Also appears as Technical Report UT-AI-05-326, Atrtificial Intelligence Lab, University of Texas at Austin, November 2005

A Kernel-based Approach to Learning Semantic Parsers

Rohit J. Kate
Department of Computer Sciences
University of Texas at Austin
Austin, TX 78712
rikate@cs.utexas.edu

Doctoral Dissertation Proposal

Supervising Professor: Raymond J. Mooney

Abstract

Semantic parsing involves deep semantic analysis that matpsal language sentences to their for-
mal executable meaning representations. This is a chaligmyoblem and is critical for developing
user-friendly natural language interfaces to computingtesys. Most of the research in natural lan-
guage understanding, however, has mainly focused on shs#imantic analysis like case-role analysis
or word sense disambiguation. The existing work in sema@ising either lack the robustness of sta-
tistical methods or are applicable only to simple domainsmglsemantic analysis is equivalent to filling
a single semantic frame.

In this proposal, we present a new approach to semantiaygevased on string-kernel-based classifi-
cation. Our system takes natural language sentences pattetheir formal meaning representations as
training data. For every production in the formal languaggrgnar, a Support-Vector Machine (SVM)
classifier is trained using string similarity as the kerrgdch classifier then gives the probability of the
production covering any given natural language string ofdso These classifiers are further refined
using EM-type iterations based on their performance onrtiieihg data. Meaning representations for
novel natural language sentences are obtained by findingdsé probable semantic parse using these
classifiers. Our experiments on two real-world data setshthge deep meaning representations show
that this approach compares favorably to other existintpsys in terms of accuracy and coverage.

For future work, we propose to extend this approach so thaillialso exploit the knowledge of
natural language syntax by using the existing syntactisgrar We also intend to broaden the scope
of application domains, for example, domains where thees®as are noisy as typical in speech, or
domains where corpora available for training do not havemhtanguage sentences aligned with their
unigue meaning representations. We aim to test our systetiheotask of complex relation extraction
as well. Finally, we also plan to investigate ways to comhine semantic parser with some recently
developed semantic parsers to form committees in orderttihgdest overall performance.

Contents

1 [Introduction

2 Background and Related Work

2.1

2.2
2.3
2.4

SemanticParsing e
2.1.1 ApplicationDomains e
212 RelatedWork
Kernel-based Machine Learning
Support Vector Machines
String Subsequence Kernel L L L Lo

3 Completed Research

3.1
3.2

3.3
3.4
3.5

Overviewof KRRISP e
SemanticParsing e
3.2.1 Semantic Derivations o0
3.2.2 Extended Earley’s Algorithm for Semantic Derivations
KrRISPs Training Algorithm
Implementation
Experiments
3.5.1 Methodology
3.5.2 Resultsand Discussion o

4 Proposed Research

4.1

4.2

Short-term Future Work
4.1.1 Exploiting Natural Language Syntax
4.1.2 NoisyNLSentences
4.1.3 Committees of SemanticParsers
Long-term Future Work
4.2.1 Non-parallel Training Corpus
4.2.2 Complex Relation Extraction.

5 Conclusions

References

1 Introduction

Computational systems that learn to transform natural language seniteiacEsmal meaning representa-
tions have important practical applications in enabling user-friendly ndamrguage communication with
computers. They can also provide insights into human language acquisitiowever, there has been
relatively little research on developing systems that learn such semanterahgost of the research in
natural language processing (NLP) has been focused on lowétdsks like syntactic parsing, word-sense
disambiguation, information extraction etc.(Manning & 8t#e, 1999). Recently, researchers have shown
interest in the task afemantic role labelinga form of “shallow” semantic parsing, which involves filling
out semantic roles of a predicate given a sentence (Gildea & Juraf3g),ACarreras & Marquez, 2004).
In this proposal, we have considered an even more ambitious task ofefeaptsc parsing of sentences into
their computer executable meaning representations.

Previous work on semantic parsing has focused on simple domains, prirdarily,(Air Travel In-
formation Service) (Price, 1990) whose semantic analysis is equivaldititnig a single semantic frame
(Kuhn & De Mori, 1995), (Miller, Stallard, Bobrow, & Schwartz, 1996f,opescu, Armanasu, Etzioni, Ko,
& Yates, 2004). There has also been work in semantic parsing in whichimgesspresentation of the
domains are more complex with richer predicates and nested structures&détieney, 1996), (Tang &
Mooney, 2001), (Kate, Wong, & Mooney, 2005). But all these systaesadeterministic rule-based learning
methods and lack in robustness which is the characteristic of learning metinoestly used in statistical
NLP. Some previous work do not use any learning method (Androutsopdritchie, & Thanisch, 1995),
(Popescu, Etzioni, & Kautz, 2003) which make them difficult to port to otleenains.

In this proposal, we present a novel kernel-based statistical apptodearning semantic parsers. Ker-
nel methods are a powerful new approach to machine learning that bavendtrated success in a wide
variety of applications (Shawe-Taylor & Cristianini, 2000). Kernelizegsrt-vector machines (SVMSs) is
an effective and theoretically well-founded approach to learning n@atiolassifiers (Cristianini & Shawe-
Taylor, 2000). An additional advantage of kernels is that, unlike mostilegumethods, they are not re-
stricted to handling feature-based data and can be defined over compbexinded data structures such as
strings and trees typically encountered in NLP problems. In particulargsind tree kernels have recently
been effectively applied to a variety of problems in text learning and NL#liS, 2002), (Lodhi, Saun-
ders, Shawe-Taylor, Cristianini, & Watkins, 2002), (Zelenko, Aon&i&hardella, 2003), (Cumby & Roth,
2003), (Culotta & Sorensen, 2004), (Bunescu & Mooney, 20058) Banescu & Mooney, 2005a).

Kernel methods are particularly suitable for semantic parsing becausatiepersing involves map-
ping phrases of natural language (NL) sentences to semantic concepdsinng representation language
(MRL). Given that natural languages are so flexible, there could beusaways in which one can express
the same semantic concept. It is difficult for rule-based methods or ewéstisth feature-based methods
to capture the range of NL contexts which map to a semantic concept bébaydend to enumerate these
contexts. In contrast, kernel methods allow a convenient mechanism to implictly with potentially
infinite number of features which can robustly capture these range téden

Our system, KRisp (Kernel-based Robust Interpretation by Semantic Parsing), takes hernses
paired with their formal meaning representations as training data. Thegtimaksi of the formal MRL are
treated like semantic concepts. For each of these productions, a Sipptwt-Machine (SVM) classifier is
trained using string similarity as the kernel. Each classifier then indicatesdhalplity of the production
covering different substrings of the sentence. This information is useonipositionally build a complete
meaning representation (MR) of the sentence. We demonstrate througyimesapts on two real-world data
sets that lRispcompares favorably to other existing systems.

We plan to extend our work in the following directions:

1. Currently our system uses a string-based kernel which does ploitethe NL syntax. We plan to
use tree kernels based on syntactic trees (Collins, 2002) or depgndess (Zelenko et al., 2003) in
future.

2. We aim to test Rispon noisy NL sentences, for e.g. as typically generated in speech, in admseh
we believe KRISPs robustness will be valuable.

3. We plan to investigate ways to form committees &iPand some recently built semantic parsers to
improve performance.

4. We plan to broaden the applicability ofRiKSPto more realistic domains where in the data available
for training the NL sentences may not aligned with their meaning represerstation

5. We also want to test Kisp on the problem of Complex Relation Extraction (McDonald, Pereira,
Kulick, Winters, Jin, & White, 2005a), which involves extracting related nduetities from a sen-
tence. This can be viewed as a less deeper semantic parsing on whiclieve B&isp could be
applied.

The remainder of this proposal is organized as follows: Section 2 desdtie semantic parsing task
including the related work in this area. It also briefly reviews kernel-dbas&chine learning, SVMs and the
string-subsequence kernel we use in our system. Section 3 desanibesvwosemantic parsing algorithm,
KRISP, and presents its experimental evaluations. In Section 4, we outline owsrfplafinture research.

2 Background and Related Work

2.1 Semantic Parsing

Semantic parsing is the process of mapping natural language (NL) ugsrario their computer under-
standable meaning representations (MRs). These MRs are expredsechah languages which we call
meaning representation languages (MRLs). We assume that all MRLslatreninistic context free gram-
mars, which is true for almost all computer languages. This ensures thigt RNR will have a unique
parse tree. A learning system for semantic parsing is given a trainingsoffNL sentences paired with
their respective MRs from which it has to induce a semantic parser whitmeg@ novel NL sentences to
their correct MRs. This section describes the three application domainsich the research in semantic
parsing has mainly been focused. Next, some existing approachesrfingeaemantic parsers are briefly
described.

2.1.1 Application Domains

CLANG: The RoboCup Coach Language: RoboCup! is an international Al research initiative using
robotic soccer as its primary domain. One of the several competitions oeglanider it is the Coach
Competition where coachable soccer agents compete on a simulated sddcerHe coaching advice is
given to them in a standard formal coach language calledN&i (Chen et al., 2003). CANG is a simple

declarative language with prefix notation like LISP. Figure 1 gives amei@of a piece of coaching advice

http://www.robocup.org/

NL: “If our player 4 has the ball, our player 4 should shoot”
CLANG: ((bowner our {4}) (do our {4} shoot))

CLANG parsetree: RULE

CONDITION DIRECTIVE

bowner TEAM UNUM do TEAM UNUM ACTION
| | \ | |

our 4 our 4 shoot
Non-terminals; bowner , our , 4, shoot
Terminals: RULE, CONDITION, DIRECTIVE, TEAM, UNUM, ACTION
Productions:
RULE — (CONDITION DIRECTIVE)
CONDITION — (bowner TEAM {UNUM})
DIRECTIVE — (do TEAM {UNUM} ACTION)
TEAM — our UNUM — 4 ACTION — shoot

Figure 1: An example of natural language advice and ita & meaning representation with parse tree.

in NL with its corresponding CANG MR. The unique parse of the MR is also shown along with the
involved terminals, non-terminals and productions. In the M&aner stands for ball owner and UNUM
stands for uniform numbers (players 1 through 11). Our learning ithgorexploits these MR parses and
the productions.

