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Communicating with natural language interfaces is a long-standing, ul-

timate goal for artificial intelligence (AI) agents to pursue, eventually. One

core issue toward this goal is “grounded” language learning, a process of learn-

ing the semantics of natural language with respect to relevant perceptual in-

puts. In order to ground the meanings of language in a real world situation,

computational systems are trained with data in the form of natural language

sentences paired with relevant but ambiguous perceptual contexts. With such

ambiguous supervision, it is required to resolve the ambiguity between a natu-

ral language (NL) sentence and a corresponding set of possible logical meaning

representations (MR).

In this thesis, we focus on devising effective models for simultaneously

disambiguating such supervision and learning the underlying semantics of lan-

guage to map NL sentences into proper logical MRs. We present probabilistic
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generative models for learning such correspondences along with a reranking

model to improve the performance further.

First, we present a probabilistic generative model that learns the map-

pings from NL sentences into logical forms where the true meaning of each

NL sentence is one of a handful of candidate logical MRs. It simultaneously

disambiguates the meaning of each sentence in the training data and learns to

probabilistically map an NL sentence to its corresponding MR form depicted

in a single tree structure. We perform evaluations on the RoboCup sportscast-

ing corpus, proving that our model is more effective than those proposed by

previous researchers.

Next, we describe two PCFG induction models for grounded language

learning that extend the previous grounded language learning model of Börschinger,

Jones, and Johnson (2011). Börschinger et al.’s approach works well in sit-

uations of limited ambiguity, such as in the sportscasting task. However, it

does not scale well to highly ambiguous situations when there are large sets

of potential meaning possibilities for each sentence, such as in the navigation

instruction following task first studied by Chen and Mooney (2011). The two

models we present overcome such limitations by employing a learned semantic

lexicon as a basic correspondence unit between NL and MR for PCFG rule

generation.

Finally, we present a method of adapting discriminative reranking to

grounded language learning in order to improve the performance of our pro-

posed generative models. Although such generative models are easy to imple-
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ment and are intuitive, it is not always the case that generative models per-

form best, since they are maximizing the joint probability of data and model,

rather than directly maximizing conditional probability. Because we do not

have gold-standard references for training a secondary conditional reranker,

we incorporate weak supervision of evaluations against the perceptual world

during the process of improving model performance.

All these approaches are evaluated on the two publicly available do-

mains that have been actively used in many other grounded language learning

studies. Our methods demonstrate consistently improved performance over

those of previous studies in the domains with different languages; this proves

that our methods are language-independent and can be generally applied to

other grounded learning problems as well. Further possible applications of

the presented approaches include summarized machine translation tasks and

learning from real perception data assisted by computer vision and robotics.
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Chapter 1

Introduction

Understanding and learning the semantics of natural language is one

of the long-standing, ultimate goals of artificial intelligence (AI) and natural

language processing (NLP) research. It is a core ability of computers to com-

municate with humans in as natural a way as humans do among themselves,

as opposed to using structured and digitized methods such as mouse clicks

and keyboard inputs. This is the ultimate objective for intelligent systems to

pursue.

“Language grounding,” a process of mapping natural language to rele-

vant aspects of a surrounding perceptual environment, is one approach to this

goal. A human child “grounds” language in perceptual contexts via repetitive

exposure to the co-occurrence of language and perception. Recent research

supports the idea that the human language learning process also happens in a

statistical manner (Saffran, Johnson, Aslin, & Newport, 1999; Saffran, 2003).

Ideally, language grounding systems should be able to mimic the language

learning process of humans.

A number of researchers have attempted to model the grounded lan-

guage learning of humans (Bailey, Feldman, Narayanan, & Lakoff, 1997; Roy,
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2002; Barnard, Duygulu, Forsyth, de Freitas, Blei, & Jordan, 2003; Yu & Bal-

lard, 2004; Gold & Scassellati, 2007; Fleischman & Roy, 2008; Branavan, Chen,

Zettlemoyer, & Barzilay, 2009; Liang, Jordan, & Klein, 2009; Vogel & Juraf-

sky, 2010; Feng & Lapata, 2010; Branavan, Silver, & Barzilay, 2011; Tellex,

Kollar, Dickerson, Walter, Banerjee, Teller, & Roy, 2011). All these previous

studies are related to one or more fields of AI research including computer vi-

sion, robotics, natural language processing, cognitive science, and psychology.

Although these studies confront the problem from varying perspectives, their

common objective is to connect underlying meanings of natural language to

surrounding raw perceptions that are naturally observed.

Many other previous approaches try to understand the semantics of

language in a way that finds the direct relevance of language to real world

perceptions in order to perform actual tasks. In contrast in the present study,

we concentrate more on language learning itself, while minimizing other issues

concerning real perceptions that might involve computer vision or robotics.

Thus, we simplify the problem by abstracting real perceptions into machine-

interpretable logical forms using off-the-shelf automated systems. That way,

we need only need be concerned about how language is connected to the com-

ponents of logical forms. This is advantageous in that we can avoid the exces-

sive complexity that could potentially occur with noisy raw sensory or visual

data and free-form natural language. It also simplifies the entire problem by

dividing it in two: language understanding solved with natural language pro-

cessing, and perception understanding handled by computer vision, cognitive

2



science, and/or robotics.

Semantic parsing is an area of research that investigates how to trans-

late and interpret meanings of complete natural language (NL) sentences into

formal, logical meaning representations (MR) (Zelle & Mooney, 1996; Zettle-

moyer & Collins, 2005; Kate & Mooney, 2006; Wong & Mooney, 2006, 2007b;

Zettlemoyer & Collins, 2007; Lu, Ng, Lee, & Zettlemoyer, 2008; Zettlemoyer

& Collins, 2009). Conventional semantic parsing approaches require fully an-

notated corpora where one NL sentence is paired with one translated complete

logical form. Typically, they are trained in a supervised manner with a few

hundred to a few thousand one-to-one annotated training example pairs. Al-

though such conventional methods have been proven to work well in several

domains, it is a non-trivial task to extend these methods to large-scale systems.

We need the assistance of human experts to create the necessary parallel cor-

pora, and we especially need the specialists who have knowledge in the fields

of both natural and formal languages. Therefore, the entire process of such

annotation is inevitably very time-consuming and difficult to accomplish.

Instead, inspired by how a human child learns natural language, the

present study focuses on more relaxed, natural settings of supervision. The

training data usually consists of each NL sentence along with multiple, poten-

tially relevant logical forms describing the current perceptual states. However,

our goal is not to mimic precisely a human language learning mechanism.

Rather, we seek to learn the semantics of language more naturally by getting

ambiguously supervised data, which are usually easier to obtain. Normally,
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the data can be collected in such a way that humans first produce NL ut-

terances describing a certain phenomenon/action/state while all the relevant

surrounding perceptions are recorded separately through an automated pro-

cess without costly additional human annotation. In this sense, the language

learning systems used in the present study “ground” language naturally with

surrounding perceptions.

In this thesis, we explore several approaches to solving the problems

of grounded language learning. In the typical setting of such problems, we

face referential ambiguity in that an NL description may refer to one or more

potentially relevant perceptions formalized by a large set of MRs, and this is

the major challenge of grounded language learning. We investigate generative

methods that integrate and describe NL segments and logical components in

a single hierarchical structure, as well as resolving such ambiguity in a proba-

bilistic framework. In addition, these generative models also learn how to map

novel NL sentences into proper logical forms by simultaneously disambiguating

ambiguous supervision.

We evaluate our methods in two different domains with different lev-

els of ambiguity. First, we describe a simultaneous alignment and semantic

parsing model that solves the previous task of learning how to sportscast in

virtual RoboCup 2D soccer games (Chen & Mooney, 2008). The training

data consists of NL commentary on the recorded videos of games as well as

automatically extracted logical forms representing abstracted events happen-

ing concurrently. Thus, the training data have inherent ambiguity in that
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each NL commentary has zero or one true meaning out of several candidates

for meanings. Chen and Mooney (2008) first attempted to solve this chal-

lenge via a hard Expectation-Maximization (EM) algorithm that is developed

by Kate and Mooney (2007) for artificially created data. This approach is

likely to suffer from information loss, because in each retraining iteration, the

model learns parameters from only the most probable MR match for each NL

sentence. By contrast, the generative model proposed in the present study

probabilistically selects the correct alignment as well as subsequent compo-

nents of logical forms and natural language words and retains probabilistic

counts for such relationships. Our approach is capable of disambiguating the

match between language and meanings while also learning a complete seman-

tic parser for mapping sentences to logical forms. Evaluation results on the

RoboCup sportscasting domain show that our approach outperforms previ-

ous results on the NL–MR alignment task and language generation and also

produces competitive performance on semantic parsing.

Next, we present two unsupervised probabilistic context-free grammar

(PCFG) induction models evaluated on the navigation task previously inves-

tigated by Chen and Mooney (2011). The navigation task involves a much

higher level of ambiguity. In this task, each instruction is paired with a for-

mal landmarks plan that includes a full description of the observed actions

and world-states that result when someone follows this instruction. The main

challenge here is that the instruction refers to only a subset of this full de-

scription, which inevitably results in exponentially many potential alignments
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between each NL instruction and its correct logical form. Our model is a

novel enhancement of an existing grounded language learning approach using

unsupervised induction of PCFGs (Börschinger et al., 2011). Our model uses

semantic lexemes as the basic building blocks for PCFG rules to avoid a com-

binatorial explosion in the number of matchings between components of NL

words and logical forms. The semantic lexicon confines the PCFG rule set to a

tractable size compared to Börschinger et al.’s approach, while still exploiting

full probabilistic predictions. We present two versions of such a PCFG induc-

tion model, one of which follows the hierarchy of semantic concepts while the

other uses a more simplified unigram generation of concepts. Experimental

results show our approaches are better than those of previous studies both in

partial parsing accuracy and in end-to-end execution results.

Furthermore, we introduce a discriminative reranking (Collins, 2000)

approach to improve the performance of the proposed generative models. Dis-

criminative reranking is a common machine learning method for improving

the accuracy of a generative model significantly with the help of an addi-

tional conditional model on top of the generative model. A reranker uses the

global features of complete parses to identify correct interpretations in order

to train a discriminative classifier, which finally produces improved results on

a novel test set. Reranking has been successfully employed to improve vari-

ous tasks of natural language processing, including syntactic parsing (Collins,

2002b), semantic parsing (Ge & Mooney, 2006; Lu et al., 2008), semantic role

labeling (Toutanova, Haghighi, & Manning, 2005), and named entity recog-
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nition (Collins, 2002c). While conventional reranking requires gold-standard

interpretations (e.g., parse trees) to train the discriminative classifier, it is

non-trivial for grounded language learning since normally it does not provide

gold-standard interpretations as training data. Only the ambiguous percep-

tual context of the NL utterance is given. The navigation task provides the

observed sequence of actions taken by a human when following an instruc-

tion as supervision. Therefore, it is impossible to directly apply conventional

discriminative reranking to such problems. We show how to adapt reranking

to work with such weak supervision. Instead of using gold-standard anno-

tations to determine the correct interpretations, we simply use the reference

as evaluations of candidate interpretations of navigation instructions that are

executed in the perceptual world, observing how well they reach the intended

destination.

1.1 Thesis Contributions

This thesis makes two primary contributions to the area of grounded

language learning. First, we suggest several probabilistic generative models

that solve grounded language learning problems which tackle two different

levels of NL–MR referential ambiguity. Compared to the previous methods

that have been evaluated on the same tasks, our methods employ probabilistic

approaches that incorporate a more intuitive, effective hierarchy of semantic

concepts. In particular, our methods do not suffer from the possible informa-

tion loss that may have befallen previous methods due to pipelines of process-
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ing stages. In addition, our methods are able to disambiguate true matchings

out of a potentially large set of relevant MRs, as well as to perform accurate

semantic interpretation of natural language utterances. Experimental results

prove that our methods are more effective when compared to previous best

results.

Second, we show how discriminative reranking approaches can be ex-

tended and applied on top of generative models for grounded language learn-

ing problems. Discriminative reranking improves the performance of genera-

tive models with a secondary conditional model, and has been proven to be

effective in many NLP tasks in the past. However, it is non-trivial to ap-

ply discriminative reranking directly to grounded language learning problems

without gold-standard references for each training example. For the first time,

we propose that evaluating the candidate parses from the outputs of a gen-

erative model against the world-state eliminates the need for gold-standard

reference interpretations. Even though our suggested method uses a simple

perceptron model, the general methodology of evaluating against the world

to get weak supervision can be broadly applied to many other available dis-

criminative reranking models. In addition, we prove that such adaptation is

effective in boosting the performance of the original model by a large margin

and even better than the standard reranking model with gold-standards in

end-to-end evaluations.
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1.2 Thesis Outline

The remainder of this thesis is organized as follows:

• Chapter 2 reviews previous research that this thesis directly builds upon

and explains how it is incorporated in the models we present.

• Chapter 3 presents a review of the sportscasting task and a generative

model that resolves 1-to-N ambiguity in a hierarchical framework.

• Chapter 4 explains the navigation task and also describes our PCFG

induction models that tackle highly ambiguous supervision. Two vari-

ations are presented and evaluated: one with a hierarchy of semantic

concepts and the other with unigram generation of the concepts.

• Chapter 5 describes how to adapt discriminative reranking to grounded

language learning where gold-standard references are not provided.

• Chapter 6 reviews related work in grounded language learning, learning

from ambiguous supervision, conventional semantic parsing, and natural

language generation.

• Chapter 7 discusses directions for future research

• Chapter 8 offers our final conclusion.

It should be noted that some of the research discussed in Chapter 3, Chapter 4,

and Chapter 5 has been already presented in our previous publications (Kim

& Mooney, 2010, 2012, 2013).
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Chapter 2

Background

In this chapter, we will cover previous systems or models that our

proposed methods are built upon. First, we describe supervised semantic

parsing methods that the models presented in this study for the sportscasting

task (see Chapter 3) are based on. Our model is built on the generative

semantic parsing model of Lu et al. (2008). After learning a probabilistic

alignment and parsing model, we also used the Wasp and Wasp−1 systems

to produce additional parsing and generation results. More specifically, since

our current model is incapable of effectively generating NL sentences from MR

logical forms, in order to demonstrate how our matching results can aid NL

generation, we use Wasp−1 to learn a generator. This follows the experimental

scheme of Chen, Kim, and Mooney (2010), who had demonstrated that the

improved NL–MR matching of Liang et al. (2009) results in better overall

parsing and generation.

Next, we will review two grounded language learning methods that

learn from ambiguous supervision. IGSL (Iterative Generation Strategy Learn-

ing) was first proposed by Chen and Mooney (2008) as a method of estimating

the probabilities of “content selection” for natural language generation. It de-
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cides “what to say” out of an ambiguous set of possible sportscasting events

to describe. Our generative model in Chapter 3 incorporates IGSL to esti-

mate the prior probability of each event-type generating a natural-language

comment and to help initialize the model for a better starting point of EM.

Then, we describe the grounded language learning approach of Börschinger

et al. (2011), which, in turn, was inspired by a series of previous techniques

(Lu et al., 2008; Liang et al., 2009; Kim & Mooney, 2010) based on the idea

of constructing correspondences between NL and MR in a single probabilistic

generative framework. Specifically, Börschinger et al.’s approach automat-

ically constructs a PCFG rule set that generates NL sentences from MRs,

which indicates how atomic MR constituents are probabilistically related to

NL words. This approach is able to handle not only conventional supervised

semantic parsing problems, but also grounded language learning problems with

limited ambiguity. It has been shown to be very effective in the sportscast-

ing domain, but because the generative process finds probabilistic connection

between each MR component with NL phrases, the model easily suffers from

exponential complexity with respect to the size of the MR language. Our

model introduced in Chapter 4 extends this approach by applying it to more

complex problems with the aid of a statistically learned semantic lexicon.

Finally, we will briefly review about conventional discriminative rerank-

ing approaches. These are effective tools for improving the performance of a

generative model proven in various tasks, but they require gold-standard anno-

tation for training that is not naturally provided in grounded language learning

11



tasks. Chapter 5 proposes a way to get around this limitation of conventional

reranking methods and modify them to work in grounded learning settings.

2.1 Semantic Parsing Approaches

Semantic parsing is a process of translating and interpreting the se-

mantics of full natural language (NL) sentences into formal, logical meaning

representations (MR). In conventional settings, one-to-one, fully translated

NL–MR pairs are needed for training supervised semantic parsing approaches.

Our model proposed in Chapter 3 is built upon such supervised semantic pars-

ing models, but extends the supervised models in order to handle more relaxed,

ambiguous supervision.

2.1.1 Generative Hybrid Tree Model for Semantic Parsing

Lu et al. (2008) proposed a generative semantic parsing model using a

hybrid tree framework. A hybrid tree is defined over a pair (w,m) of an NL

sentence and its corresponding MR. The tree describes a correspondence of

NL word segments and MR components following the grammatical structure

of the MR. In a hybrid tree, MR production rules constitute the internal nodes,

while NL words (or phrases) constitute the leaves. A sample hybrid tree from

the English RoboCup data is shown in Figure 2.1.

A generative process based on hybrid trees is defined as follows: starting

from a root semantic category, the model generates a production of the MR

grammar, and then subsequently generates a mixed hybrid pattern of NL words
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S

S : pass (Player, Player)

Player

Player : pink11

pink11

passes the ball toPlayer

Player : pink10

pink10

Figure 2.1: Sample hybrid tree of NL/MR pair from the English sportscasting
dataset: pink10 passes the ball to pink11 / pass(pink10, pink11 )

and child semantic categories. This process continues until all the leaves in

the hybrid tree become NL words. The generation assumes a Markov process,

implying that each step is only dependent on its parent step.

Lu et al.’s (2008) generative parsing model estimates the joint proba-

bility P (T,w,m), the probability of generating a hybrid tree T with NL w,

and MR m. This probability is calculated by the whole product of the proba-

bilities of all the generation steps in the tree. The data likelihood of the pair

(w,m) given by the learned model becomes the sum of P (T,w,m) over all

the possible hybrid trees, because a hybrid tree for an NL w and an MR m is

not unique.

The model runs in conventional, fully supervised settings. In order to

learn from ambiguous supervision, we extend this model to include an ad-

ditional generative process for selecting the subset of available MRs used to

generate NL sentences. Our model, thus, has a capability of performing align-
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ment of correct NL–MR pairs at the same time as finding the correct MR for

a novel NL sentence.

2.1.2 Wasp and Wasp−1

Wasp (Word-Alignment-based Semantic Parsing) (Wong & Mooney,

2006) is a semantic parsing system that uses statistical machine translation

(SMT) techniques (Brown, Cocke, Della Pietra, Della Pietra, Jelinek, Lafferty,

Mercer, & Roossin, 1990; Yamada & Knight, 2001; Chiang, 2005) in order

to learn semantic parsers. SMT methods learn machine translation models

that are trained on parallel corpora composed of one-to-one human-annotated

translations of two or more natural languages. SMT techniques have been

shown to be very effective compared to other previous hand-engineered ap-

proaches, and have become dominant in recent decades. The main idea of

Wasp is to utilize such SMT techniques in order to translate between natural

language (NL) and logical meaning representation language (MRL) instead of

translating between two different NLs.

Wasp is mainly composed of two stages. First, GIZA++ (Och & Ney,

2003; Brown, Della Pietra, Della Pietra, & Mercer, 1993), a statistical word

alignment model, constructs a bilingual (NL–MR) lexicon that finds the most

probable relationship between NL phrases and MRL grammar rules. Certain

MRL tokens, such as parentheses, commas, or colons, are inherently meaning-

less, and are used in order to maintain and visualize the syntactic formalism of

the MRL. Thus, it is not an ideal way to find direct co-occurrence relationships
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between NL phrases and MR component tokens. Instead, the Wasp system

uses GIZA++ to construct mappings between NL phrases and MRL grammar

production rules used.

Then, the Wasp system induces a probabilistic synchronous context-

free grammar (SCFG) for generating corresponding NL–MR pairs (Aho &

Ullman, 1972). An SCFG rule contains two strings on its right-hand side,

which represents the fact that two language components are generated by a

single rule at the same time, in our case, one in NL and the other in MRL. The

bilingual lexicon obtained is used to construct a set of SCFG production rules.

