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Abstract

Semantic parsing involves deep semantic analysis that mapsnatural language sentences to their for-
mal executable meaning representations. This is a challenging problem and is critical for developing
user-friendly natural language interfaces to computing systems. Most of the research in natural lan-
guage understanding, however, has mainly focused on shallow semantic analysis like case-role analysis
or word sense disambiguation. The existing work in semanticparsing either lack the robustness of sta-
tistical methods or are applicable only to simple domains where semantic analysis is equivalent to filling
a single semantic frame.

In this proposal, we present a new approach to semantic parsing based on string-kernel-based classifi-
cation. Our system takes natural language sentences pairedwith their formal meaning representations as
training data. For every production in the formal language grammar, a Support-Vector Machine (SVM)
classifier is trained using string similarity as the kernel.Each classifier then gives the probability of the
production covering any given natural language string of words. These classifiers are further refined
using EM-type iterations based on their performance on the training data. Meaning representations for
novel natural language sentences are obtained by finding themost probable semantic parse using these
classifiers. Our experiments on two real-world data sets that have deep meaning representations show
that this approach compares favorably to other existing systems in terms of accuracy and coverage.

For future work, we propose to extend this approach so that itwill also exploit the knowledge of
natural language syntax by using the existing syntactic parsers. We also intend to broaden the scope
of application domains, for example, domains where the sentences are noisy as typical in speech, or
domains where corpora available for training do not have natural language sentences aligned with their
unique meaning representations. We aim to test our system onthe task of complex relation extraction
as well. Finally, we also plan to investigate ways to combineour semantic parser with some recently
developed semantic parsers to form committees in order to get the best overall performance.



Contents

1 Introduction 3

2 Background and Related Work 4
2.1 Semantic Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 4

2.1.1 Application Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Kernel-based Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 8
2.3 Support Vector Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 9
2.4 String Subsequence Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 9

3 Completed Research 10
3.1 Overview of KRISP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Semantic Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 11

3.2.1 Semantic Derivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
3.2.2 Extended Earley’s Algorithm for Semantic Derivations . . . . . . . . . . .. . . . . 14

3.3 KRISP’s Training Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 19

3.5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.5.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 20

4 Proposed Research 25
4.1 Short-term Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 25

4.1.1 Exploiting Natural Language Syntax . . . . . . . . . . . . . . . . . . . . . . .. . . 25
4.1.2 Noisy NL Sentences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
4.1.3 Committees of Semantic Parsers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Long-term Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 28
4.2.1 Non-parallel Training Corpus . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 28
4.2.2 Complex Relation Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Conclusions 30

References 31

2



1 Introduction

Computational systems that learn to transform natural language sentencesinto formal meaning representa-
tions have important practical applications in enabling user-friendly natural language communication with
computers. They can also provide insights into human language acquisition. However, there has been
relatively little research on developing systems that learn such semantic parsers. Most of the research in
natural language processing (NLP) has been focused on lower-level tasks like syntactic parsing, word-sense
disambiguation, information extraction etc.(Manning & Schütze, 1999). Recently, researchers have shown
interest in the task ofsemantic role labeling, a form of “shallow” semantic parsing, which involves filling
out semantic roles of a predicate given a sentence (Gildea & Jurafsky, 2002), (Carreras & Marquez, 2004).
In this proposal, we have considered an even more ambitious task of deep semantic parsing of sentences into
their computer executable meaning representations.

Previous work on semantic parsing has focused on simple domains, primarily,ATIS (Air Travel In-
formation Service) (Price, 1990) whose semantic analysis is equivalent tofilling a single semantic frame
(Kuhn & De Mori, 1995), (Miller, Stallard, Bobrow, & Schwartz, 1996),(Popescu, Armanasu, Etzioni, Ko,
& Yates, 2004). There has also been work in semantic parsing in which meaning representation of the
domains are more complex with richer predicates and nested structures (Zelle& Mooney, 1996), (Tang &
Mooney, 2001), (Kate, Wong, & Mooney, 2005). But all these systemsuse deterministic rule-based learning
methods and lack in robustness which is the characteristic of learning methods currently used in statistical
NLP. Some previous work do not use any learning method (Androutsopoulos, Ritchie, & Thanisch, 1995),
(Popescu, Etzioni, & Kautz, 2003) which make them difficult to port to otherdomains.

In this proposal, we present a novel kernel-based statistical approach to learning semantic parsers. Ker-
nel methods are a powerful new approach to machine learning that have demonstrated success in a wide
variety of applications (Shawe-Taylor & Cristianini, 2000). Kernelized support-vector machines (SVMs) is
an effective and theoretically well-founded approach to learning non-linear classifiers (Cristianini & Shawe-
Taylor, 2000). An additional advantage of kernels is that, unlike most learning methods, they are not re-
stricted to handling feature-based data and can be defined over complex,unbounded data structures such as
strings and trees typically encountered in NLP problems. In particular, string and tree kernels have recently
been effectively applied to a variety of problems in text learning and NLP (Collins, 2002), (Lodhi, Saun-
ders, Shawe-Taylor, Cristianini, & Watkins, 2002), (Zelenko, Aone, &Richardella, 2003), (Cumby & Roth,
2003), (Culotta & Sorensen, 2004), (Bunescu & Mooney, 2005b) and (Bunescu & Mooney, 2005a).

Kernel methods are particularly suitable for semantic parsing because semantic parsing involves map-
ping phrases of natural language (NL) sentences to semantic concepts inmeaning representation language
(MRL). Given that natural languages are so flexible, there could be various ways in which one can express
the same semantic concept. It is difficult for rule-based methods or even statistical feature-based methods
to capture the range of NL contexts which map to a semantic concept becausethey tend to enumerate these
contexts. In contrast, kernel methods allow a convenient mechanism to implicitly work with potentially
infinite number of features which can robustly capture these range of contexts.

Our system, KRISP (Kernel-based Robust Interpretation by Semantic Parsing), takes NL sentences
paired with their formal meaning representations as training data. The productions of the formal MRL are
treated like semantic concepts. For each of these productions, a Support-Vector Machine (SVM) classifier is
trained using string similarity as the kernel. Each classifier then indicates the probability of the production
covering different substrings of the sentence. This information is used tocompositionally build a complete
meaning representation (MR) of the sentence. We demonstrate through experiments on two real-world data
sets that KRISPcompares favorably to other existing systems.
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We plan to extend our work in the following directions:

1. Currently our system uses a string-based kernel which does not exploit the NL syntax. We plan to
use tree kernels based on syntactic trees (Collins, 2002) or dependency trees (Zelenko et al., 2003) in
future.

2. We aim to test KRISPon noisy NL sentences, for e.g. as typically generated in speech, in whichcase
we believe KRISP’s robustness will be valuable.

3. We plan to investigate ways to form committees of KRISPand some recently built semantic parsers to
improve performance.

4. We plan to broaden the applicability of KRISP to more realistic domains where in the data available
for training the NL sentences may not aligned with their meaning representations.

5. We also want to test KRISP on the problem of Complex Relation Extraction (McDonald, Pereira,
Kulick, Winters, Jin, & White, 2005a), which involves extracting related named entities from a sen-
tence. This can be viewed as a less deeper semantic parsing on which we believe KRISP could be
applied.

The remainder of this proposal is organized as follows: Section 2 describes the semantic parsing task
including the related work in this area. It also briefly reviews kernel-based machine learning, SVMs and the
string-subsequence kernel we use in our system. Section 3 describes our new semantic parsing algorithm,
KRISP, and presents its experimental evaluations. In Section 4, we outline our plans for future research.

2 Background and Related Work

2.1 Semantic Parsing

Semantic parsing is the process of mapping natural language (NL) utterances into their computer under-
standable meaning representations (MRs). These MRs are expressed informal languages which we call
meaning representation languages (MRLs). We assume that all MRLs havedeterministic context free gram-
mars, which is true for almost all computer languages. This ensures that every MR will have a unique
parse tree. A learning system for semantic parsing is given a training corpus of NL sentences paired with
their respective MRs from which it has to induce a semantic parser which can map novel NL sentences to
their correct MRs. This section describes the three application domains on which the research in semantic
parsing has mainly been focused. Next, some existing approaches for learning semantic parsers are briefly
described.

