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Abstract

“Grounded” language learning is the process of learning the semantics of natural language with re-
spect to relevant perceptual inputs. Toward this goal, computational systems are trained with data in the
form of natural language sentences paired with relevant but ambiguous perceptual contexts. With such
ambiguous supervision, it is required to resolve the ambiguity between a natural language (NL) sen-
tence and a corresponding set of possible logical meaning representations (MR). My research focuses on
devising effective models for simultaneously disambiguating such supervision and learning the under-
lying semantics of language to map NL sentences into proper logical forms. Specifically, I will present
two probabilistic generative models for learning such correspondences. The models are applied to two
publicly available datasets in two different domains, sportscasting and navigation, and compared with
previous work on the same data.

I will first present a probabilistic generative model that learns the mappings from NL sentences into
logical forms where the true meaning of each NL sentence is one of a handful of candidate logical
MRs. It simultaneously disambiguates the meaning of each sentence in the training data and learns to
probabilistically map a NL sentence to its MR form depicted in a single tree structure. Evaluations are
performed on the RoboCup sportscasting corpous, which show that it outperforms previous methods.

Next, I present a PCFG induction model for grounded language learning that extends the model of
Börschinger, Jones, and Johnson (2011) by utilizing a semantic lexicon. Börschinger et al.’s approach
works well when there is limited ambiguity such as in the sportscasting task, but it does not scale well
to highly ambiguous situations when there are large sets of potential meaning possibilities for each
sentence, such as in the navigation instruction following task studied by Chen and Mooney (2011). Our
model overcomes such limitations by employing a semantic lexicon as the basic building block for PCFG
rule generation. Our model also allows for novel combination of MR outputs when parsing novel test
sentences.

For future work, I propose to extend our PCFG induction model in several ways: improving the
lexicon learning algorithm, discriminative re-ranking of top-k parses, and integrating the meaning rep-
resentation language (MRL) grammar for extra structural information. The longer-term agenda includes
applying our approach to summarized machine translation, using real perception data such as robot sen-
sorimeter and images/videos, and joint learning with other natural language processing tasks.
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1 Introduction

Understanding and learning the semantics of natural language is one of the long-standing, ultimate goals of
artificial intelligence and natural language processing. “Language grounding”, a process of mapping natural
language to relevant aspects of the perceptual environment, is one approach towards this goal. Ideally,
language grounding systems can mimic the language learning process of humans. A human child “grounds”
language to perceptual contexts via repetitive exposure to co-occurrence of language and perception, which
means humans also learn language in a statistical manner (Saffran, Johnson, Aslin, & Newport, 1999;
Saffran, 2003). Attempts of modeling such grounded learning of humans have long been studied by a
number of previous work (Bailey, Feldman, Narayanan, & Lakoff, 1997; Roy, 2002; Barnard, Duygulu,
Forsyth, de Freitas, Blei, & Jordan, 2003; Yu & Ballard, 2004; Gold & Scassellati, 2007), where they tried
to connect simplified natural language to raw perceptions. Other research has focused more on learning the
meanings of full sentences while abstracting perceptions into machine-interpretable logical forms.

Conventional semantic parsing methods attempt to learn how to translate natural language to a formal,
logical language (Zelle & Mooney, 1996; Zettlemoyer & Collins, 2005; Kate & Mooney, 2006; Wong &
Mooney, 2007b; Zettlemoyer & Collins, 2007; Lu, Ng, Lee, & Zettlemoyer, 2008; Zettlemoyer & Collins,
2009). However, they require fully supervised corpora where one NL sentence is paired with one translated
complete logical form. Constructing such parallel corpora can be difficult and time-consuming, even for
human experts, and thus it is inherently difficult to extend such methods to large-scale systems or to apply
them to other general problems. However, several recent approaches deal with more relaxed, natural settings
of supervision where each NL sentence has a true meaning out of the several or exponentially many logical
forms describing current perceptual states in the training data. My research focus follows this recent trend
of grounded language learning methods. Particularly, I mainly investigate generative models that explain
NL segments and logical components in a single hierarchical structure and learn how to map NL sentences
into proper logical forms while simultaneously disambiguating such ambiguous supervision.

In this proposal, two different generative models for different levels of ambiguity are discussed as com-
pleted work. In Section 3, I will present a simultaneous alignment and semantic parsing model evaluated
on the task of learning how to sportscast in virtual RoboCup 2D soccer games. The training data consist of
natural language commentary to the ongoing game as well as automatically extracted logical forms repre-
senting the abstracted events currently happening. Thus, the training data has inherent ambiguity where each
NL commentary has zero or one true meaning out of a several candidates of meanings. Chen and Mooney
(2008) first attempted to solve this challenge via an EM-like retraining algorithm (Kate & Mooney, 2007).
This approach is likely to suffer information loss, because in each retraining iteration, the model learns
parameters from only the most probable MR match for each NL sentence. On the other hand, our model
utilizes a generative model so that it probabilistically selects correct alignment as well as subsequent com-
ponents of logical forms and natural language words and retains probabilistic counts for such relationships.
Our approach is capable of disambiguating the match between language and meanings while also learning
a complete semantic parser for mapping sentences to logical forms. Evaluation results on the Robocup
domain show that our approach outperforms previous results on the NL–MR alignment task and language
generation and also produces competitive performance on semantic parsing.

Next, I will present an unsupervised PCFG induction model evaluated on the previously investigated
navigation task of Chen and Mooney (2011) in Section 4. The navigation task involves a much higher level
of ambiguity. Each instruction is paired with a formal landmarks plan that includes a full description of
the observed actions and world-states that result when someone follows this instruction. The main chal-
lenge here is that the instruction refers to only a subset of this full description, which inevitably results in
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exponentially many potential alignments between each NL instruction and its logical form. Our model is
a novel enhancement of an existing grounded language learning approach using unsupervised induction of
probabilistic context free grammars (PCFGs) (Börschinger et al., 2011). Our model uses semantic lexemes
as the basic building blocks for PCFG rules to avoid a combinatorial explosion in the number of matchings
between components of NL words and logical forms. The semantic lexicon keeps the produced PCFG rule
set to a tractable size compared to Börschinger et al.’s approach, while still exploiting full probabilistic pre-
dictions. Experimental results on the navigation corpus show the effectiveness of our approach in terms of
partial parsing accuracy and end-to-end execution results.

For future work, I first propose and describe immediate short-term extensions of our lexicon-driven
PCFG approach. Our approach relies on the quality of the learned semantic lexicon, since lexemes are the
primitive components when learning the NL–MR mappings and for forming the final MR output. Thus,
we propose to improve the current lexicon learning algorithm by integrating unsupervised part-of-speech
(POS) learning inspired by the approach of Guo and Mooney(unpublished), which refines the lexicon by
removing entries that violate the verb–action and object–argument criteria for NL–MR pairs. In addition,
a discriminative re-ranking approach will be discussed next so that the final output is optimized. Top-k
candidate parses will first be generated and then re-ranked discriminatively using additional features we can
obtain from the parse tree structure. Moreover, I also plan to investigate how the structure of MRL grammar
can help build better models instead of dealing with MRs as a combination of basic elements. Longer-term
future agendas include application of our approach to summarized machine translation, extension to handle
raw perception data such as extracted features from images/videos and real robot sensory data, aiding the
learning model by joint learning with other NLP tasks such as information extraction and syntax parsing.

2 Background and Related Work

2.1 Grounded Language Learning

Grounded language learning is a process of learning the underlying meanings of natural language sentences
in the context of observed perceptual environments. Ultimately, we want to build a computational system
that can acquire language in a natural setting analogous to the way a human child learns language. A human
child learns language through repetitive exposure to language along with the relevant perceptual object/event
(Saffran et al., 1999; Saffran, 2003).

There have been many interesting research projects trying to build statistical learning systems that di-
rectly learns the meaning of language from raw visual perceptions (Bailey et al., 1997; Roy, 2002; Barnard
et al., 2003; Yu & Ballard, 2004; Gold & Scassellati, 2007). However, such methods dealt with language
of limited complexity and focused on the semantics of short phrases or words. Although it is ideal to learn
the semantics of language in the form of raw perceptual data, those methods often lead to unnecessary com-
plexity required for properly processing raw perceptions, thus limiting the effectiveness of the approaches.
Therefore, some researchers have instead introduced “intermediate” logical representation which abstracts
raw perceptual inputs into more compact, easily interpretable formats. Now then we have two separate
problems instead of one grounded language learning problem: learning the underlying semantics of natural
language in terms of well-formed logical representations and obtaining proper logical representations from
raw perceptions such as images, videos, or sensor data. The latter part belongs to the area of computer vi-
sion or robotics, which itself is a challenging field of research. Our focus in this proposal is the former part,
which falls in the field of semantic parsing and its reverse, language generation. While natural language
is difficult for machines to understand because of its inherent structural and semantic ambiguity, logical
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representations are self-explanatory, unambiguous, and well-formed so that they can be easily executed or
used by computers. In the rest of this proposal, I will describe the completed work and future directions
regarding how to find the relationships and translations between natural language and logical representations
of perceptual contexts.

2.2 Learning for Semantic Parsing and Language Generation

Semantic parsing is the task of converting natural language sentences into appropriate logical forms that are
easily interpreted by machines. While syntax parsing discovers inherent structure in natural language, se-
mantic parsing aims to find non-trivial structural relationship between natural language words and elements
of logical forms. The challenge mainly comes from the fact that natural language and logical forms do not
always share structural similarity. Some words may correspond to a certain component of a logical form,
while others may not have a true matching element. In this sense, semantic parsing is a challenging task and
has long been studied by many researchers in the natural language processing community.

Conventional semantic parsing approaches learn to map natural language (NL) sentences to formal rep-
resentations of their meaning (MR) via fully supervised training data consisting of NL/MR pairs (Zelle &
Mooney, 1996; Zettlemoyer & Collins, 2005; Kate & Mooney, 2006; Wong & Mooney, 2007b; Zettlemoyer
& Collins, 2007; Lu et al., 2008; Zettlemoyer & Collins, 2009; Kwiatkowski, Zettlemoyer, Goldwater, &
Steedman, 2010). Such human annotated corpora are very expensive and difficult to build even for human
experts, thus limiting the effectiveness of such conventional methods. Kate and Mooney (2007) extended
one such conventional semantic parser learner, KRISP (Kate & Mooney, 2006), to work with more relaxed
supervision. The extension, KRISPER, learns from ambiguous training data where one NL sentence has a
true meaning out of a small set of multiple MRs. This relaxation reflects a more natural and general learn-
ing environment. Instead of annotating each sentence with a complete logical form one by one manually,
it is possible to learn the meaning of natural language sentences from automatically extracted logical rep-
resentations that reflect the perceptual context. The EM-like retraining algorithm of KRISPER alternates
between finding the most probable one-to-one NL-MR matches based on parameters of the current iteration
and updating the semantic parser with better estimates of the correct matches.

