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Abstract

Recent results in both machine learning and cognitive psychology demonstrate that

e�ective category learning involves an integration of theory and data. First, theories

can bias induction, a�ecting what category de�nitions are extracted from a set of

examples. Second, conicting data can cause theories to be revised. Third, theories

can alter the representation of data through feature formation. This chapter reviews

two machine learning systems that attempt to integrate theory and data in one or

more of these ways. IOU uses a domain theory to acquire part of a concept de�nition

and to focus induction on the unexplained aspects of the data. Either uses data

to revise an imperfect theory and uses theory to add abstract features to the data.

Recent psychological experiments reveal that these machine learning systems exhibit

several important aspects of human category learning. Speci�cally, IOU has been

used to successfully model some recent experimental results on the e�ect of functional

knowledge on category learning.
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1 Introduction

Until recently, research in categorization in cognitive psychology and machine learning fo-

cused almost exclusively on empirical, data-driven models. The most frequently studied

task was learning categories from simple examples represented as lists of features (Bruner,

Goodnow, & Austin, 1956; Smith & Medin, 1981; Quinlan, 1979; Michalski & Chilausky,

1980). The role of background knowledge or domain theories on category learning was largely

ignored. The focus was on understanding the basic process of induction from raw data.

In the past decade, researchers in both areas began to investigate knowledge-intensive

concept learning. Several researchers in machine learning began developing systems that

performed a detailed analysis of an individual example. Many of these systems could learn a

new concept from a single example. These methods eventually became known as explanation-

based learning (Mitchell, Keller, & Kedar-Cabelli, 1986; DeJong & Mooney, 1986). Mean-

while, cognitive psychologists were also turning their attention to the role of theories in

categorization (Murphy & Medin, 1985; Nakamura, 1985; Barsalou, 1983). One important

�nding was that subjects, like explanation-based learning systems, could acquire a concept

or schema from only a single example (Ahn, Mooney, Brewer, & DeJong, 1987).

However, purely empirical (data-driven) and purely analytical (theory-driven) views of

categorization are clearly end-points on a continuum. Most real category learning tasks

involve an integration of background theory and empirical data. Recent research in both
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cognitive psychology and machine learning has begun to focus on the issue of integrating

theory and data in concept learning (Wisniewski & Medin, 1991; Ahn, Brewer, & Mooney,

in press; Segre, 1989; Birnbaum & Collins, 1991). This research is attempting to unravel the

complex interacting e�ects of theory and data on concept learning.

This chapter describes two recently developed machine learning systems that integrate

theory and data, and discusses the extent to which these systems can model recent exper-

imental results on human concept learning. The remainder of the chapter is organized as

follows. Section 2 briey reviews standard empirical and explanation-based models of learn-

ing. Section 3 discusses various ways in which theory and data can interact in categorization.

Section 4 describes IOU, a computer program that uses a domain theory to bias category

learning. Simulation results are also presented in Section 4, in which IOU is shown to model

e�ects found when subjects in a standard learning-from-examples experiment are told the

function of the underlying categories. Section 5 describes another machine learning system,

Either, which modi�es an existing domain theory based on empirical data. Section 5 also

discusses how the methods used in Either could potentially model recent results on how hu-

man subjects use data to modify theories and theories to modify data. Section 6 summarizes

our results and presents some problems and ultimate goals for future research.
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2 Review of Empirical and Explanation-Based Learn-

ing

The majority of research in categorization within psychology and machine learning has con-

cerned empirical or similarity-based methods. In these methods, categories are learned by

examining similarities and di�erences between relatively large numbers of examples. In cog-

nitive psychology, similarity-based methods are normally divided into classical, probablistic,

and exemplar models (Smith & Medin, 1981). Classical or rule-based methods form abstract

logical de�nitions of categories (Bruner et al.,1956; Medin, Wattenmaker, & Michalski, 1987;

Quinlan, 1986).

1

Probabilistic methods extract feature weights or conditional probabilities

that are subsequently used to compute category membership (Posner & Keele, 1968; Rosen-

blatt, 1962; Fisher, 1987). Exemplar models do not form abstractions but rather categorize

examples based on similarity to speci�c stored instances (Medin & Shae�er, 1978; Aha,

1991). Very little emphasis is given to the role of background knowledge in any of these

models. Psychological experiments in this area generally use simple, arti�cial data so that

subjects cannot employ their existing knowledge.

Explanation-based learning, on the other hand, acquires a concept de�nition from a single

example by using existing background knowledge to explain the example and thereby focus

on its important features (DeJong, 1988). In the standard formalization (Mitchell et al.,

1986; DeJong & Mooney, 1986), the domain theory is represented by a set of rules that

1

The term \classical" normally refers to purely conjunctive descriptions, i.e. necessary and su�cient

conditions.
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allows the system to logically deduce that a concrete example satis�es an abstract de�nition

of a given goal concept. Explanation-based generalization then consists of the following two

steps:

1. Explain: Construct an explanation using the domain theory that proves that the train-

ing example satis�es the de�nition of the goal concept.

2. Generalize: Determine a set of su�cient conditions under which the explanation holds,

stated in purely observable terms.

Machine learning systems have learned a number of concepts using this approach. For

example, consider learning a structural de�nition of a cup from a functional de�nition and a

single example (Winston, Binford, Katz, & Lowry, 1983). Assume the example is described

by the following observable features:

owner=Fred, color=red, location=table, width=medium, has-bottom, at-bottom,

has-handle, lightweight, has-concavity, upward-pointing-concavity.

Assume one has the following functional de�nition of a cup:

stable & liftable & open-vessel ! cup,

which states that anything that is stable, liftable, and an open-vessel is a cup. If the domain

theory contains the following rules:
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Figure 1: Explanation of a Cup.

has-bottom & at-bottom ! stable

lightweight & graspable ! liftable

has-handle ! graspable

width=small & insulating ! graspable

has-concavity & upward-pointing-concavity ! open-vessel,

one can deduce that the example is a cup using the \explanation" or proof shown in Figure 1.

