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Abstract

A new inductive learning system, Lab (Learning for
ABduction), is presented which acquires abductive
rules from a set of training examples. The goal is
to �nd a small knowledge base which, when used ab-
ductively, diagnoses the training examples correctly
and generalizes well to unseen examples. This con-
trasts with past systems that inductively learn rules
that are used deductively. Each training example is
associated with potentially multiple categories (disor-
ders), instead of one as with typical learning systems.
Lab uses a simple hill-climbing algorithm to e�ciently
build a rule base for a set-covering abductive system.
Lab has been experimentally evaluated and compared
to other learning systems and an expert knowledge
base in the domain of diagnosing brain damage due to
stroke.

Introduction

Most work in symbolic concept acquisition assumes
a deductive model of classi�cation in which an ex-
ample is a member of a concept if it satis�es a log-
ical speci�cation represented in disjunctive normal
form (DNF) (Michalski and Chilausky, 1980), a de-
cision tree (Quinlan, 1986), or a set of Horn clauses
(Quinlan, 1990). However, recent research in diag-
nosis, plan recognition, object recognition, and other
areas of AI has found that abduction, �nding a set
of assumptions that imply or explain a set of obser-
vations, is frequently a more appropriate and useful
mode of reasoning (Charniak and McDermott, 1985;
Levesque, 1989). This paper concerns inducing from
examples a knowledge base that is suitable for abduc-
tive reasoning.
We focus on abductive diagnosis using the model

of (Peng and Reggia, 1990). Given a set of cases
each consisting of a list of symptoms and one or more
expert-diagnosed disorders, our system, Lab (Learning
for ABduction), learns a set of disorder ! symptom

rules suitable for abductive diagnosis, as opposed to
traditional symptoms ! disorder rules suitable for
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deductive diagnosis. Studies of human diagnosticians
have demonstrated their use of abductive reasoning
(Elstein et al., 1978). For example, doctors know the
causes behind a patients' symptoms and when a new
case is seen, they can work \backwards" given the
symptoms to hypothesize the disease or diseases which
are present. Abductive methods have proven useful
in applications such as diagnosing brain damage due
to stroke (Tuhrim et al., 1991) and identifying red-cell
antibodies in blood (Josephson et al., 1987).
Abductive methods are particularly useful in do-

mains such as these, where multiple faults or disorders
are fairly common. Most inductive work on diagno-
sis assumes there is a single disorder (classi�cation)
for each example. One can use standard methods to
learn a separate concept for each disorder that inde-
pendently predicts its presence or absence; however,
the e�ectiveness of this technique for multiple-disorder
diagnosis has not been demonstrated. By �nding the
smallest set of disorders that globally account for all
of the symptoms, abductive methods may be more ap-
propriate for such problems.

Background on Abductive Diagnosis

Parsimonious Covering

Abduction is informally de�ned as �nding the best ex-
planation for a set of observations, or inferring cause
from e�ect. A standard logical de�nition of an ab-
ductive explanation is a consistent set of assumptions
which, together with background knowledge, entails a
set of observations (Charniak and McDermott, 1985).
Our method for performing abduction is the set-

covering approach presented in (Peng and Reggia,
1990). Although a simple, propositional model, it is
capable of solving many real-world problems. In addi-
tion, it is no more restrictive than most inductive learn-
ing systems, which use discrete-valued feature vectors.
Some de�nitions from their work are needed in what
follows.
A diagnostic problem P is a four-tuple (D;M;C;M+)
where:

� D is a �nite, non-empty set of objects, called disor-
ders;



� M is a �nite, non-empty set of objects, called man-
ifestations;

� C � D�M is a causation relation, where (d;m) 2 C
means d may cause m; and

� M+ � M is the subset of M which has been ob-
served.