Language generation is the reverse process of semantic parsing, which is to learn how to translate from
MR to NL. Many recent systems solve this problem in the context of chart generation (Kay, 1996). Carroll,
Copestake, Flickinger, and Poznanski (1999) and Carroll and Oepen (2005) proposed a chart generator for
Head-Driven Phrase Structure Grammar (HPSG), while White and Baldridge (2003), White (2004), and
White (2006) used Combinatory Categorial Grammar (CCG) for natural language generation. However,
these chart generation-based systems only focused on how to properly order the NL words to make sensible
sentences, not on the relationship between NL words and MR elements so the meanings can be realized.
Wong and Mooney (2007b) proposed a natural language generation system called WASP−1 based on the
semantic parsing system WASP (Wong & Mooney, 2006). WASP is based on syntax-based statistical ma-
chine translation techniques. It induces a probabilistic synchronous context-free grammar (PSCFG) (Aho
& Ullman, 1972) for generating corresponding NL–MR pairs. Since a PSCFG is symmetric with respect
to the two languages it generates, the same learned model can be used for both semantic parsing (mapping
NL to MR) (WASP) and natural language generation (mapping MR to NL) (WASP−1). Since there are no
pre-specified formal grammars for NL, WASP−1 learns an n-gram language model for the NL side and uses
it to choose the most probable NL translation for a given MR using a noisy-channel model.
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2.3 Content Selection

Before generating an NL sentence from an MR with a language generation model, we first need to decide
which MR to describe. This process of selecting which MR to say is called content selection or strategic
generation. It is the process of choosing what to say; as opposed to surface realization or tactical generation,
which determines how to say it.

Chen and Mooney (2008) introduced the Iterative Generation Strategy Learning (IGSL) method for de-
termining which event types a human commentator is more likely to describe in natural language. IGSL
uses an EM-like method to train on ambiguously supervised data and iteratively improve probability esti-
mates for each event type, specifying how likely each MR predicate is to elicit a comment. The algorithm
alternates between two processes: calculating the expected probability of an NL–MR matching based on the
currently learned estimates, and updating the probability of each event type based on the expected match
counts. IGSL was shown to be quite effective at predicting which events in a RoboCup game a human would
comment upon.

There are some other prior work regarding content selection. Zaragoza and Li (2005) tried to solve
the problem using reinforcement learning in a video game environment where the speaker’s goal is to help
the listener reach the destination. An optimal strategy is found such that it conveys the most appropriate
information. In addition, Barzilay and Lapata (2005) approached content selection as a collective task.
Consistently better output is achieved by considering all the content selection decisions jointly and finding
dependencies between each uttered items.

2.4 Learning from Ambiguous Supervision

Conventional supervised settings for semantic parsing or language generation are not suitable for general
purpose domains or large-scale tasks. Manually annotating each NL sentence with a complete MR is often
prohibitively expensive for certain tasks. Instead, it is more desirable to train models on natural supervision
where the meaning of a sentence can be explained by some subpart of the surrounding perceptual context
that is automatically extracted. This kind of ambiguous supervision normally appears in the form of training
data where each NL sentence is paired with a number of candidate MRs.

Given such ambiguous supervision, the important challenge to solve is finding the true semantic align-
ment of NL–MR out of many possibilities in order to learn effective semantic parsers or language generators.
Snyder and Barzilay (2007) proposed an alignment model between texts of American football game sum-
maries with database entries containing statistics and events regarding the game and the football players.
However, their approach uses direct supervision of the correct correspondence between the text and the
database records. On the other hand, Liang, Jordan, and Klein (2009) proposed a probabilistic generative
approach that produces a Viterbi alignment between NL and MRs. They use a hierarchical semi-Markov
generative model that first determines which facts to discuss and then generates words from the predicates
and arguments of the chosen facts. However, they only addressed the alignment problem and are unable to
parse new sentences into meaning representations or generate natural language from logical forms.

Several recent works (Kate & Mooney, 2007; Chen & Mooney, 2008; Chen, Kim, & Mooney, 2010;
Börschinger et al., 2011) tried to solve this semantic alignment problem in conjunction with semantic pars-
ing. EM-like retraining algorithms such as KRISPER and WASPER first trains an initial semantic parser from
the ambiguous training data by pairing each sentence with each of its candidate MRs. Then, the trained
parser is used to select the most probable MR out of all the candidates. The algorithms iteratively improve
the accuracies of both the semantic parser and the semantic alignment between NL–MR (Kate & Mooney,
2007; Chen & Mooney, 2008; Chen et al., 2010). On the other hand, Börschinger et al. (2011) proposed an
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approach to convert such ambiguously supervised semantic parsing problem into a standard unsupervised
PCFG induction problem. The PCFG rules are constructed so that each NL sentence is matched to a MR
based on probabilistic rule weights learned through EM. Bordes, Usunier, and Weston (2010) viewed am-
biguous supervision as a ranking problem. Since MR elements in the candidate sets are generally preferred,
their approach learns a supervised ranking model that prefers those candidate MRs over other random MR
elements.

In addition, a recent piece of research has investigated a higher degree of ambiguous supervision in
the task of learning to follow navigation instructions in a virtual environment (Chen & Mooney, 2011).
In this task, each NL instruction is paired with a full description of the observed actions and world-states
that will be encountered while following the instruction. The challenging part of this task is that only a
subpart of the entire observed perceptual context is relevant to a given NL instruction, thus leading to the
problem of searching a combinatorial number of possible alignments between a NL sentence and all subsets
of the descriptive MR. Instead of directly solving this combinatorially ambiguous supervision, Chen and
Mooney circumvent this complexity by refining the whole contexts with a learned semantic lexicon. Then,
the problem is reduced to standard supervised semantic parsing, but there are possible information losses
while greedily selecting lexicon entries during the refinement process.

Other researchers recently attempted to learn semantic parsers given only a weak supervision of re-
sponses (Clarke, Goldwasser, Chang, & Roth, 2010; Liang, Jordan, & Klein, 2011). Formal meaning
representations (MRs) are easily understood and used for execution by machines. Thus, we could utilize
the responses instead of full MRs as a weak indication whether a certain intermediate MR output is correct
or not during the learning process. This feedback drives the semantic parser learner toward more accurate
internal parameter estimation. These response-driven semantic parsing models treat the formal MRs as la-
tent variables to be estimated, and optimize the MR output for a novel NL sentence with respect to the
known MR grammar structure, incorporating a small domain-specific knowledge. However, the response-
based approaches may not be applied to the certain domains where MRs are the descriptions of actions or
surrounding environments and cannot be evaluated to obtain the direct responses.

2.5 Other Related Works

One of the earliest work on grounded language learning is by Siskind (1996). His approach solves referential
uncertainties of words by capturing how the same word is uttered with the same perception. However,
this approach only solves the ambiguity for the semantics of words and does not provide any solution for
compositional meanings.

Following Siskind, many researchers in robotics and computer vision tackled the problem of learning
the grounded meanings of natural language words or short phrases from raw perceptual contexts (Roy, 2002;
Bailey et al., 1997; Barnard et al., 2003; Yu & Ballard, 2004). However, most of these works have limited
complexity on the side of natural language since their major challenge came from how to describe and ab-
stract raw image descriptions. Consequently, they do not consider or exploit syntactic or semantic structure
of natural language while connecting it with perceptions. To the contrary, our completed work actively uti-
lizes the common structure that entails both natural language and abstracted perceptions to understand the
underlying semantics of language.

In addition, a recent system called TWIG (Gold & Scassellati, 2007) has been proposed and showed
how word-learning process can be aided by existing knowledge about natural language. In their system, the
robot learns the meaning of new referential words such as “I” and “you” by watching a catching game and
inferring based on previous knowledge about related natural language phrases.

There have been a number of works on connecting natural language captions to images or videos in
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computer vision (Barnard et al., 2003; Li & Wang, 2008; Li, Socher, & Fei-Fei, 2009; Wang, Blei, & Li,
2009; Gupta, Kim, Grauman, & Mooney, 2008; Fleischman & Roy, 2007; Gupta & Mooney, 2009). Their
work are mainly concerned with how words or short phrases of image/video descriptions can help the task
of image classification or automatic image annotation. Although their descriptions and extracted features
are extensive about visual contents, their natural language is relatively limited and they do not utilize any
linguistic structure, only using bag-of-words model.

There are also other recent approaches that solve grounded language learning in terms of interpreting
natural language instructions in the specified environments. Some of them built systems that learn to map
natural language instructions into executable commands for a robot navigating a real environment (Shimizu
& Haas, 2009; Matuszek, Fox, & Koscher, 2010; Vogel & Jurafsky, 2010; Kollar, Tellex, Roy, & Roy,
2010; Tellex, Kollar, Dickerson, Walter, Banerjee, Teller, & Roy, 2011). Even though those approaches
deal with full natural language sentences as linguistic inputs, their systems make the semantic learning task
too simplified by ignoring relevant objects in the environment, or assuming predefined spatial words, direct
matchings between NL words and the names of objects and other landmarks in the MR, and/or an existing
syntactic parser. Other projects (Branavan, Chen, Zettlemoyer, & Barzilay, 2009; Branavan, Zettlemoyer, &
Barzilay, 2010) learn to map natural language instructions to executable actions using reinforcement learning
in Windows GUI and card game environments. However, they exploit language-specific cues that co-occur
both in natural language instructions and words in the evaluated environments. In contrast, our systems do
not assume any prior knowledge about the language itself and have to learn all the connections between
natural language and logical representation, and thus do not depend on specific languages. In addition, their
methods do not learn semantic parsers that map natural language instructions into full, semantic meaning
representations.

3 Generative Alignment and Semantic Parsing for Learning from Ambigu-
ous Supervision

In this section, we present a probabilistic generative model for learning semantic parsers that is trained on
the ambiguous setting where NL sentences paired with world states consisting of multiple candidate logical
MRs (Kim & Mooney, 2010). It disambiguates the meaning of each sentence while simultaneously learning
a semantic parser that maps sentences into logical forms. Chen and Mooney (2008) introduced the problem
of learning to sportscast by simply observing natural language commentary on simulated RoboCup robot
soccer games. The 1-to-N NL–MR ambiguity of the training data poses a serious challenge to learning
accurate semantic parsers or language generators. We need to learn the correct semantic alignment between
NL and MR since the correct alignment of the training data is unknown.

