1i} (eccupation tdil taxidriver))

((inst ?p going-~by-plane) (inet goll going-by-taxi) (inat ?r robbing)
(go-step 7p goii) (goer ?p janeil) (vehicle goll taxill) o
(source-go 7p airpertil) (name janeil jane) (point-weapon-step ?r pointiil)
(robbar 7r janeil) {(weapon-rob ?r gunil) (victim-rob ?r tdi11)

(inst gunii gun} (taxi-driver goil tdil) (precede goll pointii))

12, "John got a gun.
He took a taxi to the airport.”

((inst get12 getting) (agent-get get12 johnl2) (name johni?2 john)
(patient-get get12 guni2) (inst guni2 gun) (precede get12 go12)

(inst goi2 going) (goer gol2 johni2) (vehicle gol2 taxii2)

(inst taxil2 taxi) {dest-go gol2 airport12) (inst airporti2 a1rport))

({inst ?r robbing)} (inst go12 going-by-taxi) (get-weapon-step 7r get12)
(go-step ?r gol2) (robber ?r johni?2) (veapon-rob 7r guni2)

(vehicle gol2 taxil2) (place-rob ?r airport12) (inst guni2 gun)

(inst airport12 airport) (name johni2 john) (precede geti2 go12))

13. "Alice got a gun.
She went to the bus-station.”

((inst get13 getting) (agent-get get13 alicel3) (name alice13 alice)
(patient-get get13 guni3) (inst gunl3 gun) (precede getl3 go13)
(inst gol3 going) (goer gol3 alicel3) (dest-go gol3 bus-~station13)
(inst bus-stationl3 bus-station))

((inst ?r robbing) (get-weapon—step 7r getild) (go-step 7r gol3)
(robber 7r alicel3) (weapon-rob ?r guni3) (place-rob ?r bus-stationi3)

(inst gun13 gun) (inet bus-station13 bus-station) (name alicel3 alice)
(precede geti3 goi3))

14, "John paid the taxi-driver.
He got on the plane."

({inst pay14 paying) (payer payl4 johni4) (name johni4 john)

(payee pay14 td14) (occupation td14 taxidriver) (precede payi4 getoni&)
(inst getoni4 getting-on) (agent-get-on getoni4 johnid)
(patient-get-on getoni4 planei4) (inst planel4 plane))

((inst 7p going-by-plane) (inst ?t going-by-taxi) (go-step 7p 7t)
(pay-step 7t payl4) (get-on-step 7?p getonid) (goer ?p johnl4)
(taxi-driver ?t tdi4) (vehicle 7p plane14) (name johni4 john)
(precede payl4 getonld))



15. "John took a cab to the airport.®

({inst gol5 going) (goer go1l5 johni5) (name johniS5 john)
(vehicle gol5 taxiiS) (inst taxiis taxi) (dest-go gol airportis)
(inst airporti5 airport)) : '

((inst ?t going-by-plane) (inst gol5 going-by-taxi) (go-step 7t go15)
(goer 7t john15) (vehicle gol5 taxi1S) (source-go 7t airportis)
(name johni5 john))

16. "Fred got off the bus at the supernarket."

((inst getoffl6 getting-off) (agent-get-off getoff16 fredif)
(name fred16é fred) (patient-get-off getoff16 bus16) (inst busi6 bus)
(place~get-off getoffl6 smi6) (inst sml6 smarket))

((inst 7s smarket-ghopping) (inst 7b going-by-bus) (go-step 7z 7b)
(get-off-step ?b getoff16) (shopper 7s fredi§) (vehicle 7b busis)
{store 7a smi6) (name fredi6 fred))

17. "John packed a suitcase.
He paid the taxi-driver." .

((inst pack17 packing) (agent-pack packi? john17) (name johni? john)
(patient-pack packl7 sci7) (inst sc17 suitcase) (precede packi? payi?) .

. (inst pay17 paying) (payer pay17 johnl?) (payee payl7 tdi7)
(occupation tdi7 taxidriver))

((inst ?p going-by-plane) (inst ?t going-by-taxi) (pack-step 7p packiT)
(go-step 7p 7t) (pay-step Tt payi7) (goer ?p johnl?)

(plane-luggage ?p sci7) (taxi-driver 7t tdi7) (inst sc17 suitcase)
(name johni7 john} (precede packi? payi7))

18, "Mary paid the taxi-driver.
She ordered a milkshake."

((inst pay18 paying) (payer payi8 mary18) (name mary18 mary)

(payee pay18 td18) (occupation td1B taxidriver) (precede Pay18 orderi8)
(inst order18 ordering) (agent-order orderi8 mary18)

(patient-order order18 ms18) (inst ms18 milkshake))

((inst ?d rest-dining) (inat 7t going-by-taxi) (go-step ?d 7t)
{pay-step 7t pay18) (order-step ?d order18) (diner ?d maryt8)
(taxi-driver 7t tdi8) (rest-thing-ordered 7d ms18)

(inst ms18 milkshake) (name maryl8 mary) (precede payi8 orderis))

19. "Mary got a gun.
She went to the supermarket.
She found the milk on the shelf.
She got some money from the cashier."

((inst._get19 getting) (agent-get geti® maryl9) (name Raryl9 mary)
(patient-get get19 guni9) (inst guni9 gun) (precede get19 gol9)
(inst go19 going) (goer go19 mary19) (dest-go gol9 sm19)
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(inst sm19 smarket) {(precede gol9 find19) (inst findi19 finding)
(finder £ind19 mary19) (thing-found find19 milk19) (inst milk19 milk)
(on milk19 shf19) (inst shf19 shelf) (precede £ind19 geti19b)

(inst get19b getting) (agent-get get19b maryi9)

(patient-get geti9b moneyl9) (inat money19 money)

(from-get get1Sh csh19) (occupation cshi® cashier))

((inst ?r robbing) (inst ?s smarket-shopping) (get-veapon-step 7r getl9)
(go-step ?r go19) (go-step ?s gol9) (find-atep ?s find19)
(get-valuable-step 7r get19b) (robber 7r mary19) (shopper 7s mary19)
(weapon-rob 7r gunl9) (place-rob 7r sm19) (store 7a am19)
(thing-shopped~for 7s milk19) (thing~robbed 7r money19)

(victim-rob 7r csh13) (inst gun19 gun) (inst milki9 milk)

(or milk19 shf19) (inst shf19 shelf) (inst money19 money)
(occupation cshi9 cashier) (name mary19 mary) (precede geti9 go19)
(precede go19 find19) (precede £ind19 geti9b))

20. "Bill took a taxi to the liquor store.
He paid for the bourbon.”

((inst go20 going) (goer go20 bill20) (name bill20 bill)

{vehicle go20 taxi20) (inet taxi20 taxi) (dest-go go20 1a20)
(inst 1820 liquor-store) (precede go20 pay20) (inst pay20 paymg)
(payer pay20 bill120) (thing-paid pay20 bourbon20) -

{inst bourbon20 bourbon))

((inst 7e ligst-shopping) (inst go20 going-by-taxi) (go-step ?s go20)
(buy-step 7a 7b) (pay-step ?b pay20) (shopper 7s bill20)

(vehicle go20 taxi20) (store 7s 1s20) (thing-shopped-for 7s bourbon20)
(inst bourbon20 bourben) (name bil120 bill) (precede go20 pay20)}

21. "Bill paid for the bourbon."

({inst pay21 paying) (payer pay21 bill21} (name bill21 bill)
(thing-paid pay21 bourbon2i) (inst bourbon2i bourbon))

({inst pay21 paying) (payer pay2i bill21) (name bill21 bill)
(thing-paid pay21 bourbon2i) (inst bourbon2i bourbon))

22, "Bill paid for the milk."

((inst pay22 paying) (payer pay22 bill22) (name bill22 bill)
(thing-paid pay22 milk22) (inst milk22 milk))

({inst pay22 paying) (payer pay22 bill22) (name bill22 bill)
(thing-paid pay22 milk22) (inst milk22 milk))

23. "John bought a ticket.
He went to the restaurant.
He ordered a milkshake,
He got on the plane.”

((inst buy23 buying) (buyer buy23 john23) (name john23 john)
(thing-bought buy23 tk23) (inst tk23 ticket) (precede buy23 go23)
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(inst go23 going) (goer go23 john23) (dest—go g023 rest23)

(inst rest23 restaurant) (precede go23 order23) (inst order23 ordering)
(agent-order order23 john23) (patient-order order23 ms23)

(inst ms23 milkshake) (precede order23 geton23) (inst geton23 getting-on)
(agent-get-on geton23 john23) (patient-get-on geton23 plane23)

(inst plane23 plane)) ‘

((inst ?p going-by-plane) (buy-ticket-step 7p buy23)

(get-on-step ?p geton23) (goer 7p john23) (plane-ticket 7p tk23)
(vehicle 7p plane2?3) (inst 7d rest-dining) (go-step ?d go23)

;s (order-step 7d order23) (diner ?d john23) (restaurant ?d rest23)

i (rest-thing-ordered 7d ws23) (inst ms23 milkshake) (name john23 john)
i (precede buy23 go23) (precede go23 eorder23) (precede order23 geton23))

7 24. "Mary went to the bus-station.
She got off at the restaurant.
She drank some milk."

T

((inst go24 going) (goer go24 mary24) (name mary24 mary)
) {dest-go go24 bus-station24) (inst bus-atation24 buz-station)
i (precede go24 getoff24) (inst. getoff24 getting-off)
o (agent-get-off getoff24 mary24) (place-get-off getoff24 rest24)
(inst rest24 restaurant) (precede getoff24 drink24) (inst drink24 drinking}
(drinker drink24 mary24) (patient-drink drink24 milk24) (inst milk24 milk))

P ((inat 74 rest-dining) (inst 7b going-by-bus) (go-step 7d 7b)

P (go-step 7b go24) (get-off-step 7b getof24) (drink-step 7d drink?24)

i (diner ?d mary24) (source-go 7b bus-station24) (restaurant ?d rest24)
- (rest-thing-drunk 7d milk24) {inst milk24 milk) (name mary24 mary)

¥ e . (precede go24 getoff24) (precede getof?24 drink24)) '

25. "Jane packed her bag.
She got off the plane.”

((inst pack2S packing) (agent-pack pack25 jane25) (name jane25 jane)
(patient-pack pack25 bag25) (inst bag25 bag) (precede pack25 getoff2s)
(inst getoff25 getting-off) (agent-get-off getoff25 jane25)
(patient-get-off getoff25 plane25) (inst plane25 plane))

((inst 7p going-by-plane) (pack-step ?p pack25) (get-off-step 7p getoff25)

‘o (goer ?p jane25) (plane-luggage ?p bag25) (vehicle 7p plane25)

;¥ (name jane25 jane) (precede pack25 getoff25))




Appendix B

Set Covering Diagnosis

B.1 Knowledge Base

(getf *bruleas *(
; right lateral medulla

((nystagmus-type gazeev) <~ (right-lateral-medulla present))
{(nystagmus~type horiz-left} <- (right-lateral-medulla present))
({nystagmua~type horiz-right) <- (right-lateral-medulla present))
((nystagmua-type vertical-upbeat) <~ (right~lateral-medulla present))
((nystagmus-type vertical-downbeat) <- (right-lateral-medulla present))
((nyatagmus-type rotatory) <~ (right-lateral-medulla present))
((abnpupils-side-type right-miosis) <- (right-lateral-medulla present))
((ptosis-side right) <- (right-lateral-medulla present))
({facenumb-aide right) <- (right-lateral-medulla present))
((facemmb-side left) <~ (right-lateral-medulla present))
{(awallow-severity partial) <- (right-lateral-medulla present))
((swallow-severity unable) <- (right-lateral-medulla present))
((gag-severity impaired) <- (right-lateral-medulla present))
({gag-severity absent) <- (right-lateral-medulla present))
{(ataxia-type truncal) <- (right~lateral-medulla present)) ;
((ataxia-type limb-right-mild) <- (right-lateral-medulla present)) i
{(ataxia~type limb-right-severe) <- (right-lateral-medulla present))

. {{decram-side right-mild) <~ (right-lateral-medulla present))
((decram-side right-severe) <- (right-lateral-medulla present))
((gait-type unsteady) <- (right-~lateral-medulla present))
((gait-type other) <~ (right-lateral-medulla prasent))
{((pp-side left-mild} <- (right~lateral-medulla present))
((pp~side left-moderate) <- (right-lateral-medulla present))
({pp-zide left-severe) <- (right-lateral-medulla present))
((temp-side left) <- (right-lateral-medulla present))

: left lateral medulla

((nystagmus-type gazeev) <- (left-lateral-medulla present))
((nystagmus-type horiz-left) <- (left-lateral-medulla present))
((nystagmus-type horiz-right) <- (left-lateral-medulla present))
((nystagmua-type vertical-upbeat) <- (left-lateral-medulla present))
((nystagmus-type vertical-downbeat) <- (left-lateral-medulla present))
((nystagmus-type rotatory) <- (left-lateral-medulla present))
((abnpupila-side-type left-miosis) <- (left-lateral-medulla present))
((ptosis-side left) <~ (left-lateral-medulla present))
((facenumb~zide right) <- (left-lateral-medulla present))
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((facenumb-side laft) <~ (left-lateral-medulla present))
((svallow-severity partial) <- (left-lateral-medulla present))
({swallov-severity unable) <~ (left-lateral-medulla present))
((gag-severity impaired) <- (left-lateral-medulla present))
((gag-severity absent) <- (left-lateral-medulla present))
((ataxia-type truncal) <- (left-lateral-medulla present))
((ataxia-type limb-left-mild) <- (left-lateral-mednlla present)}
((ataxia-type limb-left-severe) <~ (left-lateral-medulla present))
({(decram-side left-mild) <~ (left~lateral-medulla present))
((decram-side left-severe) <- (left-lateral-medulla preaent))
({gait-type unsteady) <- (left-lateral-medulla present))
({gait-type other) <- (left-lateral-meduila present))

((pp-side right-mild) <- (left-lateral-medulla present))
((pp-side right-moderate) <- (left-lateral-medulla present))
({pp-side right-severe) <- (left-lateral-medulla present))
((temp-side right) <- (left-lateral-medulla present))

; right medial medulla ,

((nystagmus-type gazeev) <- (right-medial-medulla present))
((nystagmus-type vertical-upbeat) <- (right-medial-medulla present))
{(nystagmus-type vertical-downbeat) <- (right-medial-medulla present))
((tongweak-side right) <- (right-medial-medulla present)) '
((tongweak-side left) <- (right-medial-medulla present))
((dysarthria-severity mild) <- (right-medial-medulla present))
((dysarthria-severity moderate) <- (right-medial-medulla present))
((dysarthria-severity severe) <- (right-medial-medulla present)). .
((veakness-type hemiparesis-left) <- (right-medial-medulla present)),
((abndtrs-side left-incdtr) <- (right-medial-medulla present))
((abndtrs-side left~-decdtr) <- (right-medial-medulla preaent))
({babs~side left) <- (right-medial-medulla presemt})

{({gait-type lhemi) <- {right-medial-medulla present))

({gait-type unsteady) <~ (right-medial-medulla present))

((gait-type other) <- (right-medial-medulla present))

((touch-side left) <- (right-medial-medulla present))

((posloss-side left) <- (right-medial-medulla present))
{(vibloss-side left) <- (right-medial-medulla present))
((twopoint-side left) <- (right-medial-medulla present))
((agraph-side left) <- (right-medial-medulla present})

; left medial medulla

({nystagmus-type gazeev) <- (left-medial-medulla present))
{(nystagmus-type vertical-upbeat) <- (left-medial-medulla present))
((nystagmus-type vertical-downbeat) <- (left-medial-medulla present))
({tongweak-side right) <- (left-medial-medulla present)}
((tongweak-side left) <- (left-medial-medulla present))
((dysarthria-severity mild) <- (left-medial-medulla present))
((dysarthria-severity moderate) <- (left-medial-medulla present))
((dysarthria-severity severe) <- (left-medial-medulla present))
((veakness-type hemiparesis-right) <- (left-medial-medulla present))
((abndtrs-gide right-incdtr) <- (left-medial-medulla present))
((abndtrs-side right-decdtr) <- (left-medial-medulla present))
({babs-gide right) <- (left-medial-medulla present))
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((gait-type themi) <~ (left-medial-medulla present))
((gait-type unsteady) <- (left-medial-meduila preszent))
((gait-type other) <- (left-medial-medulla present))
((touch-side right) <- (left-medial-medulla present))
((posloss~side right) <- (left-medial-medulla present))
{(vibloss-side right) <- (left-medial-medulla present))
((twopoint-side right} <- (left-medial-medulla present))
((agraph-side right) <- (left-medial-medulla present))

+ right pons

((decloc-degree drowsy) <- (right-pons present))
((decloc-degree stupor) <- {right-pons present)) -
((decloc~degree coma) <- (right-pons present))
((abnpupils-side-type right-miosis) <~ (right-pons present))
((abnpupila~side-type left-miosis) <- (right-pons present))
((ptosis-side right) <- (right-pons present))
((nystagmus-type gazeev) <- (right-pons present))
((nystagmus-type horiz-left) <- (right-pons present))
((nystagmus-type horiz-right) <~ (right-pons present))
((nystagmus-type vertical-upbeat) <- (right-pons present))
((nystagmus-type rotatory) <- (right-pons present))
((abneom-type hgaze-right) <- (right-pons present))
({abnecm-type ino-right) <~ (right-pons present))
((abneom-type sixthn-right) <- (right-pons present))
((poorelm-direction lhoriz) <- (right-pons present))
({poorokn-direction rhoriz) <~ (right-pons présent))
({(facemmb-side right) <- (right-pons present)})
({facial-side-type right<peripheral) <- (right-pons pres=ent))
((facial-side-type left~central) <~ (right-pons present))
((swallow-severity partial) <- (right-pons present))
{(swallow-severity unable) <- (right-pons present))
((gag~severity impaired) <- (right-pons present))
({gag-severity absent) <- (right-pons present))
({(dysarthria-severity mild) <- (right-pons present))
((dysarthria-severity moderate) <- (right-pons present))
((dysarthria-severity severe) <- (right-pons present))
((tongweak-side left) <- (right-pons present))
((ataxia~type limb-right-mild) <~ (right-pons present))
({ataxia-type limb-right-severe) <- (right-pons present))
((veakness-type hemiparesis-left) <- (right-pons present))
((babs-gide left) <~ (right-pons present))

((abndtra-side left-incdtr) <- (right-pons present))
((abndtrs-side left-decdtr) <- (right-pons present))
((gait-type lhemi) <~ (right-pons present))