NL sentences and corresponding MRs are simultaneously generated from the

SCFG derivations. Then, a maximum-entropy model is trained to produce

a probabilistic parser to learn the weights of SCFG rules. When parsing a

new NL sentence into the desired MR, the most probable SCFG derivation

is obtained by a probabilistic chart parser, which subsequently generates the

corresponding MR.

SCFG is symmetric with respect to the two languages it generates, and

thus the same trained model can be used for both semantic parsing (translating

NL to MR) and natural language generation (translating MR to NL) tasks

by reversing the direction of input and output languages. A noisy-channel

model (Brown et al., 1990) is used for the natural language generation system,

Wasp−1 (Wong & Mooney, 2007a), which learns an n-gram language model

for the NL part to play the role of formal grammar for the NL side.
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2.2 Learning from Ambiguous Supervision

The 1-to-1 supervision of NL–MR annotations for semantic parsing

tasks requires too much human intervention and leads to a very high cost for

constructing a corpus. However, we can obtain a training corpus much more

easily when we extract the surrounding perceptual context as MRs along with

a given NL sentence. Inevitably, this kind of data will have 1-to-N ambiguous

supervision, which needs to be resolved first in order to learn a correct se-

mantic parsing model. Our proposed approaches tackle this main challenge of

ambiguous supervision. Our model in Chapter 3 uses a previous content selec-

tion model for initializing its parameters. In addition, our model in Chapter 4

extends a previous approach, a PCFG induction model that tackles ambiguous

learning problems so that our model is able to learn accurate semantic parsers

from a much higher level of ambiguous supervision.

2.2.1 Iterative Generation Strategy Learning (IGSL)

Chen and Mooney (2008) introduced Iterative Generation Strategy

Learning (IGSL) for determining which event types a human commentator is

more likely to describe in natural language. This is sometimes called strategic

generation, or content selection, a process of choosing what to say ; as opposed

to tactical generation, which determines how to say it. IGSL uses a method

analogous to EM to train on ambiguously supervised data and iteratively im-

proves probability estimates of commenting on each event type, specifying how

likely each MR predicate is to elicit an NL comment.
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Every event type is initialized with uniform probability counts. Then,

the IGSL algorithm alternates between two processes:

1. Calculating the expected probability of an NL–MR matching based on

the currently learned probability estimates.

2. Updating the probability of each event type based on the expected match

counts.

IGSL has been shown to be quite effective at predicting which events in

a RoboCup game a human would comment upon. In our model in Chapter 3,

we use IGSL probability scores as initial priors for our event selection model.

2.2.2 Unsupervised PCFG Induction for Grounded Language Learn-
ing

Börschinger et al. (2011) introduced an unsupervised PCFG induction

model for grounded language learning. It automatically constructs a PCFG

that generates natural language (NL) sentences from formal meaning represen-

tations (MRs). The nonterminals in the grammar correspond to complete MRs

and MR constituents, while NL phrases and words are expressed as terminals.

The generative process of PCFG describes how a composite MR generates its

MR constituents. Then, each constituent eventually generates NL words.

First, the nonterminal for a composite MR generates each of its MR

constituents. Since we do not know the order in which each constituent will

generate NL words, every possible permutation of the constituents must be
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included in order to consider all the possibilities. Second, the nonterminal for

an MR constituent generates Phrasex, representing a sequence of NL words

connected to the constituent x. Phrasex is then used to generate a sequence

of Wordx, which subsequently produces NL words, which simulates a unigram

Markov process of generating multiple NL words from Phrasex. By training

the Inside-Outside algorithm on the produced PCFG rules, the system learns

the probabilistic relationships between NL words, MR constituents, and com-

plete MRs by getting the most probable weights for the rules. Figure 2.2

shows a derivation tree of this framework for a sample NL–MR pair and the

PCFG rules that are constructed for it. When parsing a novel sentence into

the most probable parse tree using a probabilistic chart parser, we are able to

get the most likely MR interpretation for a given NL sentence by reading the

top nonterminal containing the full MR.

However, this approach has several clear limitations. First, it only

works for finite MR languages, and the produced PCFG becomes intractably

large even for finite but moderately complex MRs. The main reason stems from

the assumption that the overall structure of the MRL is simple enough so that

every constituent of an MR and all its possible permutations can be encoded

in a reasonable number of PCFG rules for building correspondences with NL.

This is not true in more general situations where the MRs represent a wider

range of surrounding perceptual environments that may often over-describe the

NL. In addition, this approach assumes every MR component is responsible for

having a semantic connection with at least one or more NL words. In addition,

18



Figure 2.2: Derivation tree for the NL/MR pair: the pink goalie passes
the ball to pink11 / pass(pink1, pink11). The left side shows PCFG
rules that are added for each stage (complete MR to MR constituents and
subsequently generated NL words ).

all permutation orders of MR components need to be considered because we

do not know in advance which components are connected to which parts of NL

sentences. If the number of constituents per MR increases, the resulting PCFG

size can increase exponentially. In Chapter 4, we present two enhanced models

that extend this current approach by incorporating a learned semantic lexicon

to build direct correspondences between NL words and semantic lexeme MRs

(constituting semantic concepts). This results in the smallest semantic unit

being semantic lexeme MRs. Therefore, our approach constrains the space of

productions and thereby makes the number of production rules tractable for

complex MRs, and even has the capability of handling MR grammars that

define an infinite language. Another limitation of Börschinger et al.’s (2011)

approach stems from parsing novel NL sentences into desired MR outputs.
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This approach is only able to produce MRs previously seen during training as

the parse result of a novel NL sentence, because the parsing step only requires

reading off the top nonterminal of the PCFG parse tree. In contrast, our

approach has the ability to produce novel MRs when parsing test sentences

by composing related semantic lexeme MRs. This makes our approach work

well with a much higher level of ambiguous supervision where an NL sentence

refers only to some subset of a matching MR representation, which implies an

exponential number of possibilities for the true matching.

2.3 Discriminative Reranking

Discriminative reranking is a common machine learning technique to

improve the results of generative models. It has been shown to be effective for

various natural language processing tasks including syntactic parsing (Collins,

2000, 2002b; Collins & Koo, 2005; Charniak & Johnson, 2005; Huang, 2008),

semantic parsing (Lu et al., 2008; Ge & Mooney, 2006), part-of-speech tagging

(Collins, 2002a), semantic role labeling (Toutanova et al., 2005), named entity

recognition (Collins, 2002c), machine translation (Shen, Sarkar, & Och, 2004;

Fraser & Marcu, 2006) and surface realization in language generation (White

& Rajkumar, 2009; Konstas & Lapata, 2012).

In order to enhance the performances of a generative model, a secondary

conditional model is trained on the k-best candidate outputs obtained from

the baseline generative model with a gold-standard interpretation provided

for each training example. The conditional model evaluates and compares the
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quality of candidates against the gold-standard during the training phase, and

thus finally optimizes the parameters to rerank novel candidates from test data.

By using global features of candidate interpretations, the trained discrimina-

tive reranker can significantly improve the accuracy of the baseline generative

model. For our experiments, we use an averaged perceptron (Collins, 2000),

which has been shown to be effective in a wide range of previous natural lan-

guage processing research.

Although such conventional discriminative reranking approaches re-

quire the gold-standard interpretations for training, typical grounded lan-

guage learning problems are not equipped with a single gold-standard for each

training example. To our knowledge, there has been no previous attempt to

apply discriminative reranking to grounded language learning problems. In

Chapter 5, we describe how discriminative reranking can be adapted to solve

grounded language learning problems without gold-standards, particularly us-

ing weak supervision of evaluation feedback of candidate outputs against the

perceptual world.
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Chapter 3

Generative Alignment and Semantic Parsing

for Limited Ambiguity

In this chapter, we present a probabilistic generative model for learning

semantic parsers trained on supervision of limited ambiguity where a NL sen-

tence is paired with multiple candidates of logical MRs naturally obtained from

the surrounding world state (Kim & Mooney, 2010). This model disambiguates

the underlying meaning of each sentence while simultaneously learning a se-

mantic parser that maps NL sentences into MR logical forms. Our method

is evaluated on the previously introduced problem of RoboCup Sportscasting

(Chen & Mooney, 2008; Chen et al., 2010). Compared to the approaches of

Chen and Mooney (2008) and Chen et al. (2010), our model produces success-

ful and more effective matching disambiguation and semantic parsing from the

ambiguous training corpus whose parameters are estimated by a fully prob-

abilistic model. In addition, in contrast to a previous generative model for

semantic alignment by Liang et al. (2009), it also supports full semantic pars-

ing. Experimental results on the sportscasting corpora in both English and

Korean indicate that our approach produces more accurate semantic align-

ments than existing methods and also produces competitive semantic parsers

and improved natural language generators.
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3.1 Chapter Overview

Chen and Mooney (2008) first introduced the problem of learning to

sportscast by simply observing natural language commentary on simulated

RoboCup robot soccer games. However, the 1-to-N NL–MR ambiguity of the

training data caused by the manner in which the data are collected poses a

serious challenge to learning accurate semantic parsers or language generators.

We first need to learn the correct semantic alignment between NL and MR,

since the correct alignment of the training data is unknown.

The original approach of Chen and Mooney (2008) to this task retrains

existing supervised semantic parser learners iteratively in a manner similar to

EM training on the disambiguated NL–MR training example pairs produced

by the previous iteration. However, it suffers from possible information loss

since it does not run on a well-defined probabilistic model. On the other

hand, Liang et al. (2009) proposed a probabilistic generative alignment model

for ambiguous supervision. Despite its improved performance, the model is

only capable of semantic alignment between NL–MR and does not learn either

a semantic parser or a language generator. In addition, Liang et al. assume

a bag-of-words model for natural languages and do not incorporate linguistic

syntax which includes additional cues to be exploited.

Our generative model overcomes some of the limitations of these pre-

vious methods and provides simultaneous semantic alignment and semantic

parsing for ambiguous supervision using the Hybrid tree model proposed by

Lu et al. (2008), which generates NL and MR components in a single tree
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structure. Experimental results on the sportscasting data show that our ap-

proach outperforms all the previous results on the NL–MR matching (semantic

alignment) and language generation task and also achieves competitive per-

formance on the semantic parsing task.

3.2 Sportscasting Data and Task

The RoboCup sportscasting data (Chen & Mooney, 2008; Chen et al.,

2010) were collected by asking humans to commentate the four final games

(2001 to 2004) of the RoboCup simulation soccer league. Commentaries were

collected in both English and Korean by the corresponding native speakers

of the languages. Table 3.1 shows overall statistics about the data. The

detailed statistics for each game appear in Table A.1 of Appendix A. The hu-

man commentators only saw the visual progress of the soccer games and were

provided with an annotation tool to record their NL commentary along with

timestamps. On the other hand, game events are collected by a rule-based

system that automatically extracts them from the simulator traces. The ex-

tracted events mainly involve actions with the ball, such as kicking, passing,

turnovers, or goals, but also include other game information describing current

game status, such as kickoffs, offsides, or corner kicks. The events are repre-

sented as atomic formulas in predicate logic recorded with timestamps. These

logical components constitute full meaning representations consisting of one

predicate and up to two arguments that most commonly represent players.

Since NL and MR data are collected separately, there are only weak
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English Korean
# of NL comments 2036 1999
# of words 11742 7941
Average words per NL comment 5.77 3.97
# of extracted MR events 10657 10657
# of NLs with matching MRs 1868 1913
# of MRs with matching NLs 4670 4610
Average number of MRs per NL 2.50 2.41

Table 3.1: Statistics for RoboCup sportscasting data

connections between the two. The only assumption we can make is that each

NL commentary has the possibility of connecting with MR events that occur

close together based on the timestamps. Since sportscasting commentaries

are made after the events, each NL commentary sentence is paired with au-

tomatically extracted MRs of ongoing simulation events that occurred in the

previous 5 seconds (an average of 2.5 events).

Figure 3.1 shows a sample trace from the English and Korean data.

As shown, each NL commentary sentence normally has several candidate MR

matches that occurred within the 5-second window, indicated by the edges

between NL and MR. Bold edges denote gold-standard alignment manually

constructed solely for evaluation purposes. It is not guaranteed, however, that

every NL has a correct matching MR, because sometimes there are unrecog-

nized or undetected events and sometimes there are NL commentaries that

describe high-level concepts about the game (e.g., the pink team is sloppy to-

day) that cannot be normally captured by automatically extracted MR events.

Such ambiguity brings the additional challenge that a given NL sentence may
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Natural Language Meaning Representation

Purple9 prepares to attack
pass ( PurplePlayer9 , PurplePlayer6 )

defense ( PinkPlayer6 , PinkPlayer6 )

Purple9 passes to Purple6

Purple6's pass was defended by Pink6

turnover ( purple6 , pink6 )

ballstopped
u ple6 s pass was defended by ink6

Pink6 makes a short pass to Pink3

kick ( PinkPlayer6 )

pass ( PinkPlayer6 , PinkPlayer3 )

Pink goalie now has the ball
playmode ( free_kick_r )

pass ( PinkPlayer3 , PinkPlayer1 )

(a) Sample trace of ambiguous English training data

kick ( PurplePlayer10 )

pass ( PurplePlayer10 , PurplePlayer11 )

kick ( PurplePlayer11 )

pass ( PurplePlayer11 , PurplePlayer10 )

steal ( PinkPlayer3 )

turnover ( PurplePlayer10 , PinkPlayer3 )

kick ( PinkPlayer3 )

playmode ( free_kick_r )

보라10이보라11에게패스합니다.
(purple10 passes to purple 11)

보라11이보라10에게다시패스합니다.
(purple11 passes again to purple 10)

보라10이수비하던분홍3에게공을빼앗깁니다.
(pink3 steals the ball from purple 10)

분홍3이분홍골키퍼에게패스합니다.
(pink3 passes to pink goalie)

Natural Language Commentary Meaning Representation

(b) Sample trace of ambiguous Korean training data

Figure 3.1: Sample traces of sportscasting data. Each outgoing edge from the
NL comments indicates that the comment and connected meaning represen-
tations are possible translations of each other. The bold links indicate correct
matches between the comments and the meaning representations. Note that
some NL commentaries do not have correct matching MRs.
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not have a correct matching MR.

3.3 Generative Model for Semantic Alignment and Lan-
guage Grounding

Our model is based Lu et al.’s (2008) generative semantic parsing model

using a hybrid-tree framework, to which we have added the capability of se-

lecting which MR out of all the candidates, as described below. A hybrid tree

is defined over a pair of an NL sentence and a complete MR (w,m) to describe

hierarchical correspondences between each NL word and MR components. A

hybrid tree constitutes a generative process of how NL words are produced

along with MR production rule structure. In contrast, our model estimates

P (w|s), where w is an NL sentence and s is a world state consisting of several

candidate MRs matched to w. In this setting, our approach is intended to

support both determining the most likely match between an NL and its MR,

and semantic parsing, that is, finding the most probable mapping from a given

NL sentence to an MR logical form.

Our generative model consists of two stages:

• Event selection: P (e|s) chooses the event e in the world state s to be

described.

• Natural language generation: P (w|e) models the probability of generat-

ing natural-language sentence w from the MR specified by event e.

A sample generative process is shown in Figure 3.2.
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Root

MRpass (Player, Player)

S : pass (Player, Player)

Player

Player : pink10

pink10

makes a pass toPlayer

Player : pink7

pink7

Figure 3.2: Sample generative process of our model from the root nonterminal
to the selected MR, and finally to the hybrid tree. The NL is pink7 makes
a pass to pink10, and the chosen MR is pass(pink7, pink10 ) out of mul-
tiple potential MRs. Note that there is an additional layer of selecting MR
pass(pink7, pink10 ) in order to generate the corresponding hybrid tree.

3.3.1 Event Selection

The event selection model specifies the probability distribution for pick-

ing an event that is likely to be commented upon among the multiple candidate

MRs appearing in the world state s. The probability of selecting an event is

assumed to depend only on its event type as given by the predicate of its MR.

For example, the MR pass(pink10, pink11) has the event type pass and argu-

ments pink10 and pink11. The probability of picking an event e of type te is

p(te). If there are multiple type t events in s, then a type t event is selected

uniformly from the set s(t) of events of type t in s. Thus, the probability of

picking an event is given by the following:
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P (e|s) = p(te)
1

|s(te)|
(3.1)

This model is similar to the record choice model of Liang et al. (2009),

but it only models salience to the extent that some event types are more likely

than others. Our model does not consider the order of event types (coherence)

because the RoboCup sportscasting data only have at most one true MR for

a given NL sentence.

3.3.2 Natural Language Generation

The natural-language generation model defines the probability distri-

bution of NL sentences given an MR specified by the previously selected event

in the event selection model. We use Lu et al.’s (2008) generative semantic

parsing model for this step:

P (w|e) =
∑

∀T over (w,m)

P (T,w|m) (3.2)

where m is the MR defined by event e and T is a hybrid tree defined over the

NL–MR pair (w,m).

The probability P (T,w|m) is given by the generative semantic parsing

model (Lu et al., 2008) with the inside probability of the NL–MR pair (w,m).

The likelihood of a sentence w is then the sum over all possible hybrid trees

defined by the NL–MR pair (w,m). Out of Lu et al.’s three proposed models

(unigram, bigram, and mixgram), we used the bigram model, which estimates

its inside probability by checking whether an NL word or a semantic category is
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dependent upon the previously generated one. In our experiments, the bigram

model always performed the best on all tasks.

The natural language generation model replaces the role of the field

choice model and word choice model of Liang et al. (2009) in semantic align-

ment tasks. It also considers the order of predicates and arguments in an MR

as well as the orderly generation of NL words and phrases, since the model

constructs an ordered hybrid tree structure that generates NL words, MR

semantic categories, and MR grammar rules.

3.4 Learning

Standard EM methods are used to train our generative model. The

process is similar to that used by Lu et al. (2008), an inside-outside style

algorithm that generates a hybrid tree from the NL–MR pair (w,m), but our

model additionally considers expected counts under the posterior P (e|w, s; θ)

in the E-step and normalizes the counts in the M-step. Training time takes

about 30 minutes for sportscasts of three training games in either the English

or Korean dataset.

However, the experiments show that the EM method tends to fall into

local optima when estimating the event-type selection probabilities, p(t), thus

hurting the overall performance. To resolve this issue, we initialized the param-

eters of our model with the corresponding strategic generation values learned

by the IGSL algorithm (Chen & Mooney, 2008). IGSL priors serve as a good

starting point for training EM, particularly for our event selection model.
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IGSL has already been shown to be very effective at predicting which event

types are likely to be described in sportscasting data.

The generative semantic parsing model of Lu et al. (2008) is trained

through several stages to provide the best performing results. The bigram

model we used in our model was trained on the basis of parameters previously

learned for the IBM Model 1 (Brown et al., 1993) and the unigram model. We

followed a similar multi-stage learning strategy. Our best model, which uses

the bigram model, was trained on the previously learned parameters from our

model with the IBM Model 1 and the unigram model. The multiple learning

stages led to the model’s being vulnerable to getting stuck in local optima

when running EM across these multiple steps. We also tried using random

restarts with several initializations, but IGSL priors provided the best results

in the evaluations.

3.5 Experimental Evaluation

For evaluation, we followed the same evaluation schemes as in Chen

and Mooney (2008) covering three tasks: NL–MR matching (semantic align-

ment), semantic parsing, and natural language generation (surface realization).

RoboCup sportscasting data contains 4 separate games, and we performed

leave-one-game-out (4-fold) cross validations using 3 games for training and

the remaining 1 game for testing to evaluate semantic parsing and natural

language generation. Since the matching (semantic alignment) task is essen-

tially that of disambiguating the training data, the performance of matching
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Systems Matching
Semantic Language Ambiguous
Parsing Generation Training

Our model
√ √

-
√

Liang et al. (2009)
√

- -
√

Lu et al. (2008) -
√

- -
Wasp−1

-
√ √

-
(Wong & Mooney, 2007a)

Table 3.2: Overview of various systems and models used in the experiments.
Each column indicates the capability on various tasks.

is evaluated on the training data.

The accuracy of matching and semantic parsing is measured using the

F-measure, which is the harmonic mean of precision and recall. We evaluated

the natural language generation using the BLEU score (Papineni, Roukos,

Ward, & Zhu, 2002) between the generated sentences and the reference NL

sentences in the test set. Systems we compared include those of Chen and

Mooney (2008) and Chen et al. (2010), and that of Liang et al. (2009) for the

semantic alignment results only.