GEOQUERY: A Database Query Application: GEOQUERY is a logical query language for a small
database of about 800 U.S. geographical facts. This domain was dyiginasen because of the availability
of a hand-built natural language interface for comparisoep8ASE, which came with Turbo Prolog 2.0
(Borland International, 1988). Its query language is Prolog augmentadseveral meta-predicates (Zelle
& Mooney, 1996). These queries were converted into a functionakhlarfree query language in (Kate
et al., 2005) which is more convenient for some semantic parsers.

Figure 2 shows an NL query and its MR in Prolog and functional querydageg forms. The parse of the
functional query language is also shown with the involved productionsterminals and terminals. This
example is also used in the Section 3 to illustrate how our system does semasitig pdihe MR in the
functional query language can be read as if processing a list whiclmgeti$ied by various functions. The
innermost expressiost at ei d(‘ t exas’), stands for the list with a single element: the state of Texas.
Next, the expressionext t o(statei d(‘texas’)) denotes the list containing all the states next to
the state of Texas. The expressibmaver se_2(next to(statei d(‘texas’))), denotes the list
of all the rivers which flow through these states which are next to TeXais.list is finally returned as the
answer. The unary functiohy aver se_2(S), which returns the list of rivers traversing through states in
the list S, relates to the binary predicateaver se(A, B) of the query language in Prolog, which is true if
A flows through B. Similarly, there is a unary functidm,aver se_1(R) , in the functional query language
which returns the list of the states through which the rivers in the list R saw@rough.

ATIS: Air Travel Information System: ATIS is an ARPA-sponsored benchmark domain for speech

NL: “Which rivers run through the states bordering texas?”

Prolog: answer (A, (river(A), traverse(A B),state(B), next to(B, Q),
const(C,stateid(‘texas’))))

Functional query language: answer (traverse_ 2(next to(stateid(‘texas’))))
Parse tree of the MR in functional query language:

ANSWER
answer RIVER
TRAVERSF_2 STATE
tr aver se.2 /\
NEXT_TO STATE
| |
next _to STATEID

R

stateid ‘texas’

Non-terminals; ANSWER, RIVER, TRAVERSE2, STATE, NEXT.TO, STATEID
Terminals: answer ,traver se_2,next to,stateid,‘texas’
Productions:

ANSWER — answer (RIVER)

RIVER — TRAVERSE 2(STATE)

STATE — NEXT_TO(STATE)

STATE — STATEID

TRAVERSE2 —traverse_2

NEXT_TO — next _to

STATEID — st atei d ‘ t exas’

Figure 2: An example of natural language query and its meaning repagiserin Prolog and in functional
query language with its parse tree.

NL: “Show me flights from New York to Los Angeles.”
SQL: SELECT flight_.id FROMflight WHERE fromairport="New York’ AND
toairport = 'Los Angel es’

Figure 3: An example of natural language question and its meaning refagsa in SQL.

recognition and understanding (Price, 1990). Its corpus consis{so&Es NL questions about air travel,
their transcribed forms and their MR in SQL database query languagequeEstions are relatively simple
and their semantic analysis is equivalent to filling a single semantic frame. Buhorg that makes this
corpus interesting for semantic parsing is that it was built by engaging kljecssiin dialogs through speech
which sometimes leads to noise in the NL sentences as well as corefererassthese sentences. Figure 3
gives a sample question and its SQL form. We haven't tried our semantierfparshis domain yet, this is
part of our future work.

2.1.2 Related Work

This subsection summarizes related work in the area of semantic parsingnigabwa previous work based
on transformation rules.

e Syntax-based Semantic Parsing: Some approaches use syntactic and semantic annotations on the
training NL sentences to learn semantic parsers. Miller et al. (1996)rgras@pproach in which the
nodes of full syntactic parse trees of the NL sentences are augmenteskwitimtic categories. They
model this type oAugmented tree parsirgy probabilistic recursive transition networks. They have
tested their system on the ATIS corpus.

Ge and Mooney (2005) present a system calledtsSoR that learns a statistical parser that integrates
syntax and semantics. It needs semantically annotated syntactic parsef temdlL sentences for
training in which each internal node has a semantic label in addition to a syrteaticword. State-
of-the-art syntactic parsing model, (Collins, 1997) Model 2, is then tskzhrn the integrated parser.
The MR can be recovered from the parse tree using a recursivedqunawhich allows this system
to obtain MRs which are multiple levels deep (unlike (Miller et al., 1996) whereotliput MR is
essentially flat). Si1Issorhas been tested on GNG and GEOQUERY domains.

The approach by Zettlemoyer and Collins (2005) combines syntactic-senpargiog using combina-
tory categorical grammars (CCG). While its training does not require additsymtactic or semantic
annotations, it needs some hand-built rules to encode prior knowledyataix. Their system learns
rules to construct a bilingual lexicon relating CCG syntactic categories tonfitedia functions asso-
ciated with the semantics. A log-linear model is used for doing probabilistiingao$ NL sentences

using this lexicon.

e Semantic Parsing by Transformation Rules: In our previous work (Kate et al., 2005), we devel-
oped a system, 181, which does semantic parsing by learning transformation rules to incrementally
transform NL sentences into their MRs. The transformation rules assddiapatterns with MRL
templates. During parsing, whenever a rule’s NL pattern is found to matckentance, the matched
pattern is replaced by the MRL template. By the end of parsing, the entiresergets transformed
into its MR. One drawback of this system that limits its recall is that it uses hatdhng trans-
formation rules which are sometimes too brittle to capture all the range of NLxdentiés parsing
is also done deterministically which is less robust than doing a probabilistimpgarSIiLT has two

versions: a tree-based version that utilizes syntactic parse trees @rtenses and a string-based
version which does not use NL syntax.

Recently, Wong (2005) has developed a system calledr@ased on synchronous context-free gram-
mars. This is an improvement overL$. It uses a statistical word alignment model to find good
transformation rules which are then used to build a probabilistic model feirgar

e Other Approaches: CHILL, (Zelle & Mooney, 1996), (Tang & Mooney, 2001), is an Inductivegio
Programming (ILP) framework for learning semantic parsers. It leares to control the actions of
a deterministic shift-reduce parser. It processes sentences onatvatime making hard parsing
decisions every time, this makes the system somewhat brittle. Since it alsoadeesidistic parsing,
it may not be able to find the globally best parses of the sentences. Thedh/ques are also slow
and memory-intensive and do not scale to large corpora.

Precise(Popescu et al., 2003), (Popescu et al., 2004) is a system to build Nfao@do databases.
This system does not involve learning. It uses the notioseshantically tractablesentences, the
sentences which can have only a unique semantic interpretation. Thake grpe of sentences this
system can parse. Using a partly manually constructed lexicon which rélate®rds to semantic
types and a set of semantic constraints, it reduces the semantic parsirig taskaximum flow
graph problem. The results show that 0989 of context-independent sentences in the ATIS corpus
are semantically tractable while or$p% of GEOQUERY sentences are semantically tractable. This
shows that GOQUERYis more challenging domain for semantic parsing than ATIS.

In past there have been a few more approaches for semantic parsimy teated on the ATIS
domain: He and Young (2003) use hidden Markov model (HMM), Papifsukos, and Ward (1997)
and Macherey, Och, and Ney (2001) use machine translation algorittthi@éamn and De Mori (1995)
use decision trees to translate NL questions into SQL queries.

2.2 Kernel-based Machine Learning

Traditionally, machine learning methods accept an explicit feature-bapedsentation of the input where
an example is represented by a collection of features (feature vectarpft8n data cannot be expressed
effectively using features, especially when the data is present in sonotused form as is typically true in
several NLP problems. The structural information is often lost when ttzeislaeduced to some pre-defined
set of features. For e.g., when a natural language sentence (asegtreicture) is reduced to a bag of words
or even a bag of bigrams or trigrams, the information about the presehmegeir subsequences is lost. To
avoid this, if one tries to explicitly include all possible features so that nonmétion is lost (e.g. make
all possible subsequences as features) then the number of featwwagodmd it becomes computationally
impractical for the learning algorithms to handle them.

Kernel-based methods (Vapnik, 1998) are an attractive alternativatiréebased methods. They allow
the learning algorithms to work on potentially infinite number of features withaplia@tty handling them.
The machine learning algorithms which use the data only to compute similarity (oldtqt) between the
examples can be kernelized, like Support Vector Machines (SVMs)ti@riisi & Shawe-Taylor, 2000),
Perceptron (Aizerman, Braverman, & Rozénal964), Principal Component Analysis (8tfopf, Smola,

& Muller, 1999) or Nearest Neighbor. A kernel is a similarity function satrgj certain properties which
maps a pair of objects to their similarity score. Formally, a kernel funckioaver the domainX maps
two objectsz,y X to their similarity score K (x,y), which ranges frond) to infinity. For all the objects
z1,22,...,Tn € X, thenxn matrix (K(z;,z;));, called the Gram matrix, is required to be symmetric

and positive-semidefinite. Due to this property, kernel functions carhbersto implicitly calculate the
dot-product of feature vectors of objects in some high-dimensionalreeapace. Hence the underlying
kernelized machine learning algorithm then essentially analyzes the data in thistingh-dimensional
space.

The following subsections briefly describe SVMs, the kernelized machamgitey algorithm we use in
this proposal, and string-subsequence kernel, the kernel functiaseveith SVMs.

2.3 Support Vector Machines

Mapping data to a high-dimensional space, as is typically done througbl&ecomes with a problem that
learning algorithms tend to overfit the training data due to sparsity of data likddg fresent because of
so many dimensions (known as the “curse of dimensionality”). But Supfemtor Machines (SVMs) are
known to be resistant to this overfitting, hence it is the best choice fomeekeed learning algorithm.

SVMs were first introduced by Boser, Guyon, and Vapnik (1992)revé become a popular classifica-
tion algorithm. Given two sets of points (like positive and negative exam@&48)ls learn a separating hy-
perplane separating the points such thargin the distance between the hyperplane and the closest point,
is maximized. The points closest to the separating hyperplane are salpdrt vectors This solution
which maximizes the margin has sound theoretical justification for valid geraializvhich is resistant to
overfitting even in high dimensional spaces (Vapnik, 1998).

Since SVMs use data only to find similarity between data points, they can beliketh Through the
kernel function the input points are implicitly mapped to a high dimensional feapace. A linear separat-
ing hyperplane with maximum margin is then found in this high dimensional sp&igemiy correspond to
some complex non-linear separating hyperplane in the original input.spac¢raining, kernelized SVMs
need kernels between every pair of training examples (i.e. the Gram mamlix)etesting they need kernels
between the test example and all its support vectors (a subset of trakampkes).