((gait-type unsteady) <- (right-pons present))
((gait-type other) <- (right-pons present))

((pp~side left-mild) <- (right-pons present))

((pp-side left-moderate) <- (right-pons present))
({pp~side left-severe) <- (right-pons present))
((touch-side left) <~ (right-pons present))

({temp-gide laft) <~ (right-pons present))

({posloss-side left) <~ (right-pone present))
((vibloss-side left) <- (right-pons present))
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((twopoint-side left) <~ (right-pons present))
({agraph-side left) <- (right-pons present))

; left pons

((decloc-degree drowsy) <- (left-pons present))
((decloc-degree stupor) <- (left-pons present))
((decloc~degree coma) <- (left-pons present))
((abnpupils-side-type right-miosis) <- (left-pons present))
((abnpupils-side~type left-miosis) <- (left-pons present))
((ptosis-side left) <- (left-pons present))
((nystagmus-type gazeev) <- (left-pons present))
({nystagmus-type horiz-left) <-.(left-pons present))
({nystagmus-type horiz-right) <- (left~pons present))
({nystagmus~type vertical-upbeat} <- (left-pons present))
({nystagmus-type rotatoery) <- {left-pons present))
((abneom-type hgaze-left) <- (left-pons present))
({abneom-type ino-left) <- (left-pons present))
((abneom-type sixthn-left) <- (left-pons present))
((poorokn-direction lhoriz) <- (left-pons present))
({poorokn-direction rhoriz) <- (left-pons present))
((facemmb-side left) <- (left-pons present))
((facial-side-type left-peripheral) <- (left-pons present))
({facial-side-type right-central) <- (left-pons present))
((swallov-severity partial) <- (left-pons present)) i
((swallow-severity unable) <- (left-pons present))
((gag-severity impaired) <~ (left-poms preasent))
((gag-severity absent) <- (left-pons present))
((dysarthria-severity mild) <- (left-pons presgent))
((dysarthria-severity moderate) <- (left-poms present))
((dysarthria-severity severe) <- (left-pons present))
((tongweak-side right) <~ (left-pons present))
((ataxia-type limb-left-mild) <- (left-pona present))
((ataxia-type limb-left-severe) <- (left-pons present))
((veakness-type hemiparesis-right) <- (left-pons present))
((babs-side right) <- (left-pons present))

((abndtrs-side right-incdtr) <- (left~pons present))
((abndtrs-side right-decdtr) <- (left-pons present))
({gait-type rhemi) <- (left-pons present))

((gait-type unsteady) <- (left-pons present))

((gait-type other) <- (left-pons present))

({pp-side right-mild) <- (left-pons present))

({pp-side right-moderate) <- (left-pons present))
((pp-side right-severe) <- (left-pons present))
((touch-side right) <- (left-pons present})

((temp-side right) <- (left-pona present))

((posloss-side right) <- (left-pons present)) ' -
({vibloss-side right) <~ (left-pons present))
((twopoint-side right) <- (left-pons present))
((agraph-side right) <- (left-pons present))

; right midbrain

((decloc-degree coma) <~ (right-midbrain present))
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{(decloc~degree drowsy) <- (right-midbrain present))
({decloc-degree stupor) <~ (right-midbrain present))
({(disoriented-degree mild) <~ (right-midbrain present))
((disoriented-degree modarate) <- (right-midbrain present})
{(disoxiented-degree sovere) <- (right-midbrain present))
({cogabn present) <- (right-midbrain present})
{{nystagmus-type gazeev) <~ (right-midbrain present))
{(nystagmue-type horiz-left) <- (right-midbrain present))
((nystagmus-type horiz-right) <- (right-midbrain present))
((nystagmus-type vertical-upbeat) <~ (right-midbrain present))
((nystagmus-type vertical-downbeat) <- (right-midbrain present))
((nystagmus-type rotatory) <= (right-midbrain present))
((poorokn-direction lhoriz) <~ {right~midbrain present))
((pooroxn-direction vertical) <- (right~midbrain present))
((abrnpupils-aide-type right-mydriasis) <- (right-midbrain present))
((abnpupils-side~type right-miosis) <~ (right-midbrain present))
((prd-side right) <- (right-midbrain present))

((abneom~type vgaze-up) <- (right-midbrain present))
((abneom-type vgaze-down) <- (right-midbrain present))
((abneom-type ino-right) <- (right-midbrain present))
((abneom-type thirdn-right) <- (right-midbrain present))
((abneom-type skew) <- (right-midbrain presemt)) . '
((ptosis-side right) <- (right-midbrain present)}}
((ptosis-side left) <- (right-midbrain present))
((facenumb-side left) <- {right-midbrain present))
((facial-side-type left-central) <-. (right-midbrain preaent)) .
({svallow-severity partial) <- (right-midbrain present))
((swallow-severity unable) <- (right-midbrain present))
((gag-severity impaired) <- (right-midbrain present))
((gag-severity absent) <- (right-midbrain present))
((veakness-type hemiparesis-left) <« (right-midbrain present))
((ataxia-type limb-left-mild) <- (right-midbrain present))
((ataxia-type limb-left-severe) <« (right-midbrain present))
((ataxia-type limb-right-mild) <- (right-midbrain present))
((ataxia-type limb-right-severe) <- (right-midbrain present))
((decram~side left-mild) <- (right-midbrain present))
({(decram-side left-severe) <- (right-midbrain present))
((babs-side left) <- (right-midbrain present)).

((abndtrs-side left-incdtr) <~ (right-midbrain present))
({abndtrs-side left-decdtr) <- (right-midbrain present))
((gait-type lhemi) <- (right-midbrain present))

((gait-type unsteady) <- (right-midbrain present)) -
{(gait-type other) <- (right-midbrain present))

((dss-side left) <- (right-midbrain present))

((pp-side left-mild) <~ (right-midbrain present))

((pp-side left-moderate) <- (right-midbrain present))
((pp-side left-severe) <- (right-midbrain present)) -
((touch-side left) <- (right-midbrain present))

((temp-side left) <- (right-midbrain present))

((posloss~side left) <- (right-midbrain present))
((vibloss-~side left) <- (right-midbrain present})
({twopoint-side left) <- (right-midbrain present))
((agraph-side left) <- (right-midbrain present))




3 left midbrain

((decloc-degrea coma) <- (left-midbrain present))
((decloc-degree drowsy) <- (left-midbrain present))
((decloc-degree stupor) <- {(left-midbrain present))
((disoriented-degree mild) <~ (left-midbrain present))
((disoriented-degree moderate) <~ (left-midbrain present))
({disoriented-degree severe) <- (left-midbrain present))
({cogabn present) <- (left-midbrain present))
({nystagmus-type gazeev) <- (left-midbrain present))
({nystagmus-type horiz-left) <~ (left-midbrain present))
((nystagmus-type horiz-right) <- (left-midbrain present))
({nystagmus-type vertical-upbeat) <- (left-midbrain present))
({nystagmus-type vertical-downbeat) <~ (left-midbrain present))
((nystagms-type rotatory) <~ (left-midbrain present))
((poorokn-direction rhoriz) <- (left-midbrain present))
({poorokn-direction vertical) <- {left-midbrain present))
({(abnpupila-side-type left-mydriasis) <- {left-midbrain Present))
({abnpupils-side-type left-miosis) <- (left-midbrain present))
{(prd-side left) <- (left-midbrain present))

((abneom-type vgaze-up) <~ (left-midbrain present))
((abnecm-type vgaze-down) <- (left-midbrain present))
((abneom-type ino~left) <- (left-midbrain present))
((abneon~type thirdn-left) <- (left-midbrain present))
((abneon~type skew) <- {left-midbrain present))

((ptosis-side right) <- (left-midbrain present))
((ptosis-side leit) <- (left-midbrain present))
({facenumb-side right) <~ (left-midbrain present))
((facial-side-type right-central) <~ (left-midbrain present))
{(ewallow-severity partial) <- {left-midbrain present))
((swallow-geverity unable) <- (left-midbrain present))
((gag-severity impaired) <- (left-midbrain present))
((gag-severity absent) <~ (left-midbrain present))
((veakness~type hemiparesis-right) <- (left-midbrain present))
({ataxia-type limb-left-mild) <- (left-midbrain present))
((ataxia-type limb-left-severs) <- (left-midbrain present))
((ataxia-type limb-right-mild) <~ (left-midbrain present)}
((ataxia-type limb-right-severe) <- (left-midbrain present))
((decram-side right-mild) <~ (left-midbrain present))
((decram-side right-severe) <- (left-midbrain present)}
((babs-side right) <- (left-midbrain present))

((abndtrs-side right-incdtr) <- (left-midbrain present))
((abndtra-sida right-decdtr) <- (left-midbrain present))
({(gait-type rhemi) <- (left-midbrain present))

({(gait-type unsteady) <- (left-midbrain present))

((gait-type other) <- (left-midbrain present))

((dse-side right) <- (left-midbrain present))

({pp-side right-mild) <- (left-midbrain present))

((pp-side right-moderate) <~ (left-midbrain present))
((pp-side right-severe) <- (left-midbrain present))
((touch-side right) <- (left-midbrain present))

({temp-side right) <~ (left-midbrain present))

({posloss-side right) <- (left-midbrain present))
((vibloss-side right) <~ (left-midbrain present))
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{(twopoint-side right) <- (left-midbrain present)}
((agraph-side right) <- (left-midbrain present))

; right cerebellar hemisphere , ' —

((nystagmus-typa gazeev) <- (right-cerebellar-hemisphere present))
((nystagmus-type horiz-left) <- (right-cerebellar-hemisphera prasent})
((nystagmus-type horiz-right) <- (right-cerebellar-hemisphere present))
({nystagmus-type rotatory) <~ (right-cerebellar-hemisphere present))
((dysarthria-severity mild) <- (right-cerabellar-hemisphere present))
((dysarthria-severity mederate) <~ (right-cerebeliar-hemisphere present))
((dysarthria-severity severe) <- (right-cerebellar-hemisphere present))
((ataxia-type limb-right-mild) <- (right-cerebellar-hemisphere present))
((ataxia-type limb-right-severe) <- (rzght-cerebellar-hen;sphere present))
((decram~side right-mild) <- (right-cerebellar-hemisphere present))
({decram-side right-severe)} <- (right-cercbellar-hemisphere present))
({(gait-type unsteady) <- (right-cer¢bellar-hemisphere present))
((gait-type other) <- (right-cerebellar-henisphere present))

i left cerebellar hemisphere

((nystagmus-typa gazeev) <- (laft-cerebellar-hemisphere present))
({nystagmus—type horiz-left) <- (left-cerebellar-hemisphere present))
({nystagmus-type horiz-right) <- (left-cerebellar-hemisphere present))
{({(nystagmus-type rotatory) <- {left-cerebellar-hemisphere present})
((dysarthria-severity mild) <- (left-cerebellar-hemisphere present))

((dysarthria-severity moderate) <- (left-cerebellar-hemiaphere present))
" ((dysarthria-severity severae) <- {left-cerebellar-hemisphere present))
((ataxia-type limb-left-mild) <- (left-cerebellar-hemisphere present))
((ataxia-type limb-left-severe} <~ (left-cerebellar-hemisphere present))
((decram-side left-mild) <- (left-cersbellar-hemisphere present))
((decram-side left-severe) <- (left-cerebellar-hemisphere present))
((gait-type unsteady) <~ (left-cerebellar-hemisphere present))
({gait-type other) <- (left-cerebellar-hemisphere present))

; cerebellar vermis

({nystagmus-type gazeev) <- (cerebellar-vermis present))
({nystagmus-type horiz-left) <- (cerebellar-vermis present))
({nystagmus-type horiz-right) <- (cerebellar-vermis present))
({nystagmus-type vertical-upbeat) <- (cerebellar-vermis present))
((nystagmus~type vertical-downbeat) <- (cerebellar-vermis present))
((nystagmus-type rotatory) <- (cerebellar-vermis present))
((ataxia-type truncal) <- (cerebellar-vermis present))

((gait-type unsteady) <- (cerebellar-vermis present))

; right thalamus

((vi-deficit-side-type left-hemianopsia) <- (right-thalamus present))
((vf-deficit-side-type left-quadrantanops:a-lnferlor)
<~ (right-thalamus present)) .
({(vf-deficit-side-type left-quadrantanops1a-auper10r)
<- (right-thalamus present))
((facenumb-side left) <- (right-thalamus present))




((abneom-type hgaze-left) <- (right-thalamus present))
((abneom-type hgaze-right) <- {right~thalamus present))
((ataxia-type limb-left~mild) <~ (right-thalamus present))
((ataxia-type limb-left-severe) <- (right-thalamus present))
((pp-side left-mild)} <~ (right-thalamus present))
((pp-side left-moderate) <~ (right-thalamus present))
((pp-side left-~severe) <- (right-thalamus present))
((touch-side left) <- (right-thalamus present))
({temp-side left) <- (right-thalamus present))
((posloss-gide laft) <- (right-thalamus present))
({viblosa-side left) <- (right-thalamus present))
((twopoint-side left) <- (right-thalamus preaent))
((agraph-side left) <- {right-thalamus present))

; left thalamus

{(anomia-severity mild) <- (left-thalamus present))
((anomia-severity moderate) <- (left-thalamus present))
((anomia-severity severe) <- (left-thalamus present))
{(compdef-saverity mild) <- (left-thalamus present))
((compdef-severity moderate) <- (left-thalamus. present))
((compdef-severity severe) <- (left~thalamus present))

((vi-deficit-side-type left-hemianopsia) <- {left-thalamus present))

({(vf-deficit-side-type left-quadrantanopsla-znter;or)

<- (left-thalamug present)) =
((vf-deficit-side-type left-quadrantanops:a-superlor)

<~ (left-thalamus present)})
((facenumb-side right) <- (left-thalamus present))
((abneom-type hgaze-left) ¥- (left-thalamus present))
((abneom-type hgaze-right) <- (left-thalamus present))
((ataxia-type limb-right-mild) <~ {left-thalamus present))
((ataxia-type limb-right-severe) <~ (left-thalamus preaent))
({pp-side right-mild) <- (left-thalamus present))
({pp-side right-moderate) <- (left-thalamus present))
((pp-side right-severe) <- (left-thalamus present))
((touch-side right) <- (left-thalamus present))
{(temp-side right) <- (left-thalamns present))
((poslosz-side right) <- (left-thalawus present))
((vibless-side right) <- (left-thalamus present))
((twopoint-side right) <- (left-thalamus present))
((agraph-side right) <- (left-thalamus present))

; right basal ganglia

((decloc-degree drowsy) <- (right-basal-ganglia present))
({cogabn present) <- (right-basal-ganglia present))
({decram-side left-mild) <- (right-basal-ganglia present))
((decram-side left-severe) <- (right-basal-ganglia present})
((gait-type other) <~ (right-basal-ganglia present))

; left basal ganglia

((decloc~degree drowsy) <- (leftvbaaal-ganglla present))
({cogabn present) <- (left-basal-ganglia present))
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{(decram-side right-mild) <~ (left-basal-ganglia present))
{(decrar—aide right-severe) <- (left-basal-ganglia present))
((gait-type other) <~ (left-basal-ganglia present))

; right internal capsule

((facenumb-side left) <- (right-internal-capsule present))
({facial-side-type left-central) <- (right-internal-capsule present))
((tongweak-side left) <- (right-internal-capsule present))
((swallow-severity partial) <~ (right-internal-capsule present))
((awallov-severity unable) <- (right-internal-capsule present))
((gag-severity impaired) <- (right-internal-capsule present)) '
((gag-severity absent) <- (right~internal-capsule present))
((dysarthria-severity mild) <- (right-internal-capsule present))
({dysarthria-severity moderate) <~ (right-internal-capsule present))
((dysarthria-severity severe) <~ (right-internal-capsule present))
((weakness-type hemiparesie-left) <- (right-internal-capsule present)) .
((veakness~type moncparesis-lue) <- (rightéinxernal-capsule pregent))
((veakness-type monoparesis-lle) <- (right-internal-capsule present))
((decram-side left-mild} <~ (right-internal~capaule present))
((decram-side left-severe) <- (right-internal-capsule present))
((babs-side left) <- (right-internal-capsule present))

((abndtrs-side left-incdtr) <- (right-internal-capsule present)) j
((abndtrs-side left-decdtr) <- (right-internal-capsule present)) o .