2.1.1 Application Domains

CLANG: The RoboCup Coach Language: RoboCup1 is an international AI research initiative using
robotic soccer as its primary domain. One of the several competitions organized under it is the Coach
Competition where coachable soccer agents compete on a simulated soccer field. The coaching advice is
given to them in a standard formal coach language called CLANG (Chen et al., 2003). CLANG is a simple
declarative language with prefix notation like LISP. Figure 1 gives an example of a piece of coaching advice

1http://www.robocup.org/
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NL: “If our player 4 has the ball, our player 4 should shoot.”
CLANG: ((bowner our {4}) (do our {4} shoot))

CLANG parse tree: RULE

CONDITION

bowner TEAM

our

UNUM

4

DIRECTIVE

do TEAM

our

UNUM

4

ACTION

shoot
Non-terminals: bowner, our, 4, shoot
Terminals: RULE, CONDITION, DIRECTIVE, TEAM, UNUM, ACTION
Productions:
RULE→ (CONDITION DIRECTIVE)
CONDITION→ (bowner TEAM {UNUM})
DIRECTIVE→ (do TEAM {UNUM} ACTION)
TEAM → our UNUM → 4 ACTION → shoot

Figure 1: An example of natural language advice and its CLANG meaning representation with parse tree.

in NL with its corresponding CLANG MR. The unique parse of the MR is also shown along with the
involved terminals, non-terminals and productions. In the MR,bowner stands for ball owner and UNUM
stands for uniform numbers (players 1 through 11). Our learning algorithm exploits these MR parses and
the productions.

GEOQUERY: A Database Query Application: GEOQUERY is a logical query language for a small
database of about 800 U.S. geographical facts. This domain was originally chosen because of the availability
of a hand-built natural language interface for comparison, GEOBASE, which came with Turbo Prolog 2.0
(Borland International, 1988). Its query language is Prolog augmented with several meta-predicates (Zelle
& Mooney, 1996). These queries were converted into a functional, variable-free query language in (Kate
et al., 2005) which is more convenient for some semantic parsers.

Figure 2 shows an NL query and its MR in Prolog and functional query language forms. The parse of the
functional query language is also shown with the involved productions, non-terminals and terminals. This
example is also used in the Section 3 to illustrate how our system does semantic parsing. The MR in the
functional query language can be read as if processing a list which getsmodified by various functions. The
innermost expression,stateid(‘texas’), stands for the list with a single element: the state of Texas.
Next, the expressionnext to(stateid(‘texas’)) denotes the list containing all the states next to
the state of Texas. The expression,traverse 2(next to(stateid(‘texas’))), denotes the list
of all the rivers which flow through these states which are next to Texas.This list is finally returned as the
answer. The unary function,traverse 2(S), which returns the list of rivers traversing through states in
the list S, relates to the binary predicatetraverse(A,B) of the query language in Prolog, which is true if
A flows through B. Similarly, there is a unary function,traverse 1(R), in the functional query language
which returns the list of the states through which the rivers in the list R traverse through.

ATIS: Air Travel Information System: ATIS is an ARPA-sponsored benchmark domain for speech
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NL: “Which rivers run through the states bordering texas?”
Prolog: answer(A,(river(A),traverse(A,B),state(B),next to(B,C),
const(C,stateid(‘texas’))))
Functional query language: answer(traverse 2(next to(stateid(‘texas’))))
Parse tree of the MR in functional query language:

ANSWER

answer RIVER

TRAVERSE2

traverse 2

STATE

NEXT TO

next to

STATE

STATEID

stateid ‘texas’

Non-terminals: ANSWER, RIVER, TRAVERSE2, STATE, NEXTTO, STATEID
Terminals: answer, traverse 2, next to, stateid, ‘texas’
Productions:
ANSWER→ answer(RIVER)
RIVER→ TRAVERSE2(STATE)
STATE→ NEXT TO(STATE)
STATE→ STATEID
TRAVERSE2→ traverse 2
NEXT TO→ next to
STATEID→ stateid ‘texas’

Figure 2: An example of natural language query and its meaning representation in Prolog and in functional
query language with its parse tree.
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NL: “Show me flights from New York to Los Angeles.”
SQL: SELECT flight id FROM flight WHERE from airport=’New York’ AND
to airport = ’Los Angeles’

Figure 3: An example of natural language question and its meaning representation in SQL.

recognition and understanding (Price, 1990). Its corpus consists of spoken NL questions about air travel,
their transcribed forms and their MR in SQL database query language. Thequestions are relatively simple
and their semantic analysis is equivalent to filling a single semantic frame. But one thing that makes this
corpus interesting for semantic parsing is that it was built by engaging the subjects in dialogs through speech
which sometimes leads to noise in the NL sentences as well as coreferences across these sentences. Figure 3
gives a sample question and its SQL form. We haven’t tried our semantic parser on this domain yet, this is
part of our future work.

2.1.2 Related Work

This subsection summarizes related work in the area of semantic parsing including our previous work based
on transformation rules.

• Syntax-based Semantic Parsing: Some approaches use syntactic and semantic annotations on the
training NL sentences to learn semantic parsers. Miller et al. (1996) present an approach in which the
nodes of full syntactic parse trees of the NL sentences are augmented withsemantic categories. They
model this type ofaugmented tree parsingby probabilistic recursive transition networks. They have
tested their system on the ATIS corpus.

Ge and Mooney (2005) present a system called SCISSOR, that learns a statistical parser that integrates
syntax and semantics. It needs semantically annotated syntactic parse treesof the NL sentences for
training in which each internal node has a semantic label in addition to a syntactichead word. State-
of-the-art syntactic parsing model, (Collins, 1997) Model 2, is then usedto learn the integrated parser.
The MR can be recovered from the parse tree using a recursive procedure which allows this system
to obtain MRs which are multiple levels deep (unlike (Miller et al., 1996) where theoutput MR is
essentially flat). SCISSORhas been tested on CLANG and GEOQUERYdomains.

The approach by Zettlemoyer and Collins (2005) combines syntactic-semanticparsing using combina-
tory categorical grammars (CCG). While its training does not require additional syntactic or semantic
annotations, it needs some hand-built rules to encode prior knowledge ofsyntax. Their system learns
rules to construct a bilingual lexicon relating CCG syntactic categories to the lambda functions asso-
ciated with the semantics. A log-linear model is used for doing probabilistic parsing of NL sentences
using this lexicon.

• Semantic Parsing by Transformation Rules: In our previous work (Kate et al., 2005), we devel-
oped a system, SILT , which does semantic parsing by learning transformation rules to incrementally
transform NL sentences into their MRs. The transformation rules associateNL patterns with MRL
templates. During parsing, whenever a rule’s NL pattern is found to match in asentence, the matched
pattern is replaced by the MRL template. By the end of parsing, the entire sentence gets transformed
into its MR. One drawback of this system that limits its recall is that it uses hard-matching trans-
formation rules which are sometimes too brittle to capture all the range of NL contexts. Its parsing
is also done deterministically which is less robust than doing a probabilistic parsing. SILT has two
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versions: a tree-based version that utilizes syntactic parse trees of the sentences and a string-based
version which does not use NL syntax.

Recently, Wong (2005) has developed a system called WASPbased on synchronous context-free gram-
mars. This is an improvement over SILT . It uses a statistical word alignment model to find good
transformation rules which are then used to build a probabilistic model for parsing.

• Other Approaches: CHILL , (Zelle & Mooney, 1996), (Tang & Mooney, 2001), is an Inductive Logic
Programming (ILP) framework for learning semantic parsers. It learns rules to control the actions of
a deterministic shift-reduce parser. It processes sentences one wordat a time making hard parsing
decisions every time, this makes the system somewhat brittle. Since it also does deterministic parsing,
it may not be able to find the globally best parses of the sentences. The ILPtechniques are also slow
and memory-intensive and do not scale to large corpora.

PRECISE(Popescu et al., 2003), (Popescu et al., 2004) is a system to build NL interface to databases.
This system does not involve learning. It uses the notion ofsemantically tractablesentences, the
sentences which can have only a unique semantic interpretation. These arethe type of sentences this
system can parse. Using a partly manually constructed lexicon which relatesNL words to semantic
types and a set of semantic constraints, it reduces the semantic parsing taskto a maximum flow
graph problem. The results show that over90% of context-independent sentences in the ATIS corpus
are semantically tractable while only80% of GEOQUERY sentences are semantically tractable. This
shows that GEOQUERY is more challenging domain for semantic parsing than ATIS.

In past there have been a few more approaches for semantic parsing, mainly tested on the ATIS
domain: He and Young (2003) use hidden Markov model (HMM), Papineni, Roukos, and Ward (1997)
and Macherey, Och, and Ney (2001) use machine translation algorithms and Kuhn and De Mori (1995)
use decision trees to translate NL questions into SQL queries.

2.2 Kernel-based Machine Learning

Traditionally, machine learning methods accept an explicit feature-based representation of the input where
an example is represented by a collection of features (feature vector). But often data cannot be expressed
effectively using features, especially when the data is present in some structured form as is typically true in
several NLP problems. The structural information is often lost when the data is reduced to some pre-defined
set of features. For e.g., when a natural language sentence (a sequence structure) is reduced to a bag of words
or even a bag of bigrams or trigrams, the information about the presence oflonger subsequences is lost. To
avoid this, if one tries to explicitly include all possible features so that no information is lost (e.g. make
all possible subsequences as features) then the number of features blow-up and it becomes computationally
impractical for the learning algorithms to handle them.