The approach by Chen and Mooney (2008) retrains existing supervised semantic parsers iteratively on
the disambiguated NL–MR pairs produced by the previous iteration. However, it suffers possible infor-
mation loss since it does not run on a well-defined probabilistic model. On the other hand, Liang et al.
(2009) proposed a probabilistic generative alignment model for ambiguous supervision. Despite its im-
proved performance, the model is only capable of semantic alignment between NL–MR and does not learn
either a semantic parser or a language generator. In addition, they assume a bag-of-words model for natural
languages and do not incorporate linguistic syntax which includes additional cues to be exploited.

Our generative model overcomes some of the limitations of these previous methods and provides simul-
taneous semantic alignment and semantic parsing for ambiguous supervision using the Hybrid tree model
proposed by Lu et al. (2008), which generates NL and MR components in a single tree structure. Experi-
mental results on the sportscasting data show that our approach outperforms all the previous results on the
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English Korean
# of NL comments 2036 1999
# of words 11742 7941
Average words per NL comment 5.77 3.97
# of extracted MR events 10452 10668
# of NLs with matching MRs 1868 1913
# of MRs with matching NLs 4670 4610
Average number of MRs per NL 2.50 2.41

Table 1: Statistics for Robocup sportscasting data

Natural Language Meaning Representation

Purple9 prepares to attack
pass ( PurplePlayer9 , PurplePlayer6 )

defense ( PinkPlayer6 , PinkPlayer6 )

Purple9 passes to Purple6

Purple6's pass was defended by Pink6

turnover ( purple6 , pink6 )

ballstopped
u ple6 s pass was defended by ink6

Pink6 makes a short pass to Pink3

kick ( PinkPlayer6 )

pass ( PinkPlayer6 , PinkPlayer3 )

Pink goalie now has the ball
playmode ( free_kick_r )

pass ( PinkPlayer3 , PinkPlayer1 )

Figure 1: Sample trace from Robocup English data.

NL–MR matching (alignment) and language generation task and also achieves competitive performance on
semantic parsing.

The RoboCup sportscasting data (Chen & Mooney, 2008; Chen et al., 2010) was collected by asking
humans to commentate the 4 final games (2001 to 2004) of the Robocup simulation soccer league. Table 1
shows statistics about the data. Each NL commentary sentence is paired with automatically extracted MRs
of ongoing simulation events that occurred in the previous 5 seconds (an average of 2.5 events).

Figure 1 shows a sample trace from the English data. As shown, each NL commentary sentence nor-
mally has several candidate MR matches that occurred within the 5-second window, indicated by edges
between NL and MR. Bold edges denote gold standard alignment manually constructed solely for evalua-
tion purposes. However, it is not guaranteed that every NL has a gold matching MR, because sometimes
there are unrecognized or undetected events and sometimes there are NL commentaries that describe high
level concepts about the game (e.g. the pink team is sloppy today). Such ambiguity brings the additional
challenge that a given NL sentence may not have a correct matching MR.

3.1 Generative Hybrid Tree Model for Semantic Parsing

Our model is built on top of the generative semantic parsing model using a hybrid-tree framework (Lu et al.,
2008). Moreover, our model has the additional capability of selecting which MR out of all the candidates
will be described. A hybrid tree is defined over a pair, (w,m), of a NL sentence and its corresponding MR.
The tree describes a correspondence of NL word segments and MR components following the grammatical
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S

S : pass (PLAYER, PLAYER)

PLAYER

PLAYER : pink10

pink10

passes the ball to PLAYER

PLAYER : pink11

pink11

Figure 2: Sample hybrid tree of NL/MR pair from the English sportscasting dataset: PINK10 PASSES THE

BALL TO PINK11 / pass(pink10, pink11)

structure of the MR. In a hybrid tree, MR production rules constitute the internal nodes, while NL words (or
phrases) constitute the leaves. A sample hybrid tree from the English RoboCup data is shown in Figure 2.

A generative process based on hybrid trees is defined as follows: starting from a root semantic category,
the model generates a production of the MR grammar, and then subsequently generates a mixed hybrid
pattern of NL words and child semantic categories. This process continues until all the leaves in the hybrid
tree become NL words. The generation assumes a Markov process, implying that each step is only dependent
on its parent step.

Lu et al.’s generative parsing model estimates the joint probability P(T ,w,m), the probability of gen-
erating a hybrid tree T with NL w, and MR m. This probability is calculated by the whole product of
the probabilities of all the generation steps in the tree. The data likelihood of the pair (w,m) given by the
learned model becomes the sum of P(T ,w,m) over all the possible hybrid trees, because a hybrid tree for
a NL w and a MR m is not unique.

The model runs in conventional, fully supervised settings. In order to learn from ambiguous supervision,
we extend this model to include an additional generative process for selecting the subset of available MRs
used to generate NL sentences.

3.2 Our Generative Model for Alignment and Language Grounding

Our model estimates P(w|s), where w is a NL sentence and s is a world state consisting of several candidate
MRs matched to w. In this setting, our approach is intended to support both determining the most likely
match between a NL and its MR, and semantic parsing, i.e. finding the most probable mapping from a given
NL sentence to a MR logical form.

Our generative model consists of two stages:

• Event selection: P(e|s), chooses the event e in the world state s to be described.

• Natural language generation: P(w|e), models the probability of generating natural-language sentence
w from the MR specified by event e.

3.2.1 Event selection

The event selection model specifies the probability distribution for picking an event that is likely to be
commented upon amongst the multiple candidate MRs appearing in the world state s. The probability of
selecting an event is assumed to depend only on its event type as given by the predicate of its MR. For
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example, the MR pass(pink10, pink11) has the event type pass and arguments pink10 and pink11. The
probability of picking an event e of type te is p(te). If there are multiple type t events in s, then a type t event
is selected uniformly from the set s(t) of events of type t in s. Thus, the probability of picking an event is
given by:

P(e|s) = p(te)
1
|s(te)|

(1)

This model is similar to the record choice model of Liang et al. (2009), but it is only modeling salience
such that some event types are more likely than others. Our model does not consider the order of event types
(coherence) because the RoboCup sportscasting data only has at most one true MR for a given NL sentence.

3.2.2 Natural language generation

The natural-language generation model defines the probability distribution of NL sentences given a MR
specified by the previously selected event in the event selection model. We use Lu et al. (2008)’s generative
semantic parsing model for this step:

P(w|e) = ∑
∀T over (w,m)

P(T ,w|m) (2)

where m is the MR defined by event e and T is a hybrid tree defined over the NL–MR pair (w,m).
The probability P(T ,w|m) is given by the generative semantic parsing model (Lu et al., 2008) with

the inside probability of the NL–MR pair (w,m). The likelihood of a sentence w is then the sum over all
possible hybrid trees defined by the NL–MR pair (w,m). We used their bigram model out of the three
proposed models (i.e. unigram, bigram, and mixgram) which are categorized by whether a NL word or a
semantic category is dependent upon the previously generated one. In our experiments, the bigram model
always performed the best on all tasks and thus we use the bigram model.

The natural language generation model replaces the field choice model and word choice model of Liang
et al. (2009) in the semantic alignment task. It also considers the order of predicates and arguments in a
MR as well as the generation of NL words and phrases, since the model constructs an ordered hybrid tree
structure that generates NL words, MR semantic categories, and MR grammar rules.

3.3 Learning

Conventional EM methods are used to train our generative model. The process is similar to Lu et al.’s
model, an inside-outside style algorithm that generates a hybrid tree from the NL–MR pair (w,m), but our
model additionally considers expected counts under the posterior P(e|w,s;θ) in the E-step and normalizes
the counts in the M-step. Training time takes about 30 minutes to run for sportscasts of three games in either
the English or Korean dataset.

However, the experiments show that EM method tends to fall into local optima when estimating the
event-type selection probabilities, p(t), thus degrading the overall performance. To resolve this issue, we
initialized the parameters with the corresponding strategic generation values learned by the IGSL method
of Chen and Mooney (2008). IGSL priors serve as a good starting point for our event selection model since
IGSL has already been shown to effectively predict which event types are likely to be described compared
to actual human comments in sportscasting data (Chen & Mooney, 2008).

The generative semantic parsing model by Lu et al. (2008) is trained through several stages to provide
the best performing results. The bigram model we used in our model was trained on the basis of parameters
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Systems Matching Semantic Parsing NL Generation Ambig. Training
Our model

√ √
-

√

Liang et al. (2009)
√

- -
√

Lu et al. (2008) -
√

- -
WASP−1 (Wong & Mooney, 2007b) -

√ √
-

Table 2: Overview of various systems and models used in the experiments. Each column indicates the
capability on various tasks.

previously learned for the IBM Model 1 (Brown, Della Pietra, Della Pietra, & Mercer, 1993) and unigram
model. We followed a similar learning strategy for performance. The multiple learning stages led to vul-
nerability of the model getting stuck in local optima when running EM across these multiple steps. We
also tried using random restarts with several initializations, but IGSL priors provided the best results in the
evaluations.

3.4 Experimental Evaluation

For evaluation, we followed the same evaluation schemes as in Chen and Mooney (2008) covering 3 tasks:
NL–MR matching (semantic alignment), semantic parsing, and surface realization. RoboCup sportscast-
ing data contains 4 separate games and we performed leave-one-game-out (4-fold) cross validations using
3 games for training and the remaining 1 game for testing to evaluate semantic parsing and surface real-
ization. Since the matching (semantic alignment) task is essentially disambiguating the training data, the
performance of matching is evaluated on the training data.

The accuracy of matching and semantic parsing is measured using F-measure, the harmonic mean of
precision and recall. Natural language generation is evaluated using BLEU score (Papineni, Roukos, Ward,
& Zhu, 2002) between the generated sentences and the reference NL sentences in the test set. Systems we
compared to include Chen and Mooney (2008) and Chen et al. (2010), and for alignment results, Liang et al.
(2009) is also included.

In Table 2, we present various systems and models used in the experimental evaluations and their capa-
bilities for the tasks. Our model is capable of learning semantic parsers while disambiguating the correct
matching of training data.