In Table 3.2, we present the various systems and models used in the

experimental evaluations and their capabilities for the tasks. Our model is

capable of learning semantic parsers while disambiguating the correct matching

of training data.
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English Korean
Chen and Mooney (2008) 0.681 0.753
Liang et al. (2009) 0.757 0.694
Chen et al. (2010) 0.793 0.841
Our model 0.832 0.800
Our model with IGSL prior initializations 0.885 0.895

Table 3.3: NL–MR Matching Results (F-measure).

3.5.1 NL–MR Matching (Semantic Alignment)

The matching or semantic alignment task measures how well the system

finds the correct NL–MR alignment out of ambiguous examples consisting of

an NL sentence and multiple potential MRs. As described above, training

examples in the RoboCup sportscasting data have up to one correct matching.

Our model outputs the most probable matching as an NL w and an MR m if

and only if m is the most probable parse of w according to the learned semantic

parser. Thus, our model does not force every NL to match to an MR. Some NL

sentences whose most probable parse is not one of the candidate MRs are left

unmatched. Matching output is evaluated against the manually constructed

gold-standard matches, which are never used during training.

Evaluation results for the English and Korean datasets are shown in

Table 3.3. Since the Korean data were not yet available for use by either Chen

and Mooney (2008) or Liang et al. (2009), we cited those results from Chen

et al. (2010). Our best approach outperforms all previous methods by large

margins when using IGSL priors. In particular, our model also outperforms

the generative alignment model of Liang et al. (2009), implying that the extra
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English Korean
Chen and Mooney (2008) 0.702 0.720
Chen et al. (2010) 0.803 0.812
Our learned parser 0.742 0.764
Lu et al. (2008) initialized with our model’s matching 0.810 0.794
Lu et al. (2008) initialized with Liang et al. (2009) 0.790 0.690
Wasp initialized with our model’s matching 0.786 0.808
Wasp initialized with Liang et al. (2009) 0.803 0.740

Table 3.4: Semantic Parsing Results (F-measure).

linguistic information and MR grammatical structure result in a more effective

model than a Markov model with a bag-of-words model.

3.5.2 Semantic Parsing

Semantic parsing is evaluated by how accurately the systems map novel

NL sentences into their proper corresponding MRs in the test data. Table 3.4

presents the results. We compare to the best results presented in the cited pa-

pers: Wasper-gen for Chen and Mooney (2008), Wasper with Liang et al.’s

(2009) matching initialization for English and Wasper-gen-igsl-meteor

with Liang et al.’s initialization for Korean for Chen et al. (2010). Semantic

parsing results with our directly learned parser from the ambiguous training

data are presented, as well as supervised parsers (both Wasp and Lu et al.’s)

trained on the NL–MR matching output by our model. All our semantic pars-

ing results used IGSL initialization, which resulted in the best performances.

For additional comparisons, Lu et al.’s parser and Wasp trained on Liang

et al.’s NL–MR matchings are also shown.
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Our initial learned semantic parser performs better than that of Chen

and Mooney (2008), but worse than that of Chen et al. (2010). Training

Wasp and Lu et al.’s (2008) parsers on our highly accurate NL–MR matchings

improved the results over Liang et al.’s (2009) matchings. It is also noteworthy

that retraining on the hardened one-to-one supervision of the most probable

NL–MR matches gives better performance than the parser directly trained

using EM. The uncertainty caused by incorrect NL–MR matchings resided as

probabilistic counts in our generative model seems to affect the overall parsing

performance.

Comparing with the corresponding results for training Wasp and Lu

et al.’s (2008) supervised parser on the NL–MR matchings produced by Liang

et al.’s (2009) alignment method, it is clear that our matchings produce more

accurate semantic parsers except when training Wasp in English. This result

means that the improved matching leads to a better semantic parsing system

in general.

3.5.3 Natural Language Generation (Surface Realization)

The natural language generation (tactical generation) or surface real-

ization task evaluates how well a system generates accurate NL sentences from

novel test MRs. Since our semantic parsing model does not support natural

language generation, which is the reverse task of semantic parsing, we trained

the publicly available Wasp−1 system (Wong & Mooney, 2007a) on our dis-

ambiguated NL–MR matches. Since we were using Wasp−1, we can directly
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English Korean
Chen and Mooney (2008) 0.4560 0.5575
Chen et al. (2010) 0.4599 0.6796
Wasp−1 trained on matching of Liang et al. (2009) 0.4580 0.5828
Wasp−1 trained on our matching outputs 0.4727 0.7148

Table 3.5: Natural language generation (surface realization) results (BLEU
score).

compare our results with those of Chen and Mooney (2008) and Chen et al.

(2010).

Table 3.5 shows the natural language generation results of our model

and the best reported results from the cited papers: Wasper-gen for Chen

and Mooney (2008), Wasper trained with Liang et al.’s (2009) matching for

the English results of Chen et al. (2010), and Wasper-gen with Liang et al.’s

initialization for the Korean dataset. In this experiment, our generation results

are also based on our best matching results with IGSL initialization, which

provides the best results overall. Wasp−1 trained on our NL–MR matching

results performed the best. It should also be noted that Wasp−1 trained

with our matchings performs better than Wasp−1 trained with Liang et al.’s

matchings.

3.6 Discussion

Overall, our model performs particularly well at the matching task.

However, improved matching does not transfer to notably better semantic

parsing results, seeing as there is a 10% improvement for matching compared
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to a 1-point improvement on the semantic parsing task.

This seems to be due to the nature of the noise in the matching re-

sults. Although Liang et al.’s (2009) alignment model gives a much lower

F-measure, it provides cleaner matching and contains fewer noisy, misleading

NL–MR pairs. On the other hand, even though our model performs much bet-

ter in matching, it predicts some misleading matches when the gold-standard

match does not exist, inevitably resulting in worse semantic parsers due to

the noisy probabilistic counts coming from such training pairs. For example,

an NL sentence pinkG intercepts is matched to an MR ballstopped due to

incomplete event detection, and this NL sentence does not actually have a cor-

rect match in the gold-standard. This sentence is covered by our model, and

it becomes harder for the semantic parser to learn to map to the true MR for

this sentence, block(pink1). By contrast, Liang et al.’s (2009) model does not

try to match this sentence to any MR, which leads to less noise when training

the semantic parser.

Compared to the model of Liang et al. (2009), our more accurate match-

ings provide a clear improvement in both semantic parsing and natural lan-

guage generation, although the improvement in semantic parsing is not dra-

matic. The only exception is semantic parsing in the English data using Wasp,

which seems to be due to some misleading noise in our alignments explained

above. Wasp seems to be affected more than Lu et al.’s (2008) system by

such extraneous noise. However, in natural language generation, this extrane-

ous noise does not lead to worse performance, and our approach always gives
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the best results. As discussed by Chen and Mooney (2008) and Chen et al.

(2010), this difference seems to stem from natural language generation’s be-

ing somewhat easier than semantic parsing in the sense that semantic parsing

needs to learn to map a variety of synonymous NL sentences to the same MR,

whereas surface realization only needs to learn one way to produce a correct

NL description of an MR.

3.7 Chapter Summary

In this chapter, we have presented a generative model capable of proba-

bilistically aligning natural-language sentences to their correct meaning repre-

sentations given the ambiguous supervision provided by a grounded language

learning scenario. Our model is also capable of simultaneously learning to

semantically parse NL sentences into their corresponding meaning represen-

tations. Experimental results in the RoboCup sportscasting domain show

that the NL–MR matchings inferred by our model are significantly more accu-

rate than the results produced by all previous methods using the same data.

Our approach also learns competitive semantic parsers and improved language

generators compared to previous methods. Specifically, we showed that our

alignments provide a better foundation for learning accurate semantic parsers

and tactical generators than those of Liang et al. (2009), whose generative

model is limited by a simple bag-of-words assumption and does not utilize any

linguistic syntax structure.
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Chapter 4

Unsupervised PCFG Induction for Grounded

Language Learning with High Ambiguity

In the previous chapter, we reviewed the RoboCup sportscasting task,

where the training data contain pairs of an NL sentence with a handful of

possible MRs. Our proposed generative model showed that it is capable of

disambiguating the 1-to-N potential matchings and simultaneously parsing

natural language (NL) sentences to proper meaning representations (MRs).

In this chapter, we will deal with more complex ambiguity. The navigation

task (Chen & Mooney, 2011) contains training data with a large set of po-

tential meanings for each sentence, where only a subset of meaning compo-

nents are relevant. To solve this task, we will present our enhanced model

based on Börschinger et al. (2011), which learns a semantic parser on ambigu-

ous supervision by transforming grounded language learning into unsupervised

probabilistic context-free grammar (PCFG) induction. Their model works well

in the sportscasting task, where there is limited ambiguity, but it cannot be

generally applied to more complex problems with higher ambiguity. Our novel

enhancement uses a semantic lexicon as the basic unit to make correspondences

between NL substrings and MR components, which also allows handling highly

ambiguous situations without additional computational complexity. Experi-

39



mental results on the navigation task demonstrate the effectiveness of our

approach.

4.1 Chapter Overview

First, we discuss our unsupervised PCFG induction models for learning

the semantics of language when the training data is highly ambiguous (Kim

& Mooney, 2012). In particular, we focus on the navigation task (Chen &

Mooney, 2011) where the goal is to interpret natural language instructions

in virtual environments so that an agent can perform the desired actions.

The navigation task requires the system to disambiguate the training data

in which each instructional sentence is paired with a formal landmarks plan

(represented in a large graph structure) that includes a full description of the

observed actions and world-states that are encountered while following the

instruction. The major challenge stems from the fact that the NL instruction

refers to only a subgraph of the formal landmarks plan. This inevitably leads

to a combinatorial number of possible meanings when finding a true match for

a given sentence.

To resolve this problem, we present two versions of novel enhancements

of the unsupervised PCFG induction method for grounded language learning

introduced by Börschinger et al. (2011). Börschinger et al.’s approach works

for limited ambiguity settings where there is up to one true meaning out of a

small set of contextual meanings for an NL sentence, such as the sportscasting

task. Their approach first constructs a large set of production rules from
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the ambiguous training set of an NL sentence paired with multiple MRs, and

then optimizes the weights of the PCFG grammar using EM. Parsing a novel

sentence with this learned grammar produces a parse tree containing the formal

MR parse in the top nonterminal. Although this approach is effective for

simple ambiguous supervision such as the sportscasting data, applying it to

problems with highly ambiguous supervision, such as the navigation task, leads

to a prohibitively large number of PCFG production rules. For instance, there

are a number of training examples in the navigation data containing more

than 20 actions for a single NL instruction sentence, which produces more

than 20! (> 1018) PCFG production rules to train on, considering that the

model should produce at least every permutation of actions encoded in PCFG

rules.

To overcome this difficulty, our approaches enhance Börschinger et al.’s

(2011) model by using semantic lexemes as the basic building block when

constructing PCFG production rules. Whereas Börschinger et al. used each

MR constituent to generate NL words probabilistically, our approaches use

lexemes (pairs of an MR graph and an NL phrase) which form meaningful

semantic concepts. The advantage of this enhancement is that we directly

connect semantic concepts to corresponding NL words during training.

Our first approach builds upon the intuition that the semantic concepts

represented by lexeme MRs form hierarchical structures analogous to the syn-

tactic hierarchy in syntax parsing (Kim & Mooney, 2012). Even though this

approach outperforms previous methods in the same corpus, the performance
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is still limited due to the additional complexity caused by the hierarchy of lex-

emes and the inevitable permutation rules introduced. Our second approach

takes a simpler method without using the lexeme hierarchy. Instead, the new

approach generates relevant lexemes by a unigram Markov process so that

the permutation rules are not necessary. Further, the generated lexemes are

probabilistically matched to NL substrings to complete language groundings.

Our two approaches are able to solve some of the limitations of Börschinger

et al.’s (2011) model in that the number of PCFG production rules remains

tractable, since semantic lexemes as basic units encode MRs in compact rep-

resentations for complicated MR languages. Moreover, our models can also

produce novel final MR parses that were never seen during training, whereas

Börschinger et al.’s model cannot.

We describe our two PCFG approaches in Sections 4.3 and 4.4. The

experimental results show that our two approaches perform better than the

previous methods, and our second, and simpler, approach achieves even bet-

ter performance than our hierarchy generation approach while also reducing

training time.

4.2 Navigation Task and Dataset

To evaluate our model, we employ the task and data introduced by

Chen and Mooney (2011), where the goal is to interpret and follow NL nav-

igation instructions in a virtual world by simply observing how humans fol-

low them. Figure 4.1 shows a sample execution path in a particular virtual
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Figure 4.1: Sample virtual world from Chen and Mooney (2011) of intercon-
necting hallways with different floor and wall patterns and objects indicated
by letters (e.g., “H” for hatrack).

world. In other words, the goal of the task is to train a system that con-

verts instructions into runnable MR navigation plans and execute them in

the virtual environment. Formally speaking, given the training data of the

form {(e1, a1, w1), . . . , (en, an, wn)}, where ei is an NL instruction, ai is an ob-

served action sequence, and wi is the current world state (describing patterns

of floors and walls, positions of any objects, etc.), we want to produce the

correct actions aj for a novel (ej, wj).

In order to learn, the task requires us to infer the intended formal plan

pi (the MR for a sentence in this task) that produced the action sequence ai
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from the instruction ei. However, there is a large number of possibilities when

choosing a formal plan for any given action sequence. For a simple example,

there are several ways to describe the actions of going two steps toward a

sofa and then turning right. In a straightforward manner, we can describe

the actions as Travel(steps : 2), Turn(RIGHT) by just describing the atomic

actions, or Travel(), Verify(front : SOFA), Turn(RIGHT) using notable objects

along the way. Chen and Mooney (2011) called the former a basic plan and

the latter a landmarks plan. They focused more on the landmarks plan since

it carries more information for understanding the semantics of instructions

and is closer to how humans actually describe navigational directions in the

real world. Also, they showed that landmarks plans led to better overall

performance evaluation with their proposed system.

Their system first constructs a formal landmarks plan, ci, for each ai,

which is a graph representing the context consisting of a full description of

every action in the sequence and the world-state that is encountered while

following the actions. The hard part is that the correct plan MR, pi, is assumed

to be a subgraph of ci, which implies that there is an exponential number of

possibilities to choose a correct MR from. The landmarks and correct plans

for a sample instruction are shown in Figure 4.2.

To circumvent this combinatorial problem, Chen and Mooney (2011)

never explicitly enumerate the combinatorial possibilities of potential mean-

ings for each sentence. Instead, their system first learns a semantic lexicon that

maps NL words and short phrases to small MRs (subgraphs) formally repre-
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Figure 4.2: Sample instruction with its landmarks plan. Bold components are
the true plan.

senting agent actions and outstanding objects appearing in the virtual world.

The lexicon is learned by finding co-occurrence of NL words and phrases with

specific actions and objects in the simulated virtual world while following the

corresponding NL instruction. The learning process is called Graph Inter-

section Lexicon Learnng (GILL) (Chen & Mooney, 2011; Chen, 2012b) and

is similar to other “cross-situational” approaches of learning word meanings

(Siskind, 1996; Thompson & Mooney, 2003). From the training data (ei, ci),

the algorithm first collects all navigation plans cjs representing the entire con-

text, co-occurring with an n-gram w as candidate meanings for w. This initial

candidate meaning set is expanded while repeatedly taking intersections be-

tween the candidate meanings, where the intersections can be obtained by

taking the largest common subgraphs. The resulting candidate set is ranked

by the following scoring metric for an n-gram w and an MR graph m:
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Figure 4.3: An overview of Chen and Mooney’s (2011) system. Our approaches
replace the roles of the plan refinement component and the semantic parser.

Score(w,m) = p(m|w)− p(m|¬w)

which measures how much more likely an MR m appears when w is present

compared to when it is not.

After obtaining a lexicon, the plan refinement step estimates pi from

context ci by greedily selecting high-scoring lexemes (i.e, lexicon entries of

(wj,mj)) whose phrases (wj) cover the instruction ei and introduce compo-

nents (mj) from the landmarks plan ci. The refined plans are then used to train

a semantic parser learner as a supervised training set (ei, pi). The trained se-

mantic parser can parse a novel instruction into a formal plan, which is finally

executed for end-to-end evaluation. Figure 4.3 illustrates the overall system.

46



As this figure indicates, our new PCFG induction methods replace the

roles of the plan refinement step and the semantic parser in Chen and Mooney’s

(2011) system. The two systems presented in this chapter are unified sys-

tems that simultaneously disambiguate the training data and learn a semantic

parser in a single probabilistic framework. We use the landmarks plans and

the learned lexicon produced by GILL (Chen & Mooney, 2011) as ambiguous

inputs to our system.

4.3 Hierarchy Generation PCFG Approach

Like Börschinger et al. (2011), our first PCFG approach learns a seman-

tic parser directly from ambiguous supervision: specifically, NL instructions

paired with the complete landmarks plans as context in the navigation data.

Our method incorporates semantic lexemes obtained from GILL as basic build-

ing blocks to find correspondences between NL words and semantic concepts

represented by the MRs in the lexemes, instead of building connections for

each MR constituent as level, as with Börschinger et al.’s (2011) method. We

utilize the hierarchical subgraph relationships between the MRs in the seman-

tic lexicon to produce a smaller, more focused set of PCFG rules. The intuition

behind this is analogous to the hierarchical relations between syntactic cat-

egories in syntax parsing. In syntax parsing, high level categories, such as

S, VP, or NP, refer to bigger concepts that are further divided into smaller

concepts, such as V, N, or Det, therefore forming a hierarchical structure.

Inspired by this notion, we introduce a directed acyclic graph called the Lex-

47



eme Hierarchy Graph (LHG) which represents the hierarchical relationships

between lexemes. Since complex lexeme MRs represent complicated combined

semantic concepts and simple MRs represent simple concepts, it is natural to

construct a hierarchy between the lexeme MRs. The LHGs for all training

examples are used to construct production rules for PCFG, which are then

parametrized using EM. Finally, novel sentences are semantically parsed by

computing their most-probable parses using the trained PCFG and extracting

an MR from the resulting parse tree.

4.3.1 Constructing a Lexeme Hierarchy Graph

An LHG represents the hierarchy of semantic concepts relevant to a

particular training instance by encoding the subgraph relations between the

MRs of relevant lexemes. Algorithm 1 shows pseudo-code of LHG construction

for the training instance (ei, ci). First, we obtain all relevant lexemes (wi
j,m

i
j)

in the lexicon L, where the MR mi
j is a subgraph of the context ci (denoted

as mi
j ⊂ ci). These lexemes are sorted in descending order based on their MR

sizes (i.e, number of component nodes in mi
j). Next, lexemes are inserted, in

order, into the MR hierarchy graph starting with the root node of the context

ci. The MR of an added child should be a subgraph of the MR of its parent.

Figures 4.4 and 4.5 illustrate a sample construction of an LHG.

In this step, a lexeme is only added as a child of current leaf nodes. The

lexeme is added multiple times if multiple leaves are supergraphs of this lex-

eme. Thus, it frequently happens that one lexeme is the subgraph of multiple
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(a) All relevant lexemes are obtained for the training example and
ordered by the number of nodes in their MR.

(b) Lexeme MR [1] is added as a child of the top node. MR [2] is a
subgraph of [1], so it is added as its child.

Figure 4.4: Sample LHG construction for the context Turn(RIGHT), Verify
(side : HATRACK, front : SOFA), Travel(steps : 3), Verify(at : EASEL).
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(a) MR [3] is not a subgraph of [1] or [2], so it is added as a child of
the root. MR [4] is added under [3].

(b) Finally, MR [5] is recursively filtered down and finds its correct
place under [2].