Kernel-based methods (Vapnik, 1998) are an attractive alternative to feature-based methods. They allow
the learning algorithms to work on potentially infinite number of features without explicitly handling them.
The machine learning algorithms which use the data only to compute similarity (dot-product) between the
examples can be kernelized, like Support Vector Machines (SVMs) (Cristianini & Shawe-Taylor, 2000),
Perceptron (Aizerman, Braverman, & Rozonoér, 1964), Principal Component Analysis (Schölkopf, Smola,
& Muller, 1999) or Nearest Neighbor. A kernel is a similarity function satisfying certain properties which
maps a pair of objects to their similarity score. Formally, a kernel functionK over the domainX maps
two objectsx,y ǫX to their similarity score,K(x, y), which ranges from0 to infinity. For all the objects
x1, x2, ..., xn ∈ X, the nxn matrix (K(xi, xj))ij , called the Gram matrix, is required to be symmetric
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and positive-semidefinite. Due to this property, kernel functions can be shown to implicitly calculate the
dot-product of feature vectors of objects in some high-dimensional feature space. Hence the underlying
kernelized machine learning algorithm then essentially analyzes the data in this implicit high-dimensional
space.

The following subsections briefly describe SVMs, the kernelized machine learning algorithm we use in
this proposal, and string-subsequence kernel, the kernel function weuse with SVMs.

2.3 Support Vector Machines

Mapping data to a high-dimensional space, as is typically done through kernels, comes with a problem that
learning algorithms tend to overfit the training data due to sparsity of data likely tobe present because of
so many dimensions (known as the “curse of dimensionality”). But SupportVector Machines (SVMs) are
known to be resistant to this overfitting, hence it is the best choice for a kernelized learning algorithm.

SVMs were first introduced by Boser, Guyon, and Vapnik (1992) andhave become a popular classifica-
tion algorithm. Given two sets of points (like positive and negative examples),SVMs learn a separating hy-
perplane separating the points such thatmargin, the distance between the hyperplane and the closest point,
is maximized. The points closest to the separating hyperplane are calledsupport vectors. This solution
which maximizes the margin has sound theoretical justification for valid generalization which is resistant to
overfitting even in high dimensional spaces (Vapnik, 1998).

Since SVMs use data only to find similarity between data points, they can be kernelized. Through the
kernel function the input points are implicitly mapped to a high dimensional feature space. A linear separat-
ing hyperplane with maximum margin is then found in this high dimensional space. This may correspond to
some complex non-linear separating hyperplane in the original input space. For training, kernelized SVMs
need kernels between every pair of training examples (i.e. the Gram matrix) and for testing they need kernels
between the test example and all its support vectors (a subset of training examples).

2.4 String Subsequence Kernel

Following the framework of Lodhi et al. (2002), we define a kernel between two strings as the number
of common subsequences between them. One difference, however, is that their strings are over characters
while our strings are over words. The more the two strings share, the greater the similarity score will be
deemed.

Formally, following the notation of (Rousu & Shawe-Taylor, 2005), letΣ be a finite alphabet, a string
is a finite sequence of elements fromΣ, and the set of all strings is denoted byΣ∗. For any strings, we
denote|s| as the length of the strings = s1s2..s|s|. The strings[i..k] stands for thesubstringsisi+1..sk

of s, substrings are contiguous by definition. We say thatu is asubsequenceof s, if there exists an index
sequencei = (i1i2..i|u|), with 1 ≤ i1 < .. < i|u| ≤ |s|, such thatuj = sij for j = 1, .., |u|, and write
u = s[i] for short. Subsequences need not be contiguous by their definition. Wecall the distance between
the first index ofi to its last index as its span,span(i) = i|u| − i1 + 1. For example, consider the string
s = left1 side2 of3 our4 penalty5 area6 , where the subscripted numbers are indices of the words in the
string. Thenu = left penalty area is a subsequence ofs because there is an index sequencei = (1 5 6)
such thatu = s[i]. The span ofi, span(i) equals6 − 1 + 1 = 6.

Since there can be multiple index sequencesi for a strings, such thatu = s[i], we defineΦu(s) as the
number of such unique index sequences, i.e.Φu(s) = |{i|s[i] = u}|. But this definition does not take into
account the sum total of all the gaps present in different index sequences. If we want to downweight the
presence of gaps, we can do it through adecay factorλ ∈ (0, 1] and redefineΦu(s) as:
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Φu(s) = 1/λ|u|
∑

i:s[i]=u

λspan(i) (1)

The normalization1/λ|u| ensures that only gaps and not the matches are penalized. Note that forλ = 1,
the above reduces to the earlier definition which had no gap penalties. For the examples ofu ands given
earlier,Φu(s) = λ6/λ3 = λ3, which represents the total gap of3 present in the index sequencei = (1 5 6)
that skips over the three wordsside2 of3 our4 .

Finally, we define the kernelK(s, t) between two stringss andt as:

K(s, t) =
∑

u∈Σ∗

Φu(s)Φu(t) (2)

The kernel so defined is implicitly using the space of all possible subsequences as features and computing
their dot-products.

Table 1 shows an example for computation of kernel between the two stringss = left1 side2 of3
our4 penalty5 area6 and t = our1 left2 penalty3 area4 , where the subscripted numbers are simply the
indices of the words in the strings. Note that the table includes all the subsequences,u, that are common
between the two strings. The chosen value for the parameterλ can be plugged in the final expression to get
the numeric kernel value. Lodhi et al. (2002) give an efficient dynamicprogramming algorithm to compute
string subsequence kernels inO(n|s||t|) time wheren is the maximum length of subsequences one wants
to consider. Rousu and Shawe-Taylor (2005) give another algorithm which works faster when the alphabet
size is large.

The kernel can be normalized to have values in the range[0, 1] to remove any bias due to different string
lengths:

Knormalized(s, t) =
K(s, t)

√

K(s, s)K(t, t)
(3)

String subsequence kernels have been previously used with success inNatural Language Processing
(NLP) for Text Classification(Lodhi et al., 2002) and relational Information Extraction (Bunescu & Mooney,
2005b). We use them here for Semantic Parsing.

3 Completed Research

This section describes our novel approach to learning semantic parserswhich we call KRISP, Kernel-based
Robust Interpretation by Semantic Parsing. The description is followed by some implementation details and
experiments.

3.1 Overview of KRISP

Given a set of NL sentences paired with corresponding MRs, KRISP learns the semantic parser in iterations,
each iteration improving upon the parser learned in the previous iteration. Ineach iteration, it first collects
positive and negative examples for each of the productions in the MRL grammar. In the first iteration, these
positive and negative examples are simply the NL sentences based on whether the production is present in
their corresponding MR parses or not. Using these examples, Support-Vector Machine (SVM) classifiers
with string similarity as the kernel are trained. These classifiers are then used in the semantic parsing to
generate the best parse for each of the training NL sentences. Based on whether these parses are correct
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u {(i, span(i))|s[i] = u} {(i, span(i))|t[i] = u} Φu(s) Φu(t) Φu(s) ∗ Φu(t)

left {((1), 1)} {((2), 1)} 1 1 1
our {((4), 1)} {((1), 1)} 1 1 1
penalty {((5), 1)} {((3), 1)} 1 1 1
area {((6), 1)} {((4), 1)} 1 1 1
left penalty {((1 5), 5)} {((2 3), 2)} λ3 1 λ3

left area {((1 6), 6)} {((2 4), 3)} λ4 λ λ5

our penalty {((4 5), 2)} {((1 3), 3)} 1 λ λ
our area {((4 6), 3)} {((1 4), 4)} λ λ2 λ3

penalty area {((5 6), 2)} {((3 4), 2)} 1 λ λ
left penalty area {((1 5 6), 6)} {((2 3 4), 3)} λ3 1 λ3

our penalty area {((4 5 6), 3)} {((1 3 4), 4)} 1 λ λ

K(s, t) = 4 + 3λ + 3λ3 + λ5

Table 1: An example of computing subsequence kernel between the stringss =
left1 side2 of3 our4 penalty5 area6 andt = our1 left2 penalty3 area4 .

or not, positive and negative examples are collected which are used to trainclassifiers in the next iteration.
Figure 4 shows this overall picture. The following two subsections describe the two main modules of KRISP:
semantic parsing and training the classifiers which are used in semantic parsing.

3.2 Semantic Parsing

KRISP does semantic parsing by finding the best semantic derivation of a sentence. The following subsec-
tions describe semantic derivations and the algorithm used by KRISP to find them.