V � D is called a cover or diagnosis of M+ if for
each m 2 M+, there is a d 2 V such that (d;m) 2
C. A cover V is said to be minimum if its cardinality
is the smallest among all covers. A cover of M+ is
said to be minimal if none of its proper subsets are
covers; otherwise, it is non-minimal. The Peng and
Reggia model is equivalent to logical abduction with
a simple propositional domain theory composed of the
rules fd ! m j (d;m) 2 Cg (Ng, 1992). We will also
write the elements of C as rules of the form d ! m.
Therefore, C can be viewed as the knowledge base or
domain theory for abductive diagnosis.
For the abductive portion of our algorithm, we use

the Bipartite algorithm of (Peng and Reggia, 1990),
which returns all minimal diagnoses. One immediate
problem is the typically large number of diagnoses gen-
erated. Thus, following Occam's razor, we �rst elimi-
nate all but the minimumcovers and select one of them
at random as the system diagnosis. The diagnosis of
an experienced diagnostician is the correct diagnosis.

Evaluating Accuracy

We would like to have a quantitative measure of the
accuracy of the system diagnosis. In the usual task, as-
signing an example to a single category, the accuracy
is just the percentage of cases which are correctly clas-
si�ed. Here, we must extend this measure since each
case is a positive or negative example for many disor-
ders. Let N be the total number of disorders, C+ the
number of disorders in the correct diagnosis, and C�

the number of disorders not in the correct diagnosis,
i.e., N � C+. Likewise, let T+ (True Positives) be the
number of disorders in the correct diagnosis that are
also in the system diagnosis, and T� (True Negatives)
be the number of disorders not in the correct diagnosis
and not in the system diagnosis. Standard accuracy
for one example when multiple diagnoses are present
is de�ned as (T+ + T�)=N .
A second evaluationmethod is intersection accuracy.

Intuitively, this is the size of the intersection between
the correct and system diagnoses, as compared to the
size of the diagnoses themselves. It is formally de-
�ned as (T+=C+ + T+=S)=2, where S is the number
of disorders in the system diagnosis. Third, sensitiv-
ity is de�ned by T+=C+, and measures accuracy over
the disorders actually present, an important measure
in diagnosis. Sensitivity is also called recall by (Swets,
1969) and others, who also de�ne precision as T+=S.
Note then that intersection accuracy is the average of
precision and recall. A fourth measure, speci�city, de-
�ned as T�=C�, measures the accuracy over disorders

not present. Sensitivity, speci�city, and standard ac-
curacy are discussed in (Kulikowski and Weiss, 1991).
Finally, the accuracy of a rule base over a set of ex-
amples can be computed by averaging the appropriate
score over all examples.
In a typical diagnosis, where the number of potential

disorders is much greater than the number of disorders
actually present (N >> C+), it is possible to get very
high standard accuracy, and perfect speci�city, by sim-
ply assuming that all cases have no disorders. Also, it
is possible to get perfect sensitivity by assuming that
all cases have all disorders. Intersection accuracy is a
good measure that avoids these extremes.

Problem De�nition and Algorithm

The Learning for Abduction Problem

The basic idea of learning for abduction is to �nd a
small knowledge base that, when used abductively, cor-
rectly diagnoses a set of training cases. Under the Peng
and Reggia model, this may be more formally de�ned
as follows:
Given:

� D, a �nite, non-empty set of potential disorders,

� M , a �nite, non-empty set of potential manifesta-
tions, and

� E, a �nite set of training examples, where the ith
example, Ei, consists of a set, M

+

i
�M , of manifes-

tations and a set, D+

i
� D, of disorders (the correct

diagnosis).

Find:

The C � D �M , such that the intersection accuracy
of C over E is maximized.
The desire for a minimum causation relation repre-

sents the normal inductive bias of simplicity (Occam's
Razor). Note we do not aim for 100% accuracy, be-
cause in some cases this is impossible, as we will discuss
later. Also, we maximize intersection, not standard ac-
curacy, for the reasons mentioned earlier.