24 String Subsequence Kernel

Following the framework of Lodhi et al. (2002), we define a kernel leefwtwo strings as the number
of common subsequences between them. One difference, howevelt, tiseihatrings are over characters
while our strings are over words. The more the two strings share, theegtea similarity score will be
deemed.

Formally, following the notation of (Rousu & Shawe-Taylor, 2005),3ebe a finite alphabet, a string
is a finite sequence of elements fraop and the set of all strings is denoted By. For any strings, we
denote|s| as the length of the string = s1s2..5/,|. The strings[i..k] stands for thesubstrings;s;1..sx
of s, substrings are contiguous by definition. We say th& asubsequencef s, if there exists an index
sequence = (iyig..qp,), With 1 < iy < .. < i, < [s|, such thatu; = s;, for j = 1,.., |u|, and write
u = s[i] for short. Subsequences need not be contiguous by their definitiocaW\the distance between
the first index ofi to its last index as its spanpan(i) = ij,| — i1 + 1. For example, consider the string
s = left; sides ofs our; penaltys areag, where the subscripted numbers are indices of the words in the
string. Thenu = left penalty area is a subsequence efbecause there is an index sequehee (1 5 6)
such that, = sli]. The span of, span(i) equalss — 1 + 1 = 6.

Since there can be multiple index sequenicies a strings, such that. = s[i], we define®, (s) as the
number of such unique index sequences,®g(s) = |{i|s[i] = u}|. But this definition does not take into
account the sum total of all the gaps present in different index segaenf we want to downweight the
presence of gaps, we can do it througthegay factor\ € (0, 1] and redefineb,,(s) as:

Du(s) = 1A T yorantd M

i:s[i]l=u

The normalizatiori /Al ensures that only gaps and not the matches are penalized. Note that for
the above reduces to the earlier definition which had no gap penalties. é~exdmples of, and s given
earlier,®,(s) = A%/\3 = A3, which represents the total gappresent in the index sequence: (15 6)
that skips over the three wordsdes of3 oury .

Finally, we define the kerndl (s, t) between two strings andt as:

K(Svt) = Z (I)u(s)q)u(t) (2)

ueX*

The kernel so defined is implicitly using the space of all possible subsegsi@s features and computing
their dot-products.

Table 1 shows an example for computation of kernel between the two stringsieft; sides ofs
oury penaltys areag andt = our;y lefts penaltys areay, where the subscripted numbers are simply the
indices of the words in the strings. Note that the table includes all the sudrsezp)u, that are common
between the two strings. The chosen value for the parametan be plugged in the final expression to get
the numeric kernel value. Lodhi et al. (2002) give an efficient dyngmogramming algorithm to compute
string subsequence kernelsar{n|s||¢|) time wheren is the maximum length of subsequences one wants
to consider. Rousu and Shawe-Taylor (2005) give another algorithichwvorks faster when the alphabet
size is large.

The kernel can be normalized to have values in the réihdé to remove any bias due to different string
lengths:

K(s,t)

K(s,s)K(t,t)

String subsequence kernels have been previously used with sucddatunal Language Processing
(NLP) for Text Classification(Lodhi et al., 2002) and relational Infiation Extraction (Bunescu & Mooney,
2005b). We use them here for Semantic Parsing.

3)

Knormalized(87 t) =

3 Completed Research

This section describes our novel approach to learning semantic pafserswe call KrRisp, Kernel-based
Robust Interpretation by Semantic Parsing. The description is followedrhg #implementation details and
experiments.

3.1 Overview of KRISP

Given a set of NL sentences paired with corresponding MR3sKlearns the semantic parser in iterations,
each iteration improving upon the parser learned in the previous iterati@achniteration, it first collects
positive and negative examples for each of the productions in the MRhrgea. In the first iteration, these
positive and negative examples are simply the NL sentences based orexthetiproduction is present in
their corresponding MR parses or not. Using these examples, Suppcidr\Wachine (SVM) classifiers
with string similarity as the kernel are trained. These classifiers are thenirusee semantic parsing to
generate the best parse for each of the training NL sentences. Basduether these parses are correct

10

u {@, span(i))|s[i] = u} | {(i, span(i))|t[i] = u} | Pu(s) | Pult) | Pu(s) * Pu(t)
left {((@), 1)} {((2), 1)} 1 1 11

our {((4), 1)} {((2), 1)} 1 1 |1

penalty {((5), 1)} {((3), 1)} 1 1 11

area {((6), 1)} {((4), 1)} 1 1 11

left penalty {((1 5), 5)} {((2 3), 2)} 3 1 [\

left area {((1 6), 6)} {((2 4), 3) A AN

our penalty {((45), 2)} {((123), 3)} 1 A A

our area {((4 6), 3)} {((1 4), 4)} A PEENIDY

penalty area {((56), 2)} {((34), 2)} 1 A A

left penalty area {((1 5 6), 6) {((234), 3) A3 1 |\

our penalty area {((4 5 6), 3} {((0134),4)} 1 A A

K(s,t) =443\ +3\3 +\°

Table 1: An example of computing subsequence kernel between the strings =
left; sides ofs oury penaltys areas andt = our; lefty penaltys areay.

or not, positive and negative examples are collected which are used talassgifiers in the next iteration.
Figure 4 shows this overall picture. The following two subsections dest#two main modules of kISP
semantic parsing and training the classifiers which are used in semantigparsin

3.2 Semantic Parsing

KRispdoes semantic parsing by finding the best semantic derivation of a sentére&llowing subsec-
tions describe semantic derivations and the algorithm usedrigito find them.

3.2.1 Semantic Derivations

We define asemantic derivationD, of an NL sentences, as a parse tree of an MR (not necessarily the
sentence’s correct MR in which case the semantic derivation will also beréut) such that each node of
the parse tree also contains a substring of the sentence in addition to atmodWe denote nodes of the
derivation tree by tupleér, [i..j]), wherer is its production andk..j] stands for the substring..j] of s,

and we say that the node or its productamversthe substring/i..j]. The substrings covered by the children
of a node are not allowed to overlap, and the substring covered by teetpaust be the concatenation of
the substrings covered by its children nodes. Figure 5 shows a semanmtatida of the NL sentence and
the MR parse which were shown in figure 2. Productions are shown onaithes of the tree instead of
non-terminals to emphasize the role of productions in derivations. Thériegsss|i..j] covered by each
production is shown byi..j] on its node.

Sometimes, the children nodes of an MR parse tree node may not be in the siena®are the
substrings of the sentence they should cover in a derivation tree. Foif éhg sentence wag hrough the
states that border Texas which rivers run®hich has the same MR as the sentence shown in figure 5, then
the order of the children of the node with the production “RIVERTRAVERSE 2(STATE)” would need
to be reversed. To accommodate this, a semantic derivation tree is allowedtanddR parse tree nodes
in which the children nodes have been permuted.

11

MRL grammar

Collect positive and
negative examples

-

NL sentences wit
their|l MRs |

o Best semantic
Train string—kernel-based derivations (correc

SVM classifiers and incorrect)

Training

i Semantic Parser
TeStlng Novel NL sentences Best MRs

_ >

Figure 4: Overview of Risp

Let P, (s[i..j]) denote the probability that productiancovers the substringf:..j]. These probabilities
are obtained by the string-kernel based SVM classiffees {P;|m € M RL grammar G}. Given these
classifiers, this subsection explains howIBP finds the most probable semantic derivations of the NL
sentences, the section 3.3 will describe howi &P trains these classifiers. From a semantic derivation it
is trivial to obtain the MR: simply take the MR parse over the sentence and wagah MR expression.
Since some children nodes might have been permuted, this step also neexdsuteghem back to the way
they should be according to the MRL productions. We refer to this proeethrecover in section 3.3.

The probability of a semantic derivatidn of a sentence is simply:

PD)=] Prlsli-i]) (4)

(m,li..5)€D

The task of the semantic parser is to find the most probable derivation wihser. This task can be
recursively performed using the notion opartial derivation £, ;. ;;, which stands for any subtree of a
derivation tree withn as the left-hand-side (LHS) non-terminal of the root production andwtidwerss
from index: to j. For e.g., the subtree rooted at the node “(STAFENEXT _TO(STATE),[5..9])" in the
derivation shown in figure 5 is a partial derivation which would be dena®lg; 47 s5.9)- Note that

12

(ANSWER — answer (RIVER), [1..9])

|
(RIVER — TRAVERSE 2(STATE), [1..9])

(TRAVERSE2 —traver se_2, [1..4]) (STATE — NEXT_TO(STATE), [5..9])

whichy rivers; rung through

(NEXT_TO— next _t o, [5..7]) (STATE — STATEID, [8..9])

|
(STATEID — st ateid‘ texas’,[8..9])

T~
texas %

thes states bordering

Figure 5. Semantic derivation of the NL sentefigééhich rivers run through the states bordering texas?”
which gives MR asinswer (traverse_2(next to(stateid(texas)))).

derivation D of sentences is then simplyE; ., s[1..|5|), Wherestart is the start symbol of MRL's context
free grammar.

Mathematically, the most probable partial derivatigh,; . is recursively defined as:

:L,s[i..j] = makeTree(argmax (Pr(sli..j]) H P(E:zk,pk))) (5)

r=n—n1.n:EG,(p1,..,pt) Epartition(s[i..j|,t) ke1.t

The above equation finds the most probable partial derivaii;;’rs'n[l._'j] by trying out all productions
™ = n — ni..ny in the MRL grammatG which haven as the LHS non-terminal, and adhrtitions with
t elements of the substringi..j] (n; to n, are right-hand-side (RHS) non-terminals, terminals do not play
any role in this process and are not shown for simplicity). A partition of @tsiny s[i..j] with ¢ elements
is at—tuple containing non-overlapping substrings efi..j] which givesli..j] when concatenated. Here
partition(s[i..j], t) is a function which returns the set of all partitionssgf.. ;] with ¢ elements including
their permutations. For, e.g. callipgrtition(“the states bordering texas ?2) will return the set of parti-
tions: {(“the”, “states bordering texas ?”), (“states bordering texas ?”, “tli§ (“the states”, “bordering
texas ?”), (“bordering texas ?”, “the states”), (“the states borderihg'texas ?”), (“texas ?”, “the states
bordering”), (“the states bordering texas”, “?”), (“?”, “the states lordering texas”)} . To find the most
probable partial derivatiohs, ,rp; .5 o for the sentence shown in figure 5, the above equation will try all
the productions in the grammar with STATE as the LHS non-terminal, for e.g.gfathem being “STATE
— NEXT_TO STATE". Then for this example production, it will try all partitions with perations of the
the substrings[5..9] with two elements (shown earlier), and recursively find the most probavleations
ENExT 10, ANAEST AT, Where(p1, p2) denotes a partition. The recursion reaches base cases when
the productions which have on the LHS do not have any non-terminal on the RHS or when the substring
s[i..j] becomes smaller than the length

The equation finds that productionand partition(ps, .., p;) which gives the maximum product of
the probability ofr covering the substring[i..j] with the probabilities of all the recursively found most
probable partial derivations. The procedunekelree(r, (p1,..,p:)) then constructs a partial derivation
tree by makingr as its root production and making the most probable partial derivationfoeed through
the recursion as children subtrees which cover the substrings aagtodime partitionpy, .., p;).

