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Abstract

This paper presents a method for learning a semantic parser
from ambiguous supervision. Training data consists of nat-
ural language sentences annotated with multiple potential
meaning representations, only one of which is correct. Such
ambiguous supervision models the type of supervision that
can be more naturally available to language-learning systems.
Given such weak supervision, our approach produces a se-
mantic parser that maps sentences into meaning represen-
tations. An existing semantic parsing learning system that
can only learn from unambiguous supervision is augmented
to handle ambiguous supervision. Experimental results show
that the resulting system is able to cope up with ambiguities
and learn accurate semantic parsers.

Introduction

Most learning systems for natural-language processing re-
quire very detailed supervision in the form of human anno-
tation such as parse trees or semantic labels. Ideally, a sys-
tem would be able to learn language like a human child, by
only being exposed to utterances in a rich perceptual context.
Frequently, the context of an utterance can be used to narrow
down its interpretation to a fairly small set of reasonable al-
ternatives. There has been some work on inferring the mean-
ings of individual words given a corpus of sentences each
paired with an ambiguous set of multiple possible mean-
ing representations (Siskind 1996). However, the methods
developed in this work only acquire lexical semantics and
do not learn how to disambiguate words and compose their
meanings in order to interpret complete sentences.

Recent research in semantic parsing has developed meth-
ods that learn to map sentences into complete formal mean-
ing representations (MRs) by training on a corpus of sen-
tences each annotated with its corresponding MR (Ge &
Mooney 2005; Zettlemoyer & Collins 2005; Kate, Wong, &
Mooney 2005). However, labeling each sentence in a corpus
with a detailed, correct semantic representation is a difficult
task and is also not a realistic model of how children learn
to analyze the meaning of sentences. In this paper, we ex-
plore the task of learning a semantic parser from ambiguous
supervision, in which each sentence is only annotated with
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an ambiguous set of multiple, alternative potential interpre-
tations. We show how an accurate semantic parser can be
learned by augmenting an existing supervised learning sys-
tem to handle such ambiguous training data. Specifically,
we add an iterative retraining method to KRISP (Kate &
Mooney 2006), a system that learns a semantic parser using
a support-vector machine (SVM) that utilizes a string kernel
(Lodhi et al. 2002). In a manner analogous to the Expec-
tation Maximization (EM) algorithm (Dempster, Laird, &
Rubin 1977), our iterative method is able to converge on ac-
curate meanings for each sentence in an ambiguous corpus
by finding stable, reliable patterns in the equivocal training
data.

Testing such a system in a realistic setting would require
a perceptual system that can construct a set of plausible
meanings for a sentence from the context in which it is ut-
tered. Since this is a difficult unsolved problem, we evalu-
ate the system by artificially obfuscating training data previ-
ously used to assess supervised semantic-parser learners. By
adding additional incorrect meanings to the correct meaning
for each sentence, an ambiguous training corpus is created.
We also evaluate our system on another artificially-created
corpus that models ambiguities more realistically. Experi-
mental results indicate that our system is able to learn accu-
rate parsers even given such ambiguous supervision.

Background

This section provides background on the task of semantic
parsing when the training data is unambiguous and briefly
describes a learning system designed for this task. The next
section describes the extensions we made to this system to
handle the case when the training data is ambiguous.

Semantic Parsing with Unambiguous Supervision

Semantic parsing is the task of mapping a natural lan-
guage (NL) sentence into a computer-executable complete
meaning representation (MR). These MRs are expressed in
domain-specific meaning representation languages (MRL).
We call the type of supervision unambiguous when a learn-
ing system for semantic parsing is given a corpus of NL sen-
tences in which each sentence is paired with its respective
correct MR. In this type of supervision, while the learning
system is not given which parts of the MRs correspond to



SENT1: “Which rivers run through the states bordering Texas?”

MR1: answer(traverse(next to(stateid(‘texas’))))

SENT2: “Which is the highest point in Alaska?”

MR2: answer(highest(place(loc(stateid(’Alaska’)))))

SENT3: “What are the major rivers in Alaska?”

MR3: answer(major(river(loc(stateid(’Alaska’)))))

Figure 1: Examples of NL sentences unambiguously paired
with their respective correct MRs.

which portions within the sentences, it is however unam-
biguously given which complete MRs correspond to which
sentences.

Figure 1 shows examples of NL sentences unambiguously
paired with their respective correct MRs from the GEO-
QUERY domain in which the MRL is a functional language
used to query a database of U.S. geographical facts (Kate,
Wong, & Mooney 2005).