A de�nition of cup in purely observable terms can be obtained by compiling the explanation

into a new rule. The root of the explanation forms the consequent of the new rule and the

leaves form the antecedents. Below is the compiled rule for the cup example:

has-bottom & at-bottom & has-handle & lightweight & has-concavity &

upward-pointing-concavity ! cup

Notice that the generalization omits information about the color, owner, location, and width
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Figure 2: Sketch of a Boot-Jack.

of the example, since these features are not used in the explanation. Once the rule has

been compiled, instead of performing complicated inferencing, direct pattern matching can

be used to classify examples as cups.

For a more psychologically motivated example of explanation-based learning, consider

the following anecdote. Not long after moving to Texas, I encountered an example of an

interesting device called a boot-jack. A rough sketch of a typical boot-jack is shown in

Figure 2. This device allows an urban cowboy to remove his boots easily and independently

after a long, hard day at the o�ce. A boot-jack is used by stepping on the rear of the device

with one foot, snuggly inserting the heel of the other foot into the notch, and pulling one's

leg upward to remove the boot. The �rst example of a boot-jack I encountered was made of

brass and shaped like the head of a long-horn bull whose U-shaped horns formed the notch.

After seeing this particular device used to remove a pair of boots, I immediately formed
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an accurate concept of a boot-jack. I knew that certain properties such as shape, size, and

rigidity were important but that the long-horn image was superuous and ornamental. I

also immediately identi�ed my acquisition of this concept as a type of explanation-based

learning. Although the next example I encountered was very di�erent, a simple piece of

wood with the shape shown in Figure 2, I was able to quickly and accurately classify it as

an example of the same concept.

3 Combining Theory and Data

Empirical learning models have been criticized for ignoring the importance of existing knowl-

edge, failing to account for the \coherence" of concepts, being susceptible to spurious

correlations, and requiring too many training examples and intractable computational re-

sources (Murphy & Medin, 1985; Schank, Collins, & Hunter, 1986; Mitchell, et al., 1986).

Explanation-based models have been criticized for requiring a complete, correct, consistent,

and tractable domain theory, only learning deductive consequences of existing knowledge,

and only increasing speed of processing rather than capability (Dietterich, 1986; Mitchell at

al., 1986).

Addressing these problems usually entails integrating empirical and analytical methods.

Consequently, there has been a growing interest in this subject in both machine learning

and cognitive psychology. Dozens of machine learning systems that integrate theory and

data have been developed over the last several years (Segre, 1989; Birnbaum & Collins,
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1991; Michalski & Teccuci, 1991). There has also been a growing number of psychological

experiments on the topic (Ahn & Brewer, 1988; Ahn, Brewer, & Mooney, in press; Pazzani,

1991; Wisniewski, 1989; Wisniewski & Medin, 1991).

Existing methods for integrating theory and data in learning can be divided into three

broad, overlapping categories.

� Theory as bias: The fundamental \problem of induction" is that there are multiple

hypotheses consistent with any set of empirical data. Domain theories can be used to

prefer certain hypotheses.

� Theory revision: Empirical data can be used to revise domain theories that draw

incorrect conclusions.

� Theory for data interpretation: Theories can change or enhance the representation of

data. For example, theories can derive abstract features from raw perceptual data.

A growing number of machine learning systems are attempting to integrate theory and data

in one or more of these ways. Researchers have explored various ways of using domain

theories to bias empirical learning (Flann & Dietterich, 1989; Hirsh, 1990; Cohen, 1990;

Pazzani, 1991). Many of these systems employ an overly-general theory that admits too

many examples as members of a category, but is speci�c enough to constrain the hypotheses

considered by induction. A number of other recent systems attempt to revise a domain

theory to �t empirical data (Ginsberg, 1990; Rajamoney, 1990; Danyluk, 1991; Towell &
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Shavlik, 1991). However, all of these systems have important restrictions on the type of

theories they can revise and the kinds of errors they can correct. Finally, several systems

have been developed that use theories to interpret data (Michalski, 1983; Drastal, Czako,

& Raatz, 1989). These system generally use rules that derive additional features from the

initial description of an example.

This paper describes two recent systems and discusses their psychological relevance. Sec-

tion 4 discusses IOU, a system that uses a domain theory to bias induction. Section 5

discusses Either, a system that performs theory revision and uses theory for data interpre-

tation.

4 Induction Over the Unexplained

This section describes a machine learning system that uses empirical and explanation-based

methods to learn di�erent parts of a concept de�nition. Many concepts have both explana-

tory and nonexplanatory aspects. For example, scripts for events such as a birthday party

or a wedding have goal-directed as well as ritualistic actions. Concepts for artifacts such as

a cup or a building have functionally important features as well as aesthetic or conventional

ones. Animals have some attributes with clear survival value as well as more obscure fea-

tures. Diseases have some symptoms that can be causally explained by current biological

theory as well as others that are simply known to be correlated with the condition.

In IOU (Induction Over the Unexplained), explanation-based methods are used to learn
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the part of the concept de�nition that can be explained by an underlying domain theory.

Empirical methods are used to learn the part of the concept de�nition consisting of unex-

plained regularities in the examples. First, IOU uses an existing domain theory to explain

each example. It then extracts their explainable features as part of the concept de�nition.

Explainable features are then removed from the examples and the reduced example de-

scriptions are passed to a standard empirical learning system. This system �nds additional

commonalities which are added to the �nal concept de�nition. A test example must meet

the requirements of the domain theory as well as the empirically learned de�nition in order

to be considered a member of the concept.