Lab Algorithm

We conjecture that the learning for abduction prob-
lem as stated above is intractable. Therefore, we at-
tempt to maximize accuracy by using a hill-climbing
algorithm, outlined in Figure 1. Note that the rules
in C always have a single manifestation rather than
a conjunction of them. The �rst step (after initial-
izing C) adds appropriate rules for examples with
one disorder. If Ei is an example with D+

i
= fdg

and M+

i
= fm1; : : : ;mng, then appropriate rules are

d! m1; : : : ; d! mn. These rules must be in C if M+

i

is to be correctly diagnosed while including a rule for
each manifestation. Although in some cases this may
cause incorrect diagnoses for other examples, this was
not a signi�cant problem in practice. The second step
extracts all possible rules from the input examples by



Set C = ;
For all examples with jD+

i
j = 1, add the appropriate

rules to C
Find all potential rules, Rules, from E
Compute the intersection accuracy, Acc, of C over E
Repeat the following, until Acc decreases, reaches
100%, or there are no more rules:
Initialize bestrule = a random r 2 Rules
For each R 2 Rules,

Set C0 = C [ fRg
Compute the accuracy of C0 over E
If the accuracy of C0 is greater than Acc then
Set Acc = accuracy of C0 and bestrule = R

If Acc increased or remained the same, then
Set C = C [ fbestruleg
Set Rules =

Rules � bestrule � relatedrules(bestrule)
Else quit and return C.

Figure 1: Lab Algorithm

adding each unique pair f(d;m) j d 2 D+

i
, m 2 M+

i
g

from each example, Ei, to Rules.
Next, the main loop is entered and rules are incre-

mentally added to C until the intersection accuracy of
the rule base decreases, 100% intersection accuracy is
reached, or Rules is emptied. At each iteration of the
loop, the accuracy of a rule base C0 is measured. For
each manifestation set, Bipartite is run using C0 and
the resulting minimum diagnoses are compared to the
correct diagnosis. Note that the abduction task itself
is a black box as far as Lab is concerned. Three types
of accuracy are computed: intersection accuracy, stan-
dard accuracy, and sensitivity. To simulate the random
selection of one minimum cover, the average accuracy
of all minimum covers is determined. The best rule
base is chosen by lexicographically comparing the dif-
ferent accuracy measures. Comparisons are �rst made
using intersection accuracy, then standard accuracy,
then sensitivity.
The remainder of the algorithm is straightforward.

If all rule bases have equal accuracy, a rule is picked at
random. The best rule is added to C and removed from
Rules, along with any related rules. A rule, d! m, is
related to another, d0 ! m0, if the two rules have the
same manifestation (m = m0) and d and m appear
only in examples in which d0 and m0 also appear. By
removing related rules, we enforce a bias towards a
minimum rule base and help maintain as high an ac-
curacy as possible. The computational complexity of
Lab can be shown to be O(N jDj2jM j2), where N is
the number of examples in E (Thompson, 1993).

Example of Lab

Let us illustrate the workings of Lab with an example.
Consider the following example set, E:

E1: D1 =ftyphoid, flug; M1 =fsniffles,
cough, headache, feverg

E2: D2 =fallergy, coldg; M2 =faches, fever,

sleepyg

E3: D3 =fcoldg; M3 =faches, feverg .

First, we see that E3 has only one disorder, so the
appropriate rules are added to C, so that C =
fcold!aches, cold!feverg. The intersection ac-
curacy of this rule base is 0.583, computed as fol-
lows. For all three examples, the cover returned by
Bipartite is fcoldg. Thus, the intersection accu-
racy is (0 + (1=1 + 1=2)=2 + (1=1 + 1=1)=2)=3. Next,
all possible remaining rules are formed and added to
Rules. Then the main loop is enterered, which tests
the result of adding each element of Rules to C.
Adding the rule typhoid!sniffles to C would re-
sult in the answer fcold, typhoidg for E1 and the
answer fcoldg for E2 and E3. Thus, the intersec-
tion accuracy of C with this rule added is 0:75. Al-
though there are other rule bases with this same ac-
curacy, no others surpass this accuracy, so this be-
comes the starting C for the second iteration. In ad-
dition, our set of Rules decreases, because the best
rule typhoid!sniffles is removed. flu!sniffles