3.4.1 NL–MR Matching (Semantic Alignment)

The matching or semantic alignment task measures how well the system finds the correct NL–MR alignment
out of ambiguous examples consisting of a NL sentence and multiple potential MRs. As described earlier,
training examples in the RoboCup sportscasting data have up to one correct matching. Our model outputs
the most probable matching as a NL w and a MR m if and only if m is the most probable parse of w
according to the learned semantic parser. Thus, our model does not force every NL to match to a MR. Some
NL sentences whose most probable parse is not one of the candidate MRs are left unmatched. Matching
output is evaluated against the manually constructed gold-standard matches, which is never used during
training.

Evaluation results for the English and Korean datasets are shown in Table 3. Since the Korean data
was not yet available for use by either Chen and Mooney (2008) or Liang et al. (2009), we cited those
results from Chen et al. (2010). Our best approach outperforms all previous methods by large margins when
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English Korean
Chen and Mooney (2008) 0.681 0.753
Liang et al. (2009) 0.757 0.694
Chen et al. (2010) 0.793 0.841
Our model 0.832 0.800
Our model with IGSL prior initializations 0.885 0.895

Table 3: NL–MR Matching Results (F-measure).

English Korean
Chen and Mooney (2008) 0.702 0.720
Chen et al. (2010) 0.803 0.812
Our learned parser 0.742 0.764
Lu et al. (2008) initialized with our model’s matching 0.810 0.794
Lu et al. (2008) initialized with Liang et al. (2009) 0.790 0.690
WASP initialized with our model’s matching 0.786 0.808
WASP initialized with Liang et al. (2009) 0.803 0.740

Table 4: Semantic Parsing Results (F-measure).

using IGSL priors. In particular, our model also outperforms the generative alignment model by Liang
et al. (2009), implying that the extra linguistic information and MR grammatical structure result in a more
effective model than a Markov model with a bag-of-words model.

3.4.2 Semantic Parsing

Semantic parsing is evaluated by how accurately the systems predict mapping novel NL sentences into their
proper corresponding MRs in the test data. Table 4 presents the results. We compare to the best results
presented in the cited papers: WASPER-GEN for Chen and Mooney (2008), WASPER with Liang et al.’s
matching initialization for English and WASPER-GEN-IGSL-METEOR with Liang et al.’s initialization for
Korean as the results for Chen et al. (2010). Semantic parsing results with our directly learned parser from
the ambiguous training data are presented, as well as supervised parsers (both WASP and Lu, Ng, and Lee’s)
trained on the NL–MR matching output by our model.1 For additional comparisons, Lu et al.’s parser and
WASP trained on Liang et al.’s NL–MR matchings are also presented.

Our initial learned semantic parser performs better than Chen and Mooney (2008), but worse than Chen
et al. (2010). Training WASP and Lu et al.’s parsers on our highly accurate NL–MR matchings improved
the results over Liang et al.’s matchings. It is also noteworthy that retraining on the hardened one-to-
one supervision of the most probable NL–MR matches gives better performance than the parser directly
trained using EM. The uncertainty caused by incorrect NL–MR matchings seems to affect the overall parsing
performance.

1All our semantic parsing results used IGSL initialization, which results in the best performances.
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English Korean
Chen and Mooney (2008) 0.4560 0.5575
Chen et al. (2010) 0.4599 0.6796
WASP−1 trained on matching of Liang et al. (2009) 0.4580 0.5828
WASP−1 trained on our matching outputs 0.4727 0.7148

Table 5: Surface realization results (BLEU score).

3.4.3 Surface Realization

The surface realization or tactical generation task evaluates how well a system generates accurate NL sen-
tences from novel test MRs. Since our semantic parsing model does not support surface realization, the
reverse task, we trained the publicly available WASP−1 system (Wong & Mooney, 2007a) on our disam-
biguated NL–MR matches. Since we are using WASP−1, we can directly compare with the results of Chen
and Mooney (2008) and Chen et al. (2010).

Table 5 shows the surface realization results of our model and the best reported results from the cited
papers: WASPER-GEN for Chen and Mooney (2008), WASPER trained with Liang et al.’s matching for the
English results of Chen et al. (2010), and WASPER-GEN with Liang et al.’s initialization for the Korean
dataset. WASP−1 trained on our NL–MR matching results performed the best. It should also be noted that
WASP−1 trained with our matchings performs better than WASP−1 trained with Liang et al.’s matchings.

3.5 Discussions

Overall, our model performs particularly well at the matching task. However, improved matching does not
transfer to notably better semantic parsing results, considering there was a 10 percentage improvement for
matching compared to a 1 point improvement on the semantic parsing task.

This seems to be due to the nature of the noise in the matching results. Although Liang et al.’s alignment
model gives a much lower F-measure, its matches have higher precision and contain fewer noisy, misleading
NL–MR pairs, while our model’s precision is relatively low compared to the F-measure. Our model predicts
some misleading matches when the gold standard match does not exist, resulting in worse semantic parsers
due to the noisy NL–MR training pairs.

Compared to Liang et al. (2009), our more accurate matchings provide a clear improvement in both
semantic parsing and surface realization. However, the difference in semantic parsing seems to be less than
that in surface realization. As discussed by Chen and Mooney (2008) and Chen et al. (2010), this difference
seems to be because surface realization is somewhat easier than semantic parsing in that semantic parsing
needs to learn to map a variety of synonymous NL sentences to the same MR, while surface realization only
needs to learn one way to produce a correct NL description of a MR.

4 Unsupervised PCFG Induction for Grounded Language Learning with
Highly Ambiguous Supervision

In this section, I will discuss our unsupervised probabilistic context-free grammar (PCFG) induction model
for learning the semantics of language when the training data is highly ambiguous (Kim & Mooney, 2012).
Particularly, we focus on the navigation task (Chen & Mooney, 2011) where the goal is to interpret natural
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language instructions in virtual environments so that an agent can perform the desired actions. The naviga-
tion task deals with a much higher level of ambiguity compared to the RoboCup sportscasting task discussed
in Section 3. The RoboCup sportscasting task only requires the system to find the correct matching for a
NL commentary sentence out of several potential MR events observed within the past 5 seconds. On the
contrary, the navigation task requires the system to disambiguate the training data where each instructional
sentence is paired with a formal landmarks plan (represented in a large graph structure) that includes a full
description of the observed actions and world-states that are encountered while following the instruction.
The major challenge comes from the fact that the NL instruction refers to only a subgraph of the formal
landmarks plan. This inevitably leads to a combinatorial number of possible meanings when finding a true
match for a given sentence.

To resolve this problem, I present a novel enhancement of the unsupervised probabilistic context free
grammar (PCFG) induction method for grounded language learning introduced by Börschinger et al. (2011).
Börschinger et al.’s approach works for relatively simple ambiguous supervision where there is up to one
true meaning out of a small set of contextual meanings for a NL sentence, which is the case for the RoboCup
sportscasting task. Their approach first constructs a large set of production rules from the ambiguous training
set of a NL sentence paired with multiple MRs, and then optimizes the weights of the PCFG grammar using
EM. Parsing a novel sentence with this learned grammar produces a parse tree containing the formal MR
parse in the top nonterminal. Although this approach is effective for simple ambiguous supervision such as
the sportscasting data, applying it to problems with highly ambiguous supervision such as the navigation task
leads to a prohibitively large number of PCFG production rules. For instance, there are a number of training
examples in the navigation data containing more than 20 actions for a single NL instruction sentence, which
produces more than 20! (> 1018) PCFG production rules to train on.

To overcome such difficulty, our approach enhances Börschinger et al.’s model by using semantic lex-
emes as the basic building block when constructing PCFG production rules. While Börschinger et al. used
each MR constituent to probabilistically generate NL words, our approach uses lexemes (pairs of a MR
graph and a NL phrase) which form meaningful semantic concepts. The advantage of this enhancement is
that we directly connect semantic concepts to corresponding NL words during training. Also, the semantic
concepts represented by lexeme MRs will intuitively form hierarchical structure analogous to syntactic hi-
erarchy in syntax parsing. In addition, our approach is able to solve some of the limitations of Börschinger
et al.’s model in that the number of PCFG production rules remains tractable since semantic lexemes as
basic units encode MRs in compact representations for complicated MR languages. Moreover, our model
can also produce novel final MR parses which were never seen during training, whereas Börschinger et al.
is not.

4.1 Unsupervised PCFG Induction for Grounded Language Learning

Börschinger et al. (2011) introduced an unsupervised PCFG induction model for grounded language learn-
ing. It automatically constructs a PCFG that generates natural language (NL) sentences from formal meaning
representations (MRs). The nonterminals in the grammar correspond to complete MRs and MR constituents,
while NL phrases and words are expressed as terminals. The generative process of PCFG describes how a
composite MR generates its MR constituents, followed by each constituent generating NL words eventually.
First, the nonterminal for a composite MR generates each of its MR constituents. Since we do not know the
order in which each constituent will generate NL words, every possible permutation of the constituents must
be included in order to consider all the possibilities. Second, the nonterminal for a MR constituent gen-
erates Phrasex, representing a sequence of NL words connected to the constituent x. Phrasex is then used
to generate a sequence of Wordx which subsequently produces NL words. By training the Inside-Outside
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Figure 3: Derivation tree for the NL/MR pair: THE PINK GOALIE PASSES THE BALL TO PINK11 /
pass(pink1, pink11). Left side shows PCFG rules that are added for each stage (full MR to MR elements,
and MR elements to NL words ).

algorithm on the produced PCFG rules, the system learns the probabilistic relationships between NL words,
MR constituents, and complete MRs by weighing the rules. Figure 3 shows a derivation tree for a sample
NL-MR pair and the PCFG rules that are constructed for it. When parsing a novel sentence into the most
probable parse tree, we are able to get the most likely MR interpretation for the sentence by reading the top
nonterminal containing the MR.

However, this approach has several clear limitations. First, it only works for finite MR languages, and
the produced PCFG becomes intractably large even for finite but moderately complex MRs. In addition, it
is only able to produce MRs previously seen during training as the parse result of a novel NL sentence. On
the contrary, our approach uses a semantic lexicon to constrain the space of productions, thereby keeping
the PCFG tractable even for complex MRs. Also, it has the ability to compose novel MRs when parsing test
sentences as well as handle infinite MR languages. Finally, our approach works with a much higher level of
ambiguous supervision where a NL sentence refers to only some subset of a matching MR representation,
which implies an exponential number of possibilities for the true matching.

4.2 Navigation Task and Dataset

For evaluating our model, we employ the task and data introduced by Chen and Mooney (2011) where the
goal is to interpret and follow NL navigation instructions in a virtual world by simply observing how humans
follow them. Figure 4 shows a sample execution path in a particular virtual world. Given the training data of
the form {(e1,a1,w1), . . . ,(en,an,wn)}, where ei is a NL instruction, ai is an observed action sequence, and
wi is the current world state (patterns of floors and walls, positions of any objects, etc.), we want to produce
the correct actions a j for a novel (e j,w j).