IOU uses its domain theory as a bias to prefer certain consistent concept de�nitions

over others. In particular, the system prefers to include features that can be explained as

relevant to the function or purpose of the concept. IOU can also be viewed as using theory

to interpret and modify data, since it removes explained features and performs induction

using only the unexplainable features of the examples.

4.1 IOU Problem and Algorithm

The general problem IOU addresses is theory-based concept specialization as de�ned by Flann

& Dietterich (1989). The system is assumed to have a domain theory for a generalization of

the concept to be learned. A de�nition of the speci�c problem addressed by IOU is given in

Table 1. The current implementation of IOU employs a feature-based description language
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Table 1: The IOU Problem.

Given:

� A set of positive and negative examples of an intended concept, C

i

� A propositional Horn-clause domain theory for an explainable concept, C

e

that is a gener-

alization of the intended concept, i.e. C

i

! C

e

.

Determine:

A de�nition for the intended concept in terms of observable features that is consistent with

the examples and a specialization of the explainable concept.

that includes binary, discrete, and real-valued attributes. A domain theory is restricted to a

set of propositional Horn clauses

2

that can include feature value pairs (color=red), numerical

thresholds (length < 3), and binary propositions (has-handle).

As an example of a problem suitable for IOU, consider a slight variation of the cup

example introduced earlier. The standard functional de�nition is more accurately considered

a de�nition of a drinking vessel rather than a cup since it cannot actually distinguish between

cups, glasses, mugs, shot glasses, etc.. Therefore, assume the overly-general explainable

concept is drinking-vessel, de�ned as:

stable & liftable & open-vessel ! drinking-vessel.

Assume that the examples available are those shown in Table 2. The problem is to use the

domain theory to learn the explainable features of a cup (at-bottom, has-concavity etc.) and

to use empirical techniques to learn the nonexplanatory features (volume=small) that rule

2

A propositional Horn clause a rule of the form A

1

&A

2

&:::A

n

! C where all A

i

and C are simple

propositions such as graspable or color=black.
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Table 2: Examples for Learning Cup.

cup-1 (+) cup-2 (+) shot-glass-1 (-) mug-1 (-) can-1 (-)

has-bottom true true true true true

at-bottom true true true true true

has-concavity true true true true true

upward-pointing true true true true true

lightweight true true true true true

has-handle true false false true false

width small small small medium small

insulating false true true false false

color white red white copper silver

volume small small tiny large small

shape cylinder cylinder cylinder cylinder cylinder

out shot glasses and mugs.

Table 3 shows the basic IOU algorithm. Step one uses standard explanation-based tech-

niques to generalize each of the positive examples. The explanation of cup-1 is the same as

that shown in Figure 1, except the goal concept is drinking-vessel instead of cup. The explana-

tion of cup-2 di�ers only on how it is shown to be graspable. The resulting explanation-based

generalizations are:

cup-1: has-bottom & at-bottom & has-handle & lightweight & has-concavity &

upward-pointing-concavity

cup-2: has-bottom & at-bottom & width=small & insulating & lightweight & has-

concavity & upward-pointing-concavity

Step two simply combines the explanation-based generalizations disjunctively and factors
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Table 3: The Basic IOU Algorithm.

1. Using the domain theory, show that each of the positive examples is a member of the

explainable concept and generalize them using explanation-based learning.

2. Disjunctively combine the resulting generalizations to form the explanatory part of the

the de�nition, D

e

.

3. Discard any negative examples that do not satisfy this explanatory component.

4. Remove the explainable features inD

e

from the descriptions of the remaining examples.

5. Give the \reduced" set of examples to a standard empirical learning system to compute

the unexplainable component of the de�nition, D

u

.

6. Output: D

e

&D

u

as the �nal concept description.

out common expressions. For the sample problem, this produces the following explanatory

component:

D

e

: has-bottom & at-bottom & lightweight & has-concavity & upward-pointing-

concavity & (width=small & insulating OR has-handle)

Step three discards negative examples that do not even satisfy the explanatory component.

These negative examples are already eliminated as potential members of the intended concept

and require no further consideration. In the sample problem, the negative example can-1

can be discarded. Although it is a stable open-vessel, it is not graspable, because it is not

insulating nor does it have a handle. Therefore it cannot function as a drinking vessel for

hot and cold liquids.
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Table 4: Reduced Examples for Learning Cup.

cup-1 (+) cup-2 (+) shot-glass-1 (-) mug-1 (-)

color white red white copper

volume small small tiny large

shape cylinder cylinder cylinder cylinder

Step four removes the explainable features of the remaining examples to allow the em-

pirical component to focus on their unexplainable aspects. The resulting reduced set of data

for the sample problem is shown in Table 4. In step �ve, the unexplained data is given to

a standard empirical system for learning from examples. We normally use a version of ID3

(Quinlan, 1986) as the empirical component. ID3 builds decision trees which IOU trans-

lates into a set of rules so that the �nal concept de�nition is in a uniform language. For

the sample problem, ID3 generates the description volume=small for discriminating the cups

from the shot glass and the mug. Like many rule-based induction systems, ID3 is biased

towards simple, more-general descriptions, and this is the simplest description of the cups

that excludes the non-cups.

However, ID3 is not a particularly good algorithm for modeling human empirical learning.

Because it tries to construct a minimal discriminant description, it can fail to capture all of

the similarities among the positive examples. Therefore, a standard most-speci�c-conjunctive

(MSC) learning algorithm (Haussler, 1988) can also be used as the empirical component of

IOU. Early experiments by Bruner, Goodnow, and Austin (1956) indicated that human

subjects frequently use the MSC strategy (which they call wholist) when learning concepts
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from examples. This algorithm simply forms the conjunction of all feature-value pairs present

in all of the positive examples. For the examples in Table 4, this method produces the

description: volume=small & shape=cylinder.