3.2.1 Semantic Derivations

We define asemantic derivation, D, of an NL sentence,s, as a parse tree of an MR (not necessarily the
sentence’s correct MR in which case the semantic derivation will also be incorrect) such that each node of
the parse tree also contains a substring of the sentence in addition to a production. We denote nodes of the
derivation tree by tuples(π, [i..j]), whereπ is its production and[i..j] stands for the substrings[i..j] of s,
and we say that the node or its productioncoversthe substrings[i..j]. The substrings covered by the children
of a node are not allowed to overlap, and the substring covered by the parent must be the concatenation of
the substrings covered by its children nodes. Figure 5 shows a semantic derivation of the NL sentence and
the MR parse which were shown in figure 2. Productions are shown on thenodes of the tree instead of
non-terminals to emphasize the role of productions in derivations. The substrings s[i..j] covered by each
production is shown by[i..j] on its node.

Sometimes, the children nodes of an MR parse tree node may not be in the same order as are the
substrings of the sentence they should cover in a derivation tree. For e.g., if the sentence was“Through the
states that border Texas which rivers run?”, which has the same MR as the sentence shown in figure 5, then
the order of the children of the node with the production “RIVER→ TRAVERSE2(STATE)” would need
to be reversed. To accommodate this, a semantic derivation tree is allowed to contain MR parse tree nodes
in which the children nodes have been permuted.

11



MRL grammar

NL sentences with negative examples
Collect positive and
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derivations (correct
and incorrect)
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Figure 4: Overview of KRISP

Let Pπ(s[i..j]) denote the probability that productionπ covers the substrings[i..j]. These probabilities
are obtained by the string-kernel based SVM classifiersP = {Pπ|π ∈ MRL grammar G}. Given these
classifiers, this subsection explains how KRISP finds the most probable semantic derivations of the NL
sentences, the section 3.3 will describe how KRISP trains these classifiers. From a semantic derivation it
is trivial to obtain the MR: simply take the MR parse over the sentence and write itas an MR expression.
Since some children nodes might have been permuted, this step also needs to permute them back to the way
they should be according to the MRL productions. We refer to this procedure asrecover in section 3.3.

The probability of a semantic derivationD of a sentences is simply:

P (D) =
∏

(π,[i..j])∈D

Pπ(s[i..j]) (4)

The task of the semantic parser is to find the most probable derivation of sentences. This task can be
recursively performed using the notion of apartial derivationEn,s[i..j], which stands for any subtree of a
derivation tree withn as the left-hand-side (LHS) non-terminal of the root production and which coverss
from indexi to j. For e.g., the subtree rooted at the node “(STATE→ NEXT TO(STATE),[5..9])” in the
derivation shown in figure 5 is a partial derivation which would be denotedasESTATE,s[5..9]. Note that
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(ANSWER→ answer(RIVER), [1..9])

(RIVER→ TRAVERSE2(STATE), [1..9])

(TRAVERSE2→traverse 2, [1..4])

which1 rivers2 run3 through4

(STATE→ NEXT TO(STATE), [5..9])

(NEXT TO→ next to, [5..7])

the5 states6 bordering7

(STATE→ STATEID, [8..9])

(STATEID→ stateid ‘texas’, [8..9])

texas8 ?9

Figure 5: Semantic derivation of the NL sentence”Which rivers run through the states bordering texas?”
which gives MR asanswer(traverse 2(next to(stateid(texas)))).

derivationD of sentences is then simplyEstart,s[1..|s|], wherestart is the start symbol of MRL’s context
free grammar.

Mathematically, the most probable partial derivationE∗
n,s[i..j] is recursively defined as:

E∗
n,s[i..j] = makeTree( argmax

π=n→n1..nt∈G,(p1,..,pt)∈partition(s[i..j],t)
(Pπ(s[i..j])

∏

k=1..t

P (E∗
nk,pk

))) (5)

The above equation finds the most probable partial derivationE∗
n,s[i..j] by trying out all productions

π = n → n1..nt in the MRL grammarG which haven as the LHS non-terminal, and allpartitions with
t elements of the substrings[i..j] (n1 to nt are right-hand-side (RHS) non-terminals, terminals do not play
any role in this process and are not shown for simplicity). A partition of a substrings[i..j] with t elements
is a t−tuple containingt non-overlapping substrings ofs[i..j] which gives[i..j] when concatenated. Here
partition(s[i..j], t) is a function which returns the set of all partitions ofs[i..j] with t elements including
their permutations. For, e.g. callingpartition(“the states bordering texas ?”, 2) will return the set of parti-
tions: {(“the”, “states bordering texas ?”), (“states bordering texas ?”, “the”), (“the states”, “bordering
texas ?”), (“bordering texas ?”, “the states”), (“the states bordering”, “texas ?”), (“texas ?”, “the states
bordering”), (“the states bordering texas”, “?”), (“?”, “the states bordering texas”)} . To find the most
probable partial derivationE∗

STATE,s[5..9] for the sentence shown in figure 5, the above equation will try all
the productions in the grammar with STATE as the LHS non-terminal, for e.g., oneof them being “STATE
→ NEXT TO STATE”. Then for this example production, it will try all partitions with permutations of the
the substrings[5..9] with two elements (shown earlier), and recursively find the most probable derivations
E∗

NEXT TO,p1
andE∗

STATE,p2
, where(p1, p2) denotes a partition. The recursion reaches base cases when

the productions which haven on the LHS do not have any non-terminal on the RHS or when the substring
s[i..j] becomes smaller than the lengtht.

The equation finds that productionπ and partition(p1, .., pt) which gives the maximum product of
the probability ofπ covering the substrings[i..j] with the probabilities of all the recursively found most
probable partial derivations. The proceduremakeTree(π, (p1, .., pt)) then constructs a partial derivation
tree by makingπ as its root production and making the most probable partial derivation treesfound through
the recursion as children subtrees which cover the substrings according to the partition(p1, .., pt).
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A naive implementation of the above recursion will be computationally very expensive, but by suitably
extending the well known Earley’s context-free grammar parsing algorithm(Earley, 1970) it can be imple-
mented efficiently. The above task has some resemblance to probabilistic context-free grammar (PCFG)
parsing for which efficient algorithms are available (Stolcke, 1995), butwe note that our task of finding the
most probable semantic derivation differs from PCFG parsing in two importantways:

1. The probability of a production is not independent of the sentence butdepends on which substring of
the sentence it covers.

2. The leaves of the tree are not individual terminals of the grammar but aresubstrings of words of the
NL sentence.

3.2.2 Extended Earley’s Algorithm for Semantic Derivations

Parsing a sentences by Earley’s algorithm involves a single left-to-right pass overs while filling an array
called achart, that has|s| + 1 entries. For each word position in the sentence, the chart contains a list of
statesof the subtrees derived so far. Each subtree is compactly representedin a state only once which is
shared by other subtrees which need it. The possible subtrees are predicted top-down and are completed
bottom-up which makes the parsing very efficient. Jurafsky and Martin (2000) present a good description
of Earley’s algorithm which we extend here.

A state in each chart entry contains the following information:

1. the root production of the subtree

2. where in the sentence this subtree’s coverage begins

3. up to which RHS non-terminals in the production the subtree has been completed and where in the
sentence its coverage ends

4. the probability of the subtree derived so far

All this information about a state can be compactly represented by adotted rule, an example of which
is (5STATE → NEXT TO •8 STATE, 0.88). Here the subscripted number5 on the LHS non-terminal
indicates that this subtree starts its coverage from the fifth word of the sentence, the dot and its subscript8
indicates that subtree corresponding to NEXTTO non-terminal has been completed whose coverage ends
at the seventh word in the sentence but the subtree corresponding to STATE non-terminal on the RHS
hasn’t been completed yet, and0.88 is the probability of this derivation subtree so far. A state is called
completeif the dot is at the end of the production, a complete state means that the whole tree below the root
production has been completed. A state is called abase stateif its production has no non-terminal on the
RHS, these correspond to“POS→ word” type of productions in syntactic parsing. In order to recover the
tree structures from this chart structure, each state also contains links to the completed states it is composed.
This information is not shown for simplicity.