KRISP: The Semantic Parsing Learning System for
Unambiguous Supervision

KRISP (Kernel-based Robust Interpretation for Semantic
Parsing; Kate & Mooney 2006) is a system that learns a
semantic parser from unambiguous training data. It treats
the productions of the formal MRL grammar as semantic
concepts. For each of these productions, a Support-Vector
Machine (SVM; Cristianini & Shawe-Taylor 2000) classi-
fier is trained using string similarity as the kernel (Lodhi et
al. 2002). Each classifier then estimates the probability of
different NL substrings representing the semantic concept
for its production. During semantic parsing, the classifiers
are called to estimate probabilities on different substrings of
the input sentence to compositionally build the most proba-
ble MR for the complete sentence. The probability assigned
to an MR represents the confidence the parser has in its out-
put. Given an MR and a sentence, KRISP can also compute
a confidence that this MR is the correct one for the given
sentence. This function, which we call PARSE ESTIMATE,
is also used internally in KRISP’s training algorithm.

KRISP trains the classifiers used in semantic parsing iter-
atively. In each iteration, for every production π in the MRL
grammar, KRISP collects positive and negative examples. In
the first iteration, the set of positive examples for produc-
tion π contains all sentences whose corresponding MRs use
the production π in their parse trees. The set of negative
examples includes all of the other training sentences. Us-
ing these positive and negative examples, an SVM classi-
fier is trained for each production π using a string kernel.
In subsequent iterations, the parser learned from the pre-
vious iteration is applied to the training sentences and the
PARSE ESTIMATE function is applied to their correct MRs,
and more refined positive and negative examples, which are
more specific substrings within the sentences, are collected
for training. Iterations are continued until the classifiers con-
verge, analogous to iterations in EM. Experimentally, KRISP

compares favorably to other existing semantic parsing sys-
tems and is particularly robust to noisy training data (Kate
& Mooney 2006).
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Figure 2: Sample Ambiguous Training Data (solid-line: cor-
rect meaning; dashed-line: possible meaning)

Learning Semantic Parsers from Ambiguous

Supervision

There are two major shortcomings with the type of detailed
supervision described in the previous section. First, man-
ually constructing an unambiguous corpus in which each
sentence is annotated with its correct MR is a difficult task.
A computer system that observes some perceptual context
and is simultaneously exposed to natural language should be
able to automatically learn the underlying language seman-
tics. But since the training data available in such a setting
will not consist of NL sentences unambiguously paired with
their MRs, it will require human effort to build such a corpus
before the learning can take place. Secondly, unambiguous
supervision does not model the type of data children receive
when they are learning a language. In order to learn to an-
alyze the meaning of sentences, children have to also learn
to identify the correct meaning of a sentence among the sev-
eral meanings possible in their current perceptual context.
Therefore, a weaker and more general form of supervision
for learning semantic parsers needs to be considered.

Ambiguous Supervision

Consider the type of supervision a system would receive
when learning language semantics from perceptual contexts.
We assume that the low-level sensory data (real or simu-
lated) from a system’s perceptual context is first abstracted
into symbolic meaning representations (MRs). Our model
of supervision corresponds to the type of data that will be
gathered from a temporal sequence of perceptual contexts
with occasional language commentary. The training data
in this model thus consists of a sequence of NL sentences
and a sequence of MRs in which each NL sentence is asso-
ciated with a set of one or more consecutive MRs. These
associated MRs represent the general perceptual context the
system was in when it registered the NL sentence. The asso-
ciation of multiple MRs with each NL sentence makes such
a corpus ambiguous.

We assume that each NL utterance means something
unique in the perceptual context, so that exactly one MR out
of all the MRs associated with an NL sentence represents its
correct meaning. Also, since different NL utterances would
normally refer to different things, we assume that an MR
can be the correct meaning of at most one of the sentences
with which it is associated.1 Figure 2 shows a small exam-

1A duplicate MR (or sentence) that reappears later in the se-
quence will be treated separately each time.



function TRAIN KRISPER(Ambiguous corpus A = {(senti,Mi)|Mi 6= φ, i = 1..N}, MRL grammar G)
REDUCE AMBIGUITIES(A) // reduce easy to resolve ambiguities
U = φ // corpus for training, initially empty
for i = 1 to N do // collect weighted initial examples
U = U ∪ {(senti, mr, w)|mr ∈ Mi, w = 1/|Mi|}