The �nal step of IOU simply combines the explanatory and nonexplanatory components

into a �nal concept de�nition. This produces the following de�nition for cup:

has-bottom & at-bottom & lightweight & has-concavity & upward-pointing-concavity

& (width=small & insulating OR has-handle) & volume=small & shape=cylinder !

cup.

IOU actually maintains the explanatory and nonexplanatory components separately in order

to allow them to be treated di�erently during classi�cation (see Section 4.2.2).

It is informative to compare IOU's results on this simple problem to those of purely

empirical learning systems. When ID3 is run by itself on the data in Table 2, the extra

example can-1 causes color to be the most informative feature and the system produces the

following rule:

color=red OR (color=white & has-handle) ! cup

ID3 would clearly need many more examples to learn the correct concept. Applying the

MSC algorithm to the examples in Table 2 generates the description:

has-bottom & at-bottom & lightweight & has-concavity & upward-pointing-concavity

& width=small & volume=small & shape=cylinder ! cup.
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This description is inconsistent with the training data since it still covers the negative ex-

ample can-1. This is because the correct de�nition of the concept requires disjunction (i.e.

there are no necessary and su�cient conditions). IOU uses the domain theory to learn the

disjunctive portion of the concept, speci�cally, the two alternative ways to achieve graspabil-

ity. Mooney (in press) presents additional theoretical and experimental evidence that IOU

learns more accurate concepts from fewer examples than pure empirical learning methods.

In its current implementation, IOU is a \batch" learning system and processes all of

the training examples at once. However, the basic algorithm is easily made incremental

if the empirical learner is itself incremental. The explanatory part of the de�nition can

be assembled incrementally by disjunctively adding the explanation-based generalization

of each new positive example. Also, each time a new example is encountered it is either

discarded as an unprovable negative example or its explainable features are removed and the

remaining features are passed along to the empirical component, which incrementally forms

the nonexplanatory part of the de�nition. For example, one could use an incremental version

of ID3 (e.g. Utgo�'s (1989) ID5) or the MSC algorithm (which is naturally incremental).

4.2 Psychological Relevance of IOU

Although some of the ideas underlying IOU were derived from psychological results, it was

not speci�cally designed as a model of human category learning. Nevertheless, there are two

recent psychological studies that are relevant to viewing IOU as a cognitive model. First,
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there is an experiment by Ahn and Brewer (1988) that motivated the development of IOU

by demonstrating that subjects learn explanatory and nonexplanatory aspects of a concept

separately. Second, there is an experiment byWisniewski (1989) demonstrating that subjects

learn di�erent concepts from the same examples depending on whether or not they are told

the function of the categories.

4.2.1 Learning Explanatory and Nonexplanatory Information

Some recent experiments by Ahn and Brewer (1988) were one of the original motivations

behind the development of IOU. These experiments were designed to follow up previous ex-

periments by Ahn, Mooney, Brewer, and DeJong (1988) that investigated subjects' ability to

use explanation-based learning to acquire a plan schema from a single instance. The original

experiments revealed that, like an explanation-based system, human subjects could acquire

a general plan schema from a single speci�c instance described in a narrative. The follow-up

experiments explored subjects' ability to learn event schemata that contain both explainable

and unexplainable (conventional) aspects after receiving only a single example, and after

receiving multiple examples. For example, one of the schemata used in the experiments is

the potlatch ceremony conducted by American Indian tribes of the Northwest. If one has

the appropriate knowledge regarding the goals and customs of these Indians, many aspects

of the potlatch ceremony can be explained in terms of a plan to increase the social status

of the host. However, there are also a number of ritualistic features of the ceremony that
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cannot be explained in this manner.

The results of this experiment indicated that the explainable aspects of the potlatch

ceremony were acquired after exposure to only a single instance, while the nonexplanatory

aspects of the ceremony were only acquired after multiple instances were presented. This

supports the view that people use di�erent learning mechanisms to acquire these di�erent as-

pects of a concept, as in the IOUmethod. Subjects were also asked to rate their con�dence in

their assertions that a component is a part of the general ceremony. The subjects' con�dence

ratings for explanatory components were signi�cantly higher than for nonexplanatory ones

after both one and two instances. Also, multiple examples increased subjects' con�dence and

accuracy with respect to nonexplanatory components but not with respect to explanatory

ones. This suggests that, like IOU, people treat explanatory and nonexplanatory aspects of

a concept di�erently.

4.2.2 Simulating the E�ects of Functional Knowledge

This section demonstrates IOU's ability to model the speci�c results of some additional

psychological experiments exploring the e�ect of background knowledge on concept learning

(Wisniewski, 1989). It is important to note that IOU was not speci�cally designed to simulate

these results, but rather the basic method was already developed when the author learned of

the results of this experiment. In Wisniewski's experiment, two groups of subjects performed

a standard learning-from-examples task. Both groups received the same examples, but one
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group, the function group, was told the functions of the two categories to be discriminated and

the other, the discrimination group, was not. For example, the function group was told that

one category was used for killing bugs and the contrast category was used for wallpapering.

Examples were described by a number of features. A particular feature value could be

either predictive or nonpredictive of a particular category. In the training set containing 15

examples of each category, all examples containing a predictive feature value of a category

were members of that category and 80% of the category members had the predictive feature

value (the other 20% were missing a value for this feature). Nonpredictive feature values

occurred equally often in both categories. A feature value was also core or super�cial. A

core feature value was relevant to a category's function, while a super�cial one was not.