Figure 6 gives the extended Earley’s algorithm, EARLEYDERIVE, for obtaining the most probable
semantic derivation of a sentences, given the MRL grammarG and the classifiersP . It does a beam search
and gives the bestω derivations it finds, whereω is a system parameter called thebeam width. If the beam
width is infinite, then this algorithm is guaranteed to find all the semantic derivations of the sentence (which
will include the most probable one), but this setting is computationally impractical torun. With a smaller
beam width (likeω = 30 in our experiments), the algorithm will do a greedy approximation search to find
theω most probable derivations.
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function EARLEY DERIVE(sentences, MRL grammar, classifiersP )
INSERT((0NULL → •0 start, 1), chart[0])

for i=0 to |s| do
for eachstate in chart[0..i − 1] do

if (BASE(state) and INCOMPLETE(state)) then SCANNER(state, i)
for eachstate in chart[i] do

if (not BASE(state) and INCOMPLETE(state)) then PREDICTOR(state)
elseif (BASE(state) and INCOMPLETE(state)) then SCANNER(state,i)
else COMPLETER(state)

return(chart)
procedure PREDICTOR((iA → α •j B β, p))
for each (B → γ) in MRL grammardo

for each permutationγ′ of γ do
INSERT((jB → •j γ′, 1), chart[j])

procedure SCANNER((iA → •i α, p), k)
if (p = PA→α(s[i..k]) ≥ θ) then

INSERT((iA → α •k+1, p), chart[k + 1])
procedure COMPLETER((jB → γ •k, p))
for each ((iA → α •j B β, q) in chart[j]) do

if (INCOMPLETE((iA → α B •k β, p ∗ q)))
INSERT((iA → α B •k β, p ∗ q), chart[k])

elseif (r = PA→α B β(s[i..k − 1]) ≥ θ) then
INSERT((iA → α B •k β, p ∗ q ∗ r), chart[k])

procedure INSERT(state, chart[j])
if (state is not already inchart[j]) then

if (INCOMPLETE(state)) then
PUSH(state, chart[j])

else let state = (iA → α •j , p)
if BEAM(A → α, i, j) is not full then

PUSH(state, chart[j])
elseif (p > lowest probability of state in BEAM(A → α, i, j)) then

replace it bystate

Figure 6: The extended Earley’s algorithm for obtaining the most probablesemantic derivations

In the pseudo code, the Greek alphabetsα, β andγ are used to represent sequences (possibly empty)
of non-terminals and terminals on the RHS of productions while the capitalized alphabets stand for non-
teminals. The parsing starts by inserting the dummy state (0NULL → •0 start) which has the start symbol
of the MRL grammar on the RHS and the subscripts tell that nothing has been parsed yet. Parsing then
proceeds by examining chart entries and words of the sentence left-to-right. There are three main procedures
involved: PREDICTOR, SCANNER and COMPLETER.

The PREDICTOR procedure generates states representing the top-down expectations of the parses.
Since in a semantic derivation a sentence may get covered by any permutation of the RHS non-terminals,
the predictor generates states corresponding to all the permutations of RHSnon-terminals. If a state in the
chart entry being processed is incomplete and is not a base state then PREDICTOR is called on that state.
For example, when PREDICTOR is called on the state (5STATE→ NEXT TO •8 STATE,q) it will predict
the state (8STATE→ •8 STATEID, 1) among some other states, hoping to find a subtree for the RHS non-
terminal STATE. The value1 is a temporary placeholder probability which will get multiplied by some real
probability when this state gets completed.

If a state is a base state and is incomplete, then SCANNER is called on it. SCANNERlooks at the
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current word in the sentence and if the substring from the beginning wordof the state till this word has
a good probability for getting covered by the state’s production, then a newcomplete state is generated.
This probability has to be greater than a thresholdθ, which is a system parameter used to prune very low
probability parses. Since the leaves of the derivation can contain any number of words, SCANNER is called
for all previous chart entries first (i.e. base states being completed may have their begin word anywhere
back in the sentence). As an example, when SCANNER is called on the state (8STATE → •8 STATEID,
1) while processing the ninth word, then if the probabilityp = PSTATE → STATEID(s[8..9]) ≥ θ then the
SCANNER will produce the completed state (8STATE→ STATEID •10, p).

If a state is complete, then COMPLETER is called on it. The COMPLETER looks atall the states in the
chart which need this completed subtree and generates new states advancing them from their previous states.
The probability of a new state is the product of the probabilities of its previous state and the probability of
the state on which completer was called. If a new state is a complete state then it is included only if the
probabilityr of its production covering the substring from the beginning word of the statetill the end word
of the state is greater than the parameterθ. The probabilityr is also multiplied with the current probability
of the new state to get its new probability. For example, calling COMPLETER on (8STATE→ STATEID
•10, p) will generate state (5STATE→ NEXT TO STATE•10, p ∗ q) from the previous state (5STATE→
NEXT TO •8 STATE,q). Since this is also a complete state (i.e. the dot is in the end), this will be included
only if (r = PSTATE → NEXT TO STATE(s[5..9]) ≥ θ) and in that case the new probability will be also
multiplied byr to get the state: (5STATE→ NEXT TO STATE•10, p ∗ q ∗ r).

Finally, a procedure called INSERT inserts states into the chart. A state is included only if it is not
already present in the chart entry. Also, to do the beam search, beams of only the bestω completed states for
each of the productions starting and ending at the same places in the sentence are maintained. If the beam
is full then the new state to be inserted replaces the lowest probability state in thebeam provided the new
probability is greater than that lowest probability. Since thresholdθ is used to prune low probability trees,
its is possible that the algorithm may not find any derivation.

3.3 KRISP’s Training Algorithm

Given the training corpus of NL sentences paired with their MRs{(si, mi)|i = 1..N}, KRISP first parses
the MRs with the MRL grammarG. Since the MRL is a formal language with a deterministic context free
grammar, this parsing can be done unambiguously. Sample MR parses were shown in figures 1 and 2. We
represent the parse of MR,mi, by parse(mi).

Figure 8 shows KRISP’s training algorithm. For each productionπ of the MRL grammar, KRISPcollects
positive and negative examples sets. In the first iteration, the setP(π) of positive examples for production
π contains all those sentencessi such thatparse(mi) uses the productionπ. The set of negative examples
N (π) for productionπ includes all the remaining training sentences.

Using these positive and negative examples, an SVM classifier is trained for each production using a
string subsequence kernel. Normally, SVM classifiers only predict the class of the test example but one can
obtain probability estimate of an example’s class by mapping the distance of the example from the SVM’s
separating hyperplane to the range [0,1] using a learned sigmoid function (Platt, 1999). This then gives us
the probabilitiesPπ(s[i..j]) on which the semantic parsing described in the previous section depends. We
represent the set of these classifiers byP = {Pπ|π ∈ G}.

Next, using these classifiers the Earley’s extended algorithm, EARLEYDERIVE, described in the pre-
vious subsection is invoked to obtain theω best derivations for each sentence. The procedurerecover
returns the MR from a semantic derivation, this is a simple procedure which was also described in subsec-
tion 3.2.1. It is possible that for some sentences, none of the obtained derivations give the correct MR. But as
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(ANSWER→ answer(RIVER), [1..9])

(RIVER→ TRAVERSE2(STATE), [1..9])

(TRAVERSE2→traverse 2, [1..7])

Which1 rivers2 run3 through4 the5 states6 bordering7

(STATE→ STATEID, [8..9])

(STATEID→ stateid texas, [8..9])

texas8 ?9

Figure 7: An incorrect semantic derivation of the NL sentence”Which rivers run through the states bor-
dering texas?”which gives the incorrect MRanswer(traverse 2(stateid(texas))), the correct
one beinganswer(traverse 2(next to(stateid(texas)))).

is described later, the most probable derivation which gives the correctMR is needed to collect positive and
negative examples for the next iteration. Hence in these cases, a versionof the extended Earley’s algorithm,
EARLEY DERIVE CORRECT, is invoked which also takes the correct MR as an argument andobtains the
bestω derivations, all of which give the correct MR. This is done easily by making sure that all the subtrees
derived in the process are present in the parse of the correct MR.

From these derivations, positive and negative examples are collected for the next iteration. Positive
examples are collected from the most probable derivation which gives the correct MR (figure 5 shows an
example of a correct derivation). At each node in that derivation, the substring covered is taken as a positive
example for the production. Negative examples are collected from those derivations whose probability is
higher than the most probable correct derivation but which do not givethe correct MR. Figure 7 shows
an example of an incorrect derivation, the one shown in figure 5 being thecorrect one. Here the function
“next to” is missing from the MR it produces.

The following procedure is used to collect negative examples from incorrect derivations. The incorrect
derivation and the most probable correct derivation are traversed simultaneously starting from the root using
breadth-first traversal. The first nodes where their productions differ is detected, and all of the words covered
by the these nodes (in both derivations) are marked. In the correct andincorrect derivations shown in fig-
ures 5 and 7 respectively, the first nodes where the productions differ are “(STATE→ NEXT TO(STATE),
[5..9])” and “(STATE→ stateid, [8..9])”. Hence, the union of words covered by them:5 to 9 (“the
states bordering texas?”), will be marked. For each of these marked words, the procedure considers all
of the productions which cover it in the two derivations. The nodes of the productions which cover a
marked word in the incorrect derivation but not in the correct derivation are taken as negative examples. In
the example, the node “TRAVERSE2→traverse 2, [1..7]” will be taken as negative example (i.e. the
words 1 to 7 ‘‘which rivers run through the states bordering”will be a negative example for the produc-
tion TRAVERSE2→traverse 2) because the production covers the marked words“the” , “states” and
“bordering” in the incorrect derivation but not in the correct derivation. With this as anegative example,
hopefully in the next iteration, the probability of this derivation will decreasesignificantly to go below the
probability of the correct derivation.