Figure 4.5: Sample LHG construction for the context Turn(RIGHT), Verify
(side : HATRACK, front : SOFA), Travel(steps : 3), Verify(at : EASEL), con-
tinued from Figure 4.4.
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Algorithm 1 Lexeme Hierarchy Graph (LHG)

Input: Training instance (ei, ci), Lexicon L
Output: Lexeme hierarchy graph for (ei, ci)

Find relevant lexemes (wi
1,m

i
1), . . . , (w

i
n,m

i
n) s.t. mi

j ⊂ ci
Create a starting node T ; MR(T )← ci
for all mi

j in the descending order of size do
Create a node T i

j ; MR(T i
j )← mi

j

PlaceLexeme(T i
j ,T )

end for

procedure PlaceLexeme(T ′,T )
for all children Tj of T do

if MR(T ′) ⊂ MR(Tj) then
PlaceLexeme(T ′,Tj)

end if
end for
if T ′ was not placed under any child Tj then

Add T ′ as child of T
end if

end procedure

other mutually disjoint lexemes. Since the subsequent processes would only

duplicate a lower level hierarchy over multiple times, the LHG is maintained

as a directed acyclic graph (DAG) instead of a tree so that one particular lex-

eme only appears once per the LHG of the training example. The steps are

repeated until all lexemes are added.

The initial LHG may contain nodes with too many children, which may

result in too many PCFG rules, because we add a PCFG production rule for

every possible k-permutation of the children of each node (see Section 4.3.2).

Thus, we introduce pseudo-lexeme nodes to reduce the branching factor by

51



Algorithm 2 Adding Pseudo Lexemes to LHG

Input: LHG with root T
Output: LHG with pseudo lexemes added
procedure ReconstructLHG(T )

repeat
((Ti, Tj),m

′)← MostSimilarPair(T )
Add child T ′ of T ; MR(T ′)← m′

Move Ti and Tj to be children of T ′

until There are no more pairs to combine
for all non-leaf children Tk of T do

ReconstructLHG(Tk)
end for

end procedure

procedure MostSimilarPair(T )
for all pairs (Ti, Tj) of children of T do

m′ ← smallest graph s.t. MR(Ti) ⊂ m′,
MR(Tj) ⊂ m′, m′ ⊂ MR(T )

score← Sim(MR(Ti),MR(Tj),m
′)

if maxScore < score then
maxPair ← (Ti, Tj)
maxScore← score

end if
end for
return (maxPair,m′)

end procedure

52



repeatedly combining the two most similar children of each node. Pseudocode

for this procedure is shown in Algorithm 2. The MR for a pseudo-lexeme is

the minimal graph, m′, which is a supergraph of both of the lexeme MRs that

it combines. The pair of most similar children, (mi,mj), is calculated by the

ratio of how many nodes in mi and mj overlap with m′ and is described as

follows:

Sim(mi,mj,m
′) =

|mi|+ |mj|
2 |m′|

where |m| is the number of nodes in the MR m. Adding pseudo-lexemes has

another advantage: they can be intuitively thought of as higher-level semantic

concepts composed of two or more concepts. Moreover, the pseudo-lexemes

will likely occur in other training examples as well, allowing for more flexible

interpretations. For example, let us consider the rule A⇒ BCD from an LHG,

and we introduce pseudo-lexeme E, so that we build two rules, A⇒ BE and

E ⇒ CD. It is likely that E occurs in another rule in other training examples,

such as E ⇒ FG. Then, we can increase the model’s expressiveness by having

rules such as A⇒∗ BFG, providing more flexibility when parsing a novel NL

sentence.

4.3.2 Composing PCFG Rules

The next step is to compose PCFG rules from the LHGs. The process is

summarized in Figure 4.6. We basically follow the scheme of Börschinger et al.

(2011), but instead of generating NL words from each atomic MR, words are

generated from each lexeme MR, and smaller lexeme MRs are generated from
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more complex ones as given by the LHGs. A nonterminal Sm is generated

for the MR, m, of each LHG node. Then, for every LHG node, T , with

MR, m, we add rules of the form Sm → Smi
...Smj

, where the RHS is some

k-permutation of the nonterminals for the MRs of the children of node T .

Although Börschinger et al. made sure every MR constituent generates at

least one NL word, we must generate every possible ordered subset of the

children nonterminals, because we do not know which subgraph of the whole

context ci is responsible for generating the NL words in the sentence. In

summary, complex semantic concepts are described as an ordered hierarchy

tree of smaller concepts that are eventually described by NL phrases.

The rest of the process more closely follows Börschinger et al.’s (2011)

approach. Every lexeme MR, m, 1 generates a rule Sm → Phrasem, and ev-

ery Phrasem generates a sequence of NL words, including one or more “con-

tent words” (Wordm) for expressing m and zero or more “extraneous” words

(Word∅). While Börschinger et al. let Wordm generate any NL words in

the vocabulary weighted by EM, we restrict each Wordm to produce only the

NL phrases or words associated with m in the lexicon. This helps reduce the

PCFG to a tractable size and also decreases unnecessary ambiguity caused

by the possible connections between lexemes and all words in the vocabu-

lary. Word∅ has rules for every word, including unknown ones, and thus is

responsible for generating uncovered words.

1Pseudo-lexemes only generate words by generating child lexemes.
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Figure 4.6: Summary of the rule generation process for the Hierarchy Genera-
tion PCFG approach based on LHGs. NLs refer to the set of NL words in the
corpus. Lexeme MR rules follow the schemata of Börschinger et al. (2011), and
allow every lexeme MR to generate at least one NL word through a unigram
Markov process. Note that pseudo-lexeme nodes do not produce NL words.

4.3.3 Parsing Novel NL Sentences

To learn the parameters of the resulting PCFG, we use the Inside-

Outside algorithm.2 Next, we use the standard probabilistic CKY algorithm

to produce the most probable parses for novel NL sentences (Jurafsky & Mar-

tin, 2000). A simplified version of a sample parse tree from the Hierarchy

2We used the implementation available at http://web.science.mq.edu.au/

~mjohnson/Software.htm, which was also used by Börschinger et al. (2011).
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Figure 4.7: Simplified parse for the sentence “Turn left and find the sofa then
turn around the corner” for the Hierarchy Generation Model. Nonterminals
show the MR graph, where additional nonterminals for generating NL words
are omitted.

Generation PCFG Model is shown in Figure 4.7.

Börschinger et al. (2011) simply read the MR, m, for a sentence off

the top Sm nonterminal of the most probable parse tree. Therefore, their

model is able to produce only the MRs seen during training. In contrast, our

method produces the output MR parse by composing the appropriate subset

of lexeme MRs that are actually responsible for generating NL words. Thus,

our system is able to produce novel MRs as long as they are some subgraphs

of the complete context (ci) that appeared in the training data.

First, the parse tree is pruned to remove all the subtrees with the root

of Phrasex, producing the tree with only Sm nodes. The pruned subtrees are

only concerned about generating NL words, so we can figure out which lexeme
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Algorithm 3 Construct Parsed MR Result

Input: Parse tree T for input NL, e, with all Phrasex subtrees removed.
Output: Semantic parse MR, m, for e
procedure ObtainParsedOutput(T )

if T is a leaf then
return MR(T ) with all its nodes marked

end if
for all children Ti of T do

mi ← ObtainParsedOutput(Ti)
Mark the nodes in MR(T ) corresponding

to the marked nodes in mi

end for
if T is not the root then

return MR(T )
end if
return MR(T ) with unmarked nodes removed

end procedure

MRs are involved in generating the target NL sentence. The leaves Sm in the

pruned tree show lexeme MRs m that are responsible for generating the NL

sentence. These lexeme MR components are combined so that they conform

to the parse tree structure to produce the final MR parse.

Algorithm 3 shows the pseudo-code for producing the MR parse from

the pruned parse tree. Figures 4.8 and 4.9 are a sample trace. The algorithm

recursively traverses the parse tree. When a leaf-node is reached, it marks

all of the nodes in its MR. After traversing all of its children, a node in the

MR for the current parse-tree node is marked if, and only if, its corresponding

node in any of the children’s MRs was marked. Removing all of the unmarked

nodes from the root MR results in the final MR we want.
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(a) Pruned parse tree showing only MRs for Sm nodes.

(b) Leaf nodes have all their elements marked.

Figure 4.8: Sample construction of a derived MR output from a pruned parse
tree for the Hierarchy Generation PCFG approach.
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(a) Upper level nodes are marked according to leaf-node markings.

(b) Removing all unmarked elements for the root node leads to the final MR output.

Figure 4.9: Sample construction of a derived MR output from a pruned parse
tree for the Hierarchy Generation PCFG approach, continued from Figure 4.8.
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4.4 Unigram Generation PCFG Approach

The key idea of the Hierarchy Generation PCFG approach described in

section 4.3 is to encode in the model how complex semantic concepts generate

smaller ones in order, which finally make correspondences with NL ground-

ings. Even though the process follows a natural intuition, this PCFG approach

could suffer from an exploding number of grammar rules if we do not intro-

duce pseudo-lexemes from initial LHG structures before creating final PCFG

rules. This is mainly because we have to consider all the permutations of

how semantic lexemes are generated in order to know which lexeme MR is

connected to which NL substrings. On the other hand, even though intro-

ducing pseudo-lexemes is inevitable in order to maintain the feasibility of the

Hierarchy Generation model, pseudo-lexemes also increase the total number

of nonterminals in the resulting PCFG, which results in more latent variables

to consider during the EM training.

In this section, we introduce a simpler approach that does not rely on

a pre-computed LHG for each example when generating a final PCFG rule

set. This new PCFG approach uses a unigram Markov process to generate

related semantic lexemes one by one, starting from nonterminals representing

the context MR, each of which further generates corresponding NL words.

This approach has an advantage over the previous LHG-based hierarchical

approach, because it does not require that extra PCFG rules be introduced

for permutations of nonterminals, and it produces a simpler PCFG rule set

overall. Experimental results show that the new, simpler approach performs
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better than the more complex hierarchical approach, and it also runs faster

during training due to the smaller number of generated PCFG rules.

4.4.1 Composing PCFG Rules

The first step in composing PCFG rules is to learn a semantic lexicon

from the training data, which follows the same scheme as in the previous

PCFG approach (Section 4.3). Then, for each training example, we list every

semantic lexeme relevant to this example. Formally, for a training example

pair of an NL instruction and a context MR (landmarks plan) (ei, ci), we obtain

all the semantic lexemes (wi
j,m

i
j) from the lexicon L such that the MR mi

j is

a subgraph of the context ci and wi
j appears in the NL sentence ei.

Then, without calculating inter-lexeme subgraph relationships, we can

compose PCFG rules in a straightforward manner. The rule generation pro-

cess is summarized in Figure 4.10. The basics of the scheme are the same as

before. Each semantic lexeme is responsible for generating related NL words

appearing in the learned lexicon L, following the same unigram Markov gen-

eration of NL words as in the Hierarchy Generation PCFG approach. The

only difference is that, instead of hierarchical lexeme generation, each relevant

lexeme is generated one by one from the context MR, simulating a unigram

Markov process.

This rule generation process does not have to consider the permutation

orders of lexemes explicitly. The means of generating lexemes from the context

MR is flat; thus, the unigram selection of lexemes in the second and third lines
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Figure 4.10: Summary of the rule generation process of the Unigram Genera-
tion PCFG approach. NLs refer to the set of NL words in the corpus. Lexeme
MR rules are just the same as the Hierarchy Generation PCFG approach (Sec-
tion 4.3). Every lexeme MR should generate at least one relevant NL word
through a unigram Markov process. The second and third lines cover the uni-
gram Markov process of generating each relevant lexeme MR from the context
MR.

of Figure 4.10 already considers all possible permutations.

4.4.2 Parsing Novel NL Sentences

When parsing a new NL sentence in the simplified model, we follow an

approach similar to that of the Hierarchy Generation approach using LHGs,

but in a simpler way. Again, we use the Inside-Outside algorithm first, to

get weight parameters for the resulting PCFG rule set, and then the prob-
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Figure 4.11: Simplified parse for the sentence “Turn left and find the sofa then
turn around the corner” for the Unigram Generation Model. Nonterminals
show the MR graph, where additional nonterminals for generating NL words
are omitted. The node “Context MR” refers to the same nonterminal of the
root node that represents the context MR.

abilistic CKY algorithm predicts the most probable parse tree for test NL

sentences. Whereas the previous approach generates parse trees with hier-

archical structures containing relevant lexemes for a given NL sentence, this

approach produces a flat lexeme structure in its resulting parse trees. A sim-

plified version of a sample parse tree for the Unigram Generation PCFG model

appears in Figure 4.11. Thus, parsing and obtaining a properly derived MR

for a test sentence becomes simple. All we need to do is find internal Lm

nonterminal nodes appearing in the parse trees. A simple tree traversal of the

parse tree to find Lm nodes will suffice. All the subtree structures below the

nonterminal Phrasem can be discarded because they are, again, only used for
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NL generation and are not relevant to determining the relevant lexemes used.

Once we know relevant lexeme nodes of Lms and context MR Sc appearing

in the root of the parse tree, then we can compose the desired final MR by

marking context MR c of corresponding nodes appearing in each lexeme MR

m.

Algorithm 4 shows the pseudo-code for this process. Figures 4.12

and 4.13 are a sample trace. The algorithm simply goes over all the rele-

vant lexemes and marks the corresponding nodes appearing in the context

MR. Finally, removing the unmarked nodes from the root context MR results

in the final derived MR.

4.5 Experimental Evaluation

4.5.1 Data

To evaluate our methods, we used the English instructions and follower

data originally collected by MacMahon et al. (2006).3 These data contain 706

route instructions for three virtual worlds called Grid, L, and Jelly. The in-

structions were produced by six instructors for 126 unique starting and ending

location pairs in the three worlds. Each navigation instruction comes with 1

to 15 human followers’ traces with an average of 10.4 actions per instruction,

and the followers are separate from the instruction annotators. Each instruc-

tion consists of an average of 5.0 sentences, each containing an average of 7.8

3Data and relevant code are available at http://www.cs.utexas.edu/users/ml/clamp/
navigation/
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(a) Pruned parse tree showing only MRs for Sm and Lm nodes, referring
to context MR and relevant lexeme MRs, respectively.

(b) First, relevant lexeme MRs are extracted from the parse tree.

Figure 4.12: Sample construction of a derived MR output from a pruned parse
tree for the Unigram Generation PCFG approach.
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(a) Context MR is marked according to the corresponding nodes in lexeme MRs.

(b) Removing all unmarked elements for the root node of the context MR leads to
the final derived MR.

Figure 4.13: Sample construction of a derived MR output from a pruned parse
tree for the Unigram Generation PCFG approach, continued from Figure 4.12.
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Algorithm 4 Construct parsed MR result

Input: Parse tree T for input NL, e, with all Phrasex subtrees removed.
Output: Semantic parse MR, m, for e
procedure ObtainParsedOutput(T )

Lexemes← ObtainRelevantLexemes(T )
for all Lexeme mi of Lexemes do

Mark the nodes in MR(T ) corresponding
to the nodes in mi

end for
return MR(T ) with unmarked nodes removed

end procedure
procedure ObtainRelevantLexemes(T )

if T is a leaf then
return a singleton set containing MR(T )

end if
Result← a singleton set containing MR(RightChild(T ))
if RightChild(T ) exists then

TR ← RightChild(T )
Add all elements of ObtainRelevantLexemes(TR) to Result

end if
return Result

end procedure

words.

In addition, Chen and Mooney (2011) constructed an additional single-

sentence corpus by matching each sentence with the majority of human follow-

ers’ actions in order to ease the training process. This single-sentence version

is used for training our models, but both versions of the data are used for test-

ing. There are manually annotated “gold standard” plans only for evaluation

purposes. Detailed statistics are shown in Table 4.1.

In addition to the English data, Chen (2012a) introduced a Chinese

67



Original (Paragraph) Single-sentence
# instructions 706 3236
Vocabulary size 660 629
Avg. # sentences 5.0 (2.8) 1.0 (0)
Avg. # words 37.6 (21.1) 7.8 (5.1)
Avg. # actions 10.4 (5.7) 2.1 (2.4)

Table 4.1: Statistics about the navigation corpus originally collected by
MacMahon et al. (2006) and the single-sentence processed version by Chen
and Mooney (2011). Average values are shown, as well as standard devia-
tions, in parentheses.

translation version of the corpus. As in previous studies on the navigation cor-

pus (Chen & Mooney, 2011; Chen, 2012a), our system is language-independent

and capable of learning to interpret any language semantics within the same

framework without modification. These additional Chinese data were anno-

tated by a single native Mandarin Chinese speaker and are translations of each

sentence of the English navigation instructions.

One major issue with Chinese data is that unlike English or Korean,

Chinese does not have space word boundaries. In order to handle this, Chen

(2012a) presented two versions of the Chinese data. The first version treats

each Chinese character as a word by putting a space between each character.

It seems an unreasonable assumption to make, but whereas English has only

26 characters in total and each character does not usually form a meaningful

semantic unit, the number of Chinese characters is much larger and each Chi-

nese character constitutes a single semantic unit, because Chinese characters

are ideograms. Another version is constructed by using an existing tool for
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Original (Paragraph) Single-sentence
# instructions 706 3236

Segmented
Vocabulary size 661 508
Avg. # words 31.6 (18.1) 6.9 (4.9)

Character
Vocabulary size 448 328
Avg. # words 48.9 (28.3) 10.6 (7.3)

Table 4.2: Word statistics about the Chinese translation version of the nav-
igation corpus (Chen, 2012a). Both word-segmented (“Segmented”) and
character-segmented (“Character”) versions are presented.

segmenting Chinese characters into words. Chen (2012a) provided this ver-

sion of the corpus processed by the Stanford Chinese Word Segmenter (Chang,

Galley, & Manning, 2008). Word statistics of both versions of Chinese data

are presented in Table 4.2.

4.5.2 Methodology and Results

For evaluation, we followed the same methodology as Chen and Mooney

(2011), performing “leave one environment out” cross-validation (i.e, training

on two environments and testing on the third). We present direct comparisons

with the best reported results of Chen and Mooney (2011) and Chen (2012b).4

Regarding the semantic lexicon, all our proposed methods use the Graph In-

tersection Lexicon Learnng (GILL) introduced by Chen and Mooney (2011)

and later named by Chen (2012b). Some of the best cited results for Chen

(2012b) used a new lexicon learning algorithm called Subgraph Generation

4The experimental results of Chen (2012b) subsume those of Chen (2012a)
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Methods Precision Recall F1
Hierarchy Generation PCFG model 87.58 65.41 74.81
Unigram Generation PCFG model 86.10 ∗68.79 ∗76.44
Chen and Mooney (2011) ∗90.16 55.41 68.59
Chen (2012b) 88.36 57.03 69.31
Chen (2012b) with additional data 88.11 56.57 68.90

Table 4.3: Test accuracy for semantic parsing on English data; ‘∗’ denotes
statistically significant difference compared to the second best results (p <
.05).

Online Lexicon Learning (SGOLL). We performed a Wilcoxon signed-rank

test for statistical significance, and ‘∗’ denotes significant differences (p < .05)

compared to the second best results in the tables.

4.5.2.1 Semantic Parsing Results

Semantic parsing evaluates how accurately the model learns to map

novel NL sentences in the test environment into correct MRs. Partial semantic-

parsing accuracy (Chen & Mooney, 2011) assigns partial credit if two MRs

have the same predicate, and additional credit for each matching argument.

Precision (accuracy of the system output against the gold standard), recall (the

gold standard against the system output), and F1 (harmonic mean between

precision and recall) are evaluated, and every metric considers partial credit

for approximately correct MRs.

Table 4.3 shows a direct comparison of our proposed two PCFG models

described in Section 4.3 and Section 4.4. We also make comparisons with the

best results presented in the following cited papers: the refined landmarks plan
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for Chen and Mooney (2011) and the expanded CFG with SGOLL lexicon

learning for Chen (2012b) (see Section 4.7). We also cite the results with

additional training data obtained from the Amazon Mechanical Turk from

Chen (2012b), which are the best obtained results in this paper, even though

it uses external training data.

The experimental results clearly demonstrate that our two PCFG meth-

ods are better than Chen and Mooney’s (2011), by a large margin. The Hierar-

chy Generation approach performs better by 6 points in F1 and the simplified

version performs 8 points better. Furthermore, our two methods are better

than Chen’s (2012b), even compared to the results with additional training

data. Our two PCFG-based approaches with semantic lexicon are able to prob-

abilistically disambiguate the training data as well as simultaneously learn a

statistical semantic parser within a single framework.