For example \contains poison" was a core feature value of the category whose function was

\for killing bugs," while \manufactured in Florida" was super�cial. Each category contained

three super�cial feature values (two predictive and one nonpredictive) and two core feature

values (one predictive the other nonpredictive). The super�cial-nonpredictive feature value

of a category was the core-nonpredictive feature value of its contrast category. Table 5 shows

the di�erent types of features for two contrasting categories used in the experiment. Each

training example of a category contained 4 of the 5 characteristic features from this table.

Each training example also had two additional features with random values. An example of

a training example in the category \mornek" is:
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Table 5: Di�erent Feature Types for Experimental Categories.

Mornek Plapel

Function: for killing bugs Function: for wallpapering

sprayed on plants C-P sprayed on walls C-P

contains poison C-NP contains poison S-NP

contains a sticky substance S-NP contains a sticky substance C-NP

stored in a garage S-P stored in a basement S-P

manufactured in Florida S-P manufactured in Ohio S-P

C-P: core predictive C-NP: core non-predictive

S-P: super�cial predictive S-NP: super�cial non-predictive

sprayed on plants, contains poison, contains a sticky substance, stored in a garage,

manufactured in Florida, best if used in 1 year, comes in 16 oz container.

where the example is missing only one of the characteristic features of \morneks" (sprayed

on plants) and the last two features have random values.

After learning the training data, subjects were given 10 test examples of each category.

Each of the ten examples of a category contained more predictive features of that category

than the contrast category. Super�cial-core* test examples contained the two super�cial-

predictive feature values of the category and the two core feature values of the contrast

category. Core examples contained just the core feature values of the category, while su-

per�cial examples contained just the super�cial-predictive feature values. Core-super�cial

examples contained all of the core and super�cial feature values. Each test example also had

two extra random feature values. Sample test examples for the Mornek category are shown

in Table 6
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Table 6: Sample Test Items for Mornek.

super�cial-core* core

stored in a garage S-P contains poison C-NP

manufactured in Florida S-P sprayed on plants C-P

contains a sticky substance C-NP* best if used within 5 years R

sprayed on walls C-P* came in a 32-ounce container R

best if used within 1 year R

super�cial super�cial-core

stored in a garage S-P stored in a garage S-P

manufactured in Florida S-P manufactured in Florida S-P

best if used within 1 year R contains a sticky substance S-NP

came in a 16-ounce container R contains poison C-NP

sprayed on plants C-P

best if used within 1 year R

S-P: super�cial predictive S-NP: super�cial non-predictive

C-P: core predictive C-NP: core nonpredictive

C-P*: core predictive (of other class) C-NP*: core nonpredictive (of other class)

R: random

Subjects in both groups were asked to rate their con�dence in the category of each test

example on a scale of 1 to 7, where 1 was most con�dent for the \wrong" category and 7 most

con�dent for the \right" category. In general, the results demonstrated that subjects in the

function group attributed more relevance to the core feature values while the discrimination

group relied more heavily on super�cial predictive features (see Table 7). However, the

function group also made some use of super�cial-predictive features values, indicating they

were using a combination of empirical and explanation-based techniques.
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In the simulation, IOU was used to model the performance of the function group and a

standard most-speci�c-conjunctive empirical method (MSC) was used to model the discrim-

ination group. In both cases, the systems were given the same training and test examples

given to the subjects. Simple intuitive domain theories were constructed for connecting core

feature values to category membership. For example, IOU's overly-general theory for Mornek

is given below:

contact-bugs & deadly ! kills-bugs

contains-poison ! deadly

electric-shock ! deadly

sprayed-on=plants ! contact-bugs

emits-light & location=outdoors ! contact-bugs

The MSC method was also used as the empirical component of IOU. In order to accommodate

missing feature values, only features that appear with di�erent values in di�erent positive

examples are actually deleted from the most-speci�c conjunctive description. This has the

same e�ect as replacing missing features with their most probable value given the class

(Quinlan, 1986) before forming the MSC description.

Since all of the core and super�cial features of a category shown in Table 5 are either

present or missing a value in all of its examples, the most-speci�c conjunctive description

of a category contains all of these characteristic features. Since the two remaining features

(\best if used in" and \container size") have di�erent random values, they are dropped

22



from the MSC description. Since the two core features of each category are explained by

the domain theory, they comprise the explanatory component of IOU's concept description.

Since the super�cial features of a category are either present or missing a value in all of

its examples, they are all included in the MSC description of the unexplained features;

however, the random features are dropped. Therefore, IOU's category descriptions also

include all of the core and super�cial features of the category. However, IOU separates them

into explanatory and nonexplanatory components. For example, the concept description for

\morneks" produced by both IOU and MSC is (explanatory features are in small caps):

sprayed-on=plants& contains-poison& contains-sticky & stored-in=garage

& manufactured-in=orida

The following equation was used to produce a con�dence rating (1 � C � 7) for the test

examples:

C = 4 + 1:5(M

1

�M

2

)

M

1

and M

2

are match scores (�1 �M

i

� 1) for the two categories computed by examining

each feature-value pair in the most-speci�c-conjunctive description for the category and

scoring as follows: +1 if the example had the same value, 0 if the feature was missing, and

-1 if it had a conicting value. The result was scaled by dividing by the maximum possible

score. For IOU, explanatory (core) features were weighted more heavily by having them

count twice as much (i.e. the match score was incremented or decremented by 2 instead of
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Table 7: Average Con�dence Ratings for Test Examples

Subjects Simulation

Item Type Function Discrimination IOU MSC

super�cial-core* 4.00 5.02 3.79 4.60

core 6.16 5.93 5.07 4.60

super�cial 6.04 6.36 4.86 5.20

super�cial-core 6.43 6.54 5.71 5.80

1). This scoring technique is a simple method for obtaining a con�dence rating between 0

and 7 based on the degree to which an example matches the MSC description of each of the

two categories. Several other similar scoring mechanisms were tried without any signi�cant

e�ect on the qualitative results. The important factor is that the score is high when an

example matches the description of the �rst category more than the second and that it is

low when an example matches the description of the second category more than the �rst.