C ≡ {Cπ|π ∈ G} = TRAIN WEIGHTED KRISP(U ,G) // classifiers obtained by training KRISP
while (not converged) do
V = φ // collect examples with parse confidences, initially empty
for i = 1 to N do
V = V ∪ {(senti, mr, w)|mr ∈ Mi, w =PARSE ESTIMATE(senti, mr, C)}

U =BEST EXAMPLES(V) // find the best consistent examples
C =TRAIN KRISP(U ,G) // retraining

return C // return classifiers trained in the last iteration

Figure 3: KRISPER’s training algorithm

ple of such a corpus. The sentences are shown connected
to their possible MRs by lines. For illustration purpose, the
connections between sentences and their correct MRs are
shown with solid lines and the rest are shown with dotted
lines. However, this distinction is obviously not included in
the training data.

KRISPER: The Semantic Parsing Learning System
for Ambiguous Supervision

We extended KRISP’s training algorithm to handle ambigu-
ous supervision. We call our new system KRISPER (KRISP

with EM-like Retraining). It employs an iterative approach
analogous to EM, where, through retraining, each iteration
improves upon determining the correct MR out of the possi-
ble MRs for each sentence.

Figure 3 shows KRISPER’s training algorithm. It takes
the ambiguous corpus as input in which each NL sentence
is paired with a non-empty set of MRs. Using the assump-
tion that an MR in the corpus can be the correct meaning of
at most one sentence, it first removes some easily resolved
ambiguities present in the input. For example, if the input in-
cludes the examples (sent1, {mr1}), (sent2, {mr1,mr2})
and (sent3, {mr2,mr3,mr4}), then it is clear that mr1 can
not be the correct meaning of sent2, because then sent1
will be left without any correct meaning, hence mr2 must
be the correct meaning of sent2. This then prohibits mr2

from being the correct meaning of sent3, reducing the set
of its possible MRs to {mr3,mr4}. In general, we use the
following procedure to remove these type of ambiguities.
First, we note that an ambiguous corpus forms a bipartite
graph with the sentences and the MRs as two disjoint sets
of vertices and the associations between them as connecting
edges. The set of correct NL–MR pairs form a matching on
this bipartite graph which is defined as a subset of the edges
with at most one edge incident on every vertex (Cormen,
Leiserson, & Rivest 1990). Since all NL sentences have a
correct MR, this matching is in fact a maximum matching
with cardinality equal to the number of sentences. In order
to check whether an NL–MR pair can be in the set of the
correct NL–MR pairs, our procedure removes the edge con-
necting the pair and the edges incident on the two vertices
and sees if the maximum matching on the resulting graph

includes all of the remaining NL sentences.2 If not, then the
procedure removes that NL–MR association from the cor-
pus, because any matching that includes it will not be able
to include edges to cover all of the NL sentences. All of the
NL–MR pairs in the corpus are checked by this procedure,
and the whole process is iterated until no additional NL–MR
pairs are removed.

KRISPER then assumes that every MR in the set of MRs
paired with each NL sentence is correct for that NL sentence
and collects the resulting NL–MR paired examples. Each
such example is also given a weight which is inversely pro-
portional to the number of MRs that were associated with
its NL sentence. For example, from the ambiguous input ex-
ample of (sent3, {mr3,mr4}), two examples, (sent3,mr3)
and (sent3,mr4), will be collected and both will be given
weight equal to 1/2. These examples are then given to
KRISP’s training algorithm (described in the “Background”
section) to learn an initial semantic parser. Since the training
data is noisy with many incorrect NL–MR pairs in this first
iteration, the parameter of the SVM training algorithm that
penalizes incorrect classifications is kept low. This param-
eter is later increased with each subsequent iteration. Al-
though there will be many incorrect NL–MR pairs in the
first iteration, the parser is expected to learn some regulari-
ties due to the presence of the correct pairs. The weighting
procedure ensures that the more an NL–MR pair is likely
to be incorrect, the less weight it receives. KRISP’s exist-
ing training algorithm, however, does not accept weighted
examples as input so we modified it as follows. All of the
positive and negative SVM training examples that KRISP ex-
tracts from an input NL–MR pair are given the same weight
as the input example. Then, a version of an SVM which
takes weighted input examples is used for training. We used
the tool “Weights for data instances” available in the LIB-
SVM package.3

Next, for each NL sentence in the training data, KRISPER

estimates the confidence of generating each of the MRs in

2An O(|V ||E|) algorithm exists for finding a maximum match-
ing on a bipartite graph, where |V | is the number of vertices and
|E| is the number of edges (Cormen, Leiserson, & Rivest 1990).
Our procedure finds a maximum matching separately for every
maximally connected subgraph of the graph which makes this step
even more efficient.