In order to learn, the task requires us to infer the intended formal plan pi (the MR for a sentence in this
task) which produced the action sequence ai from the instruction ei. However, there is a large number of
possibilities when choosing a formal plan for any given action sequence. For a simple example, there are
several ways to describe the actions of going two steps toward a sofa and then turning right. In a straight-
forward manner, we can describe the actions as Forward(steps : 2),Turn(RIGHT) by just describing the
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Figure 4: Sample virtual world from Chen and Mooney (2011) of interconnecting hallways with different
floor and wall patterns and objects indicated by letters (e.g. “H” for hatrack).

atomic actions, or Forward(),Verify(front : SOFA),Turn(RIGHT) using notable objects along the way.
Chen and Mooney (2011) called the former a basic plan and the latter a landmarks plan. They focused more
on the landmarks plan since it carries more information for understanding the semantics of instructions and
is closer to how humans actually describe navigational directions in the real world. Also, they showed that
landmarks plans led to better overall evaluation performance with their proposed system.

Regarding their system, it first constructs a formal landmarks plan, ci, for each ai, which is a graph
representing the context consisting of a full description of every action in the sequence and the world-state
that is encountered while following the actions. The hard part is that the correct plan MR, pi, is assumed to
be a subgraph of ci, which implies there is an exponential number of possibilities to choose a correct MR
from. The landmarks and correct plans for a sample instruction are shown in Figure 5.

To circumvent this combinatorial problem, Chen and Mooney (2011) first learn a semantic lexicon that
maps NL words and short phrases to small MRs (subgraphs) by finding correlations between NL phrases
and MR subgraphs. The learning process is similar to other “cross-situational” approaches of learning word
meanings (Siskind, 1996; Thompson & Mooney, 2003). From the training data (ei,ci), the algorithm first
collects all navigation plans c js co-occurring with an n-gram w as candidate meanings for w. This initial
candidate meaning set is expanded while repeatedly taking intersections between the candidate meanings,
where the intersections can be obtained by taking the largest common subgraphs. The resulting candidate
set is ranked by the following scoring metric for an n-gram w and an MR graph m:

Score(w,m) = p(m|w)− p(m|¬w)

, which measures how much more likely a MR m appears when w is present compared to when it is not.
After obtaining a lexicon, the plan refinement step estimates pi from ci by greedily selecting high-

scoring lexemes (i.e. lexicon entries of (w j,m j)) whose phrases (w j) cover the instruction ei and introduce
components (m j) from the landmarks plan ci. The refined plans are then used to train a semantic parser
learner as a supervised training set (ei, pi). The trained semantic parser can parse a novel instruction into a
formal plan, which is finally executed for end-to-end evaluation. Figure 6 illustrates the overall system.

As this figure indicates, our new PCFG method replaces the roles of the plan refinement step and the
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Figure 5: Sample instruction with its landmarks plan. Bold components are the true plan.

Figure 6: An overview of Chen and Mooney (2011)’s system. Our approach replaces the roles of the plan
refinement component and the semantic parser.

semantic parser in their system. It is a unified system that simultaneously disambiguates the training data
and learns a semantic parser. We use the landmarks plans and the learned lexicon produced by Chen and
Mooney (2011) as inputs to our system.

4.3 Our PCFG Approach

Like Börschinger et al. (2011), our approach learns a semantic parser directly from ambiguous supervi-
sion, specifically NL instructions paired with the complete landmarks plans as context in the navigation
dataset. Our method utilizes the semantic lexemes as basic building blocks to find correspondences between
NL words and semantic concepts represented by the MRs in the lexemes, instead of building connections
between NL words and each MR constituent as in Börschinger et al. (2011). Particularly, we utilize the hier-
archical subgraph relationships between the MRs in the semantic lexicon to produce a smaller, more focused
set of PCFG rules.2 The intuition behind this is analogous to the hierarchical relations between syntactic

2Total number of PCFG rules for the training set is about 18,000. Note that Börschinger et al.’s method produces 33,000 rules
for the simpler sportscasting domain.
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Algorithm 1 LEXEME HIERARCHY GRAPH (LHG)

Input: Training instance (ei,ci), Lexicon L
Output: Lexeme hierarchy graph for (ei,ci)

Find relevant lexemes (wi
1,m

i
1), . . . ,(w

i
n,m

i
n) s.t. mi

j ⊂ ci

Create a starting node T ; MR(T )← ci

for all mi
j in the descending order of size do

Create a node T i
j ; MR(T i

j )← mi
j

PLACELEXEME(T i
j ,T )

end for

procedure PLACELEXEME(T ′,T )
for all children Tj of T do

if MR(T ′)⊂MR(Tj) then
PLACELEXEME(T ′,Tj)

end if
end for
if T ′ was not placed under any child Tj then

Add T ′ as child of T
end if

end procedure

categories in syntax parsing. In syntax parsing, high level categories such as S, VP, or NP refer to bigger
concepts which are further divided into smaller concepts such as V, N, or Det, therefore forming a hierar-
chical structure. Inspired by this notion, we introduce a directed acyclic graph called the Lexeme Hierarchy
Graph (LHG) which represents the hierarchical relationships between lexemes. Since complex lexeme MRs
represent complicated combined semantic concepts and simple MRs represent simple concepts, it is natural
to construct a hierarchy between the lexeme MRs. The LHGs for all the training examples are used to con-
struct production rules for the PCFG, which are then parametrized using EM. Finally, novel sentences are
semantically parsed by computing their most-probable parses using the trained PCFG and extracting an MR
from the resulting parse tree.

4.3.1 Constructing a Lexeme Hierarchy Graph

An LHG represents the hierarchy of semantic concepts relevant to a particular training instance by encoding
the subgraph relations between the MRs of relevant lexemes. Algorithm 1 shows pseudocode of LHG
construction for the training instance (ei,ci). First, we obtain all relevant lexemes (wi

j,m
i
j) in the lexicon

L, where the MR mi
j is a subgraph of the context ci (denoted as mi

j ⊂ ci). These lexemes are sorted in
descending order based on their MR sizes (i.e. number of nodes in mi

j). Next, lexemes are inserted, in order,
into the MR hierarchy graph starting with the root node of the context ci. The MR of an added child should
be a subgraph of the MR of its parent. Figure 7 illustrates a sample construction of an LHG.

The initial LHG may contain nodes with too many children, which may result in too many PCFG rules
because we add a PCFG production rule for every possible k-permutation of the children of each node
(see Section 4.3.2). Thus, we introduce pseudo-lexeme nodes to reduce the branching factor by repeatedly
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(a) All relevant lexemes are obtained for the training exam-
ple and ordered by the number of nodes in their MR.

(b) Lexeme MR [1] is added as a child of the top node. MR
[2] is a subgraph of [1], so it is added as its child.

(c) MR [3] is not a subgraph of [1] or [2], so it is added as a
child of the root. MR [4] is added under [3].

(d) Finally, MR [5] is recursively filtered down and found
its right place under [2].

Figure 7: Sample LHG construction for the context Turn(RIGHT),Verify(side : HATRACK,front : SOFA),
Travel(steps : 3),Verify(at : EASEL).
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Algorithm 2 ADDING PSEUDO LEXEMES TO LHG
Input: LHG with root T
Output: LHG with pseudo lexemes added
procedure RECONSTRUCTLHG(T )

repeat
((Ti,Tj),m′)← MOSTSIMILARPAIR(T )
Add child T ′ of T ; MR(T ′)← m′

Move Ti and Tj to be children of T ′

until There are no more pairs to combine
for all non-leaf children Tk of T do

RECONSTRUCTLHG(Tk)
end for

end procedure

procedure MOSTSIMILARPAIR(T )
for all pairs (Ti,Tj) of children of T do

m′← smallest graph s.t. MR(Ti)⊂ m′,
MR(Tj)⊂ m′, m′ ⊂MR(T )

score← Sim(MR(Ti),MR(Tj),m′)
if maxScore < score then

maxPair← (Ti,Tj)
maxScore← score

end if
end for
return (maxPair,m′)

end procedure

combining the two most similar children of each node. Pseudocode for this procedure is shown in Algorithm
2. The MR for a pseudo-lexeme is the minimal graph, m′, which is a supergraph of both of the lexeme MRs
that it combines. The pair of most similar children, (mi,m j), is calculated by the ratio of how many nodes
in mi and m j overlap with m′ and given by:

Sim(mi,m j,m′) =
|mi|+

∣∣m j
∣∣

2 |m′|

where |m| is the number of nodes in the MR m. Adding pseudo-lexemes has another advantage. They can
be intuitively thought of as higher-level semantic concepts composed of two or more concepts. Moreover,
the pseudo-lexemes will likely occur in other training examples as well, allowing for more flexible interpre-
tations. For example, let us consider the rule A⇒ BCD from a LHG, and we introduce pseudo lexeme E
so that we build two rules A⇒ BE and E ⇒ CD. It is likely that E occurs in another rule in other train-
ing examples such as E ⇒ FG. Then, we can increase the model’s expressiveness by having rules such as
A⇒∗ BFG, providing more flexibility when parsing a novel NL sentence.
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Figure 8: Summary of the rule generation process. NLs refer to the set of NL words in the corpus. Lexeme
MR rules follow the schemata of Börschinger et al. (2011), and allow every lexeme MR to generate at least
one NL words through an unigram Markov process. Note that pseudo-lexeme nodes do not produce NL
words.

4.3.2 Composing PCFG Rules

The next step is to compose PCFG rules from the LHGs and the process is summarized in Figure 8. We
basically follow the scheme of Börschinger et al. (2011), but instead of generating NL words from each
atomic MR, words are generated from each lexeme MR, and smaller lexeme MRs are generated from more
complex ones as given by the LHGs. A nonterminal Sm is generated for the MR, m, of each LHG node.
Then, for every LHG node, T , with MR, m, we add rules of the form Sm → Smi ...Sm j , where the RHS is
some k-permutation of the nonterminals for the MRs of the children of node T . Although Börschinger
et al. made sure every MR constituent generates at least one NL word, we must generate every possible
ordered subset of the children nonterminals, because we do not know which subgraph of the whole context
ci is responsible for generating the NL words in the sentence. In summary, complex semantic concepts are
described as an ordered list of smaller concepts which are eventually described by NL phrases.