The qualitative results are also insensitive to the exact additional weighting assigned to the

explanatory features (a weighting factor of 1.5 or 3 works as well as 2).

Table 7 shows both the original experimental results and the results of the simulation.

Although the exact con�dence values of the simulation do not match the subjects, all of

the important di�erences mentioned by Wisniewski (1989) are present. For the super�cial-

core* items, the IOU (function) scores are lower than the MSC (discrimination) scores.

Although these items have the super�cial features of the \correct" category, they have the

core features of the contrast category causing the function group (and IOU) to rate them

lower. IOU (function group) scores the core items higher than the super�cial items, while
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MSC (discrimination group) scores the super�cial items higher than the core items. Finally,

the IOU (function) scores are lower than the MSC (discrimination) scores for the super�cial

items but higher for the core items.

All of these correctlymodeled e�ects stem from IOU's separation of concepts into explana-

tory and nonexplanatory components and its scoring procedure that weights the explanatory

features more heavily. Since IOU is unique among current integrated machine learning sys-

tems in separating its concepts into explanatory and nonexplanatory components, it seems

clear that other existing systems would be unable to model these results. However, the e�ects

are not particularly dependent on the speci�c details of the IOU algorithm; and therefore

other methods that include both explanatory and nonexplanatory features in their concepts

and weight the former more heavily may also be able to model these results.

5 Theory Revision in Either

IOU uses a theory to bias induction but it cannot modify a theory to account for anomalous

empirical data. Either (Explanation-Based and Inductive Theory Extension and Revision),

is a more recent system that can actually revise an existing domain theory to �t a set of data.

As revealed by explanation-based learning, category knowledge is frequently best viewed as

a complex set of interacting rules (a domain theory) rather than a simple set of features,

conditional probabilities, or exemplars. Some of these rules may have been learned from

direct instruction, and others may have been induced from examples of previously learned
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concepts. In any case, learning a new concept can involve using empirical data to revise an

existing domain theory by modifying, adding, or deleting rules.

Either is a complicated system that has evolved over several years of research. In this

paper, we only have space to present an overview of the basic system. However, it should be

noted that Either has already successfully revised two real-world rule-bases. One of these

identi�es biologically important DNA sequences called \promoters" and the other diagnoses

diseased soybean plants. Interested readers are referred to Ourston and Mooney (1990) and

Mooney and Ourston (1991b) for more details.

5.1 The Theory Revision Problem

Either combines explanation-based and empirical methods to provide a focused correction

to an imperfect domain theory. The explanation-based part of the system identi�es the

failing parts of the theory, and constrains the examples used for induction. The empirical

part of the system determines speci�c corrections to failing rules that renders them consistent

with the empirical data. Table 8 more precisely de�nes the problem addressed by Either.

It is di�cult to precisely de�ne the term \minimal" used to characterize the revision to be

produced. Since it is assumed that the original theory is \approximately correct" the goal

is to change it as little as possible. Syntactic measures such as the total number of symbols

added or deleted are reasonable criteria. Either uses various heuristic methods to help

insure that its revisions are minimal in this sense.
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Table 8: The Either Problem.

Given:

� A set of positive and negative examples of a concept each described by a set of observable

features.

� An imperfect propositional Horn-clause domain theory for the concept.

Determine:

A minimally revised version of the domain theory that is consistent with the examples.

OVERLY 
SPECIFIC

OVERLY 
GENERAL

MISSING
RULE

ADDITIONAL
ANTECEDENT

EXTRA
RULE

MISSING
ANTECEDENT

INCORRECT THEORY

Figure 3: Taxonomy of Incorrect Theories

A domain theory can be incorrect in various ways. Figure 3 shows a taxonomy of incorrect

theories. At the top level, theories can be incorrect because they are either overly-general

or overly-speci�c. An overly-general theory entails membership for some examples that

are not members of a category. One way a theory can be overly general is when rules

lack required antecedents, providing proofs for examples that should have been excluded.

Another way a theory can be overly-general is when a completely incorrect rule is present.
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Table 9: Examples for Theory Revision.

cup-1 (+) cup-2 (+) cup-3 (+) can-1 (-) bowl-1 (-) bowl-2 (-)

has-bottom true true true true true true

at-bottom true true true true true true

has-concavity true true true true true true

upward-pointing true true true true true true

lightweight true true true true true true

has-handle false true true false false false

width small medium medium small medium medium

insulating true true true false true true

color red blue tan gray red blue

volume small small small small small large

shape round round cylinder cylinder round round

By contrast, an overly-speci�c theory fails to entail membership for some examples of a

category. This can occur because the theory is missing a rule which is required in the proof

of concept membership, or because existing rules have additional antecedents that exclude

concept members. Consequently, incorrectly classi�ed examples can be of two types. A

failing positive refers to an example that is not provable as a member of its own category.

This indicates a need for generalizing the theory by adding rules or deleting antecedents. A

failing negative refers to an example that is provable as a member of a category other than

its own. This indicates a need to specialize a theory by adding antecedents or deleting rules.

As a concrete example, consider various errors that might occur in the theory for cup

(drinking-vessel) introduced in Section 2. Assume the set of training examples is shown in

Table 9. These examples di�er only in graspability. If the theory is missing the rule: has-

handle! graspable, then cup-2 and cup-3 can no longer be shown to be cups and are therefore
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failing positives, indicating that the theory needs to be generalized. If the theory is missing

the antecedent width=small from the rule: width=small & insulating ! graspable, then bowl-1

and bowl-2 can be incorrectly shown to be cups and are therefore failing negatives, indicating

that the theory needs to be specialized. If the theory has both of these faults, then cup-2 is

a failing positive and bowl-1 and bowl-2 are failing negatives. Given the examples in Table 9,

Either can revise the theory to correct for either or both of these faults.