13

A naive implementation of the above recursion will be computationally veryresipe, but by suitably
extending the well known Earley’s context-free grammar parsing algoi{Earley, 1970) it can be imple-
mented efficiently. The above task has some resemblance to probabilistigtdfoagegrammar (PCFG)
parsing for which efficient algorithms are available (Stolcke, 1995)waunote that our task of finding the
most probable semantic derivation differs from PCFG parsing in two imposays:

1. The probability of a production is not independent of the sentencadp#nds on which substring of
the sentence it covers.

2. The leaves of the tree are not individual terminals of the grammar bsuasgrings of words of the
NL sentence.

3.2.2 Extended Earley’s Algorithm for Semantic Derivations

Parsing a sentenceby Earley’s algorithm involves a single left-to-right pass owvevhile filling an array
called achart, that hags| + 1 entries. For each word position in the sentence, the chart contains a list of
statesof the subtrees derived so far. Each subtree is compactly represergextate only once which is
shared by other subtrees which need it. The possible subtrees aietgut¢dp-down and are completed
bottom-up which makes the parsing very efficient. Jurafsky and Marti@QRpresent a good description
of Earley’s algorithm which we extend here.

A state in each chart entry contains the following information:

1. the root production of the subtree
2. where in the sentence this subtree’s coverage begins

3. up to which RHS non-terminals in the production the subtree has been t¢edhala where in the
sentence its coverage ends

4. the probability of the subtree derived so far

All this information about a state can be compactly represented dottad rule an example of which

is (STATE — NEXT_TO eg STATE, 0.88). Here the subscripted numlyeon the LHS non-terminal
indicates that this subtree starts its coverage from the fifth word of thensentine dot and its subscript
indicates that subtree corresponding to NEX® non-terminal has been completed whose coverage ends
at the seventh word in the sentence but the subtree corresponding Td Sibh-terminal on the RHS
hasn’'t been completed yet, aAdy is the probability of this derivation subtree so far. A state is called
completdf the dot is at the end of the production, a complete state means that the wiedbelkoey the root
production has been completed. A state is callddige statéf its production has no non-terminal on the
RHS, these correspond to“POS word” type of productions in syntactic parsing. In order to recover the
tree structures from this chart structure, each state also contains linlesdortipleted states it is composed.
This information is not shown for simplicity.

Figure 6 gives the extended Earley’s algorithm, EARLBERIVE, for obtaining the most probable
semantic derivation of a sentengegiven the MRL gramma¢; and the classifier®. It does a beam search
and gives the best derivations it finds, where is a system parameter called theam width If the beam
width is infinite, then this algorithm is guaranteed to find all the semantic derigabibiihe sentence (which
will include the most probable one), but this setting is computationally impracticalntoWith a smaller
beam width (likew = 30 in our experiments), the algorithm will do a greedy approximation searchdo fin
thew most probable derivations.

14

function EARLEY_DERIVE(sentence, MRL grammar, classifier®)
INSERT(oNULL — eq start, 1), chart[0])
for i=0to |s| do
for eachstate in chart[0..: — 1] do
if (BASE(state) and INCOMPLETE(state)) then SCANNER(state, 1)
for eachstate in chart[i] do
if (not BASE(state) and INCOMPLETE (state)) then PREDICTORGétate)
dseif (BASE(state) and INCOMPLETE(state)) then SCANNERGtate,7)
else COMPLETERGtate)
return(chart)
procedure PREDICTOR(;A — o e; B 3, p))
for each B — ~) in MRL grammardo
for each permutatioy’ of v do
INSERT((; B — e; ', 1), chart[j])
procedure SCANNER(; A — eo; a, p), k)
if (p = Pa_a(s[i..k]) >) then
INSERT(;A — « ej41, p), chart[k + 1])
procedure COMPLETER(; B — ~ ok, p))
for each (A — « e; B (3,q)in chart[j]) do
if INCOMPLETE((A — o B e, 3,p*q)))
INSERT((A — a B e (3,p*q), chart[k])
elsaif (r = Pa_aB g(s[Zk — 1]) > 9) then
INSERT((A — o B ey 3,p*q*1), chart[k])
procedure INSERT (state, chart[j])
if (state is not already irchart[j]) then
if INCOMPLETE(state)) then
PUSH(state, chart[j])
elselet state = (;A — « e;, p)
if BEAM(A — a, i, j) is not full then
PUSH(state, chart[j])
elseif (p > lowest probability of state in BEAM{ — «, i, j)) then
replace it bystate

Figure 6: The extended Earley’s algorithm for obtaining the most prolsaoieantic derivations

In the pseudo code, the Greek alphahets’ and~ are used to represent sequences (possibly empty)
of non-terminals and terminals on the RHS of productions while the capitalizédlzps stand for non-
teminals. The parsing starts by inserting the dummy sgaté/(L L — e(start) which has the start symbol
of the MRL grammar on the RHS and the subscripts tell that nothing has besedpget. Parsing then
proceeds by examining chart entries and words of the sentence léjtitoFhere are three main procedures
involved: PREDICTOR, SCANNER and COMPLETER.

The PREDICTOR procedure generates states representing the topexpectations of the parses.
Since in a semantic derivation a sentence may get covered by any permufatienrRIHS non-terminals,
the predictor generates states corresponding to all the permutations ai@H8rminals. If a state in the
chart entry being processed is incomplete and is not a base state then@PREDIs called on that state.
For example, when PREDICTOR is called on the stg&TATE — NEXT_TO eg STATE, ¢) it will predict
the state {STATE — eg STATEID, 1) among some other states, hoping to find a subtree for the RHS non-
terminal STATE. The valué is a temporary placeholder probability which will get multiplied by some real
probability when this state gets completed.

If a state is a base state and is incomplete, then SCANNER is called on it. SCANYERat the

15

current word in the sentence and if the substring from the beginning wofotite state till this word has

a good probability for getting covered by the state’s production, then acoewplete state is generated.
This probability has to be greater than a threshyldvhich is a system parameter used to prune very low
probability parses. Since the leaves of the derivation can contain anyemwiwords, SCANNER is called
for all previous chart entries first (i.e. base states being completed maytigir begin word anywhere
back in the sentence). As an example, when SCANNER is called on the £33®&TE — eg STATEID,

1) while processing the ninth word, then if the probability- Psrare — starerp(s[8..9]) > 6 then the
SCANNER will produce the completed stat&STATE — STATEID e, p).

If a state is complete, then COMPLETER is called on it. The COMPLETER look# #ite states in the
chart which need this completed subtree and generates new statesagltfagm from their previous states.
The probability of a new state is the product of the probabilities of its previtate and the probability of
the state on which completer was called. If a new state is a complete state then liidechonly if the
probability of its production covering the substring from the beginning word of the sthtiee end word
of the state is greater than the paraméterhe probabilityr is also multiplied with the current probability
of the new state to get its new probability. For example, calling COMPLETER®MATE — STATEID
e10, p) Will generate statesGTATE — NEXT_TO STATE ey, p * ¢) from the previous statg $TATE —
NEXT_TO eg STATE, ¢). Since this is also a complete state (i.e. the dot is in the end), this will be included
only if (r = Psrare — nexT.TO staTe(s[5..9]) > 0) and in that case the new probability will be also
multiplied by to get the state;;GTATE — NEXT_TO STATE e1g, p * ¢ * r).

Finally, a procedure called INSERT inserts states into the chart. A state isl@ttlonly if it is not
already present in the chart entry. Also, to do the beam search, béamlg the bestv completed states for
each of the productions starting and ending at the same places in the sesrtemsaintained. If the beam
is full then the new state to be inserted replaces the lowest probability statebedhe provided the new
probability is greater than that lowest probability. Since threshaklused to prune low probability trees,
its is possible that the algorithm may not find any derivation.

3.3 KRIsP'sTraining Algorithm

Given the training corpus of NL sentences paired with their MRs, m;)|i = 1..N}, KRisPfirst parses
the MRs with the MRL grammat. Since the MRL is a formal language with a deterministic context free
grammar, this parsing can be done unambiguously. Sample MR parseshweseia figures 1 and 2. We
represent the parse of MRy;, by parse(m;).

Figure 8 shows IRISPs training algorithm. For each productiamof the MRL grammar, iRispcollects
positive and negative examples sets. In the first iteration, th® @et of positive examples for production
7 contains all those sentencgssuch thaparse(m;) uses the production. The set of negative examples
N () for productionr includes all the remaining training sentences.

Using these positive and negative examples, an SVM classifier is traineddb production using a
string subsequence kernel. Normally, SVM classifiers only predict tlss ofeithe test example but one can
obtain probability estimate of an example’s class by mapping the distance ofahmplkexfrom the SVM’s
separating hyperplane to the range [0,1] using a learned sigmoid funPlitt, (L999). This then gives us
the probabilitiesP, (s[i..j]) on which the semantic parsing described in the previous section depeeds. W
represent the set of these classifierdby- { P;|r € G}.