The rest of the process more closely follows Börschinger et al.’s. Every lexeme MR, m, 3 generates a
rule Sm→ Phrasem, and every Phrasem generates a sequence of NL words, including one or more “content
words” (Wordm) for expressing m and zero or more “extraneous” words (Word /0). While Börschinger et al.
let Wordm generate any NL words in the vocabulary weighted by EM, we restrict each Wordm to only produce
the NL phrases or words associated with m in the lexicon. This helps reduce the PCFG to the tractable size
and also decreases unnecessary ambiguity caused by the possible connections between lexemes and all
words in the vocabulary. Word /0 has rules for every word including unknown ones, thus it is responsible for
generating uncovered words.

3Pseudo-lexemes only generate words by generating child lexemes.
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Algorithm 3 CONSTRUCT PARSED MR RESULT

Input: Parse tree T for input NL, e, with all Phrasex subtrees removed.
Output: Semantic parse MR, m, for e
procedure OBTAINPARSEDOUTPUT(T )

if T is a leaf then
return MR(T ) with all its nodes marked

end if
for all children Ti of T do

mi← OBTAINPARSEDOUTPUT(Ti)
Mark the nodes in MR(T ) corresponding

to the marked nodes in mi

end for
if T is not the root then

return MR(T )
end if
return MR(T ) with unmarked nodes removed

end procedure

4.3.3 Parsing Novel NL Sentences

To learn the parameters of the resulting PCFG, we use the Inside-Outside algorithm.4 Then, the standard
probabilistic CKY algorithm is used to produce the most probable parses for novel NL sentences (Jurafsky
& Martin, 2000).

Börschinger et al. (2011) simply read the MR, m, for a sentence off the top Sm nonterminal of the most
probable parse tree. Therefore, their model is able to produce only the MRs seen during training. Instead,
our method produces the output MR parse by composing the appropriate subset of lexeme MRs that are
actually responsible for generating NL words. Thus, our system is able to produce novel MRs as long as
they are some subgraphs of the complete context (ci) that appeared in the training data.

First, the parse tree is pruned to remove all the subtrees with the root of Phrasex, producing the tree
with only Sm nodes. The pruned subtrees are only concerned about NL generation, so we can figure out
which lexeme MRs are involved in generating the target NL sentence. The leaves Sm in the pruned tree
show lexeme MRs m that are responsible for generating the NL sentence. These lexeme MR components
are combined with respect to the parse tree structure to produce the final MR parse.

Algorithm 3 shows the pseudocode for producing the MR parse from the pruned parse tree. Figure 9 is
a sample trace. The algorithm recursively traverses the parse tree. When a leaf-node is reached, it marks all
of the nodes in its MR. After traversing all of its children, a node in the MR for the current parse-tree node
is marked if and only if its corresponding node in any of the children’s MRs were marked. Removing all of
the unmarked nodes from the root MR results in the final MR we want.

4We used the implementation available at http://web.science.mq.edu.au/˜mjohnson/Software.htm which
was also used by Börschinger et al. (2011).
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(a) Pruned parse tree showing only MRs for Sm nodes (b) Leaf nodes have all their elements marked

(c) Upper level nodes are marked according to leaf-node
markings

(d) Removing all unmarked elements for the root node
leads to the final MR output

Figure 9: Sample construction of a MR output from a pruned parse tree.

4.4 Experimental Evaluation

4.4.1 Data

We used the English instructions and follower data collected by MacMahon et al.(MacMahon, Stankiewicz,
& Kuipers, 2006).5 This data contains 706 route instructions for three virtual worlds. The instructions
were produced by six instructors for 126 unique starting and ending location pairs in the three worlds, and
each instruction comes with 1 to 15 human followers traces with an average of 10.4 actions per instruction.
Each instruction consists of an average of 5.0 sentences, each containing an average of 7.8 words. Chen
and Mooney (2011) constructed the additional single-sentence corpus by matching each sentence with the
majority of human followers’ actions. This single-sentence version is used for training our model, but
both versions are used for testing. There are manually annotated “gold standard” plans only for evaluation
purposes.

5Data and relevant code are available at http://www.cs.utexas.edu/users/ml/clamp/navigation/
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Precision Recall F1
Our PCFG model 87.58 ∗65.41 ∗74.81
Chen and Mooney (2011) ∗90.22 55.10 68.37

Table 6: Test accuracy for semantic parsing. ‘∗’ denotes statistically significant difference.

Single-sentence Paragraph
Our PCFG model ∗57.22% ∗20.17%
Chen and Mooney (2011) 54.40% 16.18%

Table 7: Successful plan execution rates using the MARCO execution module on test data. ‘∗’ denotes
statistically significant difference.

4.4.2 Methodology and Results

For evaluation, we followed the same methodology as Chen and Mooney (2011), performing “leave one
environment out” cross-validation (i.e. training on two environments and testing on the third). We present
direct comparison with the best reported results in Chen and Mooney (2011). A Wilcoxon signed-rank test
is performed for statistical significance, and ‘∗’ denotes significant differences (p < .01) in the tables.

Semantic Parsing Results Semantic parsing evaluates how accurately the model learns to map novel NL
sentences in the test environment into correct MRs. Partial semantic-parsing accuracy (Chen & Mooney,
2011) assigns partial credit if two MRs have the same predicate, and additional credit for each matching
argument. Precision (accuracy of the system output against the gold standard), recall (the gold standard
against the system output), and F1 (harmonic mean between precision and recall) are evaluated and every
metric considers partial credit for approximately correct MRs.

Table 6 demonstrates that our method is better than Chen and Mooney’s by 6 points in F1. Our PCFG-
based approach with semantic lexicon is able to probabilistically disambiguate the training data as well as
simultaneously learn a statistical semantic parser within a single framework. This results in better overall
performance compared to Chen and Mooney (2011), since they lose possibly useful information due to sep-
arate stages of the system, particularly during the refinement stage. In addition, their refinement process is
limited to only incorporating the high-scoring lexemes. In contrast, our approach probabilistically considers
relatively low score but useful lexemes as well in the generative process, and therefore has more flexibility
in the final MR interpretation. This is reflected in the increase of recall for our approach since our method
has wider coverage of lexemes during training.

Navigation Plan Execution Results The next evaluation is to test the end-to-end execution of the parsed
navigation plans for test instructions in novel environments to see if they reach the exact desired destinations
in the environment. Table 7 shows the successful end-to-end navigation task completion rates for both
single-sentences and complete paragraph instructions. Following (Chen & Mooney, 2011), the execution is
performed by the MARCO (MacMahon et al., 2006) system with the parsed navigation plans output from
our model. For the single-sentence corpus, we also considered whether the virtual agent is facing the correct
direction compared to the gold-standard.

Our system outperforms Chen and Mooney’s best results since more accurate semantic parsing produces
more successful plans. However, the difference in performance is smaller than that observed for semantic
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parsing. This is because redundancy in human generated instructions allows an incorrect semantic parse to
be successful, as long as the errors do not affect its ability to guide the system to the correct destination.

4.5 Discussions

Our approach is novel compared to Börschinger et al. (2011) in the following ways:

• The basic building blocks for associating NL and MR are semantic lexemes instead of atomic MR
constituents. This prevents the number of produced PCFG rules from exploding which happens easily
in Börschinger et al. (2011) for even a moderately complex MR language. As mentioned earlier,
intuitively the lexemes are analogous to syntactic categories in syntax parsing in that complex lexeme
MRs represent complicated semantic concepts whereas higher-level syntactic categories such as S,
VP, or NP represent complex syntactic structure.

• Our approach has the ability to produce a previously unseen MR, whereas Börschinger et al. (2011)
can only generate a parsed MR only if it is included in the PCFG rules constructed from the training
data. Even though our MR parse is restricted to be a subset of the training contexts cis, our model
allows for exponentially many combinations.

In addition, our approach also covers wider selections of MR outputs than Chen and Mooney (2011)
even though we use their semantic lexicon as our input. Chen and Mooney’s system deterministically builds
supervised training set by greedily selecting high-score lexemes, thus including only high-score lexemes
during the training phase. On the other hand, our probabilistic approach also considers relatively low-
score but useful lexemes, therefore covering more semantic concepts in the lexicon. This explains why our
approach performs particularly better in recall of the semantic parsing evaluations. Intuitively, we do a better
job of utilizing all the semantic lexemes.

Even though we have demonstrated our approach for a fairly specific task, the navigation task, we can
apply it to other language grounding tasks as well where a NL sentence is potentially connected to some
world states/events/actions expressed as a sequence/set of logical forms. Our approach with LHG provides
a general PCFG framework for grounded language learning as long as an appropriate lexicon is provided,
since the lexicon learning algorithm can be replaced for other domains.

4.6 Online Semantic Lexicon Learning

Our PCFG induction model is greatly affected by the quality of the semantic lexicon, since semantic lexemes
are the basic building blocks for our model. It is interesting to see if different lexicon learning algorithms
would increase the overall performance of our model. In this section, I discuss a fast online lexicon learn-
ing algorithm called Subgraph Generation Online Lexicon Learning (SGOLL) recently proposed by Chen
(2012) and how it will affect our model’s performance in the evaluations. Chen demonstrated that SGOLL
is relatively effective compared with the system by Chen and Mooney (2011) on the navigation task, while
the learning process is much faster.

The algorithm by Chen and Mooney (2011) obtains candidate lexeme MRs for a NL phrase w by repeat-
edly taking intersections between MRs in the candidate lexeme MR set. Even though it is quite effective
for getting a maximal meaning for a phrase w, the learning process is slow. SGOLL is inspired by the
fact that most words or short phrases correspond to small MR graphs, thus the algorithm focuses only on
candidate meanings smaller than a certain size. The process collects co-occurrence information between
n-grams w j and connected subgraphs up to a certain size (in their paper, 3). Since each training example
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Precision Recall F1
Our model with Chen and Mooney (2011) 87.58 ∗65.41 ∗74.81
Our model with SGOLL (Chen, 2012) ∗89.04 61.06 72.30

Table 8: Semantic parsing results comparing models using different lexicon. ‘∗’ denotes statistically signif-
icant difference.

Single-sentence Paragraph
Our model with Chen and Mooney (2011) ∗57.22% ∗20.17%
Our model with SGOLL (Chen, 2012) 55.01% 18.56%

Table 9: Plan execution rates using the MARCO execution module comparing models with different lexicon.
‘∗’ denotes statistical significance.

is only processed once, SGOLL results in a much faster learning process. The score of candidate lexemes
are calculated by the same scoring function as in Chen and Mooney (2011) and the final lexicon output is
obtained by ranking the candidate lexemes with the scores.