5.2 Overview of the Theory Revision Algorithm

This section reviewsEither's basic revision method, which integrates deductive, abductive

3

,

and inductive reasoning. The system's top-level architecture is shown in Figure 4. Either

�rst attempts to �x failing positives by removing or generalizing antecedents and to �x

failing negatives by removing rules or specializing antecedents since these are simpler and

less powerful operations. Only if these operations fail does the system resort to the more

powerful technique of using induction to learn new rules to �x failing positives, and to learn

new antecedents to add to existing rules to �x failing negatives.

Either initially uses deduction to identify failing positives and negatives among the

training examples. It uses the proofs generated by deduction to �nd a near-minimal set

of rule retractions that would correct all of the failing negatives. During the course of the

correction, deduction is also used to assess proposed changes to the theory as part of the

3

Abduction is the process of �nding sets of assumptions that allow an observation to be explained (Peirce,

1931-1958; Charniak & McDermott, 1985)
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Figure 4: Either Architecture

generalization and specialization processes.

Either uses abduction to initially �nd the incorrect part of an overly-speci�c theory.

In Either, abduction identi�es sets of assumptions that allow a failing positive to become

provable. These assumptions identify rule antecedents (called conicting antecedents) that,

if deleted, would properly generalize the theory and correct the failing positive. Either

uses the output of abduction to �nd a near-minimum set of conicting antecedents whose

removal would correct all of the failing positives.

If rule and antecedent retraction are insu�cient, induction is used to learn new rules

or to determine additional antecedents to add to existing rules. Either uses the output

of abduction and deduction to determine an appropriately labeled subset of the training
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examples to pass to induction in order to form a consistent correction. Either currently

uses a version of ID3 (Quinlan, 1986) as its inductive component. As in IOU, the decision

trees returned by ID3 are translated into equivalent rules. The remaining components of

the Either system constitute generalization and specialization control algorithms, which

identify and specify the types of corrections to be made to the theory.

As an example of the generalization process, consider missing the has-handle rule from the

theory for cups. This results in cup-2 and cup-3 becoming failing positives. These examples

are almost provable as cups except they cannot be shown to be graspable. Consequently, Ei-

ther �rst focuses on the remaining rule for graspable and attempts to retract the antecedent

width=small in order to make the failing positives provable. However, this over-generalizes

and results in bowl-1 and bowl-2 becoming failing negatives. Consequently, the system uses

cup-2 and cup-3 as positive examples and bowl-1 and bowl-2 as negative examples to induce

a new rule for graspable. Since the single feature has-handle distinguishes these examples,

ID3 induces the correct rule: has-handle ! graspable.

As an example of the specialization process, consider missing the antecedent width=small

from the rule width=small & insulating ! graspable. Either �rst attempts to retract the

resulting overly-general rule: insulating ! graspable, in order to remove the faulty proofs

of the failing negatives, bowl-1 and bowl-2. The system focuses on this rule because its

removal eliminates the faulty proofs of the failing negatives while minimizing the number

of failing positives created in the process. Since retracting this rule does create one failing
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positive (cup-1) the system decides it needs to specialize the rule by adding antecedents.

Consequently, the system uses cup-1 as a positive example and bowl-1 and bowl-2 as negative

examples and passes them to ID3. Since the value of the single feature width distinguishes

these examples, ID3 �nds the correct missing antecedent width=small and adds it to the

overly-general rule for graspable.

5.3 Theory for Data Interpretation

Either also uses its theory to augment the representation of examples prior to passing them

to induction. Using a process frequently referred to as constructive induction (Michalski,

1983; Drastal et al., 1989; Mooney and Ourston, 1991a), the domain theory is used to deduce

higher-level features from the observable features describing the examples. Speci�cally, when

using induction to learn a new rule or to determine which antecedents to add to an existing

rule, forward deduction is used to identify the truth values of all intermediate concepts

4

for each of the failing examples. Intermediate concepts that can be deduced are then fed to

the inductive learner as additional features. If the truth value of an intermediate concept is

highly correlated with the class of the failing examples, then it is likely to be used by the

inductive learner.

For example, assume that the cup theory is missing the rule for liftable, but is otherwise

correct. Performing forward deduction on the failing positives (all of the cup examples in

4

An intermediate concept is any term in a domain theory that is neither an observable feature used to

describe examples nor a category into which examples are to be eventually classi�ed.
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this case) will always add the feature graspable, since all cups are graspable. Therefore,

the description of the positive examples is augmented with the higher-level feature graspable

prior to being used for induction. In other words, the existing theory is used to interpret and

redescribe the examples. Since the added graspable feature helps to discriminate between the

positive and negative examples of liftable, it is very likely to be used by the empirical learner.

Consequently, when the rule for liftable is removed from the theory, Either usually relearns

the correct rule (graspable & lightweight ! liftable) after 20 random training examples.

As another example of this process, assume the cup theory is missing the top-level rule:

stable & liftable & open-vessel! cup, but is otherwise correct. In this case, forward deduction

adds the features stable, liftable, and open-vessel to each of the positive examples. These high-

level features can then be used by the inductive subsystem to help discriminate the positive

and negative examples. Consequently, when the cup rule is removed from the theory, Either

usually relearns the correct rule after about 30 random training examples. If the theory is

not used to interpret the data, then 80 examples are usually required to learn the correct

de�nition of cup directly in terms of observable features.

5.4 Psychological Relevance of Either

Like IOU, Either was not speci�cally designed to model human category learning; how-

ever, many of its basic goals and methods have some psychological relevance. In particular,

Wisniewski and Medin (1991) report some relevant psychological results on theory revision
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Figure 5: Sample Drawings from Wisniewski & Medin (1991)

and data interpretation. Their experiments studied subjects learning to categorize children's

drawings of a person. Some of the drawings used in the experiments are shown in Figure 5.