((gait-type lhemi) <~ (right-internal-capsule present)) ‘

({(gait-type other) <- (right-internal-capsule present))
({dss-side left) <- (right-internal-capsule present))
({pp-side left-mild) <- (right-internal-capsule present))
((pp~side left-moderate) <- (right-internal-capsule present)) _
({pp-side left-severa) <- (right-internal-capsule present)) '
((touch-side left) <- (right-internal-capsule present)) '
((temp-side left) <~ (right~-internal-capsule present))
((posloss-side left) <~ (right-internal-capsule present))
((vibloss-side left) <~ (right-internal-capsule present))
((tvopoint-side left) <~ (right~internal-capsule present))
((agraph-side left) <- (right-internal-capsule present))

i left intermal capsule

({(facemmb-side right) <~ (left-internal-capsule present)) _
((facial-side-type right-central) <- (left-internal-capsule present))
((tongveak-side right) <~ (left-internal-capsule present))
((svallow-severity partial) <- (left-internal-capsule Present))
((swallov-severity unable) <- (left-internal-capsule present)})
({gag-severity impaired) <- (left-internal-capsule present))
((gag-severity absent) <- (left-internal-capsule present))
((dysarthria-gseverity mild) <- (left~internal-capsule present)) -
((dysarthria-severity moderate) <- (left-internal-capsule preaent))
((dysarthria-severity severe) <- (left-internal-capaule present))
((veakneaa-type hemiparesis-right) <- (left-internal-capsule present))
((veakness-type monopareais-rue) <- (Qeft-internal-capsule present))
((veaknesa-type monoparesis-rle) <- (left-internal-capsule present))
((decram-side right-mild) <~ (left-internal-capsule present))
((decram-side right-severe) <- (left-internal-capsule present))
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((babs-side right) <- (left-internal-capsule present})
((abndtra-side right-incdtr) <- (left-internal-capsule present))

((abndtrs-side right-decdtr) <- {laft-internal-capsule present})

((gait-type rhemi) <~ (left-inmternmal-capsule present))
({gait-type other) <- (left-internmal~capsule preszent))
({dss-side right) <- (left-internal-capsule present))
({pp-side right-mild} <- (left-internal-capsule present))
((pp-side right-moderate} <- (left-internal-capsule present))
((pp-side right-severe) <- {left-internal-capsule present))

" {(touch-side right) <- (left-internal-capsule present))

{(temp-side right) <~ (left-internal-capsule present))
((posloes~side right) <- (left-internal-capsule present))
{(vibloss-side right) <~ (left-internal-capsule present))
((tvopoint-side right) <- (left-internal-capsule present))
((agraph-side right) <- (left-internal-capsule present))

; right frontal lsobe

((decloc-degree drowsy) <- (right-frontal-lobe present))
((decloc-degree stupor) <- (right-frontal-lobe present))
({decloc-degree coma) <~ (right-frontal~lobe present))
((disoriented-degree mild) <~ (right-frontal-lobe present))
({disoriented-degree moderate) <- (right-frontal-lcbe present))
((disoriented-degraee severe) <~ (right-trontal-lobe present))
((dyspraxia present) <- (right-frontal-lobe present))
((hemineglect-side left) <- (right-frontal-lobe present))
((denial present) <- (right-frontal-lobe present))
((compdef-severity mild) <- (right-frontal-lobes present))
((nonfluency-severity mild) <= (right-frontal-lobe present))
({nonfluency-severity moderate) <- (right-frontal-lobe present))
((nonfluency-severity severe) <- (right-frontal-lcbe present))
((repetition-severity mild) <- (right~frental-lobe present))
((repetition-severity moderate) <- (right-frontal-lobe present))
({repetition-severity severe) <- (right-frontal-lobe present})
({anomia-severity mild) <- (right-frontal-lobe present))
((anomia-severity moderate) <- (right-frontal-lobe present))
({anomia-severity severe) <- (right-frontal-lobe present))
((cogabn preasent) <- (right-frontal-lobe present))
((dysarthria-severity mild) <- (right-frontal-lobe present))
((dysarthria-severity moderate) <- (right-frontal-lobe present))
((dysarthria-severity severe) <- (right-frontal-lobe present))
((poorokn-direction lhoriz) <- (right-frontal-lobe present))
((nystagmwus-type gazeev) <- (right-frontal-lobe present))
((abneom-type hgaze-left) <- (right-frontal-lobe present))
({facial-side-type left-central) <- (right-frontal-lobe present))
((swallow-severity partial) <- (right-frontal-lobe present))
((svallow-severity unable) <- (right-frontal-lobe present))
({gag-severity impaired) <- (right-frontal-lobe present))
((gag-severity absent) <- (right-frontal-lobe present))
((tongweak-side left) <~ (right-frontal-lobe present})
({veaknese-type hemiparesis-left) <- (right-frontal-lobe present))
({weakness-type monoparesis-lue) <- (right-frontal-lobe present))
((veakness-type monoparesis-lle) <- (right-frontal-lobe present))
((decram-side left-mild) <- (right-frontal-lobe present))
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({decram-side left-severe) <- (right-frontal-lobe present))
((gait-type lhemi) <- (right-frontal-lcbe present))
({gait-type unsteady) <- (right-frontal-lobe present))
({gait-type other) <- (right-frontal-lcbe present))
((ataxia~type limb-left-mild) <- (right-frontal-lobe present))
((abndtrs-side left-incdtr) <- (right-frontal-lobe present))
{(abndtrs-side left~decdtr) <- (right-frontal-lobe present))
{(babs-side laft) <- {right-frontal-lobe present))

; left frontal lobe

((decloc-degree drowsy) <- (left-frontal-lobe present})
((decloc~degree stupor) <- (left-frontal-lobe present))
((decloc-degree coma) <- (left-frontal-lobe present))
((disoriented-degree mild) <- (left-frontal-lobe present))
((dizoriented-degree moderate) <- (left-frontai-lobe present))
((disoriented-degres severe) <- (left-frontal-lobe present))
((dyspraxia present) <- (laft-frontal-lobe present))
{(hemineglect-side right) <- (left-frontal-lobe present)
((denial present) <- (left-frontal-lobe present)) '
((compdef-severity mild) <- (left-frontal-lobe present))
((compdef-severity moderate) <- (left-frontal-lobe present))
((compdef-severity severe) <- (left-frontal-loba present))
((nonfluency-severity mild) <- (left-frontal-lobe present))
((nonfluency-severity moderate) <- (left-frontal-lobe present))
((nonfluency-severity severe) <- (left-frontal-lcbe present))
((repetition-severity mild) <- (left-frontal-lobe present))
((repetition-severity moderate) <- (left-frontal~lobe present))
((repetition-severity severe} <- (left-frontal~lobe present))
((anomia-severity mild) <- (left-frental-lobe present)) :
((anomia-severity moderate) <~ (left-frontal-lobe present))
((anomia-severity severe) <~ (left-frontal-lobe present))
((cogabn present) <- (left-frontal-lobe present))
((dysarthria-severity mild) <- (left~frontal-lobe present})
((dysarthria-severity moderate) <- (left-frontal-lobe present))
({dysarthria-severity severe) <~ (left-frontal~lcbe present))
((poorokn-direction rhoriz) <- (left-frontal-lobe present))
({nystagmus-type horiz-right) <- (lefi~frontal-lcbe present))
((abneom-type hgaze~-right) <- (left-frontal-lobe present))
((facial-side-type right-central) <~ (left-frontal-lobe present))
((swallow-severity partial) <- (left-frontal-lobe present))
((svallov-severity unable) <- (left-frontal-loba present))
((gag-severity impaired) <- (left-fromtal-lobe present))
((gag-severity absent) <- (left-frontal-lobe present))
((tongweak-side right) <- (left-fromtal-lobe present))
{(veakness-type hemiparesis-right) <- (left-frontal-lobe present))
({weaknese-type monoparesis-lue) <- (left-frontal-lobe present))
((veakness-type monoparesis-11e) <- (left-frontal-lobe present))
((decram-side right-mild) <- (left-frontal-lobe present))
((decram-side right-severe) <- (left-frontal-lobe present))
((gait-type rhemi) <~ (left-frontal~lobe present))

((gait-type unsteady) <- (left-frontal-locbe present})
((gait-type other) <- (left-frontal-lobe present))
((ataxia-type limb-right-mild) <- (left-frontal-lobe present))
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((abndtra-side right-incdtr) <~ (left-frontal-lobe present))
((abndtrs-side right-decdtr) <- (left-frontal-lobe present})
((baba-side right) <- (left-frontal-lobe present))

; right parietal lobe

((decloc-degree drowsy) <- (right-parietal-lobe present))
({decloc-degree stuper) <- (right-parietal-lobe present))
({decloc-degree coma) <~ (right-parietal-lobe present})
({(disoriented-degree mild) <- (right-parietal-lobe present})
o ((disoriented-degree moderate) <- (right-parietal-lcbe present})
- ({(disoriented-degree severe) <- (right-parietal-lobe present))
((dyspraxia present) <- (right-parietal-lobe present))
({(denial present) <- (right-parietal-lcbe present})
((hemineglact-side left) <- (right-parietal-lobs present))
((cogabn present) <- (right-parietal~lcbe present))
((vi-deficit-aide-type left-hemianopsia) <- (r1ght-par1eta1-1obe present))
((vi-deficit-side-type left-quadrantanopsia-inferior)

<~ (right-parietal-lobe prasent))
((poorokn~direction lhoriz) <~ (right-parietal-lebe present))
((nystagmus-type gazeev) <~ (right-parietal-lcbe present))
{(abneom-type hgaze-left) <~ (right-parietal-lobe present))
{(facenumb-gide left) <- (right-parietal-lobe present))
{(svallow-saeverity partial) <- (right-paristal-lobe present))
{(svallow-severity unable) <- (right~parietal-lobe present))
o e ((gag-severity impaired) <- (right-parietal-lobe present))

; ((gag-severity absent) <- (right-parietal-lobe present))
((gait-type lhemi) <~ (right-parietal-lobe present))
({gait-type other)} <- (right-parietal-lobe present))
({dss-side left) <- (right-parietal-lobe present))
((pp-side left-mild) <~ (right-parietal-lobe present})
((pp-side left-moderate) <- (right-parietal-lobe present))
((pp-side left-severe) <- (right-parietal-lobe present})
((poslosa-side left} <~ (right-parietal-lobe present))
((vibloss-side left) <- {right-parietal-lobe present))
((twopoint-side left) <~ (right-parietal-lobe present)) : ‘ ’
((agraph-side left) <- (right-parietal-lobe present)) !

i left parietal lobe

({decloc-degree drowsy) <- (left-parietal-lcbe present))

: ({decloc-degree stuper) <- {left-parietal-lobe present))

L ({decloc~degree coma) <- (left-parietal-lobe present))
({disoriented-degree mild) <- (left-parietal-lcbe present))
({disoriented-degree moderate) <- (left-parietal-lobe present))
({disoriented-degree severe) <- (left-parietal-lobe present))
((hemineglect-side right) <- (left-parietal-lobe present))
({compdef-severity mild) <~ (Jeft-parietal-lobe present))
({compdef-severity moderate) <- (left-parietal-lobe present))
({compdef-severity severe) <- (left-parietal-lobe present))
({repetition-severity mild) <- (left-parietal-lobe present))
((repetition-severity moderate) <- (left-parietal-lobe present))
((repetition-severity severe} <- (left-parietal-lobe present))
((nonfluency-severity mild) <- (left-parietal-lobe present))
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((nonfluency-severity moderate) <- (left-parietal-lcbs present))
{(nonfluency-severity severe) <- (left-parietal-lobe present))
((anomia~severity mild) <- (left-parietal-lobe present))
{(anomia-severity moderate) <- (left~parietal-lobe present))
((anonmia-severity severe) <- (left-parietal-lobe present))
{(cogabn present} <- (left-parietal-lobe present))
((vi-deficit-side-type right~hemianopsia) <~ (left-parietal-lobe present))
((vf-deficit-side~type right-quadrantanopsia-inferior)

<= (left-parietal-lobe present})
((dysarthria-severity mild) <~ (left-parietal-lobe present))
{(dysarthria-severity moderata) <- (left-parietal~lobe present))
{(dysarthria-severity severe) <- (left-parietal-lobe present))
({poorokn-direction rhoriz) <- (left-parietal-lobe present)}
((nystagmus-type gazeev) <- {left~parietal-lobe¢ present))
({abneom-type hgaze-right) <- (left-parietal-lcbe present))
((facenumb-side right) <- {left~parietal-lobe present))
((swallow-severity partial) <- (left-parietal-lobe.present)}
((swallow~severity unable) <- (left-parietal-lobe present))
((gag-severity impaired) <- (left-parietal-lobe present))
((gag-severity absent) <- (left-parietal-loba present))
((gait-type rhemi) <- (left~parietal-lobe present)}
((gait-type other) <~ (left-parietal-lobe present))
((dss-side right) <~ (left-parietal-lobe present))
((pp-side right-mild) <~ (left-parietal-lobe present))
((pp—side right-moderate)} <- (left-parietal-lobe present))
((pp-side right-severe} <- (left-parietal-lobe present))
{(posloss-side right) <- (left-parietal-lobe present))
((vibloss-side right} <- (left-parietal-lobe present))
((twvopoint-side right) <- (left-parietal-lobe present))
((agraph-side right) <~ (left-parietal-lobe present))

; right temporal lobe : : i

((dimoriented-degree mild) <- (right-temporal-lobe present))
((disoriented-degree moderate) <- (right-temporal-lobe present))
((dizoriented-degree severe) <- (right-temporal-lobe present))
((decloc-degres drowsy) <- (right-temporal-lobe present))
((decloc-degree stupor) <- (right-temporal-lobe present))
((decloc-degree coma) <- (right-temporal-lobe present))
((cogabn present) <- (right-temporal-lobe present))
((hemineglect-side Ieft) <~ (right-temporal-loba present))
((denial present) <- (right-temporal-lobe present))
((abneom~type hgaze-leit) <- (right-temporal-lcbe present))
({poorckn-direction lhoriz) <~ (right-temporal-lcbe present))
((swallow-severity partial) <- (right-temporal-lcbe presant))
{(svallov-severity unable) <- (right-temporal-lobe prasant))
((gag-severity impaired) <~ (right-temporal-lobe present))
((gag-severity absent) <~ (right-temporal~lobe present))
((vi-deficit-side-type left-hemianopsia) <- (right-temporal-lobe present))
((vf-deficit-side-type left-quadrantanopsia-superior)

<- {(right-temporal-lobe present))

; left temporal lobe
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({disoriented-degree mild) <~ (left~temporal-lobe present))
((disoriented-degree moderate) <- (left-temporal-lobe present))
({disoriented-degree severe} <- (laft-temporal-lobe present))
((decloc-degree drowsy) <- {left-temporal-lcbe present))
((decloc-degree etupor) <- (left-temporal-lobe present))
((decloc~degree coma) <~ (leit-temporal-lobe present))
((bemineglact-side right) <- (left-temporal-lobe present)) -
({compdef-severity mild) <- (left-temporal-lobe present))
({compdef-aeverity moderate) <~ (left-temporal-lcbe present))
({compdef-acverity severe) <- (left-temporal-lobe present))
((repetition-severity mild) <- (left-temporal-lobe present))
((repetition-severity moderate) <~ (left-temporal-lobe présent))
({repetition-severity severe) <~ (left-temporal~lobe present))
((anomia-severity mild) <- (left-temporal~lcbe present))
Fr ((anomia-severity moderate) <- (left-temporal-lcbe present))
((anomia-severity severe) <- (left-temporal-lobe present))
((nonfluency~severity mild) <- (left-temporal-lobe present))
{(nonfluency-severity moderate) <- (left-temporal-lobe present))
((nonfluency-severity severe) <- (left-temporal-lobe present))
((cogabn present} <- (left-temporal-lobe present})
{(abneom-typa hgaze-right) <~ (left-temporal-lobe present))
((poorckn-direction rhoriz) <- (left-temporal~lobe present))
((swallow-severity partial) <- (left-temporal-lobe present))
((swallow-severity unable) <- (left~temporal-lobe present))
((gag-severity impaired) <- (left-temporal-lobe present)) - 3 i
- ((gag-severity absent) <- (left-temporal-lobe present)) 5
P ((vf-deficit-side-type right-hemianopsia) <~ (left-temporal-lecbe present))
((vf-deficit-side-type right-quadrantanopsia-superior)
<- (left-temporal-lobe present))

H right'oécipital lobe

((poorokn-direction lhoriz) <- (right-occipital-lobe present)) }
((vi-deficit-side-type left-hemianopsia) <- (right-occipital-lobe present)) |
{(vf-deficit-side-type left-quadrantanopaia-superior)

<=~ (right-occipital-lobe present))
((vi-deficit-side-type left-quadrantancpsia-inferior)

<- {right-occipital-lobe present))

; left occipital lobe

({poorokn-direction rhoriz) <- (left-occipital-lobe present))
(({vf-deficit-aide~type right~hemianopsia) <- {left-occipital-lobe present))
((vi-deficit-sjde-type right-quadrantanopsia-superior)

<- (left~occipital~lobe present))
((vf-deficit-side-type right-quadrantanopsia-inferior)

<~ (left-occipital-lobe present))
H

(setf *facte* nil)

(setf *nogdods* nil)
(setf *assumption-nogoodss nil)
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B.2

give (1) the observed symptoms (*s#+*);
(ed#x).

EENE ]

ad ]l

*g2%

*d 2%

*83%

*d 3w

#*inter-batch-beam-vidths most-positive~fixnum)
*intra-batch-beam-width* mozt-positive-fixnum)
sbchain~depth* 2}

scachings* t)

#factoring* t)

*remove—superset?* t)

*remove-superset-fn* #’get-<=)
*explanation-eval-metric* #’simplicity-only)

*predicate-specific-abduction* %)

*asgumable-predicatess*

*{right-lateral~medulla left~lateral-medulla
right-medial-medulla left-medial-medulla
right-pone left~pons
right-midbrain left-midbrain
right-cerebellar~hemisphere left-cerebellar~hemisphere
cerebellar-vermia
right-thalamus left-thalamus
right-basal-ganglia left-basal-ganglia
right-internal-capsule left-internal-capsule
right-frontal-lobe left-frontal-lobe
right-parietal-lobe left-parietal-lobe
right-temporal-lobe léft-temporal~lobe
right~occipital-lobe left-occipital-lobe)}

#*free-assumption-predicates* nil)

Patient Cases

The 50 patient cases used to test ACCEL are listed below. For each case, we
and (2) the diagnosis given by the physician

((disoriented-degree mild} (compdef-geverity mild)
(nonfluency-severity mild) (facial-side-type right-central))
((left-frontal-lobe present))

((disoriented-degree moderate}
(vf-deficit-side~type left-hemianopsia)
(poorockn-diraction lhoriz) (abneom-type hgaze-left)
(facenumb-side left) (facial-side-typa left-central)
(dysarthria-severity moderate) (weakness-type hemiparesis-left)
(abndtrs-side left-decdtr) (babs-gide left)

(pp-side left-mild))

((right-frontal-lobe present) (right-parietal-lobe present))

((dyspraxia present) (hemineglect-side right)
(compdef-severity severe) (nonfluency-severity severe)}
(repetition-severity severe) (anomia-severity severe)
{vi-deficit-side-type right-hemianopsia)

(weakneds-type hemiparesis-right) (decram-side right-mild))

((left-frontal-lobe present) (left-parietal-lobe present))
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*34*  ((abneom-type hgaze-right) (facial-side-type right-central)
(dysarthria-severity moderate) (veakness-type hen:pares1a-r13ht)
(abndtrs~side right-incdtr)) ,

i *d4%  ({left-frontal-lobe present) (left-internal-capsule present)) -— -

#35%  ((decloc-degree drowsy) (hemineglect-side left) (denial present)
e (vf-deficit-side-type left-hemianopsia) (abneom-type hgaze-left)
i (facenunb-side left) (facial-side-type left-central) -
i (dysarthria-severity mild) (weakness~type hemiparesis-left)
(abndtrs-side left-incdtr) (dss-side left) (pp-side left-severe)
s (posloss-side left) (vibloss-side left) (twop01nt-31de left)
(agraph-side left))
*d5%  ((right-frontal-lobe present) (right-parietal-lobs present)
(right-temporal-lobe present))

*s6+  ((hemineglect~side left) (vf-deficit-side-type left-hemianopsia)
(facial-aside-type left-central) (weakness-type hemiparesis-left)
(decram-aide left-mild) (abndtra-side left-decdtr}

(dss-side left) (posloss~side left))
*d6*  ((right-freontal-lobe present) (rlght-parletal-lobe present))

*a7+  ({decloc~degree stupor) (abneon-type hgaze-left} (facenunb~31de left)
(facial-side-type left-central) (dysarthria-severity severe)
{veakness-type hemiparesis-left) (abndtrs-eide 1ett-incdtr)
(babs-gide left) (pp-side left-modarate))