3
http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools



the sentence’s set of possible MRs by calling the learned
parser’s PARSE ESTIMATE function. For the purpose of
training the parser in the next and subsequent iterations, it
pairs the NL sentence with only one MR from its set, the one
with the highest confidence.4 But since the sets of possible
MRs of NL sentences could overlap, the new NL–MR pairs
should be consistently chosen so that an MR does not get
paired with more than one sentence. The problem of consis-
tently selecting the best pairs is an instance of the maximum
weight assignment problem on a bipartite graph which can
be solved using the Hungarian Algorithm (Munkres 1957) in
O(|V |3) time, where |V | is the number of vertices. The pairs
found by this algorithm are then given to KRISP’s training
algorithm to learn a better semantic parser. Since now only
one MR is associated with each NL sentence, the weights of
all examples are set to 1. The algorithm terminates when the
NL–MR pairs for an iteration differ by less than 5% (a pa-
rameter) from the pairs in the previous iteration. The parser
trained on these NL–MR pairs is then returned as the final
learned parser.

Experiments

This section presents an experimental evaluation of
KRISPER. To our best knowledge, there is no real-
world ambiguous corpus available for learning semantic
parsers. Hence, to evaluate our system, we constructed
two ambiguous corpora: AMBIG-GEOQUERY and AMBIG-
CHILDWORLD. The AMBIG-GEOQUERY corpus was con-
structed by artificially obfuscating the existing real-world
unambiguous GEOQUERY corpus (described in the “Back-
ground” section), while the AMBIG-CHILDWORLD corpus
was constructed completely artificially but attempts to more
accurately model real-world ambiguities. The following
subsection describes how the two corpora were constructed.
The next subsections describe the experimental evaluation
of KRISPER’s performance on both corpora with different
levels of ambiguity.

Corpora Construction

Ambig-Geoquery Corpus
We used the the unambiguous GEOQUERY corpus to artifi-
cially construct the AMBIG-GEOQUERY corpus which con-
forms to the model of ambiguous supervision described ear-
lier with a sample shown in figure 2. Using the MRs and
NL sentences present in the unambiguous corpus, an am-
biguous corpus was formed in which each NL sentence was
paired with a set of multiple possible MRs. First, a sequence
of randomly permuted MRs from the GEOQUERY corpus,
which we call base MRs, was formed. Next, random MRs,
chosen from the same corpus, were inserted between every
pair of adjacent base MRs. The number of MRs inserted be-
tween any two base MRs was randomly chosen uniformly
between 0 and α (a parameter). Next, each NL sentence

4We found that this works better than pairing each NL sentence
with all of its associated MRs with weights proportional to their
confidences because after the first iteration the system usually has
a good idea of the correct NL–MR pairs and the remaining pairs
only increase the noise.

Daisy gave the clock to the mouse. 

The dog threw the ball.

John gave the bag to the mouse.

Mommy saw that Mary gave  

saw(john,walks(man,dog))

runs(dog)

threw(dog,ball)

gave(john,bag,mouse)

gave(woman,toy,mouse)

broke(dog,box)

    gave(mary,hammer,dog))

saw(mother,

ate(dog,apple)

ate(mouse,orange)

gave(daisy,clock,mouse)

the hammer to the dog.

The dog broke the box.

Figure 4: A sample of the AMBIG-CHILDWORLD corpus
corresponding to a perceptual context.

from the GEOQUERY corpus was paired with a set of MRs
that formed a window in the sequence centered at the sen-
tence’s correct base MR. The width of the window in either
direction from the base MR was randomly chosen uniformly
between 0 and β (another parameter). Since the window is
around the correct MR, this ensures that there will always
be a correct meaning for each sentence in its set of possible
MRs.