is also removed, which is the only related rule of
typhoid!sniffles. In the next iteration, the rule
flu!cough, when added to C, results in the high-
est intersection accuracy of 0.861, because the answer
for E1 is now ftyphoid, flu, coldg. So related rule
typhoid!cough is also removed from Rules. The rule
added in the next iteration is allergy!sleepy, and
related rule cold!sleepy is removed. Finally, the
rule typhoid!fever is added, which results in 100%
intersection accuracy, and we are done. The �nal rule
base, C, is ftyphoid!fever, allergy!sleepy,

flu!cough, typhoid!sniffles, cold!fever,

cold!achesg. Note that no rule is associated with the
manifestation headache. This is because we reached
100% accuracy before adding a rule for all symptoms,
and is in keeping with our goal of learning the smallest
possible rule base.

Experimental Evaluation

Method

Our hypothesis was that learning for abduction is bet-
ter than learning for deduction in the case of multiple-
disorder diagnosis. To test this hypothesis, we used
actual patient data from the domain of diagnosing
brain damage due to stroke. We used �fty of the
patient cases discussed in (Tuhrim et al., 1991).1 In
this database, there are twenty-�ve di�erent brain ar-
eas which can be damaged, e�ecting the presence of
thirty-seven symptom types, each with an average of
four values, for a total of 155 attribute-value pairs.

1We were only able to obtain �fty out of the 100 cases
from the authors of the original study.



The �fty cases have an average of 8.56 manifestations
and 1.96 disorders each. In addition, we obtained the
accompanying abductive knowledge base generated by
an expert, which consists of 648 rules.
We ran our experiments with Lab, ID3 (Quin-

lan, 1986), PFoil (Mooney, to appear), and a neural
network using standard backpropagation (Rumelhart
et al., 1986) with one hidden layer. The neural network
used has one output bit per disorder, and the num-
ber of hidden units is 10% of the number of disorders
plus the number of manifestations. PFoil is a propo-
sitional version of Foil (Quinlan, 1990) which learns
DNF rules. The primary simpli�cation of PFoil com-
pared to Foil is that it only needs to deal with �xed
examples rather than the expanding tuples of Foil.
ID3 and PFoil are typically used for single category

tasks. Therefore, an interface was built for both sys-
tems to allow them to simulate the multiple disorder
diagnosis of Lab. One decision tree or DNF form is
learned for each disorder. Each example Ei 2 E is
given to the learner as a positive example if the disor-
der is present in D+

i
, otherwise it is given as a negative

example. Thus, a forest of trees or collection of DNF
forms is built.
In order to compare the performance of Lab to

ID3, PFoil, and backpropagation, learning curves
were generated for the patient data. Each system was
trained in batch fashion on increasingly larger frac-
tions of a �xed training set and repeatedly tested on
the same disjoint test set, in this case consisting of
ten examples. At each point, the following statistics
were gathered for both the training and the testing
sets: standard accuracy, intersection accuracy, sensi-
tivity, and speci�city. Also, training time, testing time
and concept complexity were measured.
The concept complexity of Lab is simply the num-

ber of rules in the �nal rule base, C. The complexity
of the trees returned by ID3 is the number of leaves.
This is then summed over the tree formed for each dis-
order. For PFoil, the concept complexity is the sum
of the lengths of each disjunct, summed again over the
DNF for each disorder. Although rule, literal, and leaf
counts are not directly comparable, they provide a rea-
sonable measure of relative complexity. There is no
acceptable way to compare the complexity of concepts
learned by a network to these other methods, there-
fore no measures of concept complexity were made for
backpropagation.
All of the results were averaged over 20 trials, each

with a di�erent randomly selected training and test
set. The results were statistically evaluated using a
two-tailed, paired t-test. For each training set size,
Lab was compared to each of ID3, PFoil, and back-
propagation to determine if the di�erences in the var-
ious accuracy measures, train time, and and concept
complexity were statistically signi�cant (p � 0:05). If
speci�c di�erences are not mentioned, they should be
assumed to be statistically insigni�cant.