In each iteration, the positive examples from previous iteration are first removed so that new positive
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function TRAIN KRISP(training corpus{(si, mi)|i = 1..N}, MRL grammarG)
for eachπ ∈ G // collect positive and negative examples for the first iteration

for i = 1 to N do
if π is used inparse(mi) then

includeπ in P(π)
else includeπ in N (π)

for iteration= 1 to MAX ITR do
for eachπ ∈ G do

Pπ = trainSV M(P(π),N (π)) // SVM training
for eachπ ∈ G P(π) = Φ // empty the positive examples, accumulate negatives though
for i = 1 to N do

D =EARLEY DERIVE(si, G, P ) // obtain best derivations
if 6 ∃ d ∈ D such thatparse(mi) = recover(d) then

D = D ∪ EARLEY DERIVE CORRECT(si, G, P, mi) // if no correct derivation then force to find one
d∗ = argmaxd∈D&recover(d)=parse(mi)

P (d)
COLLECT POSITIVES(d∗) // collect positives from maximum probability correct derivation
for eachd ∈ D do

if P (d) > P (d∗) and recover(d) 6= parse(mi) then
// collect negatives from incorrect derivation with larger probability thanthe correct one
COLLECT NEGATIVES(d, d∗)

return classifiersP = {Pπ|π ∈ G}

Figure 8: KRISP’s training algorithm

examples which lead to better correct derivations can take their place. However, negative examples are
accumulated across iterations for better accuracy because negative examples from each iteration only lead to
incorrect derivations and it is always good to include them. Moreover, since the extended Earley’s algorithm
does a limited beam search and may not find all the derivations, in each iteration it may miss some incorrect
derivations from which negative examples could have been collected. Hence accumulating them across
iterations only helps in collecting more negative examples.

After a specified number of MAXITR iterations, the trained classifiers from the last iteration are re-
turned. The testing involves generating the most probable derivation of thetest sentence and returning its
MR.

3.4 Implementation

This section lists some details about KRISP’s implementation.

1. Dealing with Constants: The MRL grammar may contain productions corresponding to constants
of the domain, for e.g., “STATEID→ ‘new york’”, “RIVERID → ‘colorado’” etc. in GEO-
QUERY and “NUM → 2”, “STRING → “DR4C10” etc. in CLANG. Our system allows the user
to specify such productions asconstant productionsgiving the NL substrings, calledconstant sub-
strings, which directly relate to them. For e.g, user may give “texas” as the constantsubstring for
the production “STATEID→ ‘texas’. Then KRISP does not learn classifiers for these constant
productions and instead decides if they cover a substring or not by matching it with the constant sub-
strings. Whenever a constant substring is found in the NL sentence, KRISP takes the probability of
the corresponding production covering this substring as 1. Ifn productions have the same constant
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(e.g. “RIVERID→ colorado” and “STATEID → colorado”), then all of them get probability
equal to1/n and the maximum probability derivation gets decided based on the rest of the context.
If in a derivation, a constant production covers more words besides its constant substring, say a total
of n words taking the constant substring as one word (for e.g. production “STATEID → ‘texas’”
covers two words ,“texas ?”, in the derivation shown in figure 5), then theprobability is taken as1/n
to discourage constant productions from covering more than their constant substrings. Also, none of
these extra words being covered should be another constant substringotherwise the derivation will
miss the other corresponding constant production. If a constant substring found in the sentence cor-
responds to only one constant production then the constant substring in the sentence is replaced by
the LHS non-terminal (e.g. “texas” in the sentence will be replaced by STATEID) to facilitate more
generalization when learning classifiers for other productions.

2. Computing Kernels: While finding the best semantic derivation of a sentence, KRISPcomputes the
probability of productions on several substrings of the sentence, whichrequires computing kernels
between all of these substrings and the positive and negative examples. When the dynamic program-
ming algorithm by Lodhi et al. (2002) compute kernels between two stringss[1..|s|] andt[1..|t|], in
the process it also finds kernels between all the substringss[1..k] andt[1..l] wherek < |s| andl < |t|.
Hence, by running their algorithm for computing kernels between stringss[j..|s|] for 1 ≤ j ≤ |s| and
t[1..|t|], we get kernels betweent and all the substrings ofs. This way, kernels between all substrings
of a sentence and an example are computed efficiently and stored in a table which are used as needed.

3. Faster Semantic Parsing: In order to make semantic parsing faster, productions whose probabili-
ties of covering the complete sentence are very low, i.e. less than the threshold θ according to the
classifiers from the first iteration, are not considered for obtaining best semantic derivations even in
latter iterations. This reduces the number of productions to be considered inthe extended Earley’s
algorithm which significantly improves training as well as testing time.

4. SVM Package: We use the LIBSVM package2 for SVMs, specifically its tool “SVM with Precom-
puted Kernel Matrices”. This package is known to be fast and easy to use.

3.5 Experiments

3.5.1 Methodology

KRISPwas evaluated on two domains: CLANG and GEOQUERYwhich were described in section 2.1.1. The
CLANG corpus was built by randomly selecting 300 pieces of coaching advice from the log files of the 2003
RoboCup Coach Competition. These formal advice instructions were translated into English by one of four
annotators. The GEOQUERYcorpus was built by collecting 250 questions by asking undergraduate students
to generate English queries for the given database. These queries were then manually translated into logical
form (Zelle & Mooney, 1996). We note that the queries in this corpus are more complex than those in
the ATIS corpus (described in section 2.1.1) which makes the GEOQUERY problem harder. This was also
shown by the results in (Popescu et al., 2004). The GEOQUERY corpus was expanded to 880 sentences by
collecting more queries, some of them from real users of the web-based interface to the database (Tang &
Mooney, 2001). Table 2 shows some statistics about these corpora. Theaverage length of an NL sentence
in the CLANG corpus is22.52 words while in the GEOQUERYcorpus it is less than8 words, this indicates
that CLANG is the harder corpus. The average length of the MRs is also larger in the CLANG corpus.

2http://www.csie.ntu.edu.tw/ cjlin/libsvm/
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Statistic CLANG GEO250 GEO880
No. of examples 300 250 880

Avg. NL sentence length 22.52 6.76 7.48
Avg. MR length (tokens) 13.42 6.20 6.47

No. of non-terminals 16 44 44
No. of productions 102 133 133

No. of unique NL tokens 337 159 270

Table 2: Some statistics of the corpora used for evaluation.

KRISPwas evaluated using standard 10-fold cross validation. Since KRISPuses a thresholdθ to prune
low probability parses, it may fail to return any complete MR of a test sentence. Hence we computed
the number of test sentences for which KRISP produced complete MRs, and the number of these MRs
that were correct. For CLANG, an output MR is considered correct if it exactly matches the correct MR,
up to reordering of the arguments of commutative operators likeand. For GEOQUERY, an output MR is
considered correct if the resulting query retrieves the same answer as the correct MR when submitted to the
database. Then the performance was measured in terms of precision and recall defined as follows:

Precision =
Number of correct MRs

Number of test sentences with complete output MRs
(6)

Recall =
Number of correct MRs
Number of test sentences

(7)

KRISP gives probabilities for its semantic derivations which can be taken as confidences in the corre-
sponding MRs. These confidences can be used to plot precision-recall curves by first sorting the best MR
for each sentence (from all the folds) by their confidences and then finding precision for every recall value.
In our experiments, the beam width parameterω was fixed to30, the minimum probability thresholdθ was
fixed to0.05 and the maximum length of the string subsequences used for computing kernels was fixed to3.
These parameters were found through pilot experiments. The maximum number of iterations, MAX ITR,
required were only2, beyond this we found that the system only overfits the training corpus andgives no
benefit on testing.

We compared our system’s performance with the systems described briefly inthe Related Work subsec-
tion: the string and tree versions of SILT (Kate et al., 2005), WASP (Wong, 2005), SCISSOR(Ge & Mooney,
2005), system by Zettlemoyer and Collins (2005) and CHILL (with COCKTAIL ILP algorithm (Tang &
Mooney, 2001)). WASPand SCISSORalso give confidences to the MRs they generate which are used to plot
precision-recall curves. The results of the other systems are shown aspoints on the precision-recall graph.
The results of Zettlemoyer and Collins (2005) are available only for the GEO880 corpus. Their experimental
set-up also differs from ours, they explicitly set aside600 GEOQUERY examples for training and used the
remaining280 for testing. Their experiment was repeated twice and the average statistics were reported.
We also compared KRISP with GEOBASE (Borland International, 1988), a hand-built NL interface for the
GEOQUERYdomain. Its results are available only for the GEO250 corpus.