This results in better overall performance compared to previous studies,

since they lose possibly useful information due to separate stages of the system,

particularly during the refinement stage. In addition, their refinement process

is limited to incorporating only the high-scoring lexemes. By contrast, our

approaches probabilistically consider relatively low score but useful lexemes

in the generative process, and, therefore, has more flexibility in the final MR

interpretation. This is reflected in the increase of recall for our approaches

since our methods have a wider coverage of lexemes during training.

One additional point to note is that the Unigram Generation PCFG

approach performs better than the Hierarchy Generation PCFG approach.
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Data Methods Precision Recall F1

Segmented
Hierarchy PCFG model 80.56 71.14 75.53
Unigram PCFG model 79.45 ∗73.66 ∗76.41
Chen (2012b) ∗88.87 58.76 70.74

Character
Hierarchy PCFG model 79.77 67.38 73.05
Unigram PCFG model 79.73 ∗75.52 ∗77.55
Chen (2012b) ∗92.48 56.47 70.01

Table 4.4: Test accuracy for semantic parsing for Chinese Mandarin data.
“Segmented” refers to the word-segmented version of the Chinese corpus by
Stanford Chinese Word Segmenter, and “Character” refers to the character-
segmented version; ‘∗’ denotes statistically significant difference compared to
the second best results (p < .05).

Notably, the recall is boosted up by 10%, which results in better F1, even

though the precision is low. Compared to the Hierarchy Generation approach,

the Unigram Generation version tends to catch more MR elements. The hi-

erarchical structure of lexemes in the Hierarchy Generation approach and the

additional pseudo-lexemes tend to select fewer lexemes to connect with the

NL sentence. On the other hand, the flat structure of lexemes of the Unigram

Generation approach chooses more lexemes for NL groundings.

Table 4.4 shows the semantic parsing results for the Chinese data. In

the experiments, we compare our two PCFG approaches with the best results

for the previous approach by Chen (2012b). For the “Segmented” version

of the corpus, we cite the results with SGOLL lexicon learning, and for the

“Character” version, we cite the results with GILL lexicon learning. The

resulting trends are similar to those from the English data. Overall, our two

PCFG approaches perform much better in F1, which is mainly due to the much
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Method Single-sentence Paragraph
Hierarchy Generation PCFG model 57.22% 20.17%
Unigram Generation PCFG model ∗67.14% ∗28.12%
Chen and Mooney (2011) 54.40% 16.18%
Chen (2012b) 57.28% 19.18%
Chen (2012b) with additional data 57.62% 20.64%

Table 4.5: Successful plan execution rates using the MARCO execution module
on English test data; ‘∗’ denotes statistically significant difference compared
to the second best results (p < .05).

higher value of recall. In addition, the results of the Chinese data support our

contention that the Unigram Generation PCFG approach performs better than

the Hierarchy Generation approach. The flat structure of semantic lexemes

generated by the Unigram PCFG approach helps the model capture more

correct elements in its parse trees.

4.5.2.2 Navigation Plan Execution Results

The next evaluation is to test the end-to-end execution of the parsed

navigation plans for test instructions in novel environments to determine whether

they reach the exact desired destinations in the environment. Table 4.5 shows

the successful end-to-end navigation task completion rates for both single-

sentences and complete paragraph instructions for the English corpus. Fol-

lowing Chen and Mooney (2011), the execution is performed by the MARCO

system (MacMahon et al., 2006), with the parsed navigation plans output

from our model. For the single-sentence corpus, we also considered whether

the virtual agent is facing the correct direction compared to the gold-standard.
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Data Method Single-sentence Paragraph

Segmented
Hierarchy PCFG model 61.03% 19.08%
Unigram PCFG model ∗63.40% ∗23.12%
Chen (2012b) 58.70% 20.13%

Character
Hierarchy PCFG model 55.61% 12.74%
Unigram PCFG model ∗62.85% ∗23.33%
Chen (2012b) 57.27% 16.73%

Table 4.6: Successful plan execution rates using the MARCO execution mod-
ule on the Mandarin Chinese test data. “Segmented” refers to the word-
segmented version of the Chinese corpus by Stanford Chinese Word Segmenter,
and “Character” refers to the character-segmented version; ‘∗’ denotes statis-
tically significant difference compared to the second best results (p < .05).

Our two PCFG approaches outperform the best results of Chen and

Mooney (2011) and Chen (2012b), since more accurate semantic parsing pro-

duces more successful plans. In particular, the Unigram Generation PCFG

approach performs better than the results of the Hierarchy Generation ap-

proach by a large margin. This is mainly due to the accuracy difference in

semantic parsing. Most notably, higher recall enables the simplified approach

to catch many more correct MR elements that are essential for execution. Our

two approaches show comparable or even better results than those of Chen

(2012b) with additional training data.

Plan execution results for the Chinese data are shown in Table 4.6. The

results are similar to those of the English corpus. Our proposed PCFG ap-

proaches generally perform better than Chen’s (2012b) approach, except that

the Hierarchy Generation PCFG approach with character-wise segmented data

performs worse. We conjecture that the high complexity of the Hierarchy Gen-
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Data
Hierarchy PCFG Unigram PCFG

|Grammar| Time (hrs) |Grammar| Time (hrs)
English 20451 17.26 16357 8.78

Chinese (Segmented) 21636 15.99 15459 8.05
Chinese (Character) 19792 18.64 13514 12.58

Table 4.7: Comparison of training time in seconds between our two PCFG
approaches along with the average numbers of productions in the PCFG.

eration approach on the character-segmented corpus makes the model overfit

to the training data. This is primarily caused by the large number of the

produced PCFG rules due to considering all the permutations and the longer

NL sentences by the character-level segmentation.

4.5.2.3 Training Time Comparison

We compared the average training time of our two PCFG approaches

in Table 4.7. The Unigram Generation approach produces fewer PCFG rules,

which is expected due to the simpler PCFG generation steps. As a result, the

training time for estimating the most probable weight parameters using the

Inside-Outside algorithm is considerably less.

4.6 Discussion

Our two PCFG approaches are novel compared to that of Börschinger

et al. (2011) in the following ways:

• The basic building blocks for associating NL and MR are semantic lex-

emes instead of atomic MR constituents. This prevents the number of
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produced PCFG rules from exploding, which happens easily in Börschinger

et al.’s (2011) approach for even a moderately complex MR language.

Considering there are a large number of examples in the navigation data

that have 20 or more atomic actions in their context MRs per NL sen-

tence, direct application of Börschinger et al. (2011) would cause 20!

(> 1018) PCFG production rules to deal with. As mentioned earlier,

intuitively the lexemes are analogous to syntactic categories in syntax

parsing, in that complex lexeme MRs represent complicated semantic

concepts, whereas higher-level syntactic categories such as S, VP, or NP

represent complex syntactic structure.

• Our approach has the ability to produce a previously unseen MR, whereas

Börschinger et al.’s (2011) approach can generate only a parsed MR and

only if it is included in the PCFG rules constructed from the training

data. Even though our MR parse is restricted to a subset of the train-

ing contexts cis, our model allows for an exponentially large number of

combinations.

In addition, our approaches also cover wider selections of MR outputs

than the approaches of Chen and Mooney (2011) and Chen (2012b), even

though we use their semantic lexicon as our input. Their system deterministi-

cally builds a supervised training set by greedily selecting high-scoring lexemes,

thus including only high-scoring lexemes during the training phase. In con-

trast, our probabilistic PCFG approaches also consider relatively low-scoring
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but useful lexemes, thus covering more semantic concepts in the lexicon. The

lexicon learning algorithms rely on correlational statistics, which may likely

skip some semantic lexemes that occur in a few distinctive examples in the cor-

pus. Because of this, it is not a good idea to systematically ignore low-scoring

lexemes. This explains why our approaches perform particularly better in re-

call in the semantic parsing evaluations. Intuitively, we do a better job of

utilizing all the semantic lexemes.

Also notable is that the Unigram Generation PCFG approach performs

generally better than the Hierarchy Generation PCFG approach. We think

this is due to the problem of hierarchical structure of LHG as well as to the

complexity introduced by pseudo-lexemes. These decisions stem from the in-

tuitive idea of complex concepts generating simpler concepts and are adopted

in order to reduce the possible complexity of the resulting PCFG rules and to

maintain feasibility. However, it turns out that such decisions work as noises

at some point, and simple generation of semantic lexemes by the unigram

Markov process provides an overall better model. In addition, the performance

improvement brought about by the Unigram approach seems reduced in the

word-segmented Chinese data. We speculate that the shorter average sentence

lengths make the Hierarchy model less complicated due to fewer permutation

rules. Therefore, the performance of the Hierarchy model is reasonably high,

and the performance gain of the Unigram model appears less.

Although we have demonstrated our approaches for a fairly specific

task, the navigation task, we can apply the general methodology to other
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language grounding tasks, where an NL sentence is potentially connected to

world states/events/actions expressed as a sequence/set of logical forms. Our

approaches using PCFG induction with semantic lexicon are general PCFG

frameworks for grounded language learning as long as an appropriate lexicon

is provided, since the lexicon learning algorithm can be replaced with other

domains.

4.7 Online Semantic Lexicon Learning

Our PCFG induction models are greatly affected by the quality of the

semantic lexicon, since semantic lexemes are the basic building blocks for our

model. It is interesting to see whether different lexicon learning algorithms

would increase the overall performance of our models. In this section, we

discuss a fast online lexicon learning algorithm called Subgraph Generation

Online Lexicon Learning (SGOLL) proposed by Chen (2012a) and how it af-

fects our models’ performance in the evaluations. Chen (2012a, 2012b) demon-

strated that SGOLL is relatively effective compared with the system by Chen

and Mooney (2011) on the navigation task, but the learning process is much

faster.

The algorithm by Chen and Mooney (2011) obtains candidate lexeme

MRs for an NL phrase w by repeatedly taking intersections between MRs in the

candidate lexeme MR set. Although it is quite effective for getting a maximal

meaning for a phrase w, the learning process is slow. SGOLL is inspired by

the fact that most words or short phrases correspond to small MR graphs;
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Precision Recall F1
Hierarchy PCFG + GILL 87.58 ∗65.41 ∗74.81
Hierarchy PCFG + SGOLL ∗89.04 61.06 72.30
Unigram PCFG + GILL 80.07 ∗75.09 ∗77.49
Unigram PCFG + SGOLL ∗81.58 67.89 74.10

Table 4.8: Semantic parsing results comparing models using different lexicon
for English corpus, GILL (Chen & Mooney, 2011) and SGOLL (Chen, 2012b);
‘∗’ denotes statistically significant difference compared to the second best re-
sults (p < .05).

thus, the algorithm focuses only on candidate meanings smaller than a certain

size. The process collects co-occurrence information between n-grams wj and

connected subgraphs up to a certain size (in Chen and Mooney’s paper, 3).

Since each training example is processed only once, SGOLL results in a much

faster learning process. The score of candidate lexemes is calculated by the

same scoring function as in Chen and Mooney’s (2011) study, and the final

lexicon output is obtained by ranking the candidate lexemes with the scores.

The experimental results of using SGOLL with our two PCFG induc-

tion models on the English corpus are shown in Table 4.8 and Table 4.9. The

Wilcoxon signed-rank test is performed for statistical significance and the sig-

nificance is marked with ∗ (p < .05).

The results show that SGOLL does not improve the performance of our

Hierarchy Generation model either in semantic parsing or in the subsequent

plan execution. The primary reason is that since SGOLL is able to consider

only small-sized lexemes, the entire LHG structure mainly stems from com-
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Single-sentence Paragraph
Hierarchy PCFG + GILL ∗57.22% ∗20.17%
Hierarchy PCFG + SGOLL 55.01% 18.56%
Unigram PCFG + GILL ∗67.14% ∗28.12%
Unigram PCFG + SGOLL 56.69% 19.35%

Table 4.9: Plan execution rates using the MARCO execution module compar-
ing models with different lexicon for English corpus, GILL (Chen & Mooney,
2011) and SGOLL (Chen, 2012b); ‘∗’ denotes statistical significance compared
to the second best results (p < .05).

posing pseudo-lexemes between SGOLL lexemes. This means that LHG with

SGOLL may deviate from the real underlying semantics for composite NL

phrases, thus showing worse performance overall. Moreover, SGOLL fails to

enhance the Unigram Generation PCFG model also. In this case, the semantic

lexemes obtained from the SGOLL algorithm represent pieces of the semantics

of the context MR that are too small. Thus, the derived MRs from the parsing

phase are constructed from small pieces of lexeme MRs, resulting in incorrect,

unwanted constructions of final MRs. This results in quite a performance drop

in all metrics.

4.8 Chapter Summary

We have proposed two novel methods for learning a semantic parser

given only highly ambiguous supervision where each training example consists

of one natural language sentence and a large full meaning representation whose

subset refers only to true meaning. Our models are enhanced versions of
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Börschinger et al.’s (2011) approach which reduces the problem of grounded

learning of semantic parsers to PCFG induction. The major novelty of the

proposed approaches stem from using a learned semantic lexicon to aid the

construction of a smaller and more focused set of PCFG productions. This

also allows our approaches to scale to complex MR languages that define a

large (potentially infinite) space of representations for capturing the meaning

of sentences. By contrast, the original PCFG approach (Börschinger et al.,

2011) requires a finite MR language and its grammar grows intractably large

for even moderately complex MR languages. In addition, our algorithm for

composing MRs from the final parse tree provides the flexibility to produce a

wide range of novel MRs that were not seen during training.

We have proposed two versions of such PCFG approaches whose differ-

ences depend mainly on whether PCFGs are constructed based on subgraph

hierarchy structure among semantic lexemes. Surprisingly, the simpler version,

which does not incorporate lexeme hierarchy and generates relevant semantic

lexemes by the unigram Markov process, shows better performance in the

evaluations.

Evaluations on a previous corpus of navigational instructions for vir-

tual environments demonstrated the effectiveness of our methods compared to

recent competing systems. In addition, our methods are shown to be effective

in both the English and the Chinese versions of the corpus, which proves that

our approaches are language-independent.
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Chapter 5

Adapting Discriminatve Reranking to

Grounded Language Learning

In this chapter, we describe how to adapt discriminative reranking to

improve the performance of the generative models for grounded language learn-

ing. Specifically, we delve into the problem of navigational instruction follow-

ing discussed in Chapter 4 and aid two PCFG models described earlier with the

framework of discriminative reranking. Conventional methods of discrimina-

tive reranking require gold-standard references in order to evaluate candidates

and update the model parameters in the training phase of reranking. However,

grounded language learning problems do not have gold-standard references

naturally available; therefore, direct application of conventional reranking ap-

proaches do not work. Instead, we show how the weak supervision of response

feedback (e.g., successful task completion in the navigational task) can be used

as an alternative, experimentally demonstrating that its performance is com-

parable and even more effective compared to training on gold-standard parse

trees.
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5.1 Chapter Overview

In Chapter 4, we reviewed the navigation task in the simulated virtual

environment and proposed the two novel PCFG induction models for grounded

language learning. The major challenge of the navigation task is the exponen-

tial ambiguity between an NL instruction and the matching MR contexts. The

two approaches are the novel enhancements of the previous grounded language

learning model using PCFG induction (Börschinger et al., 2011) in order to

make it tractable for the complex problem of following navigation instructions.

The observed sequence of actions provides very weak, ambiguous supervision

for learning instructional language, since there are many possible ways to de-

scribe the same execution path. Although these two new approaches achieve

much better performance than did the original studies of Chen and Mooney

(2011) and Chen (2012b), they are still far below human performance.

Since the two approaches are essentially generative models where pa-

rameters are estimated by EM, discriminative reranking (Collins, 2000) is,

potentially, one obvious choice to improve their performance. By training a

discriminative classifier that uses global features of complete parses to iden-

tify correct interpretations, a reranker can significantly improve the accuracy

of a generative model. Reranking has been successfully employed to improve

a variety of tasks in natural language processing (Collins, 2002b; Lu et al.,

2008; Ge & Mooney, 2006; Toutanova et al., 2005; Collins, 2002c). A stan-

dard reranking approach requires gold-standard reference interpretations (e.g.,

parse trees) to train the discriminative classifier. However, grounded language
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learning problems do not provide gold-standard interpretations for the train-

ing examples in general. Instead, only the ambiguous perceptual context of

the utterance is provided as weak supervision. The navigation task takes this

weak supervision composed of the observed sequence of actions taken by a hu-

man when following an instruction, and thus it is impossible to directly apply

conventional discriminative reranking approaches.

In the remainder of this chapter, we show how to adapt reranking to

work with such weak supervision. We use the two PCFG induction approaches

described in Section 4.3 and Section 4.4 as baseline generative models. Our

proposed reranking model is used to discriminatively reorder the top parses

produced by the two models. Instead of using gold-standard annotations to

determine the correct interpretations and evaluate candidate representations

during the training phase, we simply prefer to evaluate candidate interpreta-

tions by deciding whether the given candidate actually reaches the intended

destination when executed in the world. Additionally, we extensively revise

the features typically used in parse reranking tasks to work with the two PCFG

approaches introduced in Chapter 4 in grounded language learning.

5.2 Modified Reranking Algorithm for Grounded Lan-
guage Learning

In reranking, a baseline generative model is first trained and it gen-

erates a set of candidate outputs for each training example. Next, a second

conditional model is trained using global features to rescore the candidates.
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Reranking using an averaged perceptron (Collins, 2002a) has been success-

fully applied to a variety of NLP tasks. Therefore, we modify the averaged

perceptron algorithm to rerank the parse trees generated by the two PCFG

induction models introduced in Chapter 4. The approach requires three sub-

components: 1) a Gen function that returns the top n candidate parse trees

for each NL sentence produced by the generative model, 2) a feature function

Φ that maps an NL sentence, e, and a parse tree, y, into a real-valued feature

vector Φ(e, y) ∈ Rd, and 3) a reference parse tree that is compared to the

highest-scoring parse tree during training.

However, grounded language learning tasks, such as our navigation

task, do not naturally provide reference parse trees for training examples.

Therefore, our modified model replaces the gold-standard reference parse with

the “pseudo-gold” parse tree whose derived MR plan is most successful at

getting to the desired goal location in the virtual environment of the naviga-

tion task. This strategy can be easily extended and applied to other general

grounded language learning tasks where there is a method of evaluating each

candidate interpretation against the given perceptual environment. Thus, the

third component in our reranking model becomes an evaluation function Exec

that maps a parse tree y into a real number representing the success rate (with

regard to successfully reaching the intended destination in the virtual world)

of the derived MR plan m composed from y.

Additionally, we improve the perceptron training algorithm by using

multiple reference parses to update the weight vector W̄ . Although we de-
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termine the pseudo-gold reference tree to be the candidate parse y∗ such that

y∗ = arg maxy∈Gen(e) Exec(y), it may not actually be the correct parse for

the sentence. Other parses may contain useful information for learning, and

therefore we devise a way to update weights using all candidate parses whose

successful execution rate is greater than the parse preferred by the currently

learned model.

5.2.1 Response-Based Weight Updates

Since many grounded language learning tasks do not naturally come

with a single gold-standard annotation for each example for the training pur-

poses, we cannot obtain a gold-standard reference parse, as it is for a typical

reranking case. In the navigation task, we cannot utilize the gold-standard

MR plan in the training phase, either. Even though we have gold-standard

MR plans only for the purposes of evaluation, it is impossible even to con-

struct the actual full parse tree from a gold-standard MR due to the lack of

corresponding relevant semantic lexemes.

To circumvent the need for gold-standard reference parses, we instead

select a pseudo-gold parse from the candidates produced by the Gen function.

In a similar vein, when reranking semantic parses, Ge and Mooney (2006) chose

as a reference parse the one which was the most similar to the gold-standard

semantic annotation. However, in the navigation task, the ultimate goal is

to generate a plan that, when actually executed in the virtual environment,

leads to the desired destination. Therefore, the pseudo-gold reference is chosen
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as the candidate parse that produces the MR plan with the greatest execu-

tion success. This requires a module that evaluates the execution accuracy of

the candidate parses. For the navigation task, we use the MARCO (MacMa-

hon et al., 2006) execution module, which is also used to evaluate how well

the overall system learns to follow directions (Chen & Mooney, 2011). Since

MARCO is non-deterministic when executing underspecified plans, we execute

each candidate plan 10 times, and its execution rate is the percentage of trials

in which it reaches the correct destination. When there are multiple candi-

date parses tied for the highest execution rate, the one assigned the largest

probability by the baseline model is selected. Therefore, the loss function L

is a typical 0–1 loss function between the pseudo-gold parse y∗ and the best

candidate y predicted by the currently trained perceptron. Our modified av-

eraged perceptron procedure with such a response-based update is shown in

Algorithm 5.