Results

Two of the resulting curves are shown in Figure 2. The
left side of the �gure shows the results for intersection
accuracy on the testing set. Lab performs signi�cantly
better than ID3 through 15 examples, than backpropa-
gation through 20 examples, and than PFoil through
30 examples. Also, Lab performs signi�cantly better
than the expert knowledge base after only 15 training
examples, while it takes ID3 and backpropagation 25
examples to reach this level, and PFoil 35 examples
to reach this level.
On the other hand, Lab su�ers on standard accu-

racy for the testing set, as is seen on the right side
of the �gure. However, the di�erences between Lab

and ID3 are only statistically signi�cant for 20, 25, 35,
and 40 examples. When comparing Lab to PFoil, it
is seen that PFoil performs signi�cantly better than
Lab only at 35 and 40 examples. Also, Lab performs
signi�cantly worse than backpropagation for all train-
ing set sizes. All the systems perform signi�cantly bet-
ter than the expert knowledge base starting at 20 (or
fewer) training examples.
The results for sensitivity, while not shown, are also

promising. Lab performs signi�cantly better than ID3
for all training set sizes except 35, where the di�er-
ence is not signi�cant. Lab does, however, perform
signi�cantly better than PFoil and backpropagation
throughout. Also, Lab performs signi�cantly better
than the expert knowledge base starting at ten exam-
ples, ID3 does so starting at 15 examples, and PFoil
and backpropagation starting at 20 examples. For
speci�city, also not shown, ID3 and PFoil perform
signi�cantly better than Lab starting at ten training
examples. Backpropagation performs signi�cantly bet-
ter than Lab starting at �ve training examples.
Another di�erence in the results between the sys-

tems is in concept complexity. Lab learns a signi�-
cantly more simple rule base than the trees built by
ID3, but is signi�cantly more complicated than the
concepts learned by PFoil.
Finally, for Lab the training set performance for

standard accuracy starts high and stays well above
98%. On the other hand, intersection accuracy and
sensitivity dip to 90%, while speci�city stays above
99%. The other systems reach a training set accuracy
of 100%.

Discussion

Our intuition was that obtaining a high intersection
accuracy would be easier for Lab than for PFoil or
ID3. The results partially support this, in that Lab
performs signi�cantly better than all of the systems at
�rst, then the di�erence becomes insigni�cant as the
number of training examples increases. However, if a
(less conservative) one-tailed, paired t-test is used in-
stead of two-tailed, Lab's performance is signi�cantly
better than ID3 through 20 examples, and again at 30
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Figure 2: Experimental Results on the Test Set

examples, as compared to only through 15 examples
with the two-tailed test.
Also, Lab does not perform quite as well on stan-

dard accuracy compared to the other systems. How-
ever, this measure is not very meaningful, considering
we get 92% accuracy just by saying that all patients
have no brain damage. Finally, the sensitivity results
were very encouraging, and again if we use a one-tailed,
paired t-test, Lab is signi�cantly better than ID3 for
all training set sizes. Still, our results were somewhat
weaker than we would have hoped. There are several
possible explanations for this. First, while ID3, back-
propagation, and PFoil2 get 100% performance on all
measures on the training data, Lab does not. One pos-
sible reason is that the hill-climbing algorithm can run
into local maxima.
Another reason for the di�culty in converging on

the training data is that the data contain some con-
icting examples from an abductive point of view. In
other words, it is impossible to build an abductive rule
base which will correctly diagnose all examples. One
instance of these conicts occur when there is an ex-
ample, Ei, such that jD

+

i
j � 2 and allm 2M+

i
appear

in other examples that contain only one disorder. Any
attempt at an accurate abductive rule base will either
hypothesize extra disorders for the examples with one
disorder, or it will hypothesize a subset of the correct
disorders for Ei. There are two examples with this
problem in our patient data. In addition, there are
other, more complicated example interactions which
make it impossible to learn a completely accurate ab-
ductive rule base. This might be addressed in the fu-
ture by learning more complex rules.