By varying the parameters α and β, we generated three
levels of ambiguity, which we call levels 1, 2 and 3. In
level 1, both parameters were set to 1 and this resulted in
training data that on average has 24.8% sentences associ-
ated with only one MR, 50.1% with two and 25.1% with
three MRs. In level 2, both parameters were set to 2 and this
resulted in an average of 11.2% sentences associated with
one MR, 22.3% with two, 33.7% with three, 22% with four
and 10.8% with five MRs. Finally, in level 3, both param-
eters were set to 3 and there were on average 6% sentences
associated with only one MR, 12.5% with two, 19.4% with
three, 25.9% with four, 18.4% with five, 11.8% with six and
6% with seven MRs.

Ambig-ChildWorld Corpus
Although the AMBIG-GEOQUERY corpus uses real-world
NL sentences and MRs, it does not model the ambiguities
realistically because the MRs associated with a sentence
may have nothing in common, but in a real-world percep-
tual context, the potential candidate meanings for a sen-
tence will usually be related. Hence, we created another
corpus, AMBIG-CHILDWORLD, which models ambiguities
more realistically. It tries to mimic the type of language data
that would be available to a child while learning a language.

We first constructed a synchronous context-free grammar
(Aho & Ullman 1972) to simultaneously generate simple NL
sentences and their correct MRs which are in predicate logic
but without quantification. The synchronous grammar re-
lates some simple NL verbs to logic predicates and some
simple NL nouns (namely people, animals and things) to the
arguments of those predicates. There are 15 verbs and 37
nouns in the grammar. It can also generate a few complex
sentences. The corpus is generated to model occasional lan-
guage commentary on a series of perceptual contexts. A
perceptual context is modelled like a collection of events
happening in a room involving a few people, animals and
things. The next perceptual context will involve different



people, animals and things.
The data corresponding to a perceptual context was cre-

ated in the following manner. First, a random subset of the
synchronous grammar was extracted. Since people, animals
and things are part of the grammar, this process selects ran-
dom subsets of them as well. Next, a random sequence of
NL sentences and their correct MRs was generated using this
subset of the synchronous grammar, but only a few of the
NL sentences were retained. These were chosen in such a
way that the number of skipped sentences between a retained
sentence and the next retained sentence in the sequence was
randomly chosen uniformly between 0 and α, where α is a
parameter.5 Retaining only a few sentences models the fact
that only a few events happening in the room will receive NL
commentary. Next, each NL sentence was associated with a
set of MRs which form a window in the sequence centered
at the sentence’s correct MR. The width of the window in
either direction of the MR was again randomly chosen uni-
formly between 0 and β. This models the fact that the sen-
tence might be referring to one of the multiple events that
were happening while the sentence was being spoken.

The process of generating data then continues with a dif-
ferent subset of the grammar representing a different per-
ceptual context. Since the MRs generated from a perceptual
context will involve the same people, animals and things,
they will usually be related, thus modelling ambiguities
more realistically. From each perceptual context, 5 to 10
NL sentences with their associated MR sets were created. A
sample of the AMBIG-CHILDWORLD corpus corresponding
to one perceptual context is shown in figure 4. For illustra-
tion, the correct NL–MR pairs are shown with solid lines
and the remaining pairs with dotted lines. In this corpus
there were on average 5.47 words in a sentence.

Three levels of ambiguity were created for this corpus by
varying the parameters α and β similar to the way in which
the three levels of ambiguity for the AMBIG-GEOQUERY

corpus were created. The distributions of the number of
MRs associated with NL sentences in the three levels of
this corpus are also similar to the distributions in the corre-
sponding levels of the AMBIG-GEOQUERY corpus. On the
two corpora, the first step of KRISPER’s training algorithm,
which removes easily resolvable ambiguities, removed on
average 8% NL–MR pairs for level 1, 3.2% pairs for level 2
and 1.3% pairs for level 3.

Methodology

KRISPER was evaluated using standard 10-fold cross vali-
dation. For the AMBIG-GEOQUERY corpus, the original un-
ambiguous GEOQUERY corpus was divided into ten equal
parts. For each fold, one part was used for testing the accu-
racy of the learned semantic parser and the remaining nine
parts were used to construct the ambiguous training data
by the method described in the previous subsection. Since
AMBIG-CHILDWORLD is artificially created, there was no
scarcity of training data, hence the training data for each
fold was generated separately. The testing data for each fold

5It plays the same role here as in the construction of the
AMBIG-GEOQUERY corpus.
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Figure 5: Learning curves for KRISPER on the AMBIG-
GEOQUERY corpus with various levels of ambiguities.

was also generated separately using the entire synchronous
grammar, but with no ambiguity added.