3.5.2 Results and Discussion

Figure 9 shows the results on the CLANG corpus. KRISPperforms better than either version of SILT in both
precision and recall. It performs comparable to WASP but gives slightly less maximum recall. Although
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Figure 9: Results on CLANG corpus.

SCISSORgives less precision at lower recall values, it gives much higher maximum recall. However, we
note that it requires more supervision for the training corpus. CHILL could not be run beyond160 training
examples because Prolog, in which it has been implemented, runs out of memory. For160 training examples
it gave49.2% precision with12.67% recall. Its poor performance is due to two main reasons. First, it does
not exploit the formal grammar of the MRL which guides the parsing processin other systems. Second,
CHILL uses a deterministic shift-reduce parsing framework to parse a sentence from left to right. This type
of parsing is restrictive because if the system fails to first parse the words on the left side of the sentence
then it will fail to parse the entire sentence. Figure 10 shows the precision-recall curves for KRISP when
it is trained on increasing number of training examples in each fold. The graph shows that increasing the
amount of training data results in significant improvement in performance even between the last two curves.
This indicates that the performance can be improved further on this corpusif more training data is provided.

The results for the GEO250 corpus are shown in figures 11. KRISP gets better recall than SILT and
GEOBASE. It is able to extend the recall further than WASP’s maximum recall but it gives slightly less
precision than WASP at lower recall values. KRISP’s maximum recall is about same as CHILL ’s recall but
KRISPhas higher precision at that recall value. SCISSORdoes particularly well in precision on this corpus.
Figure 12 shows the precision-recall curves of KRISPwith increasing amounts of training data.

Figure 13 shows the results for the GEO880 corpus. The confidence values of SCISSOR’s output MRs
were not available, hence its result is shown as a point. On this corpus, KRISPdoes better than SILT but lags
behind the other systems, particularly in precision. While we know that GEO880 is harder and less cleaner
that GEO250 corpus, we plan to investigate the reasons for this lower performance.The precision-recall
curves of KRISPon this corpus with increasing amounts of training data are shown in figure 14.

We have translations of GEO250 corpus in three other natural languages: Spanish, Turkish and Japanese.
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Figure 10: Results of KRISPon the CLANG corpus when trained on increasing number of training examples.
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Figure 11: Results on GEO250 corpus.
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Figure 12: Results of KRISP on the GEO250 corpus when trained on increasing number of training exam-
ples.
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Figure 14: Results of KRISP on the GEO880 corpus when trained on increasing number of training exam-
ples.

Corpus Training Testing
GEO250 1.44 0.05
GEO880 18.1 0.65
CLANG 58.85 3.18

Table 3: Average training and testing time per fold in minutes taken by KRISPon the three corpora.

Since KRISP’s learning algorithm does not use any natural language specific knowledge, it is directly appli-
cable to other natural languages. Japanese uses different names forthe names of the places (e.g. Tekisasu for
Texas, Nyuu Yooku for New York etc.), we provide KRISPthis information through the constant substrings.
Figure 15 shows results of running KRISP on other natural languages. The performance on English and
Spanish are comparable. Japanese gives the lowest precision and recall, we suspect it is because in Japanese
words are formed by joining morphemes and there could have been confusion brought by breaking these
into tokens in our corpus. Turkish gives slightly better precision but lowerrecall, we believe it is because
Turkish has larger number of unique tokens (36% more than English) which makes learning from its corpus
more precise but less general.

Table 3 shows the average training and testing time in minutes KRISP takes to run in one fold on each
of the three corpora. The machine used had Intel Pentium 4,2.6 GHz processor and2 Gb RAM. The time
taken mainly depends on the number of examples and the length of the NL sentences in the corpus.
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Figure 15: Results of KRISPon GEO250 corpus for different natural languages.

4 Proposed Research

The future work we propose to do are categorized under short-term and long-term future work. Under short-
term future work, we plan to improve the KRISP algorithm by exploiting NL syntax, test it on noisy NL
sentences and combine it with other semantic parsers to form committees. Underlong-term future work,
we plan to extend our system to also work on non-parallel corpora and tryit on the task of complex relation
extraction. The following subsections describe these plans.

4.1 Short-term Future Work

4.1.1 Exploiting Natural Language Syntax

To do semantic parsing of a sentence, KRISPcurrently uses only the word order of the sentence and not its
syntax. While this certainly has the advantage that it makes the system directly portable to other natural
languages, given that semantic interpretation of a sentence largely depends on how the words are combined
according to the NL grammar, using the syntax of the sentence should certainly help in its semantic parsing.
In order to exploit the NL syntax, the most natural extension of our string-kernel-based approach will be
to make it tree-kernel-based. Existing syntactic parsers, like that of Bikel(2004), can be trained on our
syntactically annotated corpora in addition to Wall Street Journal (WSJ) corpus to obtain syntactic parse
trees of the sentences, this was also done in the tree-based version of SILT (Kate et al., 2005). One can then
define a tree kernel over these syntactic parse trees and use it instead of the string kernel in the rest of our
algorithm.

Syntactic-tree-kernels were first introduced by Collins and Duffy (2001) and were also used by Collins
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and Duffy (2002) for the task of reranking syntactic parse trees. They define a kernel between two trees
as the number of subtrees shared between them. A subtree is defined as any subgraph of the tree which
includes more than one node, with the restriction that entire productions must beincluded at every node.
Figure 16 shows two syntactic parse trees and all the common subtrees between them. The kernel defined
this way captures most of the structural information present in the syntactic parse trees in the form of tree
fragments which the kernelized learning algorithms can then implicitly use as features. Collins and Duffy
(2001) also give an efficient algorithm to compute this kernel which runs inclose to linear time in the size
of the input trees.

Often the syntactic information needed for a task is present in the dependency trees (Hudson, 1984)
alone and full syntactic parse trees are not needed which may in fact leadto over-fitting because of the large
number of irrelevant features they may produce. Cumby and Roth (2003)have shown the advantage of
a syntactically determined restricted kernel based on dependency trees over the “all subtrees” kernel from
(Collins & Duffy, 2002) on the task of named entity recognition. Recently, various kernels defined over
dependency trees and their variants have also shown success in the taskof relational information extraction
like (Zelenko et al., 2003), (Culotta & Sorensen, 2004) and (Bunescu &Mooney, 2005a). Moreover, there
also has been progress in learning dependency tree parsers (McDonald, Pereira, Ribarov, & Hajic̆, 2005b).
Dependency trees capture important aspects of functional relationship between words in a sentence which
can directly help in its semantic interpretation. We plan to investigate the use of dependency tree-kernels
in our system. There has not been any direct comparison between string-kernels with syntactic-parse-tree-
kernels or with dependency-tree-kernels to our knowledge and it will beinteresting to see the comparison
on the task of semantic parsing.

4.1.2 Noisy NL Sentences

Any real world application in which semantic parsers would be used to interpret natural language of a user
is likely to face noise in the input. If the user is interacting through spontaneous speech and the input to
the semantic parser is coming form the output of a speech recognition systemthen there are many ways in
which noise could creep in the NL sentences: interjections (like um’s and ah’s), environment noise (like door
slams, phone rings etc.), out-of-domain words, grammatically ill-formed utterances etc.(Zue & Glass, 2000).
These types of noises are also present in the ATIS corpus (Ward, 1990). Even when the user is interacting
through typing, noise could be present because of typos, out-of-domain words etc.. The semantic parser
needs to be robust to the noise in these situations.

The performance of systems like SILT (Kate et al., 2005) and WASP (Wong, 2005) could degrade in
presence of such noise because it will obstruct the application of their hard-matching transformation rules.
SCISSOR’s performance could also degrade because it tries to build complete syntactic-semantic parse trees
of the sentences but the presence of noise would obstruct this process. In contrast, KRISP’s semantic parsing
is more flexible and hence robust to noise. The presence of extra tokensor corrupted tokens may decrease
the kernel values by some amount but it will not affect the semantic parsingin any hard way. Hence we
expect KRISP’s performance will degrade gracefully in the presence of noise.

We plan to first do some preliminary experiments on our existing corpora afterartificially corrupting
them with noise. Then we plan to get a real world noisy corpus (like ATIS) and compare KRISPwith other
systems on it.
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Figure 16: (a) and (b) are two example syntactic parse trees, (c) showsall the common subtrees between
them.