One additional issue must be addressed when computing the output of

the Gen function. The final plan MRs are produced from parse trees using

compositional semantics (cf. two PCFG models explained in Section 4.3 and

Section 4.4). Consequently, the n-best parse trees for the baseline model do not

necessarily produce the n-best distinct plans, since many parses can produce

the same plan. Therefore, we adapt the Gen function to produce the n-best

distinct plans rather than the n-best parses. This may require examining

many more than the n-best parses, because many parses have insignificant

differences that do not affect the final plan. The score assigned to a plan
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Algorithm 5 Averaged Perceptron Training with Response-based
Update

Input: A set of training examples (ei, y
∗
i ), where ei is an NL sentence and

y∗i = arg maxy∈Gen(ei) Exec(y). Exec(y) is the execution rate of the MR
plan m derived from parse tree y.
Output: The parameter vector W̄ , averaged over all iterations 1...T

1: procedure Perceptron
2: Initialize W̄ = 0
3: for t = 1...T, i = 1...n do
4: yi = arg maxy∈Gen(ei) Φ(ei, y) · W̄
5: if yi 6= y∗i then
6: W̄ = W̄ + Φ(ei, y

∗
i )− Φ(ei, yi)

7: end if
8: end for
9: end procedure

is the probability of the most probable parse that generates that plan. In

order to efficiently compute the n-best plans, we modify the exact n-best

parsing algorithm developed by Huang and Chiang (2005), which efficiently

calculates n-best parses by only adding log-order computational complexity.

The modified algorithm ensures that each plan in the computed n-best list

produces a new distinct plan.

5.2.2 Weight Updates Using Multiple Parses

Typically, when used for reranking, the averaged perceptron updates its

weights using the feature-vector difference between the current best predicted

candidate and the gold-standard reference (line 6 in Algorithm 5). In our ini-

tial modified version, we replaced the gold-standard reference parse with the

pseudo-gold reference, which has the highest execution rate among all the can-
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didate parses. However, this ignores all the other candidate parses during the

perceptron training. However, it is not ideal to regard other candidate parses

as “useless.” There may be multiple candidate parses with the same maximum

execution rate, and even candidates with lower execution rates might repre-

sent the correct plan for the instruction given the weak, indirect supervision

provided by the observed sequence of human actions.

Therefore, we also consider a further modification of the averaged per-

ceptron algorithm which updates its weights using multiple candidate parses.

Instead of only updating the weights with the single difference between the

predicted and the pseudo-gold parses, the weight vector W̄ is updated with

the sum of feature-vector differences between the current predicted candidate

and all the other candidates that have higher execution rates. Formally, in

this version, we replace lines 5 through 7 to check and evaluate against all the

other candidates. The modified algorithm is shown in Algorithm 6.

In the experiments shown in Section 5.4, we demonstrate that, by ex-

ploiting multiple reference parses, this new update rule helps achieve additional

performance gain in the execution accuracy of the final system. Intuitively,

this approach gathers additional information from all candidate parses with

higher execution accuracy when learning the discriminative reranker. In addi-

tion, as shown in line 6 of Algorithm 6, it uses the difference in execution rates

between a candidate and the currently preferred parse to weight the update

to the parameters for that candidate. This allows more effective plans to have

a larger impact on the learned model in each iteration.
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Algorithm 6 Averaged Perceptron Training with Weight Update
using Multiple Parses

Input: A set of training examples (ei, y
∗
i ), where ei is an NL sentence and

y∗i = arg maxy∈Gen(ei) Exec(y). Exec(y) is the execution rate of the MR
plan m derived from parse tree y.
Output: The parameter vector W̄ , averaged over all iterations 1...T

1: procedure Perceptron
2: Initialize W̄ = 0
3: for t = 1...T, i = 1...n do
4: yi = arg maxy∈Gen(ei) Φ(ei, y) · W̄
5: for all y ∈ Gen(ei) where y 6= yi and Exec(y) > Exec(yi) do
6: W̄ = W̄ + (Exec(y)−Exec(yi))

×(Φ(ei, y)− Φ(ei, yi))
7: end for
8: end for
9: end procedure

5.3 Reranking Features

This section describes the features Φ extracted from the parses pro-

duced by the generative models and used to rerank the candidates. The two

generative models in Section 4.3 and Section 4.4 share similar parse tree struc-

tures with semantic lexemes constituting nonterminals. Therefore, we use the

same feature sets across these two baseline models in our experimental evalu-

ations.

5.3.1 Base Features

The base features adapt those used in previous reranking methods,

specifically those of Collins (2002a), Lu et al. (2008), and Ge and Mooney

(2006), which are directly extracted from the parse trees produced by baseline
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generative models. In addition, we also include the log probability of the

parse tree as an additional feature, as did Lu et al. (2008). Figure 5.1 shows a

sample full parse tree from our baseline model, which is used when explaining

the reranking features below, each illustrated by an example.

a) PCFG Nonterminal. Indicates whether a PCFG nonterminal is used in

the parse tree. The feature f(L1) = 1 in the example of Figure 5.1.

b) PCFG Rule. Indicates whether a particular PCFG rule is used in the

parse tree: f(L1 ⇒ L2L3) = 1.

c) Grandparent PCFG Rule. Indicates whether a particular PCFG rule

as well as the nonterminal above it is used in the parse tree: f(L3 ⇒

L5L6|L1) = 1.

d) Long-range Unigram. Indicates whether a nonterminal has a given NL

word below it in the parse tree: f(L2  left) = 1 and f(L4  turn) = 1.

e) Two-level Long-range Unigram. Indicates whether a nonterminal has a

child nonterminal which eventually generates an NL word in the parse

tree: f(L4  left|L2) = 1

f) Unigram. Indicates whether a nonterminal produces a given child non-

terminal or terminal NL word in the parse tree: f(L1 → L2) = 1 and

f(L1 → L3) = 1.

g) Grandparent Unigram. Indicates whether a nonterminal has a given child
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L1: Turn(LEFT), Verify(front : SOFA, back : EASEL),
Travel(steps : 2), Verify(at : SOFA), Turn(RIGHT)

L6: Turn()

PhraseL6

then turn around the corner

L3: Travel(steps : 2),
Verify(at : SOFA), Turn(RIGHT)

L5: Travel(), Verify(at : SOFA)

PhraseL5

WordL5

sofa

PhXL5

Word∅

the

PhXL5

WordL5

find

L2: Turn(LEFT),
Verify(front : SOFA)

L4: Turn(LEFT)

PhraseL4

Word∅

and

PhL4

WordL4

left

PhXL4

WordL4

Turn

Figure 5.1: Sample full parse tree from our Hierarchy Generation PCFG model
for the sentence, “Turn left and find the soft then turn around the corner,” used
to explain reranking features. Nonterminals representing MR plan components
are shown, labeled L1 to L6 for ease of reference. Additional nonterminals such
as Phrase, Ph, PhX, and Word are subsidiary ones for generating NL words
from MR nonterminals. They are also shown in order to represent the entire
process of how parse trees are constructed (for details, refer to Section 4.3).
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nonterminal/terminal below it, as well as a given parent nonterminal:

f(L2 → L4|L1) = 1

h) Bigram. Indicates whether a given bigram of nonterminal/terminals oc-

curs for given a parent nonterminal: f(L1 → L2 : L3) = 1.

i) Grandparent Bigram. Same as Bigram, but also includes the nonterminal

above the parent nonterminal: f(L3 → L5 : L6|L1) = 1.

j) Log-probability of Parse Tree. Certainty assigned by the base generative

model.

5.3.2 Predicate-Only Features

The base features above generally include the nonterminal symbols used

in a parse tree. In the two PCFG models (Section 4.3 and Section 4.4) we use

for the baseline models, the nonterminals are named after the components of

the semantic representations (MRs), which are complex and numerous. There

are roughly 2,500 to 3,000 nonterminals in the grammar constructed for the

navigation data by the two baseline models, and most of the nonterminals are

very specific and rare. This results in a very large, sparse feature space which

can easily lead the reranking model to overfit the training data and prevent it

from generalizing properly.

Therefore, we also tried to construct more general features that are less

sparse. First, we constructed generalized versions of the base features in which

nonterminal symbols use only predicate names and omit their arguments. In
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the navigation task, action arguments frequently contain redundant, rarely

used information. In particular, the interleaving verification steps frequently

include many details that are never actually mentioned in the NL instructions.

For instance, a nonterminal for the MR—

Turn(LEFT),

Verify(at:SOFA,front:EASEL),

Travel(steps:3)

—is transformed into the predicate-only form—

Turn(), Verify(), Travel()

—and then used to construct more general versions of the base features de-

scribed in the previous section. Second, another version of the base features is

constructed in which nonterminal symbols include action arguments but omit

all interleaving verification steps. This is a somewhat more conservative sim-

plification of the nonterminal symbols. Although verification steps sometimes

help interpret the actions and their surrounding context, they frequently cause

the nonterminal symbols to become unnecessarily complex and specific.

5.3.3 Descended Action Features

The final feature group we use in our reranking model captures whether

a particular atomic action in a nonterminal “descends” into one of its child

nonterminals or not. An atomic action consists of a predicate and its argu-

ments, e.g., Turn(LEFT), Travel(steps:2), or Verify(at:SOFA). When an
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atomic action descends into lower nonterminals in a parse tree, it indicates

that it is mentioned in the NL instruction and is therefore important. Below

are several feature types related to descended actions that are used in our

reranking model:

a) Descended Action. Indicates whether a given atomic action in a nonter-

minal descends to the next level. In Figure 5.1, f(Turn(LEFT)) = 1 since

it descends into L2 and L4.

b) Descended Action Unigram. Same as Descended Action, but also includes

the current nonterminal: f(Turn(LEFT)|L1) = 1.

c) Grandparent Descended Action Unigram. Same as Descended Action Un-

igram, but additionally includes the parent nonterminal as well as the

current one: f(Turn(LEFT)|L2, L1) = 1.

d) Long-range Descended Action Unigram. Indicates whether a given atomic

action in a nonterminal descends to a child nonterminal and this child

generates a given NL word below it: f(Turn(LEFT) left) = 1

5.4 Experimental Evaluation

5.4.1 Data and Methodology

The data we used for experimental evaluation is the navigation corpus

discussed in Chapter 4. Again, we used the same experimental methodology

as in Chapter 4, which follow that of the original study by Chen and Mooney
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(2011), performing “leave one environment out” cross-validation, that is, three

training trials on two environments and testing on the third.

In order to test the reranking performance, we use the two PCFG mod-

els proposed in Section 4.3 and Section 4.4 as two baseline models and test

whether the reranking model can further improve the performances. First, a

baseline model is trained on the training data of two environments; then, it is

used to generate the 50-best plans for both training and testing instructions.

As mentioned in Section 5.2.1, we need to generate many more top parse trees

to get the final 50 distinct, formal MR plans. We limit the number of best

parse trees to 1,000,000. Even with this high limit, some training examples

were left with fewer than 50 distinct plans. Table 5.1 shows the statistics of

examples per cross-validation split that produced fewer than 50 distinct can-

didate MR plans from Gen function evaluated on the two generative models.

This is mostly due to exceeding the parse-tree limit and partly because the

baseline model failed to parse some NL sentences. This result proves that

our generative models produce a large number of duplicate parses that are

only locally different among themselves. Although the statistics vary accord-

ing to the datasets, the Unigram Generation PCFG model (Section 4.4) tends

to produce more examples that have fewer than 50 distinct candidate MRs.

Since the parse tree structure generated by the Unigram PCFG model is less

complicated, more parse trees are locally different, which results in more du-

plicated derived MRs. Each candidate plan is then executed using MARCO,

and its rate of successfully reaching the goal is recorded. Our reranking model

96



Data Model Grid-Jelly Grid-L L-Jelly Average

English
Hierarchy PCFG 319 341 402 10.94%
Unigram PCFG 991 1115 1087 32.89%

Chinese Hierarchy PCFG 222 201 219 6.61%
(Segmented) Unigram PCFG 803 965 851 26.98%

Chinese Hierarchy PCFG 597 662 595 19.10%
(Character) Unigram PCFG 1351 1440 1376 42.92%

Table 5.1: Statistics of examples that produced fewer than 50 distinct candi-
date MRs. Since the two baseline models produce different sets of candidate
MRs from their own Gen functions, we present the results of each model sepa-
rately. The statistics are gathered from both the training and testing data for
each cross-validation split, and the total number of examples (single-sentence
version) is 3236, which is the same for both English and Chinese data.

is trained on the training data containing the n-best candidate parses. We

only retain reranking features that appear (i.e., have a value of 1) at least

twice in the training data.

Finally, we measure both parse and execution accuracy on the test

data. Parse accuracy evaluates how well a system maps novel NL sentences for

new environments into the corresponding correct MR plans (Chen & Mooney,

2011). It is calculated by comparing the system’s MR output to the gold-

standard MR. Accuracy is measured using F1, the harmonic mean of precision

and recall for individual MR constituents, thereby giving partial credit to ap-

proximately correct MRs. We then execute the resulting MR plans in the test

environment to see whether they successfully reach the desired destinations.

Execution is evaluated both for the single sentence and for the complete para-

graph instructions. Successful execution rates are calculated by averaging 10

non-deterministic MARCO executions.
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5.4.2 Reranking Results

5.4.2.1 Oracle results

As typical in reranking experiments, we first present results for an “ora-

cle” that always returns the best result among the top-n candidates produced

by the baseline system, thereby providing an upper bound on the improve-

ments possible with reranking. Tables 5.2, 5.3, and 5.4 show the oracle accu-

racy for both semantic parsing and plan execution for the single sentence and

complete paragraph instructions for various values of n. For the oracle parse

accuracy, for each sentence, we pick the parse that gives the highest F1 score.

For the oracle single-sentence execution accuracy, we pick the parse that gives

the the highest execution success rate. These single-sentence plans are then

concatenated to produce a complete plan for each paragraph instruction in

order to measure the overall execution accuracy. Since making an error in any

of the sentences in an instruction can easily lead to the wrong final destination,

the paragraph-level accuracies are always much lower than the sentence-level

ones. The high oracle accuracy shown in the tables indicates that significant

improvement is possible if we train appropriate reranking methods. In order to

balance the oracle accuracy and the computational effort required to produce

n distinct plans, we chose n = 50 for the final experiments, since the oracle

performance begins to asymptote at this point.
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Model n 1 2 5 10 25 50

Hierarchy PCFG
Parse Acc 74.81 79.08 82.78 85.32 87.52 88.62
Single-sent 57.22 63.86 70.93 76.41 83.59 87.02
Paragraph 20.17 28.08 35.34 40.64 48.69 53.66

Unigram PCFG
Parse Acc 76.45 80.66 84.42 86.14 88.21 89.18
Single-sent 67.14 75.76 82.81 87.29 91.22 92.83
Paragraph 28.36 38.65 47.50 54.27 62.55 65.72

Table 5.2: English results of oracle parse and execution accuracy for the single
sentence and complete paragraph instructions for the n-best parses.

Model n 1 2 5 10 25 50

Hierarchy PCFG
Parse Acc 75.53 79.08 83.32 85.78 88.06 89.37
Single-sent 61.61 70.41 79.93 85.67 90.66 93.52
Paragraph 18.97 30.09 41.31 48.09 56.79 62.68

Unigram PCFG
Parse Acc 76.41 80.89 84.17 85.99 87.88 88.75
Single-sent 63.84 70.81 79.02 84.99 90.97 93.04
Paragraph 22.87 29.37 39.86 47.66 58.50 61.46

Table 5.3: Word-segmented version of Chinese results of oracle parse and
execution accuracy for the single sentence and complete paragraph instructions
for the n-best parses.

Model n 1 2 5 10 25 50

Hierarchy PCFG
Parse Acc 73.05 76.65 80.33 84.60 87.01 88.12
Single-sent 56.01 63.70 71.61 81.65 87.42 90.80
Paragraph 12.92 17.83 25.56 39.06 50.80 57.63

Unigram PCFG
Parse Acc 77.57 81.18 84.82 86.60 88.14 88.87
Single-sent 63.24 70.11 77.92 84.28 89.13 90.96
Paragraph 23.17 29.12 38.13 47.05 54.14 57.55

Table 5.4: Character-segmented version of Chinese results of oracle parse and
execution accuracy for the single sentence and complete paragraph instructions
for the n-best parses.
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Baseline Reranking
Parse Acc Plan Execution

F1 Single-sentence Paragraph

Hierarchy PCFG

Baseline 74.81 57.22 20.17
Gold 78.26 52.57 19.33

Single 73.32 59.65 22.62
Multi 73.43 62.81 26.57

Unigram PCFG

Baseline 76.44 67.14 28.12
Gold 78.61 66.52 26.85

Single 77.24 68.27 29.20
Multi 77.81 68.93 29.10

Table 5.5: English reranking results comparing our response-based methods
using single (Single) or multiple (Multi) pseudo-gold parses to the standard
approach using a single gold-standard parse (Gold). Baseline refers to the
two PCFG models described in Sections 4.3 and 4.4 . Reranking results use
all the features described in Section 5.3. “Single” means the single-sentence
version, and “Para” means the full paragraph version of the corpus.

5.4.2.2 Response-based vs. gold-standard reference weight updates

Tables 5.5, 5.6, and 5.7 present the reranking results for our proposed

response-based weight update (Single) for the averaged perceptron (cf. Sec-

tion 5.2.1) compared to the typical weight update method using gold-standard

parses (Gold). Since the gold-standard annotation gives the correct MR rather

than a parse tree for each sentence, Gold selects as a single reference parse

the candidate in the top 50 whose resulting MR is most similar to the gold-

standard MR, as determined by its parse accuracy. Ge and Mooney (2006)

employ a similar approach when reranking semantic parses.

The results show that our response-based approach (Single) clearly

improves the performance of the baseline models of Hierarchy and Unigram
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Baseline Reranking
Parse Acc Plan Execution

F1 Single-sentence Paragraph

Hierarchy PCFG

Baseline 75.53 61.03 19.08
Gold 79.20 56.62 17.25

Single 77.26 64.12 21.29
Multi 78.80 64.15 21.55

Unigram PCFG

Baseline 76.41 63.40 23.12
Gold 79.43 64.48 23.28

Single 77.74 65.64 23.74
Multi 78.11 66.27 25.95

Table 5.6: Reranking results of the word-segmented version of the Chinese
corpus comparing our response-based methods and the standard approach.

Baseline Reranking
Parse Acc Plan Execution

F1 Single-sentence Paragraph

Hierarchy PCFG

Baseline 73.05 55.61 12.74
Gold 79.96 61.43 20.86

Single 76.26 64.08 22.25
Multi 79.44 64.08 22.58

Unigram PCFG

Baseline 77.55 62.85 23.33
Gold 81.03 64.93 23.97

Single 79.76 65.50 25.35
Multi 79.94 66.84 27.16

Table 5.7: Reranking results of the character-segmented version of the Chinese
corpus comparing our response-based methods and the standard approach.
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Generation PCFG models (Sections 4.3 and 4.4), particularly in the plan ex-

ecution tasks, which is expected and desired because the reranking model is

optimized for selecting the candidates with the best plan execution accuracies.

In addition, Single performs generally better in the execution tasks than the

standard approach using gold-standard parses (Gold). However, Gold does

perform better on parse accuracy, since it explicitly focuses on maximizing

the similarity accuracy of the resulting MR. In contrast, by focusing discrim-

inative training on optimizing the performance of the ultimate end task, our

response-based approach actually outperforms the traditional approach on the

final task. In addition, it utilizes only feedback that is naturally available for

the task, rather than requiring an expert to laboriously annotate each sentence

with a gold-standard MR. Even though Gold captures more elements of the

gold-standard MRs, it may miss some critical MR components that are cru-

cial to the final navigation task. The overall result is very promising because

it demonstrates how reranking can be applied to grounded language learning

tasks where gold-standard parses are not readily available.

5.4.2.3 Weight update with single vs. multiple reference parses

Tables 5.5, 5.6, and 5.7 also show the performance when using multiple

reference parse trees to update weights (cf. Section 5.2.2). Using multiple

parses (Multi) shows generally better performance for all evaluation metrics,

or at least performs comparably to using only a single parse (Single).