Next, using these classifiers the Earley’s extended algorithm, EARDERIVE, described in the pre-
vious subsection is invoked to obtain thebest derivations for each sentence. The proceddrever
returns the MR from a semantic derivation, this is a simple procedure whislalsa described in subsec-
tion 3.2.1. Itis possible that for some sentences, none of the obtaingditaeTs give the correct MR. But as

16

(ANSWER — answer (RIVER), [1..9])

|
(RIVER — TRAVERSE 2(STATE), [1..9])

(TRAVERSE 2t r aver se_2, [1..7]) (STATE — STATEID, [8..9])

|
(STATEID — st at ei d t exas, [8..9])

—
texas %

Whichy rivers, rung through, the; stateg bordering

Figure 7: An incorrect semantic derivation of the NL senteiwich rivers run through the states bor-
dering texas?'which gives the incorrect MRnswer (tr aver se 2(st at ei d(t exas))), the correct
one beinganswer (traverse_2(next to(stateid(texas)))).

is described later, the most probable derivation which gives the coviiRds needed to collect positive and
negative examples for the next iteration. Hence in these cases, a vefrtienextended Earley’s algorithm,
EARLEY _DERIVE_CORRECT, is invoked which also takes the correct MR as an argumeioiaaiths the
bestw derivations, all of which give the correct MR. This is done easily by mgkure that all the subtrees
derived in the process are present in the parse of the correct MR.

From these derivations, positive and negative examples are collectéioefmext iteration. Positive
examples are collected from the most probable derivation which givesothect MR (figure 5 shows an
example of a correct derivation). At each node in that derivation,uhsteng covered is taken as a positive
example for the production. Negative examples are collected from thosatiens whose probability is
higher than the most probable correct derivation but which do nottheecorrect MR. Figure 7 shows
an example of an incorrect derivation, the one shown in figure 5 beingatiiect one. Here the function
“next _t 0" is missing from the MR it produces.

The following procedure is used to collect negative examples from iacbderivations. The incorrect
derivation and the most probable correct derivation are traversedtaimaausly starting from the root using
breadth-first traversal. The first nodes where their productionsrdsfidetected, and all of the words covered
by the these nodes (in both derivations) are marked. In the corredhemdect derivations shown in fig-
ures 5and 7 respectively, the first nodes where the productionsaifé(STATE— NEXT_TO(STATE),
[5..9])" and “(STATE — st at ei d, [8..9])". Hence, the union of words covered by themto 9 (“the
states bordering texas?’ will be marked. For each of these marked words, the proceduréderssall
of the productions which cover it in the two derivations. The nodes of thdyctions which cover a
marked word in the incorrect derivation but not in the correct derivedi@ taken as negative examples. In
the example, the node “TRAVERSE—t r aver se_2, [1..7]" will be taken as negative example (i.e. the
words 1 to 7 ‘which rivers run through the states borderingtill be a negative example for the produc-
tion TRAVERSE2—t r aver se_2) because the production covers the marked wtttds’ |, “states” and
“bordering” in the incorrect derivation but not in the correct derivation. With this aggative example,
hopefully in the next iteration, the probability of this derivation will decresigmificantly to go below the
probability of the correct derivation.

In each iteration, the positive examples from previous iteration are firsbwed so that new positive

17

function TRAIN_KRISP(training corpug(si, m;)|: = 1..N}, MRL grammarG)
for eachr € G // collect positive and negative examples for the first iteration
for i = 1to N do
if = is used inparse(m;) then
includer in P(m)
elseincluder in /()

for iteration=1to M AX _ITR do
for eachr € G do
P = trainSVM(P(r),N(m)) Il SVM training
for eachmr € G P(w) = @ I/ empty the positive examples, accumulate negatives though
for i = 1to N do
D =EARLEY_DERIVE(s;, G, P) /] obtain best derivations
if Ad e D such thaparse(m;) = recover(d) then
D = D UEARLEY_DERIVE_.CORRECTS;, G, P, m;) /I if no correct derivation then force to find one
d* = argmaxdeD&recover(d):parse(mi) P(d)
COLLECT_POSITIVESE™) // collect positives from maximum probability correct derivation
for eachd € D do
if P(d) > P(d") and recover(d) # parse(m;) then
/I collect negatives from incorrect derivation with larger probability ttrencorrect one
COLLECT.NEGATIVES(d, d*)
return classifiersP? = {P:|m € G}

Figure 8: KrISPs training algorithm

examples which lead to better correct derivations can take their place. ewdownegative examples are
accumulated across iterations for better accuracy because negatiwples from each iteration only lead to
incorrect derivations and it is always good to include them. Moreoirereghe extended Earley’s algorithm
does a limited beam search and may not find all the derivations, in each idtatiay miss some incorrect
derivations from which negative examples could have been collectedceHsccumulating them across
iterations only helps in collecting more negative examples.

After a specified number of MAXTR iterations, the trained classifiers from the last iteration are re-
turned. The testing involves generating the most probable derivation ¢ésheentence and returning its
MR.

3.4 Implementation

This section lists some details aboukrisPs implementation.

1. Dealing with Constants: The MRL grammar may contain productions corresponding to constants
of the domain, for e.g., “STATEID- ‘ new york’ ", “RIVERID — * col orado’ ” etc. in GEO-
QUERY and “NUM — 2", “STRING — “DR4C10” etc. in CLANG. Our system allows the user
to specify such productions @snstant productiongiving the NL substrings, calledonstant sub-
strings which directly relate to them. For e.g, user may give “texas” as the corstastring for
the production “STATEID— ‘ t exas’ . Then Krisp does not learn classifiers for these constant
productions and instead decides if they cover a substring or not by mgitkith the constant sub-
strings. Whenever a constant substring is found in the NL senterrisPKakes the probability of
the corresponding production covering this substring as k. gfoductions have the same constant

18

(e.g. “RIVERID — col or ado” and “STATEID — col or ado”), then all of them get probability
equal tol /n and the maximum probability derivation gets decided based on the rest ofritext

If in a derivation, a constant production covers more words besidesritgant substring, say a total
of n words taking the constant substring as one word (for e.g. productibhTSID — * t exas’ ”
covers two words ,“texas ?”, in the derivation shown in figure 5), themptbbability is taken as/n

to discourage constant productions from covering more than their edrsstiastrings. Also, none of
these extra words being covered should be another constant sulmh@rgise the derivation will
miss the other corresponding constant production. If a constant isgoiiund in the sentence cor-
responds to only one constant production then the constant substring $ertkence is replaced by
the LHS non-terminal (e.g. “texas” in the sentence will be replaced by ElAJto facilitate more
generalization when learning classifiers for other productions.

2. Computing Kernels: While finding the best semantic derivation of a sentenc@sik computes the
probability of productions on several substrings of the sentence, wagiires computing kernels
between all of these substrings and the positive and negative examgies. th¢ dynamic program-
ming algorithm by Lodhi et al. (2002) compute kernels between two strfiggs|] and¢[1..|t[], in
the process it also finds kernels between all the substsingé] andt[1..l]] wherek < |s| andl < |¢].
Hence, by running their algorithm for computing kernels between steifjgss|] for 1 < 5 < |s| and
t[1..]t|], we get kernels betweedrand all the substrings af This way, kernels between all substrings
of a sentence and an example are computed efficiently and stored in a tédieanehused as needed.

3. Faster Semantic Parsing: In order to make semantic parsing faster, productions whose probabili-
ties of covering the complete sentence are very low, i.e. less than the tldrésaccording to the
classifiers from the first iteration, are not considered for obtainingdmreantic derivations even in
latter iterations. This reduces the number of productions to be considetkd @xtended Earley’s
algorithm which significantly improves training as well as testing time.

4. SVM Package: We use the LIBSVM packagefor SVMs, specifically its tool “SVM with Precom-
puted Kernel Matrices”. This package is known to be fast and easyeto us

3.5 Experiments
3.5.1 Methodology

KRIsPwas evaluated on two domains: 8hG and GEOQUERYwhich were described in section 2.1.1. The
CLANG corpus was built by randomly selecting 300 pieces of coaching advicetfre log files of the 2003
RoboCup Coach Competition. These formal advice instructions were tireahéfdo English by one of four
annotators. The SB0QUERY corpus was built by collecting 250 questions by asking undergraduatergsu
to generate English queries for the given database. These queretheemanually translated into logical
form (Zelle & Mooney, 1996). We note that the queries in this corpus ane rmomplex than those in
the ATIS corpus (described in section 2.1.1) which makes the@ERY problem harder. This was also
shown by the results in (Popescu et al., 2004). TlE®GQUERY corpus was expanded to 880 sentences by
collecting more queries, some of them from real users of the web-basethoe to the database (Tang &
Mooney, 2001). Table 2 shows some statistics about these corporavétsge length of an NL sentence
in the CLANG corpus is22.52 words while in the GOQUERY corpus it is less thak words, this indicates
that CLANG is the harder corpus. The average length of the MRs is also larger in the&¢torpus.

2http:/iwww.csie.ntu.edu.tw/ cjlin/libsvm/

19

Statistic| CLANG | GE0250 | GE0O880
No. of examples 300 250 880
Avg. NL sentence length 22.52 6.76 7.48
Avg. MR length (tokens) 13.42 6.20 6.47
No. of non-terminals 16 44 44
No. of productions| 102 133 133
No. of unique NL tokens 337 159 270

Table 2: Some statistics of the corpora used for evaluation.

KRIspwas evaluated using standard 10-fold cross validation. Siras#uses a threshold to prune
low probability parses, it may fail to return any complete MR of a test sentektmnce we computed
the number of test sentences for whiclrIKP produced complete MRs, and the number of these MRs
that were correct. For CANG, an output MR is considered correct if it exactly matches the correct MR,
up to reordering of the arguments of commutative operatorsaik@®. For GEOQUERY, an output MR is
considered correct if the resulting query retrieves the same answer esrtect MR when submitted to the
database. Then the performance was measured in terms of precisiccatdefined as follows:

. Number of correct MRs
Precision = - (6)
Number of test sentences with complete output MRs

Recall — Number of correct MRs @)
Number of test sentences

KRISP gives probabilities for its semantic derivations which can be taken as eofd in the corre-
sponding MRs. These confidences can be used to plot precisidhaecees by first sorting the best MR
for each sentence (from all the folds) by their confidences and theimdprecision for every recall value.
In our experiments, the beam width parameievas fixed ta30, the minimum probability threshol@was
fixed t00.05 and the maximum length of the string subsequences used for computin{skeasdixed ta3.
These parameters were found through pilot experiments. The maximum nofterations, MAXITR,
required were only2, beyond this we found that the system only overfits the training corpugjiaad no
benefit on testing.