Fe »d7 ((right-frontal-lobe present) (right-parietal-lobe present)
is (right-temporal-lcbe present))
g
*s8*  ((facenumb-side right) (weakness-type hemiparesis-right)
7'y (decram-side right-mild) (abndtrs-side right-incdtr)
: (baba-side right) (gait~type other) (pp-31de right-mild)
¥ (vibloza-gide right))
*d8+  {(left-internmal-capsule present})
éi *39+  ((vf-deficit-side-type left-hemianopeia) (dss-side left))

#d9*  ((right-parietal-lcbe present) (right-occipital—lobe_present))'

*s10* ((decloc~degree drowsy) (abneom-type hgaze-right)

iy (facial-side-type right-central)
(veakness-type hemiparesis-right) (decram-side right-mild)
(abndtrs-side right-incdtr) (babs-side right))

*d10« ((left-frontal-lobe present))

*311* ((decloc-degree drowsy) (disoriented-degree moderata)
(hemineglect-side right) (abneom-type hgaze-right)
(facenumb-side right) (dysarthria-severity moderate)
(veakness-type hemiparesis-right) (abndtrs-side right-incdtr)
(babs-side right) (pp-side right-mild))

*d11* ((left-frontal-lobe present) (left-parietal-lobe present)
(left-temporal-lobe present))

*312%  ((veakness-type hem1par331s-1eft) (abndtrs-side left 1ncdtr)
(babs-side left))

*d12+* ((right-internal-capsule present))
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*813%

*313=*

*aldn

*dl4s

*315=»

*d15%

*216%

*d16»

*al7#=

*d17=*

*318%

*d18%*

*3]19%

*d19+%

*520%

((decloc~degree drowsy) (disoriented-degree severe)
(hemineglect-side left) (denial present)
(vi-deficit-side-type left-hemianopsia) (abneom-type hgaze-left) .
(facenumb-gide left) (facial-side~type left-cemtral)
(weakness-type hemiparesis-left) (abndtre-side left-incdtr)
(babs-zide left) (pp-side left-mild))

((right-frontal-lobe present} (right-parietal-lobe present)
(right-temporal-lobe present))

((decloc~degree drowsy) (disoriented-degree mild)
(hemineglact-side lett) (denial present)

(vi-deficit-side-type left-hemianopsia) (abneom-type hgaze-left)
(facial~-side-type left-central) (dysarthria-severity mild)
(veaknesa-type hemiparesis-left) (abndtrs-gide left-incdtr)
(babs-gide left) (dss-side left) (posloss-~side left)
(vibloss-side left) (twopoint-side left) (agraph-side left))

((right-frontal-lobe present) (right-parietal-lobe present)
(right-temporal-lobe present))

((decloc-degree drowsy) (nystagmus-typa vertical-upbeat)
(abneom~type hgaze-left) (abneom~type vgaze-up) :
(abneom-type vgaze~down) (abneom-type ino-left)
(facial-side-type right~central) (tongweak-side right) -
(dysarthria-severity mild) (veakness-type hemiparesis-right)
(babe-gide right))

({left~pons present))

({poorekm-direction lhoriz) (facial-side-type left-central) .-
{dysarthria~severity mild) (veakness—type hemiparesis-left)
(decram-side left-mild) (abndtrs-side left-incdtr))

({right-frontal-lobe present))

((facial-side-type right-central) (tongweak-side right)
(dysarthria-severity moderate) (weakness—type hemiparesis-right)
(abndtrs-side right-incdtr))

((left-frontal-lobe present))

({decloc-degree droway) (abneom-type hgaze-left) (facenumb-side left)
(tacial-side~type left-central) (weakness-type hemiparesis-left)
(abndtra-side left~decdtr) (babs-side left) (dss~aide left)

(pp-side left-mild) (posloss-side left) (vibloss-aide left))

((right-frontal-lobe present) (right-parietal-lobe present))

((decloc-degree stupor) (vi-deficit-side-typa r1ght—hem1anopsxa)
(abneom-type hgaze-right) (facemmb-side right)

(facial-side-type right-central) (veaknesa-type hemiparesis-right)
(abndtrs-side right-incdtr) (babs-side right)

(pp-side right-moderatae)) :
((left-frontal~lobe present) (left-parietal-lobe present)
(left-temporal-lobe present))

((poorokm-direction lhoriz) (facial-side-type left-central)
(veakness-type hemipareais-left) (babs-side left) (dss-side left))
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*d20%

=3 31*

*q21=

*322%

*d22%

*323%

*d23*

*524%

*d24=

*325%

*d25%

*826%

*d26+*

#327%

*d27*

*528+

((right-frontal-lobe present))

({disoriented-degree mild) (poorokm-direction rhoriz)
(abneom-type hgaze-right) (facial-side-type right-central)
(Longueak-side right) (weaknesa-type hen:pares1s~r1ght)
(babs-side right))

((left-frontal-lobe present))

((disoriented-degree mild) (facemmb-side left)
(facial-side-type left-central) (dyearthria-severity mild)
(weakness-type hemiparesia-left) (babs-side left)

(pp-side left-moderate) (posloss-side left) (V1bloss-31de left)
(twopoint-gide left) (agraph-side left))

((right-frontal-lobe present) (rlght-lnternal-capsule present)

(right-thalamus present))

({decloc-degree drowsy) (disoriented-degree mild)

(vi-deficit-side-type left-hemianopsia) (poorokn~direction lhorlz)
(abneom-type hgaze-left) {facermmb-gside left)
(facial~aide-type left~central) (weakness-type hemiparesis-left)
(abndtrs-side left-decdtr) (dss-side left) (pp-side left-moderate)
(poaloss-side left) (agraph-side left))

((right-frontal-lobe present) (right-parietal-lcbe present))

((compdef-severity severe) (noniluency-severxty severe)
(repetition-severity severe) (anomia-severity severe)
(facial-side-type right-central))

((left-frontal-lobe preserit) (left-temporal-lobe present))

({decloc-degree drowsy) (vi-deficit-side-type left-hemianopsia)
(abneom-type hgaze-left) (facenumb-side left)
(facial-side-type left-central) (dysarthria-severity moderate) :
{veakness-type hemiparesis-left) (das-side left)

(pp-side left-mild) (posloss-side left) (vibloss-side left)
{tvopoint-side left) (agraph-side left))

((right-frontal-lobe present) (r1ght—par1eta1-lobe present)

(right-temporal-lobe prasent))

((facial-side-type rzght-central) (dysarthria-geverity moderate)
(weakness-type hemiparesis-right) (babs-side right))
((left-internal-capsule present))

((disoriented-degree moderate) (compdef-sever;ty sevare)
(nonfluency-severity sevara) (repetition-severity severe)
(anomia-severity severe) (vf-deficit-side-type Tight-hemianopsia)
(poorokn-direction rhoriz) (facial-side-type right-central)
(dysarthria-severity severe) (veaknesa-type hemipareais-right)
(decram-side right-severe) (abndtrs-side right-incdtr))

((Qeft-frontal-lobs present) (left-parietal-lobe present)
{left-temporal-Iobe present))

“((facenumb-side right) (veakness-type hemiparesis-right)
{ataxia-type limb-right-mild} (decram-side rlght-n11d)
(babs-side right) (gait-type unsteady))
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*d28+ ((left~pons present))

*229% ((nonfluency-severity mild) (repetition-severity mild))
*d29% ({left-frontal-lobe present)) ‘ —_ -

»530* ({(disoriented-degree mild} (nonfluency-severity mild)
(repetition-severity mild) (anomia-severity mild)
(veakness-type hemiparesis-right) (decram-side right-mild)
(babs-side right) (vibloss-side right))

*d30* ((left-internal~-capsule present) {left-thalamus present))

*331% ((facjal-side-type right-central) (dysarthria-severity mild)
(veakmess-type hemiparesis-right) (decram-side right-mild)
(babs-side right)) :

#d31* ((left-internal-capsule present))

#3232+ ((facial-side-type right-central) (dysarthria-severity moderate)
(veakness-type hemiparesis-right) (babs-side right))
*d32+ ((left-internal-capsule present))

*333*% ((decloc-degree drowsy) (denial present)
(vi-deficit-side-type left-hemianopsia) |
(facial-side~type left-central) (dysarthria-severity moderate) i
(weakness-type hemiparesis-~left) (decram-side left-mild) _
(abndtra-side left-incdtr) (babs-side left)) 7

*d33+ ((right-frontal-lobe present} (right-parietal-lobe present))

*334+ ((abneom-type fourn-right) (ataxia-type limb-left-mild)
(decram-side left-mild) (babs-side left))
*d34» ((right-midbrain present))

*835% ((dyspraxia present) {compdef-severity severe)
(nonfluency-severity severe) (repetition-severity severe)
(anomia-severity severe) (vi-deficit-side-type right-henianopsia)
(poorokn-direction rhoriz) (facial-side-type right-central)
(dysarthria-geverity severe) (veakness-type hemiparesia-right)
(abndtrs-side right-incdtr) (baba-side right))

*d35# ((left-frontal-lobe present} (left-parietal-lobe present)
(left-temporal-lobe present))

*336+ ((decloc-degree drowsy) (disoriented-degree severe)

: (compdef-severity severe) (nonfluency-severity severe)
(repetition-severity severe) (anomia-severity severe)
(vi-deficit-side-type right-hemianopsia)

(facial-aide~type right-central)

(dysarthria-severity mild) (weakness-type hemiparesis-right))
*d36+ ((left-frontal-lobe present) (left-parietal-lobe present)

(left-temporal-lobe present))

*337+ ((facenumb-side right) (facial-side-type right-cemtral)
(dysarthria-severity mild) (weakness-type hemiparesis-right) i
(ataxia-type limb-left-mild) (decram-aide left-mild)
(babs-side right) (pp-side right-mild) (posloss-gide right)) ;

*d37+« ((left-pons present)) ;
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*s38%

*d38*

*530%

*d39*

*340*

*d40%=

*gd1is

*d41»

*342%

*d42%

*gd 3%

*343%

LT L2

*d44*

*345%
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((disoriented-degree moderate) (hemineglect-side right)

(denjal present) (compdef-severity moderate)

(nonfluency-severity moderate) (repetition-severity moderate) _ .
(anomia-severity mild) (vt-deficit-side-type right-hemianopsia)
(poorokn-direction rhoriz) (abmeom-type hgaze-right)
(facial-side-type right-central) (weakness~type heniparesis-right)
(abndtrs-side right-incdtr) (babs-side right) (dss-side right)
(pp-side right-moderate). (viblosa~aide right) (agraph-side right))
((left-frontal-lobe present) (left-parietal-lobe present
(left-temporal-lobe present)) :

((decloc-degree drowsy) (disoriented-degree moderate)
(denial present) (vf-deficit-side-type left-hemianopsia)
(abneor-type hgaze-left) (facemumb-side left)
(facial-side~type left-central) (dysarthria-severity mild)
(veaknesa-type hemiparesis-left) (abndtrs-side left~incdtr)
(babs-side left) (dss-side left) (pp-side left-moderate))

({right-frontal-lobe present) (right-parietal-lobe present)
(right-temporal-lobe present)) ‘ :

((facial-side-type right-central) (dysarthria-severity mild)
(veakness-type hemiparesis-right) (baba-side right))
((left-internal-capsule present)) : :

((poorokn-direction lhoriz) (facial-side-type left-central)
(veakness-type hemiparesis-left) (decram-side left-severe))
(({right-internal-capsule present))

({decloc-degree drowsy) (compdaf-severity severe)

(nonfluency-severity severe) (repetition-severity severe)
(anomia-zeverity severa) (vf-deficit-side-type right-hemianopsia)
(abneom-type hgaze-right) (facenumb-side right): .
(facial-side-type right-central) (veakness-type hemiparesis-right)
-(abndtrs-side right-decdtr) (pp-side right-severe))
((left-frontal-lcbe present) (left-parietal-lcbe present)
(left-temporal-lobe present)) ’

((decloc-degree drowsy) (hemineglect-side right)

(compdef-geverity severe) (nonfluency-severity severe)
(repetition-saverity savere) {anomia-severity severe)
(vi-deficit-side-type right-hemianopsia) (abneom-type hgaze-right)
(facenumb-side right) (facial-side-type right-central)
(dysarthria-severity severe) {veakness-type hemiparesis-right)
(abndtrs-side right-incdtr) (babs-side right) (pp-side right-mild))

((left-frontal-lobe present) (left-parietal-lobe present)
(left-temporal-lobe present))

({facial-side-type left—central) (veakness~type hemiparesis-left)
(decram-side left-mild))
((right-internal-capsule present))

((compdef-severity severe) (ronfluency-severity severe)
(repetition-severity severe) (anomia-severity severe)
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*d45#

*346%

#d46»

*e47+

*d47*

#2348
*d48*

*349%

*d49=

*250%

*d50#

(facia)l-side-type right-central) (veakmess-type hemiparesis-right))

((left-frontal-lobe present) (left-parietal-lobe present)
(left-temporal-lobe present))

((dyspraxia present) (heminéglect-side right) (compdef-severity mild)

(nonfluency-severity severe) (repetition-severity severe)
(ancmia-severity severe) (vi-deficit-zide-type right-hemianopsia)
(poorokn~direction rhoriz) (abneom-type hgaze-right)
(facenumb-aide right) (facial-side-type right-central)
(dysarthria-severity moderate) (weakness-type hemiparesis-right)
(abndtras-side right-incdtr) (babs-side right)

(dss-aide right) (pp-side right-mild))
((left-frontal-lobe present) (laeft-parietal-lobe present)
{left-temporal-~lobe present))

((decloc-degres drowsy) (compdef-severity severe)
(nonfluency-severity severe) (repetition-severity severe)
(anomia-severity severe) (vf-deficit-side-type right-hemianopsia)
(abneom-type hgaze-right) {facemmb-gide right)
(facial-side-type right-central) (dysarthria-severity severe)
(veakness-type hemiparesis-right) (abndtrs-side right-incdtr)
(baba-zide right) (pp-side right-moderate))

((left-frontal-lobe present) (1eft-par1eta1-1obe present)
(left~temporal-lobe present})

((ataxia-type limb-right-mild) (decram-side right-mild) '
(gait-type unsteady))
({right-cerebellar-hemisphere present))

{{compdef-severity mild) (nonfluency-severity mild)
(repetition-severity mild) (dysarthria-severity mild)
(veakness-type hemiparesis-left) (decran-uzde left-nild)
(das-side loft) (pp-side left-mild))

((right-frontal-lobe present) (right-parietal-lobe present))

((nonfluency-severity mild) (facemumb-side right)
(facial-side-type right-central) (dysarthria-severity moderata)
(vealmess-type hemiparesis-right) (ataxia-type linb-right-mild)
(decram-side right-mild) (abndtra-side right-incdtr)

(babs-side right) (pp-side right-mild))

((left-frontal-lobe present) (left-parietal-lobe present))
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Appendix C

Model-Based Diagnosis

C.1 Full Adder
C.1.1 Knowledge Base

(setf *bruless *(

((out ?x ?w ?7t) <- (andg ?x} {inl ?x 7u ?t) (in2 ?x 7v 7t)
{norm 7x) {(and ?u 7v ?w))

((out 7x 7w 7t} <= (org 7x) (inl ?x 7u 7t) (in2 ?x v ?t)
(norm ?x} (or Tu ?v 7w))

Ry {(out ?x ?w 7t} <~ {(xorg 7x) (ini ?x 7u 7t} (in2 7x ?v 7t)

' {norm 7x) (xor 7u ?v 7w))

[

((out 7x 7w 7t) <- {ini ?x 7u 7¢) (in2 ?x ?v ?7t) (ab 7x 7u 7y 7w %)) |
((out 7x ¢ ?t) <~ (inl ?x 7u 7t) (in2 ?x 7v 7t) (stuck-at-0 7x)) ) i
((out 7x 1 7t) <~ (ini ?x 7u 7t) (in2 7x ?v 7t) (stuck-at-1 7x))

; brules specifically for full adder

({in1 a1l ?y 7t) <=~ (inl x1 7y 7t))
({in2 a1 ?y 7t) <- (in2 x1 7y 7t)) :
((inl x2 ?y ?t) <- (out xt 7y 7t))
({in2 x2 7y 7t) <- (inl a2 ?y 7t)) |
N : ({in2 a2 7y 7t) <- (out x1 7y 7t))
{(in1 o1 7y 7t) <- (out a2 7y 7t))

rT {(in2 o1 ?y 7t) <~ (out al ?y 7t))
;f‘ ((inl x1 ?u ?t) <- (given-inl x1 7u 7t))
o ((in2 x1 Tu 7t) <~ {given-in2 x1 7u 7t))
({in1 a2 ?u ?t) <- (given-inil a2 7u 7t))
(setf *factas
. _ *((and 0 0 0) (and 0 2 0) Cand 1 0 0) (and 1 1 1)
T (ox 00 0) (or 0 1 1) (or 10 1) Cor 11 1)
i (xor 0 0 0) (xor 0 1 1) (xor 1 0 1) (xor 1 1 0)
- i facts specifically for full adder

. (xorg x1) (xorg x2) (andg al) (andg a2) (org o1)))

(setf *nogoods* nil)
(getf *assumption-nogoods* nil)

(setf sinter-batch-beam~width* 45)
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(setf sintra-batch-beam-width* 45)

(setf *bchain~depths 7)

(setf »cachings» t)

(setf *factoring* nil)

(setf *remove-superset?+ nil)

(setf s#explanation-eval-metric* #’diag-simplicity)
(setf *compute-estimate-fns #’diag-compute-estimate)
{setf »combine-estimates-fn* #’diag-combine-eatimatea)

(setf spredicate-specific-abduction* t)
{setf »assumable-predicates+
*(norm ab stuck-at-0 stuck-at-1 given-inl given-in2))
(setf sfree-assumption-predicatea=
*(norm given-ini given-in2))
(zoti sfault-mode-predicatess
*{atuck-at-0 stuck-at-1))
(setf *components#* *(x1 x2 ai a2 ol))

C.1.2 Test Data

For each of the 10 scenarios tested, we give: (1) the faults present; and (2)
the input atoms representing the dynamic behavior.