As explained in Section 5.2.2, the single-best pseudo-gold parse provides
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weak, ambiguous feedback, since it only gives a rough estimate of the response

feedback from the execution module. Using a variety of preferable parses to

update weights provides a greater amount and variety of weak feedback and

therefore leads to a more accurate model.1

For the tasks where Multi performs only comparably to Single, we

conjecture that Single is already able to gain sufficient accurate information

to classify the correct candidates. This seems to be because, for the examples

that are correctly classified by the reranking model, the differences between the

best and the other candidates are large enough that the additional information

gain from other partially true candidates is negligible.

5.4.2.4 Comparison of different feature groups

Tables 5.8, 5.9, and 5.10 compare reranking results using the different

feature groups described in Section 5.3. All the results shown in the tables

used the weight update with multiple reference parses (Multi). Compared to

the baselines of Hierarchy and Unigram Generation PCFG models, each of the

feature groups—Base (base features), Pred (predicate-only and verification-

removed features), and Desc (descended action features)—generally helps im-

prove the performance of plan execution for both single sentence and complete

paragraph navigation instructions in all the datasets.

1We also tried extending Gold to use multiple reference parses in the same manner, but
this actually degraded its performance for all metrics. This indicates that, unlike Multi,
parses other than the best one do not have useful information. Instead, in this case, addi-
tional parses seem to add noise to the training process. Therefore, updating with multiple
parses does not appear to be useful in standard reranking.
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Baseline Model Features
Parse Acc Plan Execution

F1 Single-sentence Paragraph

Hierarchy PCFG

Baseline 74.81 57.22 20.17
Base 71.50 60.09 23.20
Pred 71.61 60.87 24.13
Desc 73.90 61.33 25.00
Base+Pred 69.52 61.49 26.24
Base+Desc 73.66 61.72 25.58
Pred+Desc 72.56 62.36 26.04
All 73.43 62.81 26.57

Unigram PCFG

Baseline 76.44 67.14 28.12
Base 78.22 67.93 26.13
Pred 76.49 67.40 28.70
Desc 76.71 68.08 29.43
Base+Pred 77.84 69.05 28.93
Base+Desc 78.14 69.84 30.18
Pred+Desc 76.68 68.48 30.60
All 77.81 68.93 29.10

Table 5.8: Reranking results comparing different sets of features using the
two baseline models, Hierarchy and Unigram Generation PCFG models, on
the English corpus. Base refers to base features (cf. Section 5.3.1), Pred

refers to predicate-only features and also includes features based on removing
interleaving verification steps (cf. Section 5.3.2), Desc refers to descended
action features (cf. Section 5.3.3). All refers to all the features, including
Base, Pred, and Desc. All results use weight update with multiple reference
parses (cf. Section 5.2.2).
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Baseline Model Features
Parse Acc Plan Execution

F1 Single-sentence Paragraph

Hierarchy PCFG

Baseline 75.53 61.03 19.08
Base 78.77 63.05 23.69
Pred 75.35 57.75 15.16
Desc 75.73 62.49 19.56
Base+Pred 78.49 63.12 21.73
Base+Desc 78.81 63.49 21.18
Pred+Desc 77.19 62.44 17.70
All 78.80 64.15 21.55

Unigram PCFG

Baseline 76.41 63.40 23.12
Base 78.17 66.20 25.75
Pred 76.56 64.07 22.98
Desc 76.62 64.22 23.49
Base+Pred 78.11 66.50 25.31
Base+Desc 78.05 66.01 25.53
Pred+Desc 76.82 64.55 23.23
All 78.11 66.27 25.95

Table 5.9: Reranking results comparing different sets of features using the two
baseline models, Hierarchy and Unigram Generation PCFG models, on the
word-segmented Chinese corpus. All results use weight update with multiple
reference parses.
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Baseline Model Features
Parse Acc Plan Execution

F1 Single-sentence Paragraph

Hierarchy PCFG

Baseline 73.05 55.61 12.74
Base 78.81 63.44 22.54
Pred 77.37 62.04 20.83
Desc 72.85 55.84 15.51
Base+Pred 78.24 60.22 20.87
Base+Desc 78.60 63.88 22.90
Pred+Desc 77.61 61.61 20.51
All 79.44 64.08 22.58

Unigram PCFG

Baseline 77.55 62.85 23.33
Base 80.23 66.76 26.82
Pred 77.82 63.76 23.77
Desc 78.01 63.96 23.81
Base+Pred 80.18 67.41 26.89
Base+Desc 79.97 67.12 27.73
Pred+Desc 78.29 64.37 24.09
All 79.94 66.84 27.16

Table 5.10: Reranking results comparing different sets of features using the
two baseline models, Hierarchy and Unigram Generation PCFG models, on
the character-segmented Chinese corpus. All results use weight update with
multiple reference parses.
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The most effective feature group differs from the dataset and the base-

line model used. In general, Base tends to be the most effective feature group,

considering the performances of each feature group. However, in the English

corpus, Pred and Desc seem to outperform Base. The error analysis figures

that the semantic lexemes learned for the English corpus tend to distribute

well enough to cover the MR components of the context MRs with several

lexemes. On the other hand, the semantic lexemes for both versions of the

Chinese corpus tend to be quite skewed toward some popular chunks of the MR

components within the context MRs. The reason is unclear, but we conjecture

that the expressions of the Chinese translation are not as diverse those of the

original English sentences, and thus that some common Chinese phrases are

used a large number of times across the corpus. This difference results in more

balanced, diverse parse structures in the English corpus from the two baseline

models, and more skewed structures in the two Chinese corpora. Therefore,

Pred and Desc in the two Chinese corpora provide features that are too gen-

eral and that are not helpful in training an effective reranker, whereas Pred

and Desc produce significant performance gain in the English corpus.

Combinations of the feature groups seem to help further improve the

plan execution performance. However, using all of the feature groups (All)

does not always result in optimal performance, because too many features

make the reranking model tend to overfit to the training data. Although the

best performance differs with each case, in general, combinations of two or

more feature groups work the best.
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5.5 Chapter Summary

In this chapter, we have shown how to adapt discriminative rerank-

ing to grounded language learning. Since typical grounded language learning

problems, such as navigation instruction following, do not provide the gold-

standard reference parses required by standard reranking models, we have

devised a novel method for using the weaker supervision provided by response

feedback when training a perceptron-based reranker. In the case of the naviga-

tion task, the response is expressed by how successfully the inferred navigation

plans are executed and whether the desired goals in the virtual environment are

reached. This approach was shown to be very effective compared to the tradi-

tional method of using gold-standard parses. In addition, since this response-

based supervision is weak and ambiguous, we have also proposed a method

for using multiple reference parses to perform the perceptron weight updates.

With this approach, we have demonstrated significant additional improvement

in end-task performance with this approach. Our experimental results show

that our reranking approach achieves consistent improvement over the two

baseline generative models described in the previous chapter. This indicates

that our reranking approach is general and can be further applied in various

other areas and applications.
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Chapter 6

Related Work

In this chapter, we review some of the previous studies that are related

to the models we have proposed. Section 6.1 first reviews studies of super-

vised semantic parsing and natural language generation. These two tasks are

the core abilities that enable computers to communicate with humans using

natural language interfaces. They are also directly related to our approach,

which essentially learns semantic parsers in an ambiguous perceptual envi-

ronment. Section 6.2 reviews other grounded language learning research that

deals with ambiguous supervision and focuses mainly on how to resolve the

ambiguity caused by the problem domains. Next, Section 6.3 presents earlier

approaches that attempted to learn word meanings using statistical methods

without considering deep knowledge about the syntactic or semantic structures

of language. Section 6.4 describes the applications of learning from caption

texts for images and videos. Finally, Section 6.5 reviews the applications in

simulating robot movements in virtual environments by mapping the mean-

ings of natural language instructions into the appropriate executable action

sequences.
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6.1 Learning for Semantic Parsing and Language Gen-
eration

Semantic parsing is the task of converting natural language sentences

into appropriate logical forms that are easily interpreted by machines. Whereas

syntax parsing discovers inherent structure in natural language, semantic pars-

ing aims to find non-trivial structural relationship between natural language

words and elements of logical forms. The challenge stems largely from the

fact that natural language and logical forms do not always share structural

similarities. Some words may correspond to a certain component of a logical

form, whereas others may not have a true matching element. Thus, semantic

parsing is a challenging task and has long been studied by many researchers

in the natural language processing community.

Conventional semantic parsing approaches learn to map NL sentences

to formal MRs via fully supervised training data consisting of NL/MR pairs

(Zelle & Mooney, 1996; Zettlemoyer & Collins, 2005; Ge & Mooney, 2005; Kate

& Mooney, 2006; Wong & Mooney, 2006, 2007b; Zettlemoyer & Collins, 2007;

Lu et al., 2008; Zettlemoyer & Collins, 2009; Ge & Mooney, 2009; Kwiatkowski,

Zettlemoyer, Goldwater, & Steedman, 2010, 2011). Such human annotated

corpora are very expensive and difficult to build even for human experts, thus

limiting the effectiveness of such conventional methods. Some semantic parser

learners require additional syntactic annotations (Ge & Mooney, 2005), a syn-

tactic parser trained with external domain knowledge (Ge & Mooney, 2009),

or prior syntactic knowledge of the natural language (Zettlemoyer & Collins,
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2005, 2007). Although such techniques are able to gain additional perfor-

mance on learning semantics with the help of syntax, the utilization is limited

in grounded language learning. Syntax cannot be obtained naturally from

surrounding perceptual context, but can only be obtained from other exter-

nal human intervention. Other research has attempted to model structural

correspondences between NL and MRL grammar rules. In addition to the

Wasp (Wong & Mooney, 2006) and the Hybrid tree framework (Lu et al.,

2008), on which our proposed models are built, Kate and Mooney (2006) used

SVM classifiers trained for each MRL grammar rule to identify whether cer-

tain NL substrings indicate the MRL rule or not. Zettlemoyer and Collins

(2009) showed that consideration of the context can further improve the se-

mantic parsing results. Kwiatkowski et al. (2010) developed an online learning

approach for learning semantic parsers but it still required one-to-one fully an-

notated corpora.

Language generation is the reverse process of semantic parsing, trans-

lating from MR to NL. Many recent systems solve this problem in the context

of chart generation (Kay, 1996). Carroll, Copestake, Flickinger, and Poznanski

(1999) and Carroll and Oepen (2005) proposed a chart generator for Head-

Driven Phrase Structure Grammar (HPSG), whereas White and Baldridge

(2003), White (2004), and White (2006) used Combinatory Categorial Gram-

mar (CCG) for natural language generation. However, these systems based

on chart generation focused only on how to properly order the NL words to

make sensible sentences, not on the relationship between NL words and MR
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elements so that the meanings can be realized. Wong and Mooney (2007b) pro-

posed a natural language generation system called Wasp−1 that inverted the

semantic parsing system Wasp (Wong & Mooney, 2006). Wasp is a semantic

parser learner that translates NL sentences into proper MRs using syntax-

based statistical machine translation techniques with SCFG. Since an SCFG

is symmetric with respect to the two languages it generates, the same trained

model can be used for both semantic parsing (mapping NL to MR, as Wasp

does) and natural language generation (mapping MR to NL, as Wasp−1 does).

Similarly, Lu et al. (2008) showed that the hybrid tree framework can also be

applied to the language generation task. By proposing the direct inversion

model and the tree conditional random field model, Lu, Ng, and Lee (2009)

showed that the inverted hybrid tree model performed better than Wasp−1.

Before generating an NL sentence from an MR with a language gener-

ation model, we first need to decide which MR to describe. This process is

called content selection or strategic generation. It is the process of choosing

what to say, as opposed to surface realization or tactical generation, which

determines how to say it.

Chen and Mooney (2008) introduced IGSL for determining the most

probable event types a human would comment on. Prior work on content

selection by Duboue and McKeown (2003) proposed an automatic content

selection from a corpus of text and associated semantics. They also showed

that higher recall is preferred in the content selection task with the experiments

of three proposed methods to infer rules from indirect observations. Zaragoza
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and Li (2005) tried to solve the problem using reinforcement learning in a

video game environment where the speaker’s goal is to help the listener reach

the destination. Their model found an optimal strategy so that it conveys

the most appropriate information. In addition, Barzilay and Lapata (2005)

approached content selection as a collective task. They found that consistently

better output was achieved by considering all the content selection decisions

jointly and finding dependencies between each uttered items.

6.2 Grounded Learning from Ambiguous Supervision

Conventional supervised settings for semantic parsing or language gen-

eration are not suitable for general purpose domains or large-scale tasks. Man-

ually annotating each NL sentence with a complete MR is often prohibitively

expensive for certain tasks. Instead, it is more desirable to train models on

natural supervision where the meaning of a sentence can be explained by some

subsets of the surrounding perceptual context that is automatically extracted.

This kind of ambiguous supervision normally appears in the form of training

data where each NL sentence is paired with a number of candidate MRs. Given

such ambiguous supervision, the important challenge to overcome is finding

the true semantic alignment of NL–MR out of many possibilities in order to

learn effective semantic parsers or language generators.

Kate and Mooney (2007) extended a conventional semantic parser learner,

Krisp (Kate & Mooney, 2006), to work with more relaxed supervision. The

extension, Krisper, learns from ambiguous training data where one NL sen-
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tence has the true meaning among a small set of multiple MRs. This relax-

ation reflects a more natural and general learning environment. The hard EM

algorithm of Krisper alternates between finding the most probable one-to-

one NL-MR matches based on parameters of the current iteration and updat-

ing the semantic parser with better estimates of the correct matches. While

Kate and Mooney (2006) applied their approach only to an artificially gener-

ated ambiguous dataset, Chen and Mooney (2008) used this approach in the

sportscasting corpus for the first time in order to disambiguate the relaxed

supervision for learning an accurate semantic parser. They also introduced

Wasper, which extended the supervised semantic parser learner, Wasp, in

order to work with ambiguous supervision. (Lu et al., 2008) employed the same

extension as Krisper using hard EM re-iterations of updating probabilistic

counts. Krisper and Wasper first train a corresponding initial semantic

parser—Krisp and Wasp, respectively—from the ambiguous training data

by pairing each sentence with each of its candidate MRs. Then, the trained

parser is used to select the most probable MR out of all the candidates. The

algorithms iteratively improve the accuracies of both of the semantic parser

and of the semantic alignment between NL–MR.

Börschinger et al. (2011) proposed a PCFG induction model for am-

biguous supervision that our models in Chapter 4 extend. In their experi-

ments in the sportscasting corpus, they showed even better performance than

our approach in Chapter 3 by combining language-specific canonical word or-

der encoded in their PCFG rules. Hajishirzi, Hockenmaier, Mueller, and Amir
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(2011) presented an iterative approach for learning semantic parsers in ambigu-

ous supervision with a little prior domain knowledge. Bordes, Usunier, and

Weston (2010) viewed ambiguous supervision as a ranking problem. Since MR

elements in the candidate sets are generally preferred, their approach learns a

supervised ranking model that prefers those candidate MRs over other random

MR elements.

Following the original work of Chen and Mooney (2011) on the naviga-

tion corpus, other researchers attempted to tackle the higher level of ambigu-

ous supervision. Chen (2012a) applied the same methodology with a faster,

more improved semantic lexicon to the same navigation task. However, the

methodology also had the disadvantage of possible information losses while

selecting lexicon entries with the greedy-covering algorithm during the refine-

ment process. Chen also presented improved experimental results from the

same model trained with additional data collected from crowdsourcing. Artzi

and Zettlemoyer (2013) proposed a joint probabilistic model for simultaneously

interpreting the meanings of natural language instructions and executing the

corresponding actions in the navigation corpus. Their model used their own

executor for evaluating the intermediate actions produced from the model and

maximized the joint probability of parsing and execution by taking in immedi-

ate feedback from the environment. The idea of using environmental responses

resembles our reranking model in Chapter 5. However, their model only works

with the help of a small seed lexicon that contains core prior knowledge about

the domain and the language.
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Other research has focused more on the alignment of disambiguating

the ambiguous data. Snyder and Barzilay (2007) proposed an alignment model

between texts of American football game summaries with database entries

containing statistics and events related to the game and the football players.

However, their approach uses direct supervision of the correct correspondence

between the text and the database records. A study by Liang et al. (2009)

proposed a probabilistic generative approach that produces a Viterbi alignment

between NL and MRs. They used a hierarchical semi-Markov generative model

that first determines which facts to discuss and then generates words from the

predicates and arguments of the chosen facts. However, they only addressed

the alignment problem and were unable to parse new sentences into meaning

representations or generate natural language from logical forms.

Other researchers have recently attempted to learn semantic parsers

given only a weak supervision of responses (Clarke, Goldwasser, Chang, &

Roth, 2010; Liang, Jordan, & Klein, 2011). Formal meaning representations

(MRs) are easily understood and used for execution by machines. Thus, we

could utilize the responses instead of full MRs as a weak indication of whether

a certain intermediate MR output is correct or not during the learning process.

This feedback drives the semantic parser learner toward more accurate internal

parameter estimation. These response-driven semantic parsing models treat

the formal MRs as latent variables to be estimated, and optimize the MR

output for a novel NL sentence with respect to the known MR grammar struc-

ture, incorporating a small domain-specific knowledge. Our response-based
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reranking approach in Chapter 5 shares the same general idea. Our approach

drives the reranker with the weak indication of how candidate outputs lead

to the desired destinations in the virtual environments without any form of

gold-standard reference interpretations.

Other projects (Branavan et al., 2009; Branavan, Zettlemoyer, & Barzi-

lay, 2010) learn to map natural language instructions to executable actions

using reinforcement learning in Windows GUI and game environments. Their

models learn the actions of the given instructions by observing how the en-

vironments react to the generated actions from the instructions. Assuming

a reward function that assesses the quality of actions, their proposed models

are able to learn the underlying meanings of low- and high-level instructions.

Branavan et al. (2011) proposed a Monte-Carlo learning framework that learns

to play in a complex computer game environment by incorporating a high-level

text manual. They showed that compared to learning only by environment

feedback, including high-level textual assistance can significantly improve the

performance.

6.3 Learning Word Meanings from Ambiguous Super-
vision

One of the earliest studies on grounded language learning is by Siskind

(1996). His approach solves referential uncertainties of words by capturing how

the same word is uttered with the same perception. However, this approach

only solves the ambiguity for the semantics of words and does not provide any
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solution for compositional meanings.

Following Siskind, many researchers in robotics and computer vision

tackled the problem of learning the grounded meanings of natural language

words or short phrases from raw perceptual contexts (Bailey et al., 1997;

Barnard et al., 2003; Roy, 2002; Yu & Ballard, 2004). However, most of these

approaches have limited complexity on the side of natural language since their

major challenge came from how to describe and abstract raw image descrip-

tions. Consequently, they do not consider or exploit the syntactic or semantic

structure of natural language while connecting it with perceptions. In con-

trast, our approach actively utilizes a single structure that covers both natural

language and abstracted perceptions to understand the underlying semantics

of language.

6.4 Learning from Images and Videos along with Rele-
vant Texts

Recently, the computer vision community has paid a great deal of at-

tention to learning from images with associated caption texts (Barnard et al.,

2003; Bekkerman & Jeon, 2007; Duygulu, Barnard, de Freitas, & Forsyth,

2002; Gupta, Kim, Grauman, & Mooney, 2008; Li & Wang, 2008; Li, Socher,

& Fei-Fei, 2009; Wang, Blei, & Li, 2009). These studies are mainly concerned

with how words or short phrases of image/video descriptions can help the task

of image classification or automatic scene annotation. First, visual contents

are extensively extracted using state-of-the-art feature extraction techniques
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from images or videos. The extracted features are then clustered to a few

thousand similar categories in the vector space and normally they considered

as a visual bag-of-words model. With or without considering the internal spa-

tial relationship between the visual words, probabilistic models are learned in

order to find alignment between visual words and natural language phrases

or words. Although their descriptions and extracted features are extensive as

regards their visual contents, their natural language captions consist of rela-

tively simple, short phrases or sentences. In addition, their models for natural

language captions do not utilize any linguistic cues, treating the text as a

bag-of-words.