We compared our system’s performance with the systems described brittfeyRelated Work subsec-
tion: the string and tree versions ofL$(Kate et al., 2005), Wsp (Wong, 2005), 81SsorR(Ge & Mooney,
2005), system by Zettlemoyer and Collins (2005) angiLC (with CockTAIL ILP algorithm (Tang &
Mooney, 2001)). WspPand S1ssoRalso give confidences to the MRs they generate which are used to plot
precision-recall curves. The results of the other systems are shopairds on the precision-recall graph.
The results of Zettlemoyer and Collins (2005) are available only for the880 corpus. Their experimental
set-up also differs from ours, they explicitly set asil® GEOQUERY examples for training and used the
remaining280 for testing. Their experiment was repeated twice and the average statistiegeported.
We also compared Kispwith GEOBASE (Borland International, 1988), a hand-built NL interface for the
GEOQUERYdomain. Its results are available only for the @50 corpus.

3.5.2 Resultsand Discussion

Figure 9 shows the results on the 8G corpus. KRIsPperforms better than either version aL$in both
precision and recall. It performs comparable ta 8% but gives slightly less maximum recall. Although

20

100

90 |

70

50 E

Precision

40 + .

30 E

20 -
KRISP

WASP -----—
10 f SCISSOR -------- 7
SILT-tree +
SILT-string X
0 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Recall

Figure 9: Results on CANG corpus.

ScissoRgives less precision at lower recall values, it gives much higher maxinegallr However, we
note that it requires more supervision for the training corpuslLC could not be run beyonti60 training
examples because Prolog, in which it has been implemented, runs out of m&madr§0 training examples
it gave49.2% precision with12.67% recall. Its poor performance is due to two main reasons. First, it does
not exploit the formal grammar of the MRL which guides the parsing proicesther systems. Second,
CHILL uses a deterministic shift-reduce parsing framework to parse a sentenckeft to right. This type
of parsing is restrictive because if the system fails to first parse theswmrdhe left side of the sentence
then it will fail to parse the entire sentence. Figure 10 shows the preaisaail curves for lRisp when

it is trained on increasing number of training examples in each fold. Théngrlapws that increasing the
amount of training data results in significant improvement in performancel®igveen the last two curves.
This indicates that the performance can be improved further on this cibrpose training data is provided.

The results for the &0250 corpus are shown in figures 11.RISP gets better recall thaniS and
GEOBASE. It is able to extend the recall further thana®f's maximum recall but it gives slightly less
precision than Wsp at lower recall values. KisPs maximum recall is about same asiICL’s recall but
KRIsPhas higher precision at that recall valueeiSsordoes particularly well in precision on this corpus.
Figure 12 shows the precision-recall curves &8P with increasing amounts of training data.

Figure 13 shows the results for thee@880 corpus. The confidence values afiSSORs output MRs
were not available, hence its result is shown as a point. On this corpuspidoes better thaniSr but lags
behind the other systems, particularly in precision. While we know tei880 is harder and less cleaner
that GE0250 corpus, we plan to investigate the reasons for this lower performdineeprecision-recall
curves of KRispon this corpus with increasing amounts of training data are shown in figure 14

We have translations of €250 corpus in three other natural languages: Spanish, Turkish padekse.

21

100

KRISP-270'

‘ - KRISP-160 -------
90 + KRISP-80 -------- i
KRISP-40
80 -
70 + -
60 | j g .
c H
L i :
2 s ‘ ‘ 4
@ | |
o : :
40 | ‘ -
30 ‘ .
20 .
10 F -
0 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Recall

Figure 10: Results of Kispon the CLANG corpus when trained on increasing number of training examples.

100 = T T T T D;;;’J;;;;:_i”‘* """" = T
9 | . -
80 -
70 -
60 - -
c
Re]
8 50 F -
o
o
40 | .
30 -
KRISP ———
20 - WASP ------- T
SCISSOR -
SILT-tree +
10 SILT-string X 7]
CHILL *
GEOBASE o
0 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100
Recall

Figure 11: Results on 80250 corpus.

22

100 T T
KRISP-225
KRISP-160 -------
90 ; : . KRISP-80 -~ J
KRISP-40 oo
80 | LL‘ -
70 | -
60 | -
c
8
2 5| 4
L
o
40 - -
30 | -
20 - .
10 - .
0 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Recall

Figure 12: Results of Kispon the GE0250 corpus when trained on increasing number of training exam-
ples.

100 I T T T T T T T T T
l .
90 v O -
80 -
70 —
60 —
c
o
8 50 -
<
o
40 .
30 —
KRISP ———
20 - WASP ------- T
SILT-tree +
SILT-string X
10 | SCISSOR % T
CHILL o
Zettlemoyer et al. (2005) =
0 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Recall

Figure 13: Results on 80880 corpus.

23

100 f

T T
KRISP-792
KRISP-640 -------
KRISP-320 - i
KRISP-160 -

KRISP-80 -~

9 |

80

70 - . e .

60 - : i

Precision
[
o
T
1

40 ‘ E

30 E

20 E

10 - b,

0 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100
Recall

Figure 14: Results of Kispon the GE0880 corpus when trained on increasing number of training exam-
ples.

| Corpus | Training | Testing|
GE0250 1.44 0.05
GE0880 18.1 0.65
CLANG 58.85 3.18

Table 3: Average training and testing time per fold in minutes taken RiysKon the three corpora.

Since KRISPs learning algorithm does not use any natural language specific kdgelé is directly appli-
cable to other natural languages. Japanese uses different naresrfames of the places (e.g. Tekisasu for
Texas, Nyuu Yooku for New York etc.), we providerikKspthis information through the constant substrings.
Figure 15 shows results of runningrRKSP on other natural languages. The performance on English and
Spanish are comparable. Japanese gives the lowest precision ahdvesuspect it is because in Japanese
words are formed by joining morphemes and there could have been mmfusught by breaking these
into tokens in our corpus. Turkish gives slightly better precision but loeeall, we believe it is because
Turkish has larger number of unique tokeB8% more than English) which makes learning from its corpus
more precise but less general.

Table 3 shows the average training and testing time in minutasitakes to run in one fold on each
of the three corpora. The machine used had Intel Pentiulv645Hz processor angl Gb RAM. The time
taken mainly depends on the number of examples and the length of the NLaEniehe corpus.

24

100 —T ™ _]___._. T T T . T |" T T Englishl—

90 H
Turkish e

70 E

50 E

Precision

40 + .

30 E

20 E

0 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100
Recall

Figure 15: Results of Kispon GE0250 corpus for different natural languages.

4 Proposed Research

The future work we propose to do are categorized under short-tattoag-term future work. Under short-
term future work, we plan to improve therfsp algorithm by exploiting NL syntax, test it on noisy NL
sentences and combine it with other semantic parsers to form committees. lomglkeerm future work,
we plan to extend our system to also work on non-parallel corpora aitcoimythe task of complex relation
extraction. The following subsections describe these plans.

4.1 Short-term Future Work
4.1.1 Exploiting Natural L anguage Syntax

To do semantic parsing of a sentenc& I8P currently uses only the word order of the sentence and not its
syntax. While this certainly has the advantage that it makes the system diredtple to other natural
languages, given that semantic interpretation of a sentence largelyddepehow the words are combined
according to the NL grammar, using the syntax of the sentence should behilimin its semantic parsing.
In order to exploit the NL syntax, the most natural extension of our skergel-based approach will be
to make it tree-kernel-based. Existing syntactic parsers, like that of BIK&€l4), can be trained on our
syntactically annotated corpora in addition to Wall Street Journal (WS@usdo obtain syntactic parse
trees of the sentences, this was also done in the tree-based versiam ¢K&e et al., 2005). One can then
define a tree kernel over these syntactic parse trees and use it inkthadswing kernel in the rest of our
algorithm.

Syntactic-tree-kernels were first introduced by Collins and Duffy {2@hd were also used by Collins

25

and Duffy (2002) for the task of reranking syntactic parse treesy teéine a kernel between two trees
as the number of subtrees shared between them. A subtree is defingdsaggraph of the tree which
includes more than one node, with the restriction that entire productions mirstibded at every node.
Figure 16 shows two syntactic parse trees and all the common subtreeehéiem. The kernel defined
this way captures most of the structural information present in the syntas8e frees in the form of tree
fragments which the kernelized learning algorithms can then implicitly use asdeat@ollins and Duffy
(2001) also give an efficient algorithm to compute this kernel which rumoige to linear time in the size
of the input trees.

Often the syntactic information needed for a task is present in the depgntiers (Hudson, 1984)
alone and full syntactic parse trees are not needed which may in fadblesdr-fitting because of the large
number of irrelevant features they may produce. Cumby and Roth (2@3@) shown the advantage of
a syntactically determined restricted kernel based on dependency Vereth® “all subtrees” kernel from
(Collins & Duffy, 2002) on the task of named entity recognition. Recentlyious kernels defined over
dependency trees and their variants have also shown success in therelakonal information extraction
like (Zelenko et al., 2003), (Culotta & Sorensen, 2004) and (Bunestoé&ney, 2005a). Moreover, there
also has been progress in learning dependency tree parsers (BldDBareira, Ribarov, & Haji 2005b).
Dependency trees capture important aspects of functional relationstwedn words in a sentence which
can directly help in its semantic interpretation. We plan to investigate the use endepcy tree-kernels
in our system. There has not been any direct comparison betweenlgtrimgls with syntactic-parse-tree-
kernels or with dependency-tree-kernels to our knowledge and it wiliteeesting to see the comparison
on the task of semantic parsing.

4.1.2 Noisy NL Sentences

Any real world application in which semantic parsers would be used to irtenptural language of a user
is likely to face noise in the input. If the user is interacting through spontanspeech and the input to
the semantic parser is coming form the output of a speech recognition sysrrthere are many ways in

which noise could creep in the NL sentences: interjections (like um’s asj @nvironment noise (like door

slams, phone rings etc.), out-of-domain words, grammatically ill-formed uttesagic.(Zue & Glass, 2000).

These types of noises are also present in the ATIS corpus (War@).18@n when the user is interacting
through typing, noise could be present because of typos, out-ofidomuads etc.. The semantic parser
needs to be robust to the noise in these situations.

The performance of systems likaL$ (Kate et al., 2005) and ¥WspP (Wong, 2005) could degrade in
presence of such noise because it will obstruct the application of theirhatching transformation rules.
ScissoRs performance could also degrade because it tries to build complete gasmantic parse trees
of the sentences but the presence of noise would obstruct this pratesstrast, RISPs semantic parsing
is more flexible and hence robust to noise. The presence of extra tokengrupted tokens may decrease
the kernel values by some amount but it will not affect the semantic pairsiagy hard way. Hence we
expect KRIsPs performance will degrade gracefully in the presence of noise.