The experimental results of using SGOLL with our PCFG induction model are shown in Table 8 and
Table 9. Wilcoxon signed-rank test is performed for statistical significance and the significance is marked
with ∗ (p < .01).

The results show that SGOLL does not improve the performance of our model either in semantic parsing
or the subsequent plan execution. The primary reason is that since SGOLL is able to only consider small-
sized lexemes, the entire LHG structure mainly comes from composing pseudo-lexemes between SGOLL
lexemes. This means that LHG with SGOLL may deviate from the real underlying semantics for composite
NL phrases, thus showing worse performance overall.

5 Proposed Research

In this section, I will describe some of the short-term proposed work extending the current PCFG induction
model explained in Section 4 and also further discuss a long-term agenda towards my thesis. For the short-
term work, I will first discuss employing better learning algorithms for acquiring a semantic lexicon using
part-of-speech (POS) tags, since our model relies on the quality of the semantic lexicon input. Next, I
will describe how I could improve the produced MR parses from our PCFG model by using discriminative
re-ranking algorithms. With plan execution feedback and other general features, we can train an averaged
perceptron algorithm (Collins, 2002a) to rank the top N parse outputs. Moreover, I plan to investigate how
the meaning representation grammar (MRG) can help the current PCFG model. Currently, the MRs are
considered as the congregation of atomic constituents, but further structural information from the MRL
grammar which defines how MRs are generated will provide additional useful cues to improve semantic
correspondence with NL segments.

The long-term goals include application of the current approach to the area of machine translation,
extending the ambiguous semantic parsing model to deal with real perception data such as images/videos
and sensory data, and co-learning with external knowledge such as information extraction, syntax parsing,
or entity recognition.
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5.1 Improved Semantic Lexicon Learning with Part-of-Speech Tags

Our PCFG induction model presented in Section 4 is highly affected by the quality of the semantic lexicon.
If the input lexicon is noisy, the model will make poor choices connecting NL words to lexeme MRs, thus
degrading the accuracy of the final MR parses. If we employ a cleaner semantic lexicon, we can expect better
performance for the entire model in the evaluations. In this section, I discuss a possible improvement of the
lexicon learning algorithm from Chen and Mooney (2011) by using part-of-speech (POS) tags. However,
there are a number of possibilities for improving the semantic lexicon learning algorithms used in our PCFG
model. In general, our approach with LHG provides a general PCFG framework for grounded language
learning with the appropriate lexicon for the target domains.

Guo and Mooney(unpublished) recently proposed a simple approach of enhancing the quality of the se-
mantic lexicon by using part-of-speech (POS) tags. The idea behind this is called “syntactic bootstrapping”,
which means that the meanings of natural language can be aided by previously acquired syntactic knowl-
edge. A several piece of research in psycholinguistics showed that the process of learning the meanings of
novel words by children is benefited by such syntactic knowledge (Gleitman, 1990; Gleitman & Landau,
1994). Guo and Mooney’s approach is based on the same navigation task framework (Chen & Mooney,
2011) that our PCFG induction model is evaluated on. This approach enhances the quality of the semantic
lexicon learning algorithm of Chen (2012) by constraining verbs to map to Actions and nouns to Objects
in the lexicon learning process. Even though their method is performed on the work of Chen (2012), we can
apply the same idea to refine the lexicon created by Chen and Mooney (2011).

The lexicon learning algorithm of Chen and Mooney (2011) is purely correlational which is a common
method for learning a semantic lexicon (Thompson & Mooney, 2003). However, such correlational methods
sometimes produce incorrect lexicon entries because correlation between an n-gram w and a MR m can
be misinterpreted when w is typically used in certain contexts. Thus, if we disallow some of the learned
lexemes when there is a violation to the rule of connecting verbs to Actions and nouns to Objects, such
inaccuracies of correlational methods will be alleviated.

The process first starts with the initial learned semantic lexicon. Every word in the NL phrase of every
lexeme is tagged with POS tags by the Stanford POS tagger (Toutanova, Klein, Manning, & Singer, 2003)
trained on the Wall Street Journal treebank to POS-tag English. Then, each element of MR in the lexeme
is labeled: Turn/Travel/Verify are marked as Actions, and other arguments are marked as Objects.
Finally, if a lexeme violates the following constraints, it is simply removed from the semantic lexicon:

• n-gram w contains a noun if and only if MR m contains an Object.

• n-gram w contains a verb if and only if MR m contains an Action.

The experimental results of this enhancement on the lexicon learning algorithm show modest improve-
ment over the default lexicon learning algorithm under the same system of Chen (2012). Similarly, our
PCFG induction model can simply use this improved semantic lexicon instead. However, the refinement
step uses the prior linguistic knowledge obtained through a POS tagger (Biemann, 2006; Ravi & Knight,
2009; Goldwater & Griffiths, 2007) trained on a WSJ corpus, which exploits unfair advantage. Therefore,
what I propose is to learn unsupervised POS tagging from the navigation data and help improve the semantic
lexicon learned by the algorithm of Chen and Mooney (2011). In addition, the current refinement method
using POS tagging assumes prior knowledge that verbs match to Actions and nouns match to Objects.
However, there are other possibly useful relations that we can exploit further. For instance, Turn or Travel
actions tend to be related to verbs mostly, whereas Verify actions are more related to descriptive propo-
sitional phrases. This is because we do not usually say things like “go 2 blocks and check you are at the
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sofa”, but rather we say “go 2 blocks until you are at the sofa”. For another example, Turn actions are more
likely to be linked with nouns, since it is common to give instructions like “make a right turn”. Such specific
relations cannot be encoded fully manually, because these require domain-specific knowledge. I propose to
learn such detailed relations through joint learning of unsupervised POS tagging and semantic lexicon, and
this joint process not only could improve the quality of the semantic lexicon but could also enhance POS
tagging for the domain.

5.2 Discriminative Re-ranking of Parsed Results

Discriminative re-ranking is a common machine learning technique to improve the output of generative
models. In re-ranking methods, a baseline generative model is trained and used to generate a set of candidate
outputs for each training example. Then, a second conditional model incorporates more complex features
than the baseline model and is used to re-rank the candidates, exploring the importance of global features
to produce better final outputs (Collins, 2000). Re-ranking has been shown to be effective in various natural
language processing tasks including many tagging and parsing tasks (Collins, 2000, 2002a, 2002c, 2002b;
Collins & Koo, 2005; Charniak & Johnson, 2005) along with semantic role labeling (Toutanova, Haghighi,
& Manning, 2005). In addition, Ge and Mooney (2006) and Lu et al. (2009) also showed that discriminative
re-ranking help enhance the quality of semantic parsers.

The MR output of our PCFG induction model can also be improved via discriminative re-ranking. Al-
though our model deals with semantic parsing from ambiguous training, the model itself has the form of
standard PCFG induction where discriminative re-ranking has been shown to be effective in prior work.

5.2.1 Averaged Perceptron Algorithm for Re-ranking

The averaged perceptron algorithm (Collins, 2002a) has been successfully applied to various natural lan-
guage processing tasks including re-ranking for tagging and parsing. In this section, I will describe how
the averaged perceptron algorithm can be applied to improve the parsed output of our PCFG model. The
algorithm requires three subcomponents: a GEN function defining a set of top k candidate parse trees for
each NL sentence, a feature function Φ that maps a NL sentence, e, and a parse tree, y, into a feature vector
such that Φ(e,y) ∈ Rd , an evaluation function that executes the MR output from a candidate parse tree and
estimates how well it reaches the intended correct destination. The third component should normally be
the reference parse tree in supervised semantic parsing tasks. However, we do not know the gold-standard
parse trees in the navigation domain and thus we need to use the indirect supervision of execution responses
instead, measuring how much of the correct route is successfully reached by the candidate MR plan. In this
sense, our re-ranking approach is different from other general discriminative re-ranking methods, since we
do not have the gold-standard reference tree. Instead, we introduce pseudo gold-standard parse tree in place
of the reference gold-standard tree. It is selected among the top k candidate parse trees, whose derived MR
plan achieves the best execution score out of all. Even though this does not guarantee the 100% correct
MR plan to be referenced, the candidate parse trees can be ranked in the order of maximizing the execution
accuracy, which is desirable for the goal of the navigation task.

The algorithm learns a weight vector W that maps a weight to each feature so that the score W ·Φ(e,y)
is assigned to each candidate parse tree for each NL sentence e. Then, the trained perceptron produces the
final parse output with the highest score when given a new NL sentence. The algorithm is briefly described
in Algorithm 4.
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Algorithm 4 PERCEPTRON TRAINING ALGORITHM

Input: A set of training examples (ei,y∗i ), where ei is a NL sentence, y∗i is a candidate parse tree whose
composed MR output m∗i has the highest execution evaluation score out of all the candidate parses.
Output: The parameter vector W̄
procedure PERCEPTRON

Initialize W̄ = 0
for dot = 1...T, i = 1...n

Obtain yi = argmaxy∈GEN(ei) Φ(ei,y) ·W̄
if yi 6= y∗i then

W̄ = W̄ +Φ(ei,y∗i )−Φ(ei,yi)
end if

end for
end procedure

5.2.2 Features

The features we plan to use for training the averaged perceptron algorithm are the following:

1. PCFG Rule. Indicate whether a PCFG rule is used in the parse tree y such as A→ BC.

2. Grandparent PCFG Rule. Indicate whether a PCFG rule as well as the nonterminal above that is used
in y. For instance, if there are rules A→ BC and C→ DE, then the grandparent PCFG rule feature
will be I(C→ DE,A), where I(·) is indicator function.

3. Long-range Unigram Rule. Indicate whether a nonterminal has a given NL word below it in the parse
tree. If a nonterminal A eventually produces a NL word w, then the feature value of the long-range
unigram rule becomes 1.

4. Two-level Unigram Rule. Indicate whether a PCFG production has a child nonterminal which eventu-
ally generates a NL word in the parse tree. For instance, for the rule A→ BC, if B or C has a particular
NL word below it in the parse tree, then the feature value is 1.

5. Log-probability of Parse Tree. Include the log value of the joint probability of the candidate parse tree
which can be obtained from the product of all the production rules used in the parse tree.

The above features are adapted mostly from Collins and Koo (2005) and Lu et al. (2009). Features
1-4 are indicator functions taking value 1 if a designated combination exists in the parse tree and value 0
otherwise. Feature 5 is a real-valued function that measures how likely a candidate parse tree is based on
the trained generative model.