Beyond the static images, other researchers have focused on recogniz-

ing prominent activities while watching short video clips along with relevant

descriptions in natural language (Fleischman & Roy, 2007; Laptev & Pérez,

2007; Fleischman & Roy, 2008; Laptev, Marszalek, Schmid, & Rozenfeld, 2008;

Gupta & Mooney, 2010; Motwani & Mooney, 2012). Unlike scene or object

understanding of static images, activity recognition of videos can be much

harder because of background clutters or camera movements. In order to gain

the useful information for classifying actions in the videos, the models utilize

linguistic cues residing in the corresponding caption texts. Some models use

a pure bag-of-words model for texts while others use more advanced linguistic

information such as Part-Of-Speech (POS) tags, syntactic parsers, verb iden-

tifiers, and so on. These studies have proved in their experimental evaluations

that incorporating textual information in activity recognition performs better
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than relying only on visual classifiers.

Others recent work has focused on generating captions for image or

videos. The goal is to generate a relevant caption text that describes the con-

tents of a novel image or video. Li, Kulkarni, Berg, Berg, and Choi (2011)

generated NL descriptive sentences given visual detections from static images

including objects, attributes, and spatial relations. They first determined the

subject, object, and verb from the learned model and then fused them together

to form complete sentences using web-scale n-gram data. Farhadi, Hejrati,

Sadeghi, Young, Rashtchian, Hockenmaier, and Forsyth (2010) presented a

system that maps images and corresponding text descriptions into a semantic

space consisting of a triplet of object, action, and scene. This system can be

used in a two-way retrieval task, whether obtaining the relevant image after

being given a text description or attaching an NL sentence to a given image.

Feng and Lapata (2010) presented an approach that models a single topic

distributions over clustered visual words and content NL words. Their lan-

guage generation model selects the relevant text out of accompanying original

texts in a news article corpus in order to generate captions. Barbu, Bridge,

Burchill, Coroian, Dickinson, Fidler, Michaux, Mussman, Narayanaswamy,

Salvi, Schmidt, Shangguan, Siskind, Waggoner, Wang, Wei, Yin, and Zhang

(2012) suggested an approach to produce descriptions of short video clips using

dynamic programming combined with Hidden Markov Models, while utilizing

several hand-crafted templates to fit chosen components in language gener-

ation. Most recently, Krishnamoorthy, Malkarnenkar, Mooney, Saenko, and
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Guadarrama (2013) presented a holistic data-driven approach for generating

natural language descriptions for short Youtube videos. They first identified

the best subject-verb-object triplet for a novel video clip and generated other

relevant contents with a single template common for English. A set of gener-

ated candidate sentences were then ranked for the final output using a language

model trained on an external web-scale n-gram corpus.

6.5 Learning for Robotics Applications

Understanding and interpreting the underlying meanings of natural lan-

guage sentences are important in various robotics applications. Such capabil-

ities enable robots to move about in the real environments given only natural

language interfaces. Shimizu and Haas (2009) proposed a system that learned

to interpret navigational instructions and guide a robot to the correct destina-

tions in a simulated environment. However, they restricted the possible space

of actions to be considered to 15 labels and transformed the entire parsing

problem into a sequence labeling problem. Although this restriction worked

well enough for the corpus they evaluated, it could be problematic when ex-

tended to other general navigation following domains, such as our navigation

corpus discussed in Chapter 4. Matuszek, Fox, and Koscher (2010) presented

a system that resembles the characteristics of our navigation task. With-

out assuming any prior linguistic knowledge, their system proposed to learn

a semantic parser with the Wasp system (Wong & Mooney, 2006) in order

to understand the meanings of navigational instructions within their virtual
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environment. However, the proposed environment is relatively simple and

the associated natural language consists of simple direction following instruc-

tions without considering the surrounding environment. Vogel and Jurafsky

(2010) used a more complex corpus of the HCRC Map Task Corpus (Ander-

son, Bader, Bard, Boyle, Doherty, Garrod, Isard, Kowtko, McAllister, Miller,

Sotillo, Thompson, & Weinert, 1991). Their system used a reinforcement

learning technique to penalize the agent when its route deviated from the

desired path. The navigational instructions actively use the landmarks ap-

pearing in the environment and the system was evaluated as to whether the

interpreted action sequences traversed the correct side and the order of visiting

each landmarks in the desired actions. Kollar, Tellex, Roy, and Roy (2010)

presented a navigation problem that was happening in a real office environ-

ment. They actually built a robot that was equipped with a laser range finder

and cameras and collected visual information regarding the environment. The

resulting semantic map was then used for simulating how their system inter-

preted navigational instructions. Tellex et al. (2011) proposed a probabilistic

graphical model for connecting a particular natural language command to a

compositional semantic structure. By collecting commands from Amazon Me-

chanical Turk, their system trained a computational model that inferred plans

from natural language commands and then executed the plans in a robot sim-

ulator. Finally, Chao, Cakmak, and Thomaz (2011) presented an approach

to train a socially interactive robot. While many other studies abstracted the

raw perceptions that a robot would face in a form of semantic formal language,
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they used the differences in the sensor readings as a possible meaning for nat-

ural language sentences. By demonstrating what the correct action was for a

given instruction to the robot, they were able to build a system that trained

the robot with natural language instructions interactively.

Although those approaches deal with full natural language sentences as

linguistic inputs, their systems exploit excessive simplification of the semantic

learning task by ignoring relevant objects in the environment, or they use

external knowledge by assuming predefined spatial words, direct matchings

between NL words and the names of objects and other landmarks in the MR,

and/or an existing syntactic parser. In contrast, our work in the navigation

task does not assume any prior linguistic knowledge, whether syntactic, lexical,

or semantic, and must learn the mapping between NL words and phrases and

the MR terms describing landmarks.
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Chapter 7

Future Work

In this chapter, we describe future directions to pursue while extend-

ing and complementing the approaches presented in the previous chapters.

Although we have gained a large improvement in performance by using the

power of a probabilistic framework in the two previous grounded language

learning tasks, sportscasting and navigation instruction following, there are

many more possibilities in this field of study. We first discuss how to integrate

syntactic information in our proposed models. After that, we consider extend-

ing our general approaches to work with large scale datasets, applying them

to the area of machine translation, and modifying the ambiguous semantic

parsing model to deal with real perception data.

7.1 Integrating Syntactic Components

The approaches discussed in earlier chapters do not incorporate the

preprocessing of natural language texts before the models learn probabilistic

mappings to MR components. This also means that we make no prior assump-

tions about the language itself and we have to learn the underlying meanings

of the raw NL segments from scratch in a statistical manner.
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The key ability of our methods for grounded language learning is se-

mantic parsing. Under the ambiguous supervision of perceptual context, the

main goal is to find the most probable correspondence between NL substrings

and formal MR components which abstract surrounding perceptions. The

major challenge of this process stems from the fact that raw natural language

texts do not have visible formal structure as in logical meaning representa-

tions. This discrepancy often causes exponential ambiguity to resolve even in

supervised semantic parsing settings.

Since the syntactic structures of natural language have been studied

more thoroughly for a long time from various perspectives, the integration

of syntactic structure learning could significantly benefit grounded language

learning. In our presented models discussed in Chapters 3 and 4, the n-gram

model is used for deciding the most probable meaningful boundaries of NL

substrings to match with MR components. However, certain common n-grams

are frequently used, but often they do not constitute any considerable units

of meaning, such as phrases, but instead are composed of prepositions and/or

determiners. On the other hand, syntactic categories in syntactic parsing such

as NP or VP, referring noun phrase and verb phrase respectively, separate

an NL sentence into more meaningful subparts. In these circumstances, such

syntactic information can facilitate matching formal logical structure with raw

natural language strings.

First, the hierarchical structure of syntactic categories obtained from

syntactic parsing could be integrated into the formal MR structure. Ge and
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Mooney (2005) proposed a supervised statistical semantic parsing technique

that integrates syntax and semantics. The suggested semantically augmented

parse tree (SAPT) extends a tree-structured relationship between formal MR

and NL sentences by interleaving the additional syntactic categories involved.

Such syntactic hierarchies intuitively resemble an LHG (see Chapter 4), and

it is possible to combine both structures to utilize both cues for an improved

model. However, this additional syntactic information is obtained by exist-

ing syntactic parsers utilizing external knowledge. Instead of incorporating

such external supervision, a more preferred goal would be a joint probabilistic

model of learning syntactic and semantic structure at the same time in an

unsupervised manner.

Rather than integrating a complex full syntactic structure, it is also

possible to integrate part-of-speech (POS) tags into the generative process of

our proposed models. In particular, incorporating POS tag categories inside

the generative process of our presented models would provide an additional

layer to the correspondences of NL words and MR components, which could

reduce the complexity of the resulting models. This would be of benefit when

we apply our probabilistic models to more large-scale problems. For instance,

POS-tagged natural language words will have limited choices for which lexeme

MRs or atomic MR constituents they can be matched to. Guo and Mooney

(unpublished) used POS tags only for filtering out inappropriate lexicon en-

tries. However, POS tags can also be integrated in the generative process

itself within the PCFG framework so that lexeme MRs or MR grammar rules
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first generate appropriate POS tags and then subsequently produce the cor-

responding NL words. This process will jointly learn unsupervised POS tags

as well as the PCFG structure that connects MR components and/or rules to

NL words.

7.2 Learning in Large-Scale Data

Our proposed models in earlier chapters dealt mainly with two pub-

licly available domains: the sportscasting task and the navigational instruc-

tion following task. Even though both of these domains are well-designed for

grounded language learning tasks and simulate a reasonable level of ambiguity

that would occur in the other real world problems, the size of whole dataset

is relatively small, containing only a few thousand example pairs.

With the rise of crowdsourcing methodology, it has become easy these

days to get annotated data with human labor involved. Chen (2012a, 2012b)

has shown that additional data collection and annotation can be accomplished

quite handily using Amazon Mechanical Turk. Besides the original data cre-

ated for navigation task, he additionally gathered navigation instructions and

follower traces given the other parts. Annotations from crowdsourcing might

be very noisy, considering that the human annotators are randomly selected by

the crowdsourcing system. However, this definitely reduces annotation cost,

and thus makes it easy to extend the scale of our grounded learning methods.

In addition, crowdsourcing for grounded language learning tasks is

much easier than that for supervised semantic parsing tasks. Since annotat-
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ing fully supervised NL–MR pairs for a semantic parsing task often requires

expert knowledge both of NL and of MRL, random annotators from crowd-

sourcing are not suitable in many cases. On the other hand, we can design

easier annotation tasks for crowdsourcing annotators for grounded language

learning which do not need any complicated prior knowledge. For example in

the navigation task, we can ask annotators either to follow a given instruc-

tion in an environment or to write an appropriate instruction by observing a

sample action sequence. In terms of scaling up the annotated training data,

grounded language learning tasks are more preferable.

The data collection can be further improved with more interactive sys-

tem that could engage the attention of the general public. Online systems

such as the LabelMe (Russell, Torralba, Murphy, & Freeman, 2008) or the

ESP Game (von Ahn & Dabbish, 2004) collect a large amount of very rele-

vant data using game-style interactive user interfaces. For our navigation task,

similar systems can be designed in which two people are playing so that one

person teaches how to get to the destination and the other follows the natural

language instruction toward the desired goal while recording the traces. By al-

ternating roles of instructor and follower, this framework can be constructed as

a social game in which each person gets points for successful task completion.

Based on the collected large-scale data, our model needs to be adapted

to deal with such increased complexity in the training data. Our current

models run relatively slow even though the amount of training data is in the

order of thousands of examples. In order to maintain feasibility in the larger
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datasets, our models need to be simplified.

7.3 Machine Translation

Semantic parsing is a particular form of machine translation from a

source natural language to a target meaning representation language. Wasp

(Wong & Mooney, 2006) is inspired by this notion and builds a semantic pars-

ing model based on state-of-the-art syntax-based statistical machine trans-

lation (SMT) (Chiang, 2005). In addition, it is also noteworthy that many

existing semantic parsing approaches implicitly use the structural similarity

between NL and MR. In this sense, it would be interesting to apply our se-

mantic parsing methods back to the SMT tasks. Conventional SMT tasks

resemble conventional supervised semantic parsing tasks, since the SMT ap-

proaches require a sentence aligned parallel corpus to train the models. Our

navigation task with highly ambiguous supervision is analogous to the task

of “summarized translation.” In the navigation task, our PCFG model finds

the probabilistic correspondences between the semantic concepts represented

by lexeme MRs and the NL phrases, in which only some subparts of the given

context (the full landmarks plan) are referred to by the given NL sentence.

In the summarized translation task, a rich text in a source language is trans-

lated to a more concise text in a target language containing only the gist

of the original text. For example, many Wikipedia articles are published in

many languages, but the contents are usually not parallel between languages.

Contents in some languages are rich in details, but contents in other languages
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may contain only the gist of the topic. Currently, such summarized translation

has not been investigated to our knowledge. However, beyond SMT trained

on parallel corpora, there have been various attempts at using “comparable

corpora,” which are collections of documents that are comparable and similar

in content and form in various degrees and dimensions (Diab & Finch, 2000;

Munteanu & Marcu, 2005; Snover, Dorr, & Schwartz, 2008). However, the doc-

uments in comparable corpora usually have similar levels of complexity and

thus the task has very different characteristics from summarized translation.

Summarized translation can be thought of as the ambiguous correspondence

problem between two languages. Only some subparts of the rich language text

are translated to the concise target language. Based on the idea of our PCFG

induction model that finds rich-to-concise correspondences, we could extend

and apply our model to the summarized translation task in conjunction with

SMT techniques.

7.4 Real Perceptual Data

Our proposed models in Chapters 3 and 4 assumed for simplicity’s sake

that we had abstracted the information of the surrounding world states which

was ambiguously connected to natural language sentences. An obvious ex-

tension of our model would be to learn directly from real perceptional data

instead of from abstracted logical representations. However, we first need a

way to select what raw information is important and notable to be learned

with natural language. A recent study by Chao et al. (2011) investigated how
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to train a socially interactive robot through demonstration. They grounded

the meaning of natural language by the state changes that appeared in the sen-

sor readings. Even though their work limited the tasks to several categories

and the complexity of natural language used is simple, it is notable that they

were able to train a machine learning model which directly connected natu-

ral language instruction to the changes in real-valued raw sensory data. In a

similar way, we can construct a semantic lexicon composed of state changes in

sensor data, and then our PCFG induction model can be applied to further

investigate NL–MR groundings with proper modifications. In addition, with

a provided object recognition system, our proposed system can identify sur-

rounding environments as well as notable landmarks to help interpret natural

language instructions and follow them to navigate in the real environments

as in other navigation work (Shimizu & Haas, 2009; Matuszek et al., 2010;

Vogel & Jurafsky, 2010; Kollar et al., 2010; Tellex et al., 2011). Moreover,

we can also extend and apply our methods to visual data such as images and

videos. Extracted features such as SIFT (Lowe, 1999) and space-time interest

points (Laptev, 2005) in images and videos will produce vectors that can be

used to describe notable objects or landmarks. Then, our model will auto-

matically discover how certain visual features are probabilistically related to

natural language.
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Chapter 8

Conclusion

The ultimate goal of grounded language learning for computational sys-

tems is to mimic the process of human language learning. In many cases, it

is reduced to the problem of learning the underlying semantics of languages

in ambiguous perceptual environments. This type of learning approach has

gained growing attention recently, since there is no need for explicit human

intervention to acquire training data. By contrast, conventional semantic

learning methods, such as supervised semantic parsing, require costly, hard

to acquire, one-to-one full supervision of natural language sentences and the

corresponding logical forms.

In this thesis, we reviewed two grounded language learning problems

with such natural, ambiguous supervision. The RoboCup sportscasting task

and the navigation task are publicly available datasets collected from the au-

tomatic extraction of world state information associated with corresponding

natural language texts. Prior grounded language learning studies on these

datasets are vulnerable to information loss through failing to exploit the prob-

abilistic nature of connections between NL and MR, or through only focusing

on semantic alignments and not on learning the underlying semantics of lan-
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guages. In contrast, our proposed probabilistic models use generative processes

to select NL and MR components probabilistically, simultaneously learning the

semantic alignment and meanings of natural languages.

Although the sportscasting domain incurs 1-to-N limited ambiguity

that can be solved by an additional layer of selection model on top of gen-

erative semantic parsing approaches, the navigation domain brings up the

much harder challenge of potentially exponential ambiguity where a given NL

sentence can refer to a certain subset of all possibly relevant surrounding per-

ceptions. Such complexity is reduced using a pre-learned semantic lexicon

based on co-occurrence statistics, and further employed in our two presented

PCFG induction models, constituting generative framework. The experimen-

tal results show the effectiveness of our methods compared to previous studies

of the same domains and also prove our methods are language-independent.

In addition, in order to further improve the performance of the proposed

generative models, we showed how discriminative reranking can be applied in

grounded language learning. It is a non-trivial extension, because grounded

language learning problems do not naturally have gold-standard references for

each training example that can normally be used during comparison and eval-

uation in reranking algorithms. Instead, the reranking model is trained with

the weak responses of evaluating how well each candidate MR plan reaches the

intended goal, which can be naturally obtained from interactions with percep-

tual context. Our experimental results proved that this approach enables

discriminative reranking without the need for explicit gold-standard reference
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interpretations.

We have only scratched the surface of grounded language learning prob-

lems so far. There are a potentially infinite number of language understanding

problems that need to be resolved. Moreover, natural language evolves and

adapts to our constantly changing world as the life of humans changes rapidly

in this modern era. What is required of a computerized language understand-

ing system in this situation is to automatically adapt to the changing nature

of language. In addition, since it is impossible to create a domain-specific

system for every possible problems in the world, it is also imperative that we

have more general, language-independent learning systems such as the models

proposed in the present study. Above all, resolving the central challenge of

disambiguating the weak supervision of language and perceptual contexts is

the central key to solving the language understanding problems that have been

studied for a long time.
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Appendix A

Details of the Sportscasting Data

Table A.1 shows the detailed statistics of the English and Korean

sportscasting datasets per each game collected. Some NL comments do not

have correct MRs associated with them and are essentially noise in the train-

ing data (18% of the English dataset and 8% of the Korean dataset). Each

comment has, on average, more than two possible events to be matched, which

means that over half of these possible connections between NL and MRs are

incorrect and noisy. Since the 2001 final game was double overtime, there are

almost double the number of events in the 2001 games.
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# events
# comments # events / comment

Total MRs C.MRs Max AVG STD
English dataset

2001 final 4003 722 671 520 9 2.24 1.64
2002 final 2223 514 458 376 10 2.40 1.65
2003 final 2113 410 397 320 12 2.85 2.05
2004 final 2318 390 342 323 9 2.73 1.70

Korean dataset
2001 final 4003 673 650 600 10 2.14 2.08
2002 final 2223 454 444 419 12 2.49 3.08
2003 final 2113 412 396 369 10 2.55 3.67
2004 final 2318 460 423 375 9 2.60 2.59

Table A.1: Detailed statistics for each game in the English and Korean
sportscasting datasets. MRs refers to the number of NL comments that have
matching MRs, and C.MRs refers to the number of NL comments that have
correct MRs.
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Appendix B

Details of the Navigation Data

The navigation task was originally proposed and designed by MacMa-

hon et al. (2006). Their original dataset consists of the English instructions

and the corresponding follower data. Later, Chen and Mooney (2011) created

the single-sentence version of the corpus by annotating each sentence instruc-

tion along with suitable actions. Chen (2012a) then presented the Mandarin

Chinese version of the data and evaluated their methods on both languages.

Figures B.1, B.2, B.3 show the three top view maps of the three virtual

worlds from the navigation tasks, Grid, L, and Jelly, respectively. Each virtual

world consists of seven hallways with different floor patterns: grass, brick,

wood, gravel, blue, floral, and yellow octagons. Each world is again divided

into three areas with different wall paintings: butterfly, fish, and Eiffel Tower.

At the intersections of the hallways, furniture, such as a hat rack, a lamp, a

chair, a sofa, a bar stool, and an easel, is placed, and these items are used

extensively in describing route instructions. Each piece of furniture is marked

with its corresponding capital letters in the maps.

138



Figure B.1: Top view map of Grid

Figure B.2: Top view map of L
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Figure B.3: Top view map of Jelly
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