We plan to first do some preliminary experiments on our existing corporaatiécially corrupting
them with noise. Then we plan to get a real world noisy corpus (like ATh8)a@mpare RisPwith other
systems on it.

26

() (b)

NP NP
Np/\Pp NP PP
33NN JJ NN N NP
| . IN NP | | | T
left side | /’\ left side of DT NN
of | |
PRP$ NN NN the midfield
| | |
our penalty area
c
(©) NP NP
/\ PN
NP PP J‘J NN
I NN IN NP left side
| | |
left side of
PP PP NP JJ NN IN
N NS N | \ |
IN NP IN NP NP PP left side of
|
of

Figure 16: (a) and (b) are two example syntactic parse trees, (c) stibthe common subtrees between
them.

41.3 Committees of Semantic Parsers

We have three competitive semantic parserrj3, WAsP (Wong, 2005) and 8IssoRrR(Ge & Mooney,
2005), developed within our research group. The next natural stejmve to form a committee in order to
get the best overall performance. Forming committees or ensembles adearstems is known to improve
performance provided each individual system performs well enondlreese systems are diverse, i.e. they
make different types of errors (Dietterich, 2000).

Table 4 shows the number of correct answers each semantic parsengbts CLANG corpus which
has total 300 examples and the maximum number of correct answers ogetdtancombining their correct
answers (i.e. if an oracle chooses the output MR from the output MR®ohtlividual semantic parsers).
The numbers clearly show that the three semantic parsers often makerdi#erors and there is a lot of
scope for improvement if we form a committee.

There are two general approaches in which a committee of semantic peaisecembine the output
MRs from different semantic parsers. The first approach is to learohwdarser performs best on which
types of sentences and then for a test sentence simply choose the o>drivithe best parser for that
sentence. This is similar to the “Parser Switching” approach presenteemhgerson and Brill (1999) for
combining syntactic parses from different parsers. The seconagpiis to look into the output MRs
generated by different parsers and combine their best componentpta the best MR. This is analogous

27

System or Committee No. of Correct Answers out of 300
KRISP 178
WAsP 185
SCISSOR 232
KRISP+ WASP 223
KRISP+ SCISSOR 253
WASP + SCISSOR 246
KRISP+ WASP + SCISSOR 259

Table 4: Upper bounds on the number of correct answers one cam g¢ie¢ CLANG corpus by combining
the correct answers of different semantic parsers.

to the “Parse Hybridization” method of Henderson and Brill (1999) and:timmittee-based probabilistic
partial parsing method of Inui and Inui (2000). But we note that their ousttare not directly applicable
to our problem because their methods are designed specifically for 8ypacsing. The second approach
of combining output MRs will be particularly useful in cases where norte@Eemantic parsers generate a
complete MR but each generates some of its components. We plan to investigairs ways of combining
the output MRs of different semantic parsers under each of the twoaexqpproaches.

4.2 Long-term Future Work
4.2.1 Non-paralléel Training Corpus

In our work so far, the training data consisted of NL sentences alignedhwittrespective MRS (m;, s;)|i =
1..N'}. Building such corpora requires human annotation. However, theigcararios where vast amount
of data is available in which NL sentences and MRs are both present juatheot aligned. For e.g., in
RoBoCupP commentary task, commentaries of simulated games are generated in naturagggnde,
Binsted, Tanaka-Ishii, Luke, Herzog, & Rist, 2000). When this commgnsapaired with the symbolic
description of events happening in the entire field then we get the scertaeie ML sentences and MRs are
present but they are not aligned. This is knowmedsrential ambiguityproblem where it is not known what
portion of the NL description refers to which symbolic description. There evay be sentences which do
not have their corresponding MRs present in the data (e.g. commentsaiatedeo some other topic) and
there may be MRs which are not described in the NL (e.g. commentator sképsldeg less important
events). This is also a more realistic context in which language acquisitiamsogeinker, 1995). Let us
represent such a corpus g5\/;, S;)|: = 1..N}, where eachl/; and.S; are sets of MRs and NL sentences
respectively. For each pairg¢d/;, S;), the correspondence between the MR84pand NL sentences if;

is unknown.

While there has been some work in solving referential ambiguity problemdamiley semantic lexicons
(Siskind, 1996), there has not been any work in solving this for the biggk of complete semantic parsing.
Learning a semantic parser from such a corpus will first involve findirighee correspondences between NL
sentences and their respective MRs and then learning semantic parsetiém. One can view this type
of referential ambiguity of which sentence corresponds to which MR asewel higher than the referential
ambiguity of which portion of the sentence corresponds to which producfitice MR parse, something
our system is already designed to resolve. Hence we believe that exjendisystem accordingly to one
level up would help it learn semantic parser from such a corpus. Followiag outline of how we plan to

28

do this:

1. Collect all pairs of MRs and NL sentences from e&sfy, S;) to form a training sefly, i.e. Ty =
{(mj,s)|m; € M and sy, € S; fori=1..N}.

2. Learn classifier® for the productions of the MRL gramméfusing KrRISP, i.e. P = TRAIN_KRISP(Ty, G)

3. Using these classifierd and the procedure EARLEY-DERIVE-CORRECT described in section 3.3
find out for each(M;, S;) which sentence;, € S; corresponds best ta; € A;. Form a training set
setT; of these pairs (a sentence should be paired with at most one MR), dochadéra pair if its
derivation probability is too low.

4. Learn classifier® from training setZ;, i.e. P = TRAIN_KRISP(T;, G). Repeat steps 3-4 till}
remains the same over an iteration, then refdrn

The first step above assumes that amy, s;,) pair from(M;, S;) is equally likely since there is no more
information about it. Then Kispis used to learn classifiers for productions from this training set in step
2. Although there will be many false positives but the negatives will be all negatives and hopefully
KRrispwill find correspondences between presence of productions anidmmoof NL sentences. Using
these classifiers, in stef)y MRs in eachM; are paired with the sentences $ which give their most
probable derivations. Each sentence is paired at most once. Thergensaptences which do not give the
most probable derivation for any MR. A pair is dropped if the probabilityhef derivation is too low, this
essentially means no sentence in theSetorresponds to the MR in considerationrispis used to learn
classifiers again from this new training set and this process is repeatee tiththing set does not change.
The final classifiers are returned which can then be used in testing tert@mwel NL sentences to their
MRs.

We plan to obtain or build a real-world non-parallel corpus to test our idBas before that, we will
do preliminary experiments with our existing corpora by artificially making them-parallel. This can
be done by first partitioning the training data imbsets and then ignoring the correspondences between
the sentences and their MRs within each set. The algorithm outlined abowkel $feable to re-pair the
sentences with their corresponding MRs and learn semantic parser filom th

4.2.2 Complex Relation Extraction

KRISsPobtains deep semantic parses of sentences by using string-basdd telearn classifiers for MRL
grammar productions. Bunescu and Mooney (2005b) have used basgegt kernels to learn classifier for
extracting the binary relatiofprotein-protein interaction”. This can be viewed as learning for an MRL
grammar which has only one production: “INTERACTION PROTEIN PROTEIN". Hence we believe
KRIsPcan be used in relation extraction, particularly in compleary relation extractions.

A complex relation is defined as anary relation among typed entities (McDonald et al., 2005a). It
is defined by theschem&(t,, ..., t,,) wheret; € T are entity types. An instance of a complex relation is a
list of entities(eq, ...e,) such thattype(e;) = t;. An example of a ternary relation schemd fger son,
j ob, conpany) thatrelates a person to their job at a particular company. From the seidehoeSmith
is the CEO of Inc. Corp,’an instancé€John Smith, CEO, Inc. Corpdf the above relation can be extracted.
Some entities are also allowed to be missing in complex relations.

Most of the work in relation extraction has mainly focused on identifying yinglations likeemployee-
of, located-atetc. (NIST, 2000). Relatively little work has been done in extracting complary relations

29

(person, job, company)

(person, job) (job, compan:

John Smith is the CEO of Inc. Corp.

Figure 17: Relatior§ per son, j ob, conpany) derived over the given sentence.

which would be useful in applications like automatic database generation, iatglidippcument search-
ing etc. McDonald et al. (2005a) do complex relation extraction from Bionaédiccuments. They first
extract all the binary relations within the complex relation (emer son, j ob), (j ob, conpany) &
(person, conpany) are all the binary relation for the complex relatibper son, j ob, conpany)).
Then graphs of all the entities are constructed in which edges are adtiegen two entities if they are in-
stances of a binary relation. The complex relations are extracted as the rheligues form these graphs.
They show that this approach is better than extracting complex relations$lyixglsich is a harder learn-
ing task. However, we note that when their approach extracts complaionefeom the entity graph, the
underlying sentence does not play any role.

We believe KRIspP can be applied to extract complex relations. We plan to do this by treating the
complex relation as a higher level production composed of lower leveluptimhs which correspond to
the less complex relations (like binary relations). Then the extracting the comgléion process can be
treated as semantic parsing. Figure 17 shows the semantic derivation gathple sentence from which
the complex relatiorf per son-j ob- conpany) has been extracted. We note that given the waydR
does semantic parsing, the sentence will be used in the process of egttaettomponent binary relations
as well as the final complex relation.

5 Conclusions

In this proposal, we presented a new kernel-based approach to Eaentc parsers. SVM classifiers
based on string-subsequence kernels are trained for each of thecpoms in the meaning representation
language. These classifiers are then used to compositionally build completengregpresentations of
natural language sentences. We evaluated our system on two realeagtita. The results show that our
system performs better than deterministic rule-based semantic parsereréordnp comparable to some
recently developed statistical semantic parsers. We plan to extend this warkiig NL syntax-based
kernels, broaden the scope of its applications and form committees of sepeustcs.

30

References

Aizerman, M., Braverman, E., & Rozoan L. (1964). Theoretical foundations of the potential function
method in pattern recognition learningutomation and Remote Conty@s, 821-837.

André, E., Binsted, K., Tanaka-Ishii, K., Luke, S., Herzog, G., & Rist, T. @00 hree RoboCup simulation
league commentator systenfs. Magazine 21(1), 57-66.

Androutsopoulos, I., Ritchie, G. D., & Thanisch, P. (1995). Naturaflexge interfaces to databases: An
introduction.Journal of Natural Language Engineering(1), 29-81.