5.3 Incorporating MRL Grammar Structure

Our PCFG induction model treats MRs as mere compositions of atomic constituents. This means that
our model only focuses on what element is generated rather than how the element is generated. Since
the meaning representation language (MRL) has its own grammar rules defining how the MR structure is
constructed, our PCFG model could utilize these additional useful information to learn the correspondences
between NL and MR.
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S→ Action

Action→ Action Action

Action→ Travel

Travel→ Travel(steps : Num)

move to Num→ 2

the second alley

(a) Simplified PCFG parse tree
which the proposed model will
produce. Note that only the
grammar rules which actually
generate NL words are in-
cluded in the tree.

S→ Action

Action→ Action Action

Action→ Travel

Travel→ Travel(steps : Num)

Num→ 2

Action→ Verify(Cond)

Cond→Cond Cond

Cond→ Dir Ob j

Dir→ at : Ob j→ BARSTOOL

Cond→ Dir Ob j

Dir→ side : Ob j→ GRAVEL HALLWAY

(b) MRL grammar structure of the context.

Figure 10: Sample simplified PCFG parse tree constructed based on MR grammar rule structure and full
MR structure, where the instruction/context pair is move to the second alley / Travel(steps : 2),
Verify(at : BARSTOOL,side : GRAVEL HALLWAY).

There have been several attempts at learning a semantic parser that takes MRL grammar into considera-
tion. KRISP (Kernel-based Robust Interpretation for Semantic Parsing) (Kate & Mooney, 2006) is a semantic
parser learner that uses support vector machines (SVMs) with string kernels. For each production rule in the
MRL grammar, KRISP learns an SVM string classifier to recognize a particular word or phrase. Then, the
trained set of classifiers is used to compose the most probable MR for a novel NL sentence. KRISP has been
shown experimentally to be particularly robust to noisy training data with partial matching of substrings by
string kernels and overfitting prevention by SVMs. WASP (Wong & Mooney, 2006) is a semantic parser
learner based on statistical machine translation techniques. It induces a probabilistic synchronous context-
free grammar (PSCFG) (Wu, 1997) which simultaneously produces NL and the corresponding MR using the
MRL grammar. Statistical bilingual word alignment algorithm GIZA++ (Och & Ney, 2003; Brown et al.,
1993) is first used for building a bilingual lexicon between NL words and MR grammar rules which is then
used to construct SCFG rules. A maximum entropy model is trained for SCFG rule parameters to produce
a semantic parser. In addition, the generative Hybrid Tree model (Lu et al., 2008; Kim & Mooney, 2010)
incorporates the MR grammar rules in its generative process to produce the subsequent MR components and
NL words. MR grammar rules are responsible for generating children MRs’ semantic categories as well as
relevant NL words in a single tree structure, and parameters are learned using EM to produce a statistical
semantic parser. All these methods construct a compositional structure involving both MRL grammar rules
and NL words for learning semantic parsers.

Inspired by these approaches, our PCFG induction model can be modified to construct a hierarchical
structure using the MRL grammar instead of the LHG. Using lexemes as the basic building blocks has an
advantage in that each lexeme MR works as a complete unit to be used later to form a novel parsed MR
output. However, sometimes there are unnecessarily large lexeme MRs that are noisy inputs to the model.
Instead, if we use each MR production rule as a building block to be connected to NL words, then fine-
grained levels of meanings will be captured, thus resulting in more expressiveness for the model. This
proposed model will first build the hierarchy structure based on the MRL rules for the context ci in the
training data, and then a PCFG production rule will be generated for each node in the hierarchy so that each
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MRL rule produces some ordered subset of children MRL rules or NL words. Unlike the prior approaches
which are fully supervised models and take all of the MR production rules into consideration to match NL
words, this proposed model will probabilistically choose which MRL rules are useful for generating NL
sentences after being optimized by EM. Figure 10 shows a sample PCFG parse tree which the proposed
model will build from an example in the navigation dataset.

5.4 Long-term Directions

In this section, I will discuss some of the longer term directions that I plan to pursue in the future beyond
the scope of my thesis.

5.4.1 Joint Learning with Other NLP Tasks

The completed works discussed earlier do not incorporate preprocessing of natural language texts before
we learn to find probabilistic mappings to MR components. This also means that we do not make any prior
assumptions about the language itself and we have to learn the underlying meanings of the raw NL segments
from scratch in a statistical manner. However, we also know that some stop words such as auxiliary verbs
do not play an important role in understanding the semantics of language. Moreover, additional information
such as part-of-speech tags, semantic role labels, or syntactic parse trees will help bias the generation process
from MR elements to natural language phrases.

For instance, POS-tagged natural language words will have limited choices for which lexeme MRs
or atomic MR constituents they can be matched to. Guo and Mooney(unpublished) used POS tags only for
filtering out inappropriate lexicon entries. However, POS tags can also be integrated in the generative process
itself within the PCFG framework so that lexeme MRs or MR grammar rules first generate appropriate
POS tags and then subsequently produce the corresponding NL words. This process will jointly learn
unsupervised POS tags as well as the PCFG structure that connects MR components/rules to NL words. In
addition, information extraction techniques can help identify notably important NL words which are actually
meaningful and help reduce the ambiguity in selecting correct subparts out of the entire ambiguous MRs
through a similar integration. Finally, syntactic parse trees are another option to consider which can be
integrated into the CFG trees produced by our PCFG model as Ge and Mooney (2006) did. As mentioned
earlier, syntactic hierarchies intuitively resemble an LHG, and it is possible to combine both structures to
utilize both cues for an improved model.

5.4.2 Machine Translation

Semantic parsing is a particular form of machine translation from a source natural language to a target
meaning representation language. WASP (Wong & Mooney, 2006) is inspired by this notion and builds a
semantic parsing model based on state-of-the-art syntax-based statistical machine translation (SMT) (Chi-
ang, 2005). In addition, it is also noteworthy that many existing semantic parsing approaches implicitly use
structural similarity between NL and MR. In this sense, it is would be interesting to apply our semantic pars-
ing methods back to the SMT tasks. Conventional SMT tasks resemble conventional supervised semantic
parsing tasks, since the conventional SMT approaches require a sentence aligned parallel corpus to train the
models. Our navigation task with highly ambiguous supervision is analogous to the task of “summarized
translation”. In the navigation task, our PCFG model finds the probabilistic correspondences between the
semantic concepts represented by lexeme MRs and the NL phrases, where only some subparts of the given
context (the full landmarks plan) are referred to by the given NL sentence. In the summarized translation
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task, a rich text in a source language is translated to a more concise text in a target language containing only
the gist of the original text. For example, many Wikipedia articles are published in many languages, but
the contents are usually not parallel between languages. Contents in some languages are rich in details, but
contents in other languages may contain only the gist of the topic. Currently, such summarized translation
has not been investigated to our knowledge. However, beyond SMT trained on parallel corpora, there have
been various attempts at using “comparable corpora” which are collections of documents that are compa-
rable and similar in content and form in various degrees and dimensions (Munteanu & Marcu, 2005; Diab
& Finch, 2000; Snover, Dorr, & Schwartz, 2008). However, the documents in comparable corpora usually
have similar levels of complexity and thus the task has very different characteristics from summarized trans-
lation. Summarized translation can be thought of as the ambiguous correspondence problem between two
languages. Only some subparts of the rich language text are translated to the concise target language. Based
on the idea of our PCFG induction model that finds rich-to-concise correspondences, we could extend and
apply our model to the summarized translation task in conjunction with SMT techniques.

5.4.3 Real Perceptional Data

In the completed work presented in Section 3 and 4, we assumed for simplicity that we have abstracted
information of the surrounding world states which is ambiguously connected to natural language sentences.
An obvious extension of our model would be to learn directly from real perceptional data instead of ab-
stracted logical representations. However, we first need a way to select what raw information is important
and notable to be learned with natural language. A recent work (Chao, Cakmak, & Thomaz, 2011) in-
vestigated how to train a socially interactive robot through demonstration. They grounded the meaning of
natural language by the state changes that appeared in the sensor readings. Even though their work limits
the tasks to only several categories and the complexity of natural language used is simple, it is notable that
they were able to train a machine learning model which directly connects natural language instruction to the
changes in real-valued raw sensory data. In a similar way, we can construct a semantic lexicon composed
of state changes in sensor data, and then our PCFG induction model can be applied to further investigate
NL–MR groundings with proper modifications. In addition, with a provided object recognition system,
our presented system can identify surrounding environments as well as notable landmarks to help interpret
natural language instructions and follow them to navigate in the real environments as in other navigation
work (Shimizu & Haas, 2009; Matuszek et al., 2010; Vogel & Jurafsky, 2010; Kollar et al., 2010; Tellex
et al., 2011). Moreover, we can also extend and apply our methods to visual data such as images and videos.
Extracted features such as SIFT (Lowe, 1999) and space-time interest points (Laptev, 2005) in images and
videos will produce vectors that can be used to describe notable objects or landmarks. Then, our model will
automatically discover how certain visual features are probabilistically related to natural language.

6 Conclusion

The ultimate goal of grounded language learning for computational systems is to mimic the process of
human language learning. In many cases, it is reduced to the problem of learning the underlying semantics
of languages in ambiguous perceptual environments. This type of learning approach has gained growing
attention recently, since there is no need for explicit human intervention to acquire training data. By contrast,
conventional semantic learning methods such as supervised semantic parsing require costly, hard to acquire,
one-to-one full supervision of natural language sentences and the corresponding logical forms.

In this proposal, we presented two grounded language learning approaches dealing with such natural,
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ambiguous supervision. The RoboCup sportscasting task and the navigation task are publicly available
datasets collected from the automatic extraction of world state information associated with corresponding
natural language texts. Prior grounded language learning works on these datasets suffer possible information
loss due to a lack of exploiting the probabilistic nature of connections between NL and MR, or only focusing
on semantic alignments and not on learning the underlying semantics of languages. In contrast, the two
presented completed works use generative processes to select NL and MR components probabilistically,
simultaneously learning semantic alignment and meanings of natural languages.

For the short-term future work, I propose to extend our probabilistic PCFG induction model with se-
mantic lexicons in various ways: improving the lexicon learning algorithms with POS tags, discriminative
re-ranking of the top-k parses to improve the final outputs, integrating the MRL grammar structure to achieve
better expressiveness. Long term agenda includes application to summarized machine translation using our
completed work for ambiguous supervision, application to real perception data such as sensory data and
extracted features of images/videos, and joint learning with other NLP tasks which can help bias our models
for better prediction.
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