2Except at one data point.

Lab produces diagnoses during testing which in-
clude more disorders than are present in the correct
diagnosis, and thus it performs well on sensitivity. On
the other hand, ID3's answers include fewer disorders
than the correct diagnosis, and thus performs well on
speci�city. These results are further indication of why
ID3 performs better than Lab on standard accuracy.
As mentioned previously, each example has fewer dis-
orders than the total number possible (D+

i
<< D).

Therefore, since ID3 is correctly predicting which dis-
orders are not present more accurately than Lab, it is
not surprising that it is better on standard accuracy.
However, it should be emphasized that sensitivity is
important in a diagnostic domain, where determining
all the diseases present, and perhaps additional ones,
is better than leaving some out.
Finally, we turn to concept complexity. The expert

knowledge base contains 648 rules versus 111 for Lab
with 40 training examples, and its performance is worse
than the rules learned by Lab. There is a clear advan-
tage, in this case, in learning rules as opposed to using
expert advice. In addition, the abductive rule base is
arguably easier to comprehend than either the deci-
sion tree learned by ID3 or the disjuncts returned by
PFoil, since the rules are in the causal direction. See
(Thompson, 1993) for an example rule base learned by
Lab.

Related Work

Since no other system learns abductive knowledge
bases, no direct comparisons are possible. However,
there are many systems which learn to perform diag-
nosis, and many abductive reasoning methods. We
have already mentioned systems which learn deduc-



tive rules, both in the introduction and in our com-
parisons with ID3 and PFoil. One other method that
seems particularly well-suited to diagnosis is Bayesian
Networks (Pearl, 1988). There have been several at-
tempts to learn Bayesian Networks (Cooper and Her-
skovits, 1992; Geiger et al., 1990), but they have not
been tested in realistic diagnostic domains.

Future Work
There are many opportunities for future work. First,
we believe training accuracy could be improved, even
given the presence of inconsistent examples. Several
modi�cations are possible. First, di�erent or addi-
tional heuristics could be used to improve the hill-
climbing search. Second, backtracking or beam search
could be used to increase training set accuracy.
A second opportunity for improvement is to reduce

the number of diagnoses returned to only one during
both training and testing. One way this could be done
is by adding probability to abduction, as in (Peng and
Reggia, 1990). Third, there is room to improve the
e�ciency of the system. The average training time
with 40 examples is 230 seconds, versus 4 to 5 seconds
for ID3 and PFoil.
Finally, experiments in other domains are desirable;

however we know of no other existing data sets for
multiple-disorder diagnosis. Also, the method needs
to be extended to produce more complex abductive
knowledge bases that include causal chaining (Peng
and Reggia, 1990), rules with multiple antecedents, in-
compatible disorders, and predicate logic (Ng, 1992).

Conclusion
Abduction is an increasingly popular approach to
multiple-disorder diagnosis. However, the problem of
automatically learning abductive rule bases from train-
ing examples has not previously been addressed. This
paper has presented a method for inducing a set of
disorder ! manifestation rules that can be used
abductively to diagnose a set of examples. Experi-
ments on a real medical problem indicate that this
method produces a more accurate abductive knowl-
edge base than one assembled by domain experts, and,
according to at least some important metrics, more ac-
curate than \deductive" concepts learned by systems
such as ID3, Foil, and backpropagation.
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