Bikel, D. M. (2004). Intricacies of Collins’ parsing modél.omputational Linguistics30(4), 479-511.
Borland International (1988)Turbo Prolog 2.0 Reference GuidBorland International, Scotts Valley, CA.

Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithiorfoptimal margin classifiers. In
Proceedings of the Fifth Annual Workshop on Computational Learnirepijhpp. 144-152, Pitts-
burgh, PA. ACM Press.

Bunescu, R. C., & Mooney, R. J. (2005a). A shortest path depeydarnel for relation extraction. In
Proceedings of the Human Language Technology Conference arfdr€oce on Empirical Methods
in Natural Language Processing 2005 (HLT/EMNLP 2QQ@%). 724—-731, Vancouver, BC.

Bunescu, R. C., & Mooney, R. J. (2005b). Subsequence kernelelfttion extraction. ImAdvances in
Neural Information Processing Systerwancouver, BC. To appear.

Carreras, X., & Marquez, L. (2004). Introduction to the CoNLL-28b4red task: Semantic role labeling. In
Proceedings of the Eighth Conference on Computational Natural Lagegbearning (CoONLL-2004)
Boston, MA.

Collins, M. (2002). Ranking algorithms for named-entity extraction: Boosting the voted perceptron.
In Proceedings of the 40th Annual Meeting of the Association for Computatiomguistics (ACL-
2002) pp. 489-496, Philadelphia, PA.

Collins, M., & Duffy, N. (2001). Convolution kernels for natural langga In Proceedings of Neural
Information Processing Systems (NIPS.14)

Collins, M., & Duffy, N. (2002). New ranking algorithms for parsing anddang: Kernels over discrete
structures, and the voted perceptron.Phoceedings of the 40th Annual Meeting of the Association
for Computational Linguistics (ACL-2002)p. 263—-270, Philadelphia, PA.

Collins, M. J. (1997). Three generative, lexicalised models for statigi&aing. InProceedings of the 35th
Annual Meeting of the Association for Computational Linguistics (ACL497)16-23.

Cristianini, N., & Shawe-Taylor, J. (2000An Introduction to Support Vector Machines and Other Kernel-
based Learning Method€€ambridge University Press.

Culotta, A., & Sorensen, J. (2004). Dependency tree kernels faiaelaxtraction. InProceedings of
the 42nd Annual Meeting of the Association for Computational Linguistic&-@4J, pp. 423429,
Barcelona, Spain.

Cumby, C., & Roth, D. (2003). On kernel methods for relational learnindg?roceedings of 20th Interna-
tional Conference on Machine Learning (ICML-2008p. 107-114.

Dietterich, T. (2000). Ensemble methods in machine learning. In Kittler, J., & Ro(Eds.),First In-
ternational Workshop on Multiple Classifier Systems, Lecture Notes in @em@ciencepp. 1-15.
Springer-Verlag.

31

Earley, J. (1970). An efficient context-free parsing algorith@ommunications of the Association for
Computing Machinery6(8), 451-455.

Ge, R., & Mooney, R. J. (2005). A statistical semantic parser that integsytetax and semantics. In
Proceedings of the Ninth Conference on Computational Natural Laregguagrning (CoNLL-2005)
pp. 9-16, Ann Arbor, MI.

Gildea, D., & Jurafsky, D. (2002). Automated labeling of semantic rdzsmputational Linguistic28(3),
245-288.

He, Y., & Young, S. (2003). Hidden vector state model for hierarctdeabantic parsing. IRroceedings of
the 2003 IEEE International Conference on Acoustics, Speech, andl$gcessing (ICASSP-Q3)
pp. 268-271, Hong Kong.

Henderson, J. C., & Brill, E. (1999). Exploiting diversity in natural laage processing: Combining parsers.
In Proceedings of the Conference on Empirical Methods in Natural Largyagcessing and Very
Large Corpora (EMNLP/VLC-99)p. 187-194, College Park, MD.

Hudson, R. (1984)Word Grammar Blackwell.

Inui, T., & Inui, K. (2000). Committee-based decision making in probabilistitigigarsing. InProceedings
of the Eighteenth International Conference on Computational Lingujgijts348—354, Saaricken,
Germany.

Jurafsky, D., & Martin, J. H. (20005peech and Language Processing: An Introduction to Natural Laggua
Processing, Computational Linguistics, and Speech Recognidoentice Hall, Upper Saddle River,
NJ.

Kate, R. J., Wong, Y. W., & Mooney, R. J. (2005). Learning to transfoatural to formal languages. In
Proceedings of the Twentieth National Conference on Artificial Intelligé¢Ageé\l-2005) pp. 1062—
1068, Pittsburgh, PA.

Kuhn, R., & De Mori, R. (1995). The application of semantic classificatioastte natural language under-
standing.lEEE Transactions on Pattern Analysis and Machine Intellige@és), 449-460.

Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., & Watkins2002). Text classification using
string kernelsJournal of Machine Learning Resear) 419-444.

Macherey, K., Och, F. J., & Ney, H. (2001). Natural language wtdading using statistical machine trans-
lation. In Proceedings of the 7th European Conference on Speech Communiaatiofechnology
(EuroSpeech-01pp. 2205-2208, Aalborg, Denmark.

Manning, C. D., & Schitze, H. (1999)Foundations of Statistical Natural Language ProcessMdT Press,
Cambridge, MA.

McDonald, R., Pereira, F., Kulick, S., Winters, S., Jin, Y., & White, P. (Z)05Simple algorithms for
complex relation extraction with applications to biomedical IE.Phoceedings of the 43nd Annual
Meeting of the Association for Computational Linguistics (ACL-@p) 491-498, Ann Arbor, MI.

McDonald, R., Pereira, F., Ribarov, K., & HgjiJ. (2005b). Non-projective dependency parsing using span-
ning tree algorithms. IRroceedings of the Human Language Technology Conference aridr€oce

on Empirical Methods in Natural Language Processing 2005 (HLT/EMIRQO5) pp. 523-530, Van-
couver, BC.

32

Miller, S., Stallard, D., Bobrow, R., & Schwartz, R. (1996). A fully statistiegproach to natural lan-
guage interfaces. IRroceedings of the 34th Annual Meeting of the Association for Computationa
Linguistics (ACL-96)pp. 55-61, Santa Cruz, CA.

NIST (2000). ACE — Automatic Content Extraction. http://www.nist.gov/speests/ace.

Papineni, K. A., Roukos, S., & Ward, R. T. (1997). Feature-basegllage understanding. Proceedings
of the 5th European Conference on Speech Communication and Teghri&laroSpeech-97)pp.
1435-1438, Rhodes, Greece.

Pinker, S. (1995). Language acquisition. In Gleitman, L. R., & Liberman(Bdis.),Language(2nd
edition)., Vol. 1 ofAn Invitation to Cognitive Sciencpp. 135-182. MIT Press, Cambridge, MA.

Platt, J. C. (1999). Probabilistic outputs for support vector machines@mgbarisons to regularized like-
lihood methods. In Smola, A. J., Bartlett, P., 8ttopf, B., & Schuurmans, D. (EdsAdvances in
Large Margin Classifierspp. 185-208. MIT Press.

Popescu, A.-M., Armanasu, A., Etzioni, O., Ko, D., & Yates, A. (2004) d€ilm natural language interfaces
to databases: Composing statistical parsing with semantic tractabilRyoteedings of the Twentieth
International Conference on Computational Linguistics (COLING-@&Bneva, Switzerland.

Popescu, A.-M., Etzioni, O., & Kautz, H. (2003). Towards a theory dlra language interfaces to
databases. IRroceedings of the 2003 International Conference on Intelligent Usterfiaces (1UI-
2003) pp. 149-157, Miami, FL. ACM.

Price, P. J. (1990). Evaluation of spoken language systems: Thed®hain. InProceedings of the Third
DARPA Speech and Natural Language Workshpgp 91-95.

Rousu, J., & Shawe-Taylor, J. (2005). Efficient computation of gdgpbstring kernels on large alphabets.
Journal of Machine Learning Researdh 1323—-1344.

Scholkopf, B., Smola, A., & Muller, K. R. (1999). Kernel principal componamalysis. In Scblkopf, B.,
Burges, C. J. C., & Smola, A. J. (EdsAdvances in Kernel Methods - Support Vector Learnpmm
327-352. MIT Press.

Shawe-Taylor, J., & Cristianini, N. (2000)Kernel Methods for Pattern AnalysisCambridge University
Press.

Siskind, J. M. (1996). A computational study of cross-situational tectasidor learning word-to-meaning
mappings.Cognition 61(1), 39-91.

Stolcke, A. (1995). An efficient probabilistic context-free parsing atgm that computes prefix probabili-
ties. Computational Linguistic21(2), 165—-201.

Tang, L. R., & Mooney, R. J. (2001). Using multiple clause constructoisdactive logic programming
for semantic parsing. IProceedings of the 12th European Conference on Machine Learpmg
466-477, Freiburg, Germany.

Chen etal., M. (2003). Users manual: RoboCup soccer server mimwsadccer server version 7.07 and
later.. Available aht t p: // sour cef or ge. net/ pr oj ect s/ sserver/.

Vapnik, V. N. (1998).Statistical Learning TheoryJohn Wiley & Sons.

Ward, W. (1990). The CMU Air Travel Information Service: Understiaig spontaneous speech. Rro-
ceedings of a Workshop on Speech and Natural Langyagel27-129, Hidden Valley, PA.

Wong, Y. W. (2005). Learning for semantic parsing using statistical madhanslation techniques. Doctoral
Dissertation Proposal, University of Texas at Austin.

33

Zelenko, D., Aone, C., & Richardella, A. (2003). Kernel methods ftatren extractionJournal of Machine
Learning Researclt8, 1083-1106.

Zelle, J. M., & Mooney, R. J. (1996). Learning to parse databaseagesing inductive logic programming.
In Proceedings of the Thirteenth National Conference on Artificial IntelliggAAI-96) pp. 1050—
1055, Portland, OR.

Zettlemoyer, L. S., & Collins, M. (2005). Learning to map sentences to loficai: Structured classifi-
cation with probabilistic categorial grammars. Rroceedings of 21th Conference on Uncertainty in
Artificial Intelligence (UAI-2005)Edinburgh, Scotland.

Zue, V. W., & Glass, J. R. (2000). Conversational interfaces: Adearand challenges. Proceedings of
the IEEE Vol. 88(8), pp. 1166-1180.

34