#1: ((stuck-at-0 al) (stuck-at-0 a2))

(({in1 x1 0 t4) (in2 x1 1 ¢4) (in1 a2 1 t4) (out x2 0 t4)
(out o1 0 t4) (out x1 1 t4) (out al 0 t4) (out a2 0 t4))
((in1 x1 1 t6) (in2 x1 0 t6) (inl a2 1 t6) (out x2 0 £6)
(out o1 0 t6) (out x1 1 t6) {out al 0 t6) (out a2 0 t&))
((in1 x1 1 t7) (in2 x1 1 t7) (inl a2 0 t7) {out x2 0 t7)
(out 01 0 t7) (out x1 0 £7) (out al 0 t7) (out a2 0 t7))
((in1 x1 1 t8) (in2 x1 1 t8) (inl a2 1 t8) (out x2 1 t8)
(out o1 0 t8) (out x1 0 t8) (out al 0 t8) (out a2 0 t8)))
#2: ((stuck-at-1 x1) (atuck-at-1 al))
(((in1 x1 © %1) (in2 x1 0 t1) (inl a2 ¢ t1) (out x2 1 t1)
(out o1 1 t1) (out x1 1 t1) (out a1l 1 1) (out a2 0 t1))
((ini x1 0 %2) (in2 x1 0 %2) (in1 a2 1 t2) (out x2 0 t2)
(out o1 1 t2) (out xit 1 t2) (out ai 1 t2) (out a2 1 t2))
((in1 x1 0 t3) (in2 x1 1 t3) (inl a2 0 t3) (out x2 1 t3)
{out o1 1 t3} (out x1 1 t3) {out a1 1 t3) (out a2 0 t3))
{(in1 x1 1 t5) {in2 x1 0 t5) (ini a2 0 t5) Cout x2 1 t5)
(out of 1 t5) (out x1 1 t5) (out at 1 t5) (out a2 O t5))
((ini x1 1 t7) (in2 x1 1 t7) (inl a2 0 t7) (out x2 1 t7)
(out o1 1 t7) (out xi 1 t7) (out a1l 1 t7) (out a2 0 7))
((int x1 1 t8) (in2 x1 1 t8) (inl a2 1 t8) (out x2 0 t8)
(out o1 1 t8) (out xt 1 t8) (out at t t8) (out a2 1 t8)))

#3: ((stuck-at-0 x1) (stuck-at-1 ol))

(({in1 x1 0 t1) (in2 x1 0 t1) (inl a2 0 t1) (out x2 O t1)
(out o1 1 t1) (out x1 0 t1) (out al 0 t1) (out a2 ¢ t1))
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f ((in1 x1 0 t2) (in2 x1 0 t2) (in1 a2 1 t2) Cout x2 1 t2)
1 (out o1 1 t2) (out x1 0 t2) (out al 0 t2) (out a2 0 t2))
({in1 x1 0 t3} (in2 x1 1 t3) (ini a2 0 t3) (out x2 0 t3)
re (out o1 1 t3) (out x1 0 t3) (out al 0 t3) (out a2 0 t3)) L
. ((in1 x1 0 t4) (in2 x1 t t4) (inl aZ 1 t4) (out x2 1 t4)
ik {out o1 1 t4) (out xi 0 t4) (out al 0 t4) (out a2 0 t4))
({in1 x1 1 t5) (in2 x1 0 t5) (inl a2 0 t5) (out x2 ¢ t5)
Pe (out o1 1 t5) (out x1 0 t5) (out ai 0 t5) (out a2 0 t5))
P ((in1 x1 1 t6) (in2 x1 0 t6) (inl a2 1 t6) (out x2 1 t6)
: (out o1 1 t6) (out x1 0 t6) (out al 0 t6) {out a2 0 t6)})

#4: ((stuck-at-1 x1) (stuck~at-1 al))

(((inl x1 0 t1) (in2 x1 0 t1) (inl a2 0 +1) (omt x2 1 ti1)
- (out o1l 1 t1) (out x1 1 t1) (out atl 1 t1) (out a2 0 t1))
i ((in1 x1 0 t2) (in2 x1 0 t2) (int a2 1 t2) (out x2 0 t2)
oy (out o1 1 t2) (out x1 1 t2) (out a1 1 t2) (out a2 1 t2))

((int x1 0 t3) (in2 x1 & t3) (inl a2 0 t3) (out x2 1 t3)
£ {out o1 1 t3) (out x1 1 t3) (out al 1 t3) (out a2 0 t3))
L ({in1 x1 1 t5) (in2 x1 0 t5) (inl a2 0 t5) (out x2 1 t5)
e {out o1 1 t5) (out x1 1 t5) (out al 1 t5) (out a2 0 t5))

((in1 x1 1 t7) (in2 x1 1 t7) (inl a2 O t7) (out x2 1 t7)
N (out o1 1 t7) (ont x1 1 t7) (out al 1 £7) (out a2 0 t7))
((in1 x1 1 t8) (in2 x1 1 t8) (in1 a2 1 t8) (out x2 0 t8)
= (out o1 1 £8) (out x1 1 t8) (out al 1 t8) (out a2 1 t8)))

#5: ((stuck-at-0 o1))

({((in1 x1 0 t4) (inZ x1 1 t4) (inl a2 1 t4) (out x2 § t4)
pr (out o1 0 t4) (out x1 1 t4) (out a1 0 t4) (out a2 1 t4))
E ((in1 x1 1 £6) (in2 x1 0 t6) (inl a2 1 t6) (out x2 0 t6)
L (out o1 0 $6) (out x1 1 t6) (out a1 0 £6) {out a2 1 t6))

{{(in1 x1 1 t7) (in2 x1 1 t7) (inl a2 0 7} (out x2 0 £7)
Ty (out of 0 t7) (out xi 0 t7) (out ai 1 t7} (out a2 0 t7))
'y ((in1 x1 1 t8) (in2 x1 1 t8) (inl a2 1 t8) (out x2 i t8)
Ly (out o1 0 t3) (out xi 0 #8) (out at 1 t8) (out a2 0 t8)))
: #6: ((stuck-at-1 x1) (atuck-at-0 a2))

h (((in1 x1 0 t1) (in2 x1 0 1) (in1 a2 0 t1) (out x2 1 t1)
(out o1 0 t1) (out x1 1 t1) (out al 0 t1) (out a2 0 ti))
i ((in1 x1 0 t2) (in2 x1 0 t2) (in1 a2 1 t2) (out x2 0 t2)
b (out o1 0 t2) (out x1 1 42) (out a1l 0 t2) (out a2 0 t2))
{(in1 x1 0 t4) (in2 x1 1 t4) (in1 a2 1 t4) (out x2 O t4)
(out 01 0 t4) (out x1 1 t4) (out at 0 t4) (out a2 0 t4))
({in1 x1 1 t6) (in2 x1 0 t6) (int a2 1 ©6) (out x2 0 t&)
(out o1 © t6) (out x1 1 t6) (out al O t6) (out a2 0 t6))
((int x1 1 £7) (in2 x1 1 t7) (inl a2 O t7) (out x2 1 t7)
(out o1 1 t7) (out xt 1 t7) (out at 1 t7) Cout a2 0 t7))

((in1 x1 1 t8) (in2 xt 1 t8) (ini a2 1 t8) (out x2 0 t8)

- (out o1 1 t8) (out x1 1 t8) (out at 1 t8) (out a2 0 t8)))

#7: ((ab al) (stuck-at-1 a2))
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({{in1
(out
{(in1
(out
((int
(out
((in1
(out

x1
ol
x1

ol

x1
ol
x1
ol

e D e O O

t1)
t1)
t2)
t2)
t3)
t3)
t5)
t5)

(in2
(out
(in2
(out
{in2
(out
(in2
(out

#8: ((stuck-at-1 al)

(((in1
(out
({in1
{out
({ini
{out

x1

o

t3)

ot 1 t3)

x1
ol
xi
ol

1
1
1
0

t5)
t5)
t7)
t7)

(in2
(out
(in2
(out
(in2
(out

#9: ((stuck-at-1 x2)

(({int
(out
{(in1
(out
((in1
(out
((in1
(out
({in1
(out

x1
ol
x1
ol
x1
ol
x1
ol
x1
ol

0
0
0
0
1
0
1
0
1
4]

t1)
t1)
t4)
t4)
t6)
t6)
t7)
t7)
t3)
t8)

{in2
(out
(in2
{ont
(in2
{out
(in2
(out
(in2
(out

xi
x1
x1
x1
x1
x1
xi
x1

M OHMOO OO

1)
t1)
t2)
t2)
t3)
t3)
t5)
t5)

(ab o1)}

x1 1 t3)
x1 1 t3)
xt 0 t5) (ini
xi 1 t5)
x1 1 t7) (int
xi 0 t7)

(ini
(out
(in1
(out
(inl
(out
(ini
(out

(int
(out

(out

(out

a2

a2
al
a2
al
a2
al

a2
al
a2
al
a2
al

(stuck~at-0 ol))

x1
x1
x1
xi
xi
x1
x1
x1
x1
x1

#10: ((stuck-at-0 a2))

(({inl x1 0 t4) (in2 x1
(out o1 0 t4) (out xi
((in1 x1 1 t6) (in2 x1
(out ot 0 t6) (ont xi

L=~ I S T - I )

- R

t1)
t1)
t4)
t4)
t6)
t6)
t7)
t7)
t8)
t8)

t4)
t4)
6}
t6)

C.2 Dynamic Devices

(inl
(out
(int
{out
(int
{out.
{in1
{ous
{in1
(out

(ini
(out
(in1
(out

a2
al

a2

al
a2
al
a2
al
a2
al

a2
al
a2
al

C OO e O

o s DD O OO O O MO

[~ U~ I

t1)
t1)
+2)
t2)
t3)
t3)
t5)
t5)

t3)
t3)
15)
t5)
t7)
t7)

t1)
ti)
t4)
t4)
t6)
t6)
t7)
t7)
t8)
t8)

t4)
t4)
t6)
t6)

(out
(out
(ont
(out
{out
(out
(out
(out

{out
(out
{out
(out
{out
(out

(out
(out
(out
(out
(out
(out
(out
{out
{out
{out

(out
(out
(out
(out

x2
a2
x2
a2
x2
a2
x2
a2

x2
a2
x2
a2
x2
a2

x2
a2
x2
a2
x2
a2
x2
a2
x2
a2

x2
a2
x2
a2

OO0 O = O I e e "]

(=R - T -

L= = B = - |

1)
t1))
t2)
t2))
t3)
£3))
t5)
t5)))

%3)
£3))
£5)
t5))
t7)
N

t1)
£1))
t4)
t4))
t6)
+6))
17)
7))
t8)
t8)))

t4)
t4))
t6)
t6)))

C.2.1 Knowledge Base of General QSIM Constraints

(setf sbrulea* *(
((holds.m0+ 7f 7g Tml inc 7m2 inc)

<- (pos 7m1) (pos 7m2) (corr-mag.m0+ 7f

(({holds.m0+ ?f ?g ?ml std Tm2 std)

<= (pos 7mi) {pos 7m2) (corr-mag.m0+ 7f

{(holds .m0+ 7f 7g 7ml dec 7m?2 dec)

<= {pos 7m1) (pos 7m2) (corr-mag.m0+ 7f

{(holds.m0¥ 7f ?g ?mi inc 7m? inc)

<~ (neg 7m1) (neg ?m2) (corr-mag.m0+ 7t

((holds.m0+ 7f ?g 7ml std 7m2 std)

7g ml

7g 7mi

7g ml

?7g ml

m2))
™m2))

n2))

2))




-

LT vy

T
&
3
)

<~ (neg ?m1) (neg ?m2) {(corr-mag.m0+ ?f 7g 7ml 7m2)) -

{(holds.m0+ ?f 7g 7mi dec 7m2 dec)
<~ (neg m1) (neg 7m2) (corr-mag,.m0+ 7f 7g 7mi 7u2))

{(holds.- 7f ?g ?h m inc ?m inc 0 ine)
<~ {corr-val.- 7f 7g *h 7m inc ?m inc 0 inc))
((holds.- ?f ?g 7h Tm inc 7m inc 0 atd)
<= (corr-val.- 7£ ?g ?h ?m inc 7m inc 0 std))}
{(holds.- 7f 7g ?h 7m inc 7m inc 0 dec)
<- (corr-val.- 7 ?g 7h ?m inc 7m inc ¢ dec))
((holds.~ 72 ?g 7h 7m dec ?m dec 0 inc)
<~ (corr-val.- 7f£ 7g ?h 7m dec 7m dec 0 inc))
((holds.- ?£ 7g Th 7m dec 7m dec 0 std)
<= (corr-val.- 7f ?g 7h 7m dec 7m dec 0 std))
({(holds.- ?f 7g 7h Tm dec 7m dec 0 dec)
<~ (corr-val.- 7f 7g 7h 7u dec ?a dec 0 dec))

((holds.- 7f 7g 7h ?m inc 0 inc ?m inc)
<~ (corr-val.- 7f 7g ?h 7m inc 0 inc 7m inc))
((holda.- ?f ?g ?h ?m inc 0 inc 7m std) :
<~ (corr-val.~ 7f 7g 7h ?m inc 0 inc 7m atd))
((holds.- ?f ?g ?h ?m inc 0 inc 7m.dec)
<- {corr-val.- 7f 7g ?h m inc 0 inc 7m dec))
{(holds.~ ?f ?g ?h 7m dec 0 dec 7m inc) _
<- {corr-val.- ?f 7g ?h 7m dec 0 dec 7m inc))
((holde.- 7£ 7g ?h 7m dec 0 dec 7m std)
<~ (corr-val.- 7f ?g ?h 7m dec 0 dec 7m std))
((holds.- ?£ ?g 7h ?m dec 0 dec 7m dec)
<~ (corr-val.- ?f 7g ?h 7m dec 0 dec 7m dec))

((holds.- 7 7g 7h 7ml inc 7n2 inc 7m3 inc)
<~ (<> ?m1 7m2) (<> 7m1 7m3) '
(corr-val.- ?f ?g ?h 7mi inc 7m2 inc 7m3 inc))
((holds.- ?f 7g 7h 7ml inc 7m2 inc 7m3 std)
<~ (<> 7m1 7m2) (<> 7ml 7m3)
(corr-val.- 7f g 7h 7al inc 7m2 inc 7m3 std))
((holds.~ ?f ?g 7h ?ml inc 7m2 inc 7m3 dec)
<= (<> 7ml ?m2) (<> 7ml 7m3)
(corr—val.- 7f ?g 7h ?ml inc 7m2 inc 7m3 dec))
((holds.- ?f 7g 7h 7mi1 inc 7m2 atd ?m3 inc)
<= (<> Tmt 7m2) (<> 7ml 7m3)
(corr-mag.- 7f 7g ?h 7ml 7m2 7m3))
({holds.- 7£ ?g Th 7mil inc 7m2 dec 7m3 inc)
<= (<> 7ml 7m2) (<> 7mi 7m3)
(corr-mag.- ?f ?g 7h 7m1 7m2 7m3))
((holds.- ?f ?g 7h ?ml std 7n2 inc ?m3 dec)
<= (<> 7m1 7m2) (<> 7ml 7m3)
(corr-mag.— ?f 7g 7h 7ml1 ?m2 7m3))
({holds.- 7f 7g Th 7m1 std 7m2 std 7m3 std)
<~ (<> 7ml 7m2) (<> 7ml 7m3)
(corr-mag.~ 7f 7g ?h 7ml 7m2 7m3))
((holds.- 7f 7g 7h 7mi std ?m2 dec 7m3 inc)
<- (<> 7m1 ?m2) (<> 7ml 7m3)
(corr-mag.- 7f 7g 7h ?m1 ?m2 7m3))
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((holds.- ?f 7g ?h ™ml dec ?m2 inc 7m3 dec)
<~ (<> m1 ?m2) (<> 7ml 7m3)
(corr-mag.- 7t ?g 7h 7ml 7m2 7m3))
((holda.~ 7f 7g Th Tml dec 7m2 std 7m3 dec)
<= (<> 7m1 7m2) (<> 7ml ?m3)
{corr-mag.- 7f 7g 7h 7m1 7m2 7m3))
((holds.- ?f ?g 7h Tml dec ?m2 dec 7m3 inc)
<= (<> 7mi 7m2) (<> 7ml ?n3)
(corr-val.- 7£ 7g 7h 7m1 dec 7m2 dec 7m3 inc))
((holds.~- 7f 7g 7h 7ml dec 7m2 dec 7m3 std)
<= (<> 7ml 7m2) (<> 7ml 7m3)
(corr-val.- 7f 7g 7h 7mt dec 7m2 dec m3 std))
{(holds.- ?f 7g 7h 7ml dec Tm2 dec 7a3 dec)
<= (<> ml *tm2) (<> Tmi 7m3)
(corr-val.- ?f 7g 7h 7ni dec ?m2 dec 7m3 dec))

{(holds.* ?f ?g ?h 0 inc 7a inc 0 inc) <- (pos 7m))
((holda.» 7 7g 7h 0 inc ™m std 0 inc) <- (pos 7m))
((holds.* ?f 7g 7h 0 inc ?am dec ¢ inc) <- (pos 7m))
((hold=.+ 7f ?g Yh 0 std 7m inc 0 std) <- (pos 7m))
((holds.» ?f 7g 7h 0 std 7m atd 0 std) <~ (pos 7m))
((holds.* ?f 7g 7?h 0 std 7m dec 0 std) <~ (pos 7m))
((holds.» ?t ?g 7h 0 dec 7m inc 0 dec) <- (pos Tm))
((holda.* ?¢ 7g 7h 0 dec 7m std 0 dec} <~ (pos 7m))
((holds.* 71 ?g 7h C dec 7m dec 0 dec) <~ {pos 7m))