There are some constants in the GEOQUERY domain, like
state and city names, which appear in the NL sentences as
well as in their corresponding MRs. This information is nor-
mally exploited when training KRISP, but if it is exploited in
the obfuscated data then the introduced ambiguities can of-
ten be trivially resolved because most of the time only one
MR out of the possible candidate MRs will have the con-
stants which are present in the associated sentence. There-
fore, we prevented KRISPER from exploiting such match-
ing constants, making the learning task even harder because
the parser now has to learn the meanings of the constants
as well (which is analogous to learning the names of spe-
cific items in the world). This is also true with the AMBIG-
CHILDWORLD corpus.

The unambiguous GEOQUERY corpus contains 250 NL
queries annotated with their correct MRs (Zelle & Mooney
1996). Since learning accurate parsers from ambiguous data
obviously requires more examples than when using unam-
biguous data, we also tried artificially increasing the size
of the AMBIG-GEOQUERY training set by replicating exam-
ples in the training set after changing their constants to other
constants of the same type (e.g. changing a state name to
another state name). The other constants were always cho-
sen from within the training corpus being replicated. In our
experiments, the corpus was replicated two, three and four
times for each of the three levels of ambiguities. We also cre-
ated the training data for the AMBIG-CHILDWORLD corpus
for each ambiguity level in the same four sizes: each fold
containing 225, 450, 675 and 900 examples. The testing
corpus was same for all the sizes, each fold containing 25
examples.

For higher levels of ambiguity when the training size is
large, the number of NL–MR pairs generated in the first it-
eration of KRISPER’s training algorithm becomes very large.
To save running time, we subsample the training data in the
first iteration to result in size of around 500 NL–MR pairs
per sample. The subsampling is not done in the subsequent
iterations though. In our experiments, KRISPER’s training
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Figure 6: Learning curves for KRISPER on the AMBIG-
CHILDWORLD corpus with various levels of ambiguities.

algorithm did not require more than six iterations to con-
verge.

Performance of semantic parsing was measured in terms
of precision (the percentage of generated MRs that were cor-
rect) and recall (the percentage of all sentences for which
correct MRs were obtained). For AMBIG-GEOQUERY cor-
pus, an output MR is considered correct if the resulting
query retrieves the same answer as the correct MR when
submitted to the database, and for AMBIG-CHILDWORLD

corpus, an output MR is considered correct if it exactly
matches the correct MR.

Since KRISPER assigns confidences to the MRs it outputs,
an entire range of the precision-recall trade-off can be ob-
tained by varying the confidence threshold for accepting a
parse. We present the results in the form of learning curves
for the best F-measure (harmonic mean of precision and re-
call) across the precision-recall tradeoff.

Results and Discussion

Figure 5 shows the results obtained by training KRISPER on
the AMBIG-GEOQUERY training data with ambiguity levels
1, 2 and 3. The results obtained when the training data is
unambiguous are also shown for comparison. When smaller
number of training examples are given, the performance
on ambiguous training data for all the levels is worse than
the performance on unambiguous training data. But as the
amount of ambiguous training data is increased, despite the
weak form of supervision, KRISPER starts to learn as ac-
curate a parser as with the same amount of unambiguous
training data. The learning curve for level 3 shows a large
performance gain but it has not yet converged.

Figure 6 shows the results obtained when training
KRISPER on the AMBIG-CHILDWORLD data with the three
ambiguity levels. The results for unambiguous training are
also shown for comparison. As the training-set size is in-
creased, KRISPER is able to overcome the ambiguities and
learn almost as accurate a semantic parser as with no ambi-
guity on this corpus as well. Since weaker ambiguous super-
vision is cheaper to obtain than unambiguous supervision,
it is reasonable to expect availability of higher amounts of

ambiguous training data than unambiguous training data in
practice.

Although artificially-constructed ambiguous training data
was used in our experiments, the results indicate a promis-
ing potential for using KRISPER to learn language semantics
from real-world ambiguous training data.

Conclusions
We have presented a method for learning a semantic parser
when the available training data is ambiguous. Ambiguous
supervision of this form is more representative of a “nat-
ural” training environment for a language-learning system.
Our method learns from ambiguous data by iteratively re-
training an existing learning system that utilizes unambigu-
ous training data. Experimental results on two corpora in
which ambiguities were artificially introduced demonstrate
that our method is able to learn accurate semantic parsers
even when supervision is ambiguous. In the future, we plan
to acquire real-world corpora with natural ambiguities and
test our method on them.
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