4.1.3 Committees of Semantic Parsers

We have three competitive semantic parsers, KRISP, WASP (Wong, 2005) and SCISSOR(Ge & Mooney,
2005), developed within our research group. The next natural step would be to form a committee in order to
get the best overall performance. Forming committees or ensembles of learned systems is known to improve
performance provided each individual system performs well enough and these systems are diverse, i.e. they
make different types of errors (Dietterich, 2000).

Table 4 shows the number of correct answers each semantic parser getson the CLANG corpus which
has total 300 examples and the maximum number of correct answers one canget by combining their correct
answers (i.e. if an oracle chooses the output MR from the output MRs of the individual semantic parsers).
The numbers clearly show that the three semantic parsers often make different errors and there is a lot of
scope for improvement if we form a committee.

There are two general approaches in which a committee of semantic parserscan combine the output
MRs from different semantic parsers. The first approach is to learn which parser performs best on which
types of sentences and then for a test sentence simply choose the output MR from the best parser for that
sentence. This is similar to the “Parser Switching” approach presented by Henderson and Brill (1999) for
combining syntactic parses from different parsers. The second approach is to look into the output MRs
generated by different parsers and combine their best components to output the best MR. This is analogous
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System or Committee No. of Correct Answers out of 300
KRISP 178
WASP 185

SCISSOR 232
KRISP+ WASP 223

KRISP+ SCISSOR 253
WASP + SCISSOR 246

KRISP+ WASP + SCISSOR 259

Table 4: Upper bounds on the number of correct answers one can geton the CLANG corpus by combining
the correct answers of different semantic parsers.

to the “Parse Hybridization” method of Henderson and Brill (1999) and thecommittee-based probabilistic
partial parsing method of Inui and Inui (2000). But we note that their methods are not directly applicable
to our problem because their methods are designed specifically for syntactic parsing. The second approach
of combining output MRs will be particularly useful in cases where none ofthe semantic parsers generate a
complete MR but each generates some of its components. We plan to investigate various ways of combining
the output MRs of different semantic parsers under each of the two general approaches.

4.2 Long-term Future Work

4.2.1 Non-parallel Training Corpus

In our work so far, the training data consisted of NL sentences aligned withtheir respective MRs,{(mi, si)|i =
1..N}. Building such corpora requires human annotation. However, there arescenarios where vast amount
of data is available in which NL sentences and MRs are both present but they are not aligned. For e.g., in
ROBOCUP commentary task, commentaries of simulated games are generated in natural language (Andŕe,
Binsted, Tanaka-Ishii, Luke, Herzog, & Rist, 2000). When this commentary is paired with the symbolic
description of events happening in the entire field then we get the scenario where NL sentences and MRs are
present but they are not aligned. This is known asreferential ambiguityproblem where it is not known what
portion of the NL description refers to which symbolic description. There mayeven be sentences which do
not have their corresponding MRs present in the data (e.g. commentator deviates to some other topic) and
there may be MRs which are not described in the NL (e.g. commentator skips describing less important
events). This is also a more realistic context in which language acquisition occurs (Pinker, 1995). Let us
represent such a corpus as{(Mi, Si)|i = 1..N}, where eachMi andSi are sets of MRs and NL sentences
respectively. For each paired(Mi, Si), the correspondence between the MRs inMi and NL sentences inSi

is unknown.
While there has been some work in solving referential ambiguity problem for learning semantic lexicons

(Siskind, 1996), there has not been any work in solving this for the bigger task of complete semantic parsing.
Learning a semantic parser from such a corpus will first involve finding out the correspondences between NL
sentences and their respective MRs and then learning semantic parsers form them. One can view this type
of referential ambiguity of which sentence corresponds to which MR as one level higher than the referential
ambiguity of which portion of the sentence corresponds to which productionof the MR parse, something
our system is already designed to resolve. Hence we believe that extending our system accordingly to one
level up would help it learn semantic parser from such a corpus. Followingis an outline of how we plan to
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do this:

1. Collect all pairs of MRs and NL sentences from each(Mi, Si) to form a training setT0, i.e. T0 =
{(mj , sk)|mj ∈ Mi and sk ∈ Si for i = 1..N}.

2. Learn classifiersP for the productions of the MRL grammarG using KRISP, i.e.P = TRAIN KRISP(T0, G)

3. Using these classifiersP and the procedure EARLEY-DERIVE-CORRECT described in section 3.3,
find out for each(Mi, Si) which sentencesk ∈ Si corresponds best tomj ∈ Mi. Form a training set
setTt of these pairs (a sentence should be paired with at most one MR), do not include a pair if its
derivation probability is too low.

4. Learn classifiersP from training setTt, i.e. P = TRAIN KRISP(Tt, G). Repeat steps 3-4 tillTt

remains the same over an iteration, then returnP .

The first step above assumes that any(mj , sk) pair from(Mi, Si) is equally likely since there is no more
information about it. Then KRISP is used to learn classifiers for productions from this training set in step
2. Although there will be many false positives but the negatives will be all truenegatives and hopefully
KRISP will find correspondences between presence of productions and portions of NL sentences. Using
these classifiers, in step3, MRs in eachMi are paired with the sentences inSi which give their most
probable derivations. Each sentence is paired at most once. There maybe sentences which do not give the
most probable derivation for any MR. A pair is dropped if the probability ofthe derivation is too low, this
essentially means no sentence in the setSi corresponds to the MR in consideration. KRISP is used to learn
classifiers again from this new training set and this process is repeated till the training set does not change.
The final classifiers are returned which can then be used in testing to convert novel NL sentences to their
MRs.

We plan to obtain or build a real-world non-parallel corpus to test our ideas. But before that, we will
do preliminary experiments with our existing corpora by artificially making them non-parallel. This can
be done by first partitioning the training data intoN sets and then ignoring the correspondences between
the sentences and their MRs within each set. The algorithm outlined above should be able to re-pair the
sentences with their corresponding MRs and learn semantic parser from this.

4.2.2 Complex Relation Extraction

KRISPobtains deep semantic parses of sentences by using string-based kernels to learn classifiers for MRL
grammar productions. Bunescu and Mooney (2005b) have used string-based kernels to learn classifier for
extracting the binary relation“protein-protein interaction”. This can be viewed as learning for an MRL
grammar which has only one production: “INTERACTION→ PROTEIN PROTEIN”. Hence we believe
KRISPcan be used in relation extraction, particularly in complexn-ary relation extractions.

A complex relation is defined as ann-ary relation amongn typed entities (McDonald et al., 2005a). It
is defined by theschema(t1, ..., tn) whereti ∈ T are entity types. An instance of a complex relation is a
list of entities(e1, ...en) such thattype(ei) = ti. An example of a ternary relation schema is(person,
job, company) that relates a person to their job at a particular company. From the sentence“John Smith
is the CEO of Inc. Corp.”, an instance(John Smith, CEO, Inc. Corp.)of the above relation can be extracted.
Some entities are also allowed to be missing in complex relations.

Most of the work in relation extraction has mainly focused on identifying binary relations likeemployee-
of, located-atetc. (NIST, 2000). Relatively little work has been done in extracting complexn-ary relations
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(person, job) (job, company)

John   Smith   is   the   CEO   of   Inc.   Corp.

(person, job, company)

Figure 17: Relation(person,job,company) derived over the given sentence.

which would be useful in applications like automatic database generation, intelligent document search-
ing etc. McDonald et al. (2005a) do complex relation extraction from Biomedical documents. They first
extract all the binary relations within the complex relation (e.g(person,job), (job,company) &
(person,company) are all the binary relation for the complex relation(person,job,company)).
Then graphs of all the entities are constructed in which edges are added between two entities if they are in-
stances of a binary relation. The complex relations are extracted as the maximal cliques form these graphs.
They show that this approach is better than extracting complex relations directly, which is a harder learn-
ing task. However, we note that when their approach extracts complex relation from the entity graph, the
underlying sentence does not play any role.

We believe KRISP can be applied to extract complex relations. We plan to do this by treating the
complex relation as a higher level production composed of lower level productions which correspond to
the less complex relations (like binary relations). Then the extracting the complex relation process can be
treated as semantic parsing. Figure 17 shows the semantic derivation of the example sentence from which
the complex relation(person-job-company) has been extracted. We note that given the way KRISP

does semantic parsing, the sentence will be used in the process of extracting the component binary relations
as well as the final complex relation.

5 Conclusions

In this proposal, we presented a new kernel-based approach to learn semantic parsers. SVM classifiers
based on string-subsequence kernels are trained for each of the productions in the meaning representation
language. These classifiers are then used to compositionally build complete meaning representations of
natural language sentences. We evaluated our system on two real-worldcorpora. The results show that our
system performs better than deterministic rule-based semantic parsers and performs comparable to some
recently developed statistical semantic parsers. We plan to extend this work by using NL syntax-based
kernels, broaden the scope of its applications and form committees of semanticparsers.
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