The methodology is a basic learning from examples paradigm except one group of subjects,

the standard group, were given meaningless category names while subjects in the theory group

were given meaningful names such as \drawings by high IQ children" vs. \drawings by low

IQ children" or \drawings by farm children" vs. \drawings by city children." Subjects in

both groups were asked to write down a rule for each category that someone else could use

to accurately categorize the drawings.

One aspect of the subjects' rules that Wisniewski and Medin analyzed was the degree of

abstraction. They divided rules into the following three types:
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Table 10: Frequency of Rule Types

Standard Group Theory Group

Concrete Rules 81% 35%

Abstract Rules 16% 37%

Linked Rules 3% 28%

� Concrete: Consisting of simple features that are easily observable, e.g. \buttons or

stripes on their shirts and dark, thick hair."

� Abstract: Consisting of features that are more complex, higher level, or less perceptual,

e.g. \look more normal."

� Linked: Consisting of connected abstract and concrete features, e.g. \added more

detail such as teeth."

They found that subjects in the theory group produced more abstract and linked rules

compared to the standard group. The speci�c results are shown in Table 10. These results

are nicely explained by the hypothesis that subjects in the theory group are using their

background theories to interpret the data. Like Either adding graspable to its description

of a cup, they are inferring abstract features and adding them to the data before inducing

a rule. Linked rules occur because the subjects are also writing down the concrete features

from which their abstract features were derived.

Wisniewski and Medin also note that subjects given di�erent meaningful labels for cat-

egories extract di�erent high-level features from the drawings. A subject told that the
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drawings in Category 1 of Figure 5 were drawn by creative children interpreted the part

of drawing 5 indicated by the arrow as \buttons." The subject mentioned this feature as

evidence for detail, which implied creativity. On the other hand, a subject told that this

�gure was drawn by a city child interpreted it as a \tie." This subject mentioned the feature

as evidence that the person was a business-person, implying it was drawn by a city per-

son. This phenomenon is nicely explained by the hypothesis that di�erent category labels

\activate" di�erent domain theories and therefore result in di�erent abstract features being

derived from the perceptual data.

Wisniewski and Medin also found evidence for theory revision in their results. Based on

the data, subjects would sometimes change their de�nition of an abstract feature. In one

particular case, a subject mentioned that a drawing depicted detailed clothing and therefore

must have been drawn by a creative child. When told that the drawing was done by a

noncreative child, they changed their de�nition for what counted as \detail." This is similar

to Either altering its de�nition of graspable after misclassifying some examples or counter-

examples of cups. In another case, a subject initially stated that a drawing was done by

a city child because \it looks very detailed, has colored-in places." When told that it was

actually drawn by a farm child, the subject specialized his/her rule: detail ! city-child by

adding a constraint induced from the data. Speci�cally, the person stated that \drawings

with detail in speci�c clothing is more of a rule for city kids { not detail in body movement

as this one had."
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6 Conclusions

Recent results in both machine learning and cognitive psychology demonstrate that e�ective

category learning involves an integration of theory and data. Theories can bias induction and

alter the representation of data, and conicting data can result in theory revision. This paper

has reviewed two recent machine learning systems that attempt to integrate theory and data.

IOU uses a domain theory to acquire part of a concept de�nition and to focus induction on

the unexplained aspects of the data. Either uses data to revise an imperfect theory and

uses theory to add abstract features to the data. Recent psychological experiments reveal

that subjects perform many of the same operations as these machine learning systems. Like

IOU, people separate category de�nitions into explanatory and nonexplanatory components,

acquire explanatory components earlier, and have more con�dence in explanatory aspects.

Like Either, people use background theories to derive abstract features from the data, and

revise portions of their theories to account for conicting data.

Nevertheless, in many ways, current machine learning systems are not nearly as adept

as people at integrating theory and data in learning. Particular areas requiring further re-

search concern revising probabilistic and relational theories. Most current integrated learning

systems are restricted to theories expressed in propositional logic. Consequently, they are

incapable of reasoning about their con�dence in their theories and conclusions, and cannot

handle complex, relational descriptions that require the expressive power of �rst-order pred-
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icate logic. These areas of machine learning are just beginning to be explored (Richards &

Mooney, 1991; Pazzani, Brunk & Silverstein, 1991; Fu, 1989). In general, the interaction

between theory and data in learning has just begun to be investigated.

From a machine-learning perspective, methods for integrating theory and data in learning

can greatly improve the development of intelligent systems. Standard methods for building

knowledge bases by interviewing experts are laborious and error-prone. Standard machine

learning methods for learning from examples are also inadequate since one rarely has enough

data to induce a complete and correct knowledge base from scratch. In addition, machine-

induced knowledge fails to make use of existing human concepts and is therefore frequently

unable to provide comprehensible explanations for the conclusions it warrants. Theory re-

vision, on the other hand, allows a system to accept an incomplete, approximate knowledge

base and re�ne it through experience. People acquire expertise through a combination of

abstract instruction and experience with speci�c cases, and machine learning systems that

integrate theory and data are trying to successfully emulate this approach.

From a psychological perspective, methods for integrating theory and data can hopefully

improve our understanding of human category learning. Arti�cial learning problems that

minimize the role of prior knowledge are not representative of the categorization problems

that people confront every day. Machine learning algorithms that can simulate psychological

data on the e�ect of prior knowledge on learning can provide valuable insight into how people

learn in more natural settings. In turn, understanding the speci�c ways in which theory and
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data interact in human learning can hopefully lead to the development of more e�ective

educational methods for combining the presentation of abstract rules and principles with

concrete examples.
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