((holds.* ?f 7g 7h
((holds.» ?f 7g 7h
((holds.* ?f 7g 7h
((holds.* 7t 7g 7h
((holda.* ?f 7g Th
((holds.* ?£ 7g 7h
((holds.* 7£ ?g 7h
((holds. 7f 7g 7h
((holds.* 7f 7g *

inc ?m inc 0 dec) <~ (neg ?m))
inc 7m std 0 dec) <~ (neg 7m))
inc 7m dec 0 dec) <~ (neg 7m))
std 7m inc 0 std} <~ (neg 7m))
std 0 std) <- (neg 7m))
atd 7m dec 0 atd) <- (neg 7m))
dec ?m inc 0 ine) <~ (neg 7m))
dec ™m std 0 inc) <~ (neg 7m))
dec Tm dec 0 inc) <~ (neg 7m))
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({holds.* 7f 7g 7h ?m inc 0 inc 0 inc) <- (pos 7m))
({holds.* 7f 7g 7h 7m inc 0 std 0 std) <- (pos 7m))
((holds.* ?£ 7g 7h 7m inc 0 dec 0 dec) <- (pos 7m))
((holds.» 7 7g 7h 7m std 0 inc 0 inc) <- (pos 7m))
((holds.* 7f 7g 7h 7m std 0 atd 0 std) <- (pos 7m))
((holds.* ?f ?g 7h ?m std 0 dec 0 dec) <- (pos 7m))
((holds.* ?f ?g *h 7m dec 0 inc 0 inc) <- (pos 7m))
((holds.* ?f 7g 7h 7m dec 0 std 0 std) <- (pos 7m))
((holds.* 7f 7g 7h 7m dec 0 dec 0 dec) <- (pos 7m))
((holds.* ?f ?g 7h 7m inc 0 inc 0 dec) <- (neg 7a))
((holds.* ?f ?g 7h 7m inc 0 std 0 std) <- (neg 7m))
((holds.* ?f ?g ?h ?m inc 0 dec 0 inc) <- (neg 7m))
((holds.* ?f ?g 7h 7m std 0 inc 0 dec) <- (neg 7m))
((holds.* ?f ?g ?h 7m std 0 std 0 std) <- (neg 7m))
((holds.» 7f 7g 7h 7m std 0 dec 0 inc) <~ (neg 7m))
((holds.* 7f ?g 7h 7m dec 0 inc 0 dec) <- (neg 7m))
((holds.* ?f 7g ?h 7m dec 0 std 0 std) <~ (neg 7m))




((holds.* ?f 7g ?h

((holds.* ?f 7g 7h
<- {(poas 7mi1) (pos
((holds.» 7f ?g Th
- {pos 7mi} (pos
((holds.* 7f 7g 7h
<= (poz 7m1) (pos
(corr-val.* 7f
((holds.» 7f 7g %h
- (pos 7mt) (pos
(corr-val.* 7f
((holds.* ?f ?g 7h
<- (pos Tm1} (pos
(corr-val.* 7f
(Cholds.» ?f ?g 7h
<- (pos 7m1) (pos
((holds.* 7¢ 7g 7h
<~ (pos "m1) (pos
((holds.* ?f ?g ?h
<- (pos mi) (po=s
((holds.* 7f ?g 7h
<- (poz 7m1) (pos
(corr-val.s 7f
((holds.* ?f ?g 7h
<~ (pos 7m1) (pos
(corr-val.*
{(holds.* 7 %g 7h
<- (pos ?mi) (pos
(corr-val.* ?f
((holds.* 7f 7g 7h
<- {(pos m1) (pos
((holds.* 7¢ 7g 7h
<~ (pos Tml) (pos

((holds.* ?7f ?g ?h

<~ (pos 7m1) (neg

(corr-val.s 72
((holds.+ 7f 7g 7h
<- (pos 7m1) (neg

(corr-val.s 7f
((holds.* ?f ?g ?h
<~ (pos 7m1) (neg

(corr-val.» 7f
({holds.* ?£f 7g *h
<~ (pos m1) (neg
((holds.* ?f 7g ?h
<- (pos Tmi)} (neg
((holds.* ?f ?g ?h
<- (pos ?m1) (neg
({holda.+ 7f 7g %h
<- (pos 7m1) (neg
((holds.* ?f 7g 7h
<= (poz 7ml) (neg

™ dec 0 dec 0 inc) <- (meg 7m))

ml inc ?m2 inc 7m3 inc)

7m2} (pos ?m3) (corr-mag.* ?f ?g 7h 7mi "m2 m3))
7mi inc 7m2 atd Tm3 inc)

m2) (pos 7m3) (corr-mag.* 7f 7g 7h Tml "m2 m3))
ml inc ?m2 dec 7m3 inc)

m2) (pos 7m3)

7g Th 7ml inc ?m2 dec 7m3 inc))

mi inc Tm2 dec 7m3 std)

?m2) (pos 7m3)

7g 7h ?m1 inc 7m2 dec ?m3 std))

?mi inc ?m2 dec 7m3 dec)

7m2) (pos 7m3)

?g 7h ?m1 inc 7m2 dec 7m3 dec))

m1 atd ?m2 inc 7m3 inc)

?m2) (pos m3) (corr-mag.* 7t 7g Th 7ml 7m?2 7m3))

ml atd 7m2 std 7m3 std)

m2) (pos 7m3) (corr-mag.* 7f 7g 7h 7ml 7m2 7m3))
m1l std Tm2 dec 7m3 dec)

m2) (pos Tm3) {(corr-mag.* ?f g 7h 7ml ?m2 7m3))
7ml dec 7m2 inc ?m3 inc) '

™m2) (pos 7m3)

?g 7h 7ml dec ?m2 inc 7m3 inc))

Trl dec'?m2 inc 7m3 std)

m2) (pos ?7m3)

7t 7g 7h "ml dec "m2 inc 7m3 std))

ml dec 7m2 inc 7m3 dec)

n2) (pos 7m3)

?g Th 7m1 dec 7m2 inc 7m3 dec))

ml dec ?m2 std 7m3 dec)

m2) (pos Tm3) {(corr-mag.* 7f ?g 7h ml 7n2 7n3))
nl dec Tm2 dec 7m3 dec)

?m2) (pos 7m3) (corr-mag.* 7f 7g 7h 7ml 7m2 7n3))

7ml inc 7m2 inc 7m3 inc)

m2) (neg 7m3)

7g *h Tml inc 7m2 inc ?m3 inc))

*mi inc 7m2 inc 7m3 std)

™m2) (neg 7m3)

?g 7h Tml inc ?m2 inc 7m3 std))

Tml inc 7m2 inc 7m3 dec)

m2) (neg 7m3)

?g Th 7ml inc 7m2 inc 7m3 dec))

7ml inc 7m2 std 7m3 dec)

m2) (neg 7m3) (corr-mag.* 7f 7g 7h 7ml ?m2 ?m3))
ml inc Tm2 dec 7m3 dec)

?m2) (neg ™m3) (corr-mag.* ?f 7g 7h Tml 7m2 ?m3))
7ml std Tm2 inc 7m3 inc)

7m2) (neg *™m3} (corr-mag.* 7f 7g 7h 7ml 7m2 7m3))
ml std 7m2 atd 7m3 std)

m2) (neg Tm3) (corr-mag.* ?f ?g 7h 7ml 7m? 7m3))
ml std 7m2 dec 7m3 dec)

™m2) (neg "m3) (corr-mag.* ?f ?g ?h 7ml 7m2 7m3))
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{(holds.* 7£ 7g 7h
<= (pos 7ml) (neg
{(holda.* 7f 7g 7h
<= (pos 7m1) {meg
{((holde.* 7?2 7g Th
- (pos 7m1) (neg
(corr-val.+ 7f
((holds.s 7£ 7g ?h
<- (pos ™m1) (neg
{corr-val.* ?f
(¢holds.* 7£ 7g 7h
<- (pos 7m1) (neg
(corr-val.> 7f

(Cholds.* ?f 7g 7h
<~ {neg 7m1) (pos
~ {corr-val.s ?f

((holds.* 7f ?g 7h
<= (neg 7m1) (pos

(corr-val.* 7f

((holds.» ?f 7g 7h

<- (neg ?m1) (pos
(corr-val.* 7f

((holds.* ?f ?g 7h
<- (neg ?m1) (pos
((holds.» ?£ ?g Th
<~ (neg 7m1) (pos
((holds.* 7f 7g 7h
<= (neg 7m1) (pos
((holds.» 7f 7g 7h
<- (neg 7mi) (pos

{(holds.* ?f ?g 7h
<~ (neg 7m1) {(pos

((holds.* ?f 7g 7h
<~ (neg ?ml) (poa

(Cholds.* 7f ?g Th
<~ (neg 7m1) (pos

((holds.* ?f 7g 7h
<= (neg 7m1) (po=s

(corr-val.* 71

(Cholds.» ?f ?g 7h

<- (neg 7m1) {pos
(corr-val.» ?f

((holds.» ?# ?g 7h

<~ (neg 7m1) (pos
(corr-val.» ?f

({holds.* ?f ?g 7h
<- (neg 7m1) (neg
((holds.» ?f ?g 7h
<- (neg Tm1) (neg
((holds.* 7f 7g 7h
<- (neg 7m1) (neg

(corr-val.» ?f

m1 dec 7m2 inc 7m3 inc)

n2) (neg 7m3) (corr-mag.* 7f 7g 7h 7m1 7n2 7m3))
7m1 dec 7m2 std ?m3 inc) )
?m2) (neg 7m3) (corr-mag.» 7f ?g 7h 7ml 7m2 7m3))
m1 dec 7m2 dec 7m3 inc)

m2) (neg 7m3)

7g 7h Tml dec 7m2 dec 7m3 inc))

ml dec 7m2 dec ?m3 std)

7m2) (neg 7m3)

7g 7h 7m1 dec 7m2 dec 7m3 std))

7ml dec 7m2 dec 7m3 dac)

m2) (neg 7m3) .

?g ?h 7ml dec 7m2 dec 7m3 dec)})

7nl inc ?m2 inc ?m3 inc)

™n2) (neg 7m3)

?g 7h ?mi inc "m2 inc 7m3 inc))

ml inc ?m2 inc 7m3 std)

n2) (neg ?m3) .

7g 7h ?mil inc ?m2 inc 7m3 atd))

7mi inc 7m2 inc 7m3 dec)

m2) (neg 7m3)

7g 7h 7m1 inc 7m2 inc 7m3 dec))

Tm] inc "m2 std 7m3 inc)

722) {neg 7m3) (corr-mag.* 7f ?g Th 7ml 7m2 7m3))
ml inc 7m2 dec 7m3 inc) _

7m2) (neg 7m3) (corr-mag.* 7f 7g h a1 7m2 w3)) -
7m1l std 7m2 inc m3 dec)

7m2) (neg 7m3) (corr-mag.* 7f 7g 7h 7ml 7m2 7m3))
7?ml std 7m2 std 7m3 std) :
m2) (neg 7m3) (corr-mag.* ?f ?g 7h 7ml 7m2 ?m3))
ml std 7a2 dec 7u3 inc) ‘

m2) (neg 7m3) (corr-mag.* 7f ?7g Th 7ml Tm2 Tm3))
?ml dec 7m2 inc Tm3 dec)

?n2) (neg 7m3) {corr-mag.* ?f 7g 7h 7ml 7m2 7m3))
mi dec 7m2 std ?m3 dec)

7m2) (neg ?m3) (corr-mag.* 7f 7g ?h ™mi 7m2 7m3))
?ml dec 7m2 dec 7m3 inc) '
m2) (neg 7m3)

?g Th 7ml dec ?m2 dec w3 inc))

?ml1 dec 7m2 dec 7m3 std)

™m2) (neg 7m3)

?g Th Tml dec 7m2 dec 7m3 std))

ml dec 7m2 dec 7m3 dec)

m2) (neg 7a3)

?g 7h ?ml dec ?m2 dec 7m3 dec))

?ml1 inc 7m2 inc 7m3 dec)

?m2) (pos 7m3) (corr-mag.® 7f 7g 7h Tml 7m2 7m3))
ml inc Tm2 std 7m3 dec)

m2) {pos 7m3) (corr-mag.* 7f 7g 7h 7ml 7m2 7m3))
Tal inc 7m2 dec Tm3 inc)

72) (pos 7m3)

7¢ 7h ?m! inc 7m2 dec 7m3 inc))
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((holds.* ?f 7g 7h 7ml inc 7m2 dec 7m3 std)
<- (neg 7m1) (neg 7m2) (pos 7m3)

(corr-val.* ?f 7g Th 7ml inc-?m2 dec 7m3 std))
({holds.* 7f 7g 7h 7ml inc ?m2 dec 7m3 dec)
<- {(neg ?m1) (neg 7m2) (poa 7m3)

(corr-val.* 7f ?g 7h ?ml inc 7m2 dec 7m3 dec))
((holda.* ?f ?g 7h Tml std 7.2 inc 7m3 dec)

<- (neg 7m1) (neg 7m2) (pos ?m3) (corr-mag.s ?f ?g 7h 7mit 7m2 7m3))

((holds.* 7f ?g 7h 7mi std 7m2 std 7m3 atd) .
<~ (neg ?m1) (neg ™m2) (pos 7m3) (corr-mag.« ?f ?g 7h 7ml 7aZ 7m3))
((holds.* ?¢ ?g 7h 7mi std 7m2 dec ?m3 inc)
<= (neg ?n1) (neg 7m2) (pos 7m3) (corr-mag.s 72 ?g 7h ?ml ?m2 7m3))
((holds.* ?f ?g 7h 7mi dec. 7m2 inc 7m3 inc)
<- (neg 7?m1) (neg 7m2) (pos 7m3)
(corr-val.» ?f 7g *h 7m1 dec 7m2 inc ?m3 inc))
((holds.» 7f 7g 7h 7ml dec m2 inc 7m3 etd)
<- (neg ?mi) (neg 7m2) (pos 7m3)
(corr-val.» ?f ?g 7h ?ml dec 7m2 inc 7m3 std))
((holds.* ?f ?g 7h 7ml dec 7m2 inc 7m3 dec)
<~ (neg ?m1) (neg m2) (pos 7m3)
(corr-val.* 7f ?g 7h 7m1 dec 7m2 inc 7m3 dec))

“ {((holds.» 7f 7g ?h 7ml dec 7m2 etd 7m3 inc)

<= (neg 7mi) (neg 7m2) (pos ?m3) (corr-mag.* 7f 7g Th 7ml 7m2 7m3))
((holds.» ?f 7g Th 7n1 dec 7m2 dec 7m3 inc)

<- (neg ?mi) (neg 7m2) (pes 7m3) (corr-mag.* ?f ?g 7h 7ml 7m2 7m3))

((holds./ 7 ?g 7h 0 inc 7m inc 0 inc) <~ (pos 7m))
((holds./ ?f ?g 7h 0 inc 7m std 0 inc) <- (pos 7m))
((holds./ ?£ ?g 7h 0 inc 7m dec 0 inc) <- (poz m))
((holds./ ?f 7g 7h O std ?m inc 0 std) <- (pos 7w})
((holds./ ?f 7g ?h 0 atd ?m std 0 std) <- (pos 7m))
((holds./ 7f ?g 7h 0 std 7m dec 0 std) <- (pos 7m))
((holds./ 7f 7g 7h 0 dec 7m inc 0 dec) <- (pos 7m))
((holds./ ?f 7g 7h 0 dec 7m std 0 dec) <- (pos ?m))
((holds./ 7f 7g 7h ¢ dec 7m dec 0 dec) <~ {pos 7m))

((helds./ 7f 7g 7h 0 inc ?m inc
((holds./ 72 7g 7h 0 inc 7m std 0 dec) <- (neg 7m))
((holds./ 7f 7g 7h O inc 7m dec 0 dec) <- (neg 7m))
((holds./ 7f 7g 7h 0 std 7m inc 0 std) <~ (neg 7m))
((holds./ 7f 7g 7h 0 std 7m atd 0 std) <- (neg 7m))-
((holds./ 7f ?g 7h 0 std 7m dec 0 std) <~ (neg 7m))
((holds./ ?f ?g 7h 0 dec 7m inc 0 inc) <- (neg 7m))
((holds./ 7f 7g 7h 0 dec 7m std 0 inc) <~ (neg 7am))
((holds./ 7f 7g 7h 0 dec 7m dec 0 inc) <~ (neg 7m))

dac) <~ (neg 7m))

<o o
[~ -]

((holds./ 7f 7g ?h ?ml inc 7m2 inc¢ ?m3 inc)
<~ (pos 7m1) (pos 7m2) (pos 7m3)
(corr-val./ ?f 7g *h 7ml inc ?m2 inc 7m3 inc))
((holds./ ?f 7g 7h 7ml1 inc ?m? inc 7m3 std)
<- (pos 7ml) (pos ?m2) (poz 7m3) :
(corr-val./ ?f 7g ?h 7ml inc 7m2 inc 7m3 std))
{(holds./ ?f 7g 7h ?mil inc 7m2 inc 7m3 dec)
<~ (pos 7m1) (pos 7m2) (pos 7m3)
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{corr-val,/ 7f
((holds./ 7t 7g 7h
<= (pos 7m1) (pos
((holds./ 7£ 7g 7h
<= {pos 7m1) (pos
((holds./ 7f 7g 7h
<- {poa 7m1) (pos
((holds./ 7f 7g 7h
<- (pos 7m1) (pos
((holds./ ?f 7g 7h
<~ (pos 7m1) (pos
((holds./ 7f 7g 7h
<- (pos ?ml) (pes
((holds./ 7f 7g 7h
<= {pos 7m1) {pos
((holds./ 7f 7g 7h
<~ (poa m1) (pos

(corr-val./ 7f
((holds./ 7¢ ?g *h
<~ (pos Tm1) (pos

(corr-val./ ?{
(¢holds./ ?f 7g 7h

<- (pos 7m1) (pos:

(corr-val./ ?f

((holds./ 7¢ 7g Th
<- (poa 7m1) (neg
((holds./ ?£ 7g 7h
<- (poa Tm1) (neg
((holds./ 7£ 7g 7h
<~ (pos 7m1) (neg

(corr-val,/ ?f
((holde./ 7f ?g Th
<- (pos 7m1) (neg

{corr-val./ ?f
((holds./ 7f 7g 7h
<~ (pos 7m1) (neg

(corr-val./ 7f
({holds./ ?f 7g 7h
<= (pos 7m1) (neg
((holds./ ?f 7g %h
<~ (pos Tml) (neg
((holds./ ?f 7g 7h
<- (pos ?ml} (neg
((holds./ ?f 7g 7h
<- (pos 7ml) (neg

(corr-val./ ?f
((holds./ ?f 7g 7h
<= (pos 7m1) (neg

(corr-val./ 7f
((holds./ 7f 7g 7h
<- {(poa 7nt) (neg

(corr-val./ 7f
((holds./ 7f 7g 7h

?g 7h 7m1 inc 7Tm2 inc m3 dec))

ml inc 7m2 std ?m3 inc)

7m2) (pos 7m3) (corr-mag./ ?f ?g 7h m1
ml inc 7m2 dec 7m3 ing)

m2) (pos 7m3) (corr-mag./ 7%
m1 2td 7m2 inc ?m3 dec)

7m2) {pos 7m3) (corr-mag./ 7f
ml std 7m2 std ?m3 std)

7m2) (pos 7m3) (corr-mag./ 7f
ml std ?wm2 dec ?m3 inc)

712) (pos 7m3) (corr-mag./ ?f
"ml dec 7m2 inc ?m3 dec)

m2) (pos 7m3) (corr-mag./ 7f
ml dec m2 std 7m3 dec)

m2) (pos 7n3) (corr-mag./ 7f
n1 dec 7m2 dec 7m3 inc)

m2) (pos 7m3)

7g *h Tm1 dec 7n2 dec 7m3 inc))
m1 dec 7m2 dec 7m3 std)

7m2) (pos 7m3)

?g *h 7al dec 7m2 dec 7m3 std))
Tml dec 7m2 dec 7m3 dac)

Tm2) (pos 7m3)

?g 7h 7ml dec 7m2 dec 7m3 dec))

™2 m3))

?g 7h 7ml Tm2 7m3))

7g 7h 7ml ?m2 7m3))

7g 7h 7n1 72 7m3))

?g Th 7ml m2 7m3))

?g 7h ni 7m2 7m3))

?g Th ml ?m2 7m3))

?mi inc ?m2 inc 7a3 dec)

712) (neg 7m3) {(corr-mag./ 7¢ ?g 7h 7ml 7m2 7m3))
?rl inc 7m2 std 7m3 dec)

m2) (neg ™m3) (corr-mag./ 7f ?g 7h 7ml 7m2 7m3})
ml inc ?m2 dec 7m3 inc)

m2) (neg 7m3) .

?g 7h Tmi inc a2 dec ?m3 inc))

?r1 inc 7m2 dec Tm3 std)

™m2) (neg 7m3)

7g Th 7ml inc 7m2 dec 7m3 std))

Tml inc 7m2 dec 7m3 dec)

m2) (neg 7m3)

7g 7h 7ml inc 72 dec 7m3 dec))

Tl std 7m2 inc ?m3 dec)

m2) (neg 7m3) (corr-mag./ ?f ?g ?h 7ml 7m2 7m3))
ml std 7m2 std 7m3 std)

m2) (neg 7m3) (corr-mag./ ?f 7g Th 7ml 7m2 7n3))
?ml atd 7m2 dec 7m3 inc)

7m2) (neg ?m3) (corr-mag./ 7f ?7g 7h 7mi ?m2 7m3))
7ml dec 7m2 inc¢ 7m3 inc)

m2) (neg 7m3)

?7g *h "mi dec ?m2 inc 7m3 inc))

ml dec 7m2 inc 7m3 std)

m2) (neg 7m3)

7g Th 7ml1 dec ?m2 inc 7m3 std))

Tl dec 7m2 inc ?m3 dec)

n2) (neg 7m3)

7g 7h 7m1 dec 7m2 inc 7m3 dec))

ml dec 7m2 atd 7m3 inc)
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<~ (pos 7m1) (neg
((holds./ ?f ?g 7h
<= (pos 7ml) {(neg

((holds./ 7f 7g 7h
<- (neg ?m1) {pos
((holda./ ?f ?g 7h
<- (neg 7m1) {pos
((holds./ 7f 7g Th
<~ (neg 7ml) (pos

(corr-val./ 7f
((holds./ 71 7g Th
<= {neg 7m1) (pos

{(corr-val./ ?¢
((holds./ 7f 7g 7h
<- (neg ?m1) (pos

{(corr-val./ 7f
((holds./ 7f 7g 7h
<- (neg 7ml1) (pos
(Cholds./ 7f 7g 7Th
<~ (neg 7m1) (pos
(¢holds./ 7f 7g 7h
<~ (neg 7m1) (pos
((holds./ 7£ 7g 7h
<~ (neg ?m1) (pos

(corr-val./ 7f
((holds./ 7f 7g 7h
<= (neg 7m1) {(pos

(corr-val./ 7t
((holds./ ?f ?g Th
<= (neg 7mi) (pos

(corr-val./ 7f
((holds./ 7f 7g 7h
<- (neg m1) (pos
((holds./ ?f 7g 7h
<~ (neg ?m1) (pos

(Cholds./ 7f ?g 7h
<~ (neg 7m1) (neg

(corr-val./ 7f
((holds./ ?f ?g *h
<~ (neg Tm1) (neg

(corr-val./ ?f
((holds./ 7f 7g 7h
<~ (neg 7m1) (neg

(corr-val./ 7f
({holde./ 7f 7g 7h
<~ (neg 7mi) (neg
((holds./ 7f 7g 7h
<~ (neg 7m1) (neg
((holds./ 7f 7g 7h
<- (neég 7ml) (neg
((holds./ ?f 7g 7h
<- {(neg 7ml) (neg

m2) (neg 7m3) {(corr-mag./ 7f 7g 7h 7m! 7m2 7m3))
7mi dec 7m2 dec 7m3 inc)
7m2} (neg ?m3) (corr-mag./ 7f ?g 7h 7ml 7m2 7m3))

?ml inc ?m2 inc 7m3 inc)

7m2) (neg 7m3} (corr-mag./ 7t ?g 7h 7mi 7m2 7m3))
?m1 inc 7m2 std ™m3 inc)

m2) (neg 7m3} (corr-mag./ 7f ?g Th 7mi ?m2 7m3))
?mi inc 7m2 dec 7m3 inc)

m2) (neg ?m3)

7g 7h 7ml inc Tm2 dec ?m3 inc))

mi inc 7m2 dec 7m3 std)

n2)} (neg 7m3)

7g 7h ?ml inc "m2 dec 7m3 atd)}

n1 inc ?m2 dec Tm3 dec)

2} (neg 7m3)

7g Th ml inc Tm2 dec Tm3 dec))

7m1 std ?m2 in¢ ?m3 inc)

7m2) (neg Tm3) (corr-mag./ ?f 7g 7h 7ml ?m2 7m3))
m1 std 7m2 std Tm3 std) '

m2) (neg m3) (corr-mag./ 7f ?g 7h 7ml Tm2 7m3))
7m1 std 7m2 dec 7u3 dec)

722) (neg 7m3) (corr-mag./ 7f ?g 7h 7ml 7m2 7m3))
ml dec ?m2 inc 7m3 inc)

7n2} (neg 7m3)

?g th 7mi dec "m2 inc 7m3 inc))

mi dec 7m2 inc 7m3 std)

?n2) (neg 7m3)

?g 7h Tml dec 7m2 inc m3 atd))

?nl dec ?m2 inc m3 dec)

r2) (neg 7m3)

?g ?h 7m1 dec ?a2 inc ?m3 dec))

7m1l dec ?m2 std ?m3 dec)

?m2) (neg 7m3) (corr-mag./ 7f 7g 7h 7ml 7m2 ?m3))
m1 dec 7m2 dec 7m3 dec)

7m2) (neg ?m3) (corr-mag./ 7f 7g 7h Tml 7m2 7m3))

=1 inc 7m2 inc 7m3 inc)

m2) (pos ?7m3)

7g 7h 7ml inc 7m2 inc 7m3 ine))

?mi inc ?m2 inc 7m3 etd)

n2) (pos 7m3)

7g Th Tml inc 7m2 inc 7m3 std))

™ml inc 7m2 inc 7m3 dec)

m2) (pos 7m3)

7g 7h 7mi inc 7m2 inc Tm3 dec))

?ml inc 7m2 std Tm3 dec)

?m2) (pos 7m3) (corr-mag./ 7f ?g 7h ?ml 7m2 7m3))
?ml inc ™m2? dec 7m3 dec)

?22) (pos Tm3) (corr-mag./ 7f ?g ?h 7ml 7m2 7m3))
ml std 7m2 inc Tm3 inc)

7m2) (pos Tm3) {corr-mag./ 7f ?g Th 7ml 7m2 Tm3)) .

m! std Tm2 std 7m3 atd)
7m2) (pos Tm3) (corr-mag./ 7f ?g ?h 7ml 7m2 7m3))
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((holds./ 71 ?g 7h 7m1 std ?m2 dec 7m3 dec)
<=~ (neg 7n1) (neg 7m2) (pos 7m3) (corr-mag./ ?f ?g 7h 7wl 7m2 7m3))
({holds./ 7t 7g 7h 7m1 dec 7m2 inc 7m3 inc)
<~ (neg Tm1) (neg 7m2) (pos ?m3) (corr-mag./ 72 ?g 7h 7m1 7nu2 7m3))
((holds./ 7f 7g ?h 7mi dec 7m2 std 7m3 inc) .
<~ (neg 7m1) (neg 7m2) (pos 7m3) (corr-mag./ ?f ?g 7h 7ml 7m2 7m3))
{(holds./ 7f 7g 7h Tml dec ?m2 dec 7m3 inc)
<- {(neg 7m1) (neg ?=2) (pos 7m3) _
(corr-val./ ?f ?g 7h ?ml dec 7m2 dec 7m3 inc))
((holds./ ?f 7g 7h ?ml dec a2 dec 7m3 std)
<- (neg 7m1) (neg 7m2) (pos 7m3)
(corr-val./ 7f 7g ?h 7m1 dec 7m2 dec ?m3 std))
((holds./ 72 7g Th Tml dec 7m2 dec Tm3 dec)
<- {(neg 7m1) (neg ?m2) (pos 7m3)
(corr-val./ 7¢f 7g 7h 7ml dec 7m2 dec 7m3 dec))

((holds.d/dt 71 7g 7ml inc ?m2 inc)

<= (pos 7m2) (corr-val.d/dt 7f ?g 7ml inc 7m2 inc))
((holds.d/dt 7£ ?7g 7ml inc 7a2 std) '

<- {pos 7m2) (corr-val.d/dt 7f 7g Tml inc 7m2 std))
((holds.d/dt 7f 7g Tml inc 7m2 dec) :

<~ {(pos 7m2) (corr-val.d/dt ?f ?g 7al inc 7m2 dec))

((holds.d/dt ?f ?g 7ml std O inc)

<- (corr-val.d/dt 7f 7g 7m1 std 0 inc))
((holds.d/dt 7f 7g 7mi std O std)

<- {corr-val.d/dt 7f 7g 7ml std 0 std))
((holds.d/dt 7 7g 7al atd 0 dec)

<- {corr-val.d/dt 7f 7g 7ml std 0 dec))
((holds.d/dt 7f ?g 7ml dec ?m2 inc)

<- (neg Tm2) (corr-val.d/dt ?f ?g 7al dec a2 inc))
((holds.d/dt 7f 7g 7mi dec 7m2 std) . _
<~ (neg 7m2) (corr-val.d/dt 7f ?g 7ml dec 7m2 std)) ]
((holda.d/dt ?f ?g 7ml dec 7m2 dec)

<~ (neg 7m2) (corr-val.d/dt 7f 7g ?ml dec Tm2 dec))
)

(setf »factax 7(
(holds.m0+ ?f ?g 0 inc 0 inc) (holds.mO+ 7t ?g 0 std 0 std)
(holds.n0+ 7f 7g 0 dec 0 dec)

{holds.- 7f ?g 7h 7m inc 7m std 0 inc)
(holds.- 7f 7g 7h 7m inc 7m dec 0 inc)
(holds.- 7f 7g ?h 7m std 7m inc 0 dec)
(holds.- ?f ?g 7h 7m std 7m std 0 std)
(holds.- ?£ ?g 7h ?m std 7= dec 0 inc)
(holds.~ ?f 7g Th 7m dec 7m inc O dec) }
(holds.~ 7f 7g ?h 7m dec 7m atd 0 dec) : :

(holds.- ?f 7g 7h 7m inc 0 std 7m inc) :
(holds.- ?f 7g ?h 7m inc 0 dec ?m inc) :
(holds.- ?f ?g 7h 7m std 0 inc ?m dec)
(holds:- ?# 7g 7h 7m std 0 std 7m std)
(holds.- ?f ?g 7h 7m std 0 dec 7a inc)
(holds.~ 7f 7g 7h 7m dec O inc 7m dec)
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(holds.- ?f 7g 7h ?m dec 0 std ?m dec)

(holds.* 7f ?g ?h 0 inc 0 inc 0 std)
(holds.* ?f ?g ?h 0 inc 0 std 0 std)
(holds.# ?f ?g ?h 0 inc 0 dec 0 std) ' - °
(holds.* ?f ?g 7h 0 atd 0 inc 0 std)
(holds.» ?f 7g ?h 0 atd 0 std 0 std)
(holds.* ?f ?g 7h 0 std 0 dec O std)
(holds.» ?f ?g 7h 0 dec 0 inc 0 std)
(holde.* ?f 7g ?h 0 dec 0 std 0 std)
(holds.» ?£ ?g 7h 0 dec 0 dec 0 etd)

»

(setf #nogoodss* *(
((pos 03) ((neg 0)) ((pos ?m) (neg 7m})

((corr-val.- ?£ 7g 7h 7mi ?d1 7m2 7d2 0 ?d3) (<> ?ml 7m2))
((corr-mag.- 7£ ?g 7h 7mt ?m2 0) (< 7ml 7m2))
((corr-val.- 7f 7g 7h 7mi 7d1 0 %42 7m3 ?7d3) (<> Tml 7n3))
((corr-mag.~ 7f ?g 7h 7mi 0 7m3) (<> 7m1 7m3))

((corr-val.- ?f 7g 7h ?ml ?d1 7m2 7d2 7m3 7d3) (> 7m2 7m1) (pos 7m3))
((corr-mag.- 7f ?g 7h ?mi 7m2 7m3) (> 7m2 7m1) (pos 7m3)) ‘
({corr-val.~ 7f 7g 7h 7m1 ?d1 7m2 ?d2 7m3 7d3) (> 7ml 7m2) (neg 7m3))
({corr-mag.- 7f ?g 7h 7mi 7m2 ?m3) (> 7ml 7m2) (neg m3))

((corr-val.~ 7f 7g 7h 0 7d1 7m2 ?d2 7m3 7d3) (pos 7m2) (pos 7m3))
((corT-mag.- ?f ?g Th 0 "m2 7m3) (pos 7m2) (pos 7m3))
({corr-val.~ 7f ?g 7h 0 ?d1 7m2 ?d2 7m3 7d3) (neg 7m2) (neg 7m3))
({corr-mag.- 7f ?g 7h 0 ?m2 7m3) (neg 7m2) (neg 7m3))

»

(setf *assumption-nogoods* nil)

C.2.2 "Temperature Controller

Knowledge Base The following axioms are specific to the tempera.ture controller:

(setf *bruless *( .

((qval ti 7ml 7d1 7t) <- (norm s) (qval ti-ob 7ml 7d1 7t))

((qval ts 7ml ?d1 7t) <~ (norm k) (qval ts-ob 7m1 7d1 7t))

({qval e ?m3 7d3 ?t) <- (norm c1) (qval ts 7ml 7d1 7t) {qval ti 7m2 7d2 ?t)
(holds.~ ta ti e 7ml 7d1 7m2 7d2 7Tm3 7d3))

({qval a "m2 7d1 7t) <- (norm c2) (qval e 7ml 7d1 ?7t)
(holds.m0+ e a 7ml ?di ?m2 ?7d1))

((qval p 7m3 7d3 7t) <- (norm o} (gqval p-ob 7ml 7d1 7t) (gval ¥ 7m2 7d2 7t)
(holds.* p-ob w p 7m1 7d1 7m2 ?d2 7m3 7d3))

((gval hfin 7m3 ?d3 7t} <- (norm e) (qval a 7mi 7d1 7t) (qval p 7m2 7d2 7t)

(holds.* a p hfin 7m1 7d1 7m2 7d2 7m3 743))

{(qval ti 0-std 7t) <= (stuck-at-0-std s) (qval ti-ob 7ml 7d1 7t))
((qval ts 0 std ?t) <~ (atuck-at-0-std k) {qval ts-ob 7m1 7d1 7t))
((qval e 0 std 7t) <- (stuck-at-0-std c1) (qval ts ?mt 7di 7t)
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(qval ti Tm2 7d2 7t))
((qval a 0 std 7t) <- (stuck-at-0-std ¢2) (qval e ?ml 7di 7t))
((gval p 0 std ?t) <~ (stuck-at-0-std o) (qval p-cb 7ml 7d1 7t)
{qval v 7m2 7d2 7t)) . . - -
({(qval hfin 0 =td 7t) <~ (stuck-at-0-std e) (qval a 7m1 7d1 7t)
' (qval p 7m2 742 7t))

((gval ti roomtemp std 7t) <- (stuck-at-roomtemp-std s)
(gqval ti-ob 7m1 ?d1 7t) (pos roomtemp))

((qval e 7m1 7d1 ?t) <- (stuck-at-ist-in cl)

(gval ts 7m1 7d1 7t) (qval ti 7m2 7d2 ?t))
({gval e ?m2 7d2 7t) <- (stuck-at-2nd-in c1)

(qval ta 7mi 741 7t) (qval ti ?m2 ?d2 7t))
({gval p ?ml 7d1 7t) <- (stuck-at-1st-in o) _

(qval p-ob 7m1 ?di ?7t) (qval v m2 7d2 7t))

((qval ti-ob 7m1 ?di 7t) <- (given-qval ti-ob 7mi ?di 7t))

((qval ts-ob 7ml ?d1 ?7t) <- (given-qval ts-ob 7ml 7d1 7t))

((gval p-ob ?ml 7d1 7t) <- (given-qval p-ob 7ml 7d1 7t)) ;
((qval @ 7m1 7d1 7t) <- (givem—qval v 7mi 7d1 7t))

) |

(setf *corr-mags* nil)

(setf »inter-batch~beam-width* 40)
(setf sintra-batch-beam-widths 40) :
(setf *bchain~depth+ 6) i
(setf *caching* t) ' ' '
(setf *factorings nil)

(setf *remove-superset?* nil)

(setf wexplanation-eval-metrice #’diag-simplicity)
(setf *compute-estimate-fn+ #’diag-compute-estinmate)
(setf *combine-estimates-fn* #'diag-combine-estimates)

(setf spredicate-specific-abduction® t)
(setf »assnmable-predicatess
?(norm stuck-at-0-std stuck-at-ist-in stuck-at-2Znd-in
stuck-at-roomtemp-std given-qval
pos neg corr-mag.m0+
corr-mag.- corr-val.- corr-mag.* corr-val.* : §
corr-mag./ corr-val./ corr-val.d/dt <> »))
(setf *free-assumption-predicatess
’(norm given-qval
pos neg corr-mag.m+
corr-mag.~ corr-val.- corr-mag.* corr-val.*
corr-mag./ corr-val./ corr-val.d/dt <> >))
(setf *fanlt-mode-predicatess
* (stuck-at-0-std stuck-at-lst-in
stuck-at-2nd-in stuck-at-roomtemp-std))
(setf *components* *(s k ¢t c2 o e))

Test Data For each of the 10 scenarios tested, we give: (1) the faults present; and
(2) the input atoms representing the dynamic behavior.
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#1: ((atuck-at-0-gtd k) (stuck-at-0-std o))

((pos roomtemp) (qval ts-ob roomtemp std t1) (gqval ti-ob roomtemp dec t1)
(pos psup) (qval p-ob psup atd t1) (pos on) (qval w on std t1)

{gval hfin ¢ atd t1) (qval ts-ob roomtemp atd t2) (pos cold)

(> roontemp cold) {qval ti-ob cold std t2) (qval p-ob psup atd t2)

{qval ¥ on =td t2) (qval hfin 0 std t2) (qval ta ¢ std t2)

(qval ti cold std t2) (neg e-1) (qval e e-1 std t2)

(neg a-1) {qval a a-1 std t2) (qval p 0 std t2))

#2: ({atuck-at-0-std s) (stuck-at-O-atd e))

({pes roomtemp) (qval ts-ob roomtemp std t1) (gqval ti-ob rocmtemp dec t1)
(pos psup) (qval p-cb psup std t1) (pos on) (qval ¥ on std t1)

(qgval hfin 0 std t1) (qval ts-ob roomtemp std %2} (pos cold)

(> roomtemp cold) (qval ti-ob cold std t2) (qval p-cb psup std t2)

(qval w on etd t2) (qval hfin 0 std t2) (qval ts roomtemp std t2)

(qval ti 0 std t2) (qval e roomtemp std t2) (pos a-0) '

(qval a a-0 std t2) (qval p psup atd t2))

#3: ((astuck-at-ist-in c1) (stuck-at-0-std e))

((pos roomtemp) (qval tas-ob roomtemp std t1) (qval ti-ob roomtemp dec t1)

(poa psup) (qval p-ob psup std ti) (pos on) (qval w on std t1)
(gval hfin 0 std t1) (qval ts~ob roomtemp std t2) (pos cold)

(> roomtemp cold) (qval ti-ob cold std t2) (qval p-ob psup std t2)
(qval ¥ on std t2) {(qval hfin 0 std t2) (gqval ts roomtemp std t2) .
(qval ti cold std t2) (qval e roomtemp std t2) (pos a-0)

(qval a a-0 std t2) (qval p psup atd t2)) N

#4: ((stuck-at-0-std 8) (stuck-at-0-std c2))

((pos roomtemp) (qval ts-ob roomtemp std t1) (qval ti-ob roontemp dec ti)
(pos psup) (qval p-ob psup std t1) (pos on) (qval ¥ on std t1) '
(qval hfin 0 std t1) (qval ta-ob roomtemp std t2) (pos cold)

(> roomtemp cold) (qval ti-ob cold std t2) (qval p-ob psup std t2)
(qval w on atd t2) (qval hfin 0 std t2) (qval ts roomtemp std t2)
(qval ti 0 std t2) (gval e roomtemp std t2) (qval a 0 std t2)
{(qval p psup std t2))

#5: ((stuck-at-0-std c1) (stuck-at-O-atd c2))

({pos roomtemp) (qval ts-ob roomtemp std ti) (qval ti-ob roomtemp dec t1)
(pos psup) {gval p-ob psup std t1) (pos on} (qval ¥ on std ti)

(qval hfin 0 std t1) (qval ts-ob roomtemp std t2) {pos c¢old)

(> roomtemp cold) (qval ti-ob cold std t2) (qval p-ob psup =td t2)

(qval v on std t2) (qval hfin ¢ std t2) (qval ts roomtemp std t2)

(qval ti cold std t2) (qval e O std t2) (qval a 0 std t2)

(qval p psup std t2))

#6: ((stuck-at-0-std cl) (stuck-at-0-std o))

((pos roomtemp) (qval ts-ob roomtemp std t1) (qval ti-ob roomtemp dec t1)

(pos psup) (qval p-ob psup std t1) (pos on) (qval ¥ on std t1)

133
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(qval hfin 0 atd t1) (qval ts-ob roomtemp std t2) (pos cold)

(> roomtemp cold) (qval ti-ob cold std t2) {(qval p-ob peup std t2)

(qval v on std t2) (qval hfin O std t2) (qval ts roomtemp atd t2)

(qval ti cold std t2) (qval e 0 atd £2) (qval a 0 std t2) : _ -
(gval p 0 std t2)) : '

#7: ((stuck-at-iat-in ci1) (stuck-at-O-std o))

({pos roomtemp) (qval ts-ob roomtemp std ti) (qval ti-ob roomtemp dec t1)
(pos psup) (qval p-ob psup std t1) (pos on) (qval ¥ on std t1)

{qval hfin 0 std ti) (qval te-ob roomtemp std t2) (pos cold)

(> roomtemp cold) (qval ti-ob cold std t2) (gqval p-ob psup std t2)

(gval v on std t2) (qval htin 0 std t2) (qval ts roomtemp 2td t2)

{gval ti cold std t2) (qval e roomtemp std t2) (pos a-0)

{gval a a-0 std t2) (qval p O std t2))

#8: ((stuck-at-roomtemp-std s))

({pos roomtenp) (qval ta-ob roomtemp atd t1) (qval ti-ob roomtemp dec ti)
(pos psup) (qval p-ob psup std t1) (pos on) (qval w on atd t1) _ :
(qval hfin 0 std t1) (qval ts-ob roomtemp std t2) (pos cold) :
(> roomtemp cold) (qval ti-ob cold std t2) (qval p-ob psup std t2)
(qval v on std t2) (qval hfin 0 std t2) (qval ts roomtemp std +2)
(qval ti roomtemp std t2) (qval e 0 std t2) (qval a 0 atd t2)
(qval p psup atd t2))

#9: ((atuck-at-0-atd o))

((pos roomtemp) (gval ta-ob roomtemp std t1) (qval ti-ob roomtemp dec t1)
(pos psup) (qval p-ob psup std t1) (pos on) (qval w on std t1) . '1
‘(qval hiin 0 std t1) (qval ts-ob roomtemp std t2) (pos cold)
(> roomtemp cold) (qval ti-ob cold std t2) (qval p-ob psup std t2) |
{qval ¥ on std t2) (qval htin 0 std t2) (qval ts roomtemp atd :2)

(qval ti cold std t2) (pos e-0) (gval a e-0 std t2) (pos a-0)

(gval a a-0 std t2) (qval p O atd t2))

#10: ((stuck-at-0-atd c2))

((pos roomtemp) (qval ts-ob roomtesp std t1) (qval ti-ob roomtemp dec t1)
(pos psup) (qval p-ob psup std t1} (pos on) (qval w on std t1) '

(qval hfin 0 std t1) (qval ts-ob roomtemp std t2) (pos cold)

(> roomtemp cold) (qval ti-ob cold std t2) (gval p-ob peup std t2)

(qval v on std t2) (qval hfin 0 std t2) (qval ts roomtemp std t2) :
(qval ti cold std t2) (pos e-0) (qval e e-0 std t2) (gqval a 0 std t2)
(qval p psup std t2)) ' |

C.2.3 The Water Balance System of the Human Kidney

Knowledge Base The following axioms are specific to the kidney water balance
system:

(setf *xbruless *(
((gval cna 7m3 7d3 7t) <- (norm c1) {qval anp ?ml 7d1 ?t)
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(qval avp 7m2 7d2 7t)
(holds./ anp awp cna 7mi 7d1 7m2 7d2 7m3 7d3))
({qval cnh ?m2 ?dl 7t) <- (norm c¢2)} {qval awp ?mi 7d1 7t) .
(holds .m0+ awp cnh 7mi 7d1 ?m2 7d1)) : — -
((qval fpu 7m2 7d1 7t) <- (norm ¢3) (qval cnh 7ml 7dl1 7t)
(holds.m0+ cnh fpu 7m1 7d1 7m2 7di))
. ({gval cadh ?m2 ?d1 ?t) <~ (morm c4) (qval cna 7ml 7d1 ?t)
i (holds.m0+ cna cadh ?ml1 7d1 7m2 ?7d1))
({qval rfup 7m2 7d1 ?t) <- (norm c5) {qval cadh ?ml ?di 7t)
(holds.m0+ cadh rfup 7ml 7d1 Tm2 2d1))
T ({(qval ntpu 7m3 7d3 ?t) <- (norm c6) {qval fpu 7ml ?7d1 7t)
5 {qval rfup 7m2 7d2 7t)
(holds.- fpu rfup nfpu 7ml 7d1 7m2 7d2 7m3 ?ds))
{(qval nfop 7m3 ?d3 ?t) <- (norm c7) (qval nfip 7m1 7d1 7t)
£r {qval nfpu 7a2 7d2 7t)
' (holds.- nfip nfpu ntop 7m1 ?7di m2 ?d2 7m3 ?ds))

R

{(qval cnh cnh- atd ?7t) <- (atuck-at-low-std ¢2) (qval awp 7mi ?d1 7t)
{pos cnh-)) -

{{qval cnh cnh+ std 7t) <- (stuck-at-hlgh-std c2) (qval avp "ml 7d1 7t)
(pos cnh+))

4

((qval tpu fpu- std ?t) <~ (stuck-at-low-std c3) (qval crnh 7mi ?7d1 "t)
{pos fpu-))

({qval fpu fpu+ std ?7t) <- (stuck-at-high-std c3) (qval cnh ?m1 7d1 "1:)
{(pos fpu+))

e ((qval cadh cadh- std 7t) <~ (stuck-at-low-std c4} (qval cna 7mi 7d1 7t)
(pos cadh-))

({qval cadh cadh+ atd 7t) <~ (stuck-at-high-std c4) (qval cna 7mi 7d1 7t)
(pos cadh+)) .

((qval rfup rfup- std 7t) <- (stuck-at-low-std c5)} (qval cadh 7m1 7d1i ?%)
- (pos rfup-))
((qval rfup rfup+ std 7t) <~ (stuck-at-high-std c5) (qval cadh ?mi ?di 7t)
(pos rfup+))

((qval anp 7ml 7d1 7t) <- (given-qval anp 7m1 7dl 7t))
((qval awp 7m1 7d1 ?t) <- (given-qval awp 7ml1 7d1 7t))
((qval nfip 7m1 7d1 ?t) <- {given-gval nfip 7mi 7d1 7t)})))

(setf *corr-mags*

?({corr-mag.m0+ avwp cnh awp* cnh»)
(corr-mag.m0+ awp cunh awp+ cnh+)
(corr-mag.m0+ awp cnh awp~ cnh-)
(corr-mag.m0+ cnh fpu cnh* fpus)
(corr-mag.m0+ cnh fpu cnh+ fpu+)
(corr-mag.m0+ cnh fpu cnh- fpn-)
(corr-mag.m0+ cna cadh cna* cadh*)
{corr-mag.m0+ cna cadh cna+ cadh+)
(corr-mag.m0+ cna cadh cna- cadh-)
(corr-mag.m0+ cadh rfup cadh# rfup+)
(corr-mag.m0+ cadh rfup cadh+ rfupt)
(corr-mag.m0+ cadh rfup cacdh- rfup-)))
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(setf *inter-batch-beam-width* 30)
(setf *intra-batch-beam-width* 30)
(setf *bchain-depth* 7)
(setf *caching* t)
(setf sfactorings nil)
(setf #*remove~superset?* nil)
(setf wexplanation-eval-metrics #’diag-simplicity)
. {setf »compute-estimate-fn* #’diag-compute-estinate)
{setf *combine-estimates-fns #’diag-coubine-estimates)

{setf *predicate-specific-abductione t)
(setf *assumable-predicatess
*(norm stuck-at-high-std stuck-at-low-std given-qval
pos neg corr-mag.m0+
corr-mag.- corr-val.- corr-nag.* corr-val.#
corr-mag./ corr-val./ corr-val.d/dt <> >))
{setf »free-assumption-predicates»
*{norm given-qval
pos neg corr-mag.m0+
corr-mag.—- corr-val.- corr-mag.* corr-val.*
corr-mag./ corr-val,/ corr-val. d/dt <> »))
(setf *fault-mode~predicatess :
*(stuck-at-high-std stuck-at-low-std))
(zatf *components* *(c¢l c2 c3 c4 ¢c5 c6 c7))

Test Data

#1: ((stuck-at-hlgh—std c4))

((pos anp*) (qval anp anp* std t1) (pos awp*) (qval awp awp+ inc t1)
(pos nfip+) (qval nfip nfip+ std t1) (pos n-0) (qval nfop n—0 dec t1)
(gval anp anp* std t2) {pos a-0) (qval awp a~0 std t2)

(qval nfip nfip+ std t2) (qval nfop 0 std t2) (pos c-0)

(qval cna c~-0 atd t2) (pos c¢~1) (qval cmh c-1 std t2) (pos cadh+)
(qval cadh cadh+ std t2) (pos £-0) (qval fpu 1-0 std £2) (pos rfup+)
(gval riup rfup+ std t2))

#2: ({stuck-at-low-std c4))

((pos anp*) (qval anp anp+ std t1) (pos awp-) (qval awp awp- inc t1)
(pos nfip+) (qval nfip nfip+ std t1) (pos r-0) (qval nfop n-0 dec t1)
(qval anp anp* std t2) (pos awp*) (qval awp awp* inc t2)

(qval nfip nfip+ std t2) (pos n-1) (qval nfop n-1 dec t2) (pos cnas)
(qval cna cna* dec t2) (pos cnhs) (qval cnh cnh* inc t2)} (pos cadh-)
{qval cadh cadh- std t2) (pos fpus) (qval fpu fpu* inc t2)

{pos rfup-) (qval rfup rfup- std t2))

#3: ((stuck-at-high-std c5))

({pos anp*) (qval anp anp* std t1) (pos awp+) (qval awp awp+ inc t1)
(pos nfip+) (qval nfip nfip+ std t1) (pos n-0) (gval nfop n-0 dec t1)
(qval anp anp* std t2) (pos a-0) (qval awp a-0 atd t2)
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{qval nfip nfip+ std t2) (qval nfop O std t2) (pos c~0)

(qval cna c-0 std t2) (pos c-1) (qval cnh c-1 std t2) (pos ¢-2)
{qval cadh c-2 std t2) (poa f-0) (qval fpu £-0 std t2) (pos rfup+)
{qval rfup rfup+ std t2))

#4: ((stuck-at-low-std c5))

((pos anp*) (qval anp anp* std ti) (pos awp-) {qval awp awp~ inc 1)
(pos nfip+) (qval nfip nfip+ atd t1) (pos n-0) {gval nfop n-0 dec t1)
(qval anp anp* std t2) (pos awp*) (qval avp awp* inc t2)

(qval nfip nfip+ =td t2) (pos m-1) (gval nfop n-1 dec t2)

(pos cna*) (qval cna cna* dec t2) (pos cnh*) (qval cnh cnh* inc $2)
(pos cadh*) (qval cadh cadh# dec t2) (pos fpux) (qval fpu fpus inc t2)
(pos rfup-) (qval rfup rfup- std t2))

#5: ((stuck-at—high-;std c2))

((pos anp*) (qval anp anp* std t1) (pos awp-) (qval awp awp~ inc t1)
(pos nfip+) (gval nfip nfip+ atd t1) (pos n-0) (qval nfep n-0 dec t1)
(qval anp anp* std t2) (pos awp*) (qval avp awps inc t2)

(qval nfip nfip+ std t2) (pos n-1) (qval nfop n-1 dec t2)

(pos cna*) (qval cna cna* dec t2) (pos cnh+) (qval cnh cnh+ std t2)
(pos cadh*) (qval cadh cadh# dec t2) (pos fpu+) (qval fpu fpu+ std t2)
{pos rfup*) (qval rfup rfup* dec t2))

#6: ((stuck-at-low-std c2))

((pos anp*) {qval anp anp* std t1) (pos awp+) (qval awp awp+ inc t1)
(pos nfip+) (qval nfip nfip+ std t1) (pos n-0) (gval nfop n-0 dec t1)
(qval anp anps std t2) (pos a-0) (qval avp a~0 std t2)

(qval nfip nfip+ std t2) {(qval nfop 0 atd t2) (pos c-0)

(qval cna c-0 std t2) (pos cnh-) (qval cnh cnh- std t2) (pos c-1)
(qval cadh c-1 std t2) (pos fpu-) (qval fpu fpu- std t2) (pos r-0)
(gval rfup r-0 std t2))

#7: ((stuck-at-high-std c3))

((pos anp*) (qval anp anp* std ti) (pos awp~) (qval awp awp~ inc t1)
(pos nfip+) (qval nfip nfip+ std t1) (pos n-0) (qval nfop n-0 dec t1)
(qval anp anp* std t2) (pos awp*) (gval awp awp* inc t2)

(qval nfip nfip+ std t2) (pos n-1) {qval nfop n-1 dec t2)

(pos cna*) (qval cna cnas dec t2) (pos cnh*) (qval cnh cnh* inc t2)
(pos cadhs) (qval cadh cadh* dec t2) (pos fpu+) (qval fpu fpu+ std t2)
(pos rfup*) (qval rfup rfup* dec t2))

#8: ((stuck-at-low-std c3))

((pos anp*) (qval anp anp* std t1} (pos awp+) {(qval awp awp+ inc t1)
(pos nfip+) (qval nfip nfip+ std t1) (pos n~0) (qval nfop n-0 dec t1)
(qval anp anp* std t2) (pos a-0) (gval awp a-0 std £2)

(gval nfip nfip+ std t2) (qval nfop 0 std t2) (pos c-0)
(qval-cna-c-0 std t2) (pos c-1) (qval ¢mh c-1 std t2) (pos c-2)
(qval cadh c-2 std t2) (pes fpu-) (qval fpu fpu- std £2)

(pos r-0) {qval rfup r-¢ std t2))
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#9: ((stuck-at-high-std c3) (atuck-at-low-std c4))

((pos anp#*) {(gval anp anp* atd t1)} {pos awps) (qval awp awp* std t1) _ -
(pos nfip+) (qval nfip nfip+ std t1) (qval nfop 0 std t1)

(pos cna*) (qval cna cna* std t1) (pos cnh*) (qval cnh cnh# std t1)

(pos cadh-} (qval cadh cadh- std t1) (pos fpu+) {qval fpu fpu+ std t1)

(pos rfup-) (qval rfup rfup- std t1}) '

#10: ((stuck-at-high-atd ¢3) (stuck-at-low-std c5))

((pos anp*) (qval anp anp* std t1) (pos awp*) (qval awp awps atd t1)
(pos nfip+) (qval nfip nfip+ std t1) (qval nfop 0 atd t1)

(pos cnas) (qval cna ¢ma* std t1) (pos cnh*) (qval cnh cnh* std t1)
(pos cadh*) {qval cadh cadh* std t1) (pos fpu+) (qval fpu fpu+ std t1)
(pos rfup-) (qval rfup rfup- std ti})
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