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Abstract

INDUCTIVE LEARNING FOR
ABDUCTIVE DIAGNOSIS

by

CYNTHIA ANN THOMPSON, B.S.

SUPERVISING PROFESSOR: Raymond J. Mooney

A new system for learning by induction, called LAB, is presented.
LAB (Learning for ABduction) learns abductive rules based on a set of train-
ing examples. Our goal is to find a small knowledge base which, when used
abductively, diagnoses the training examples correctly, in addition to gener-
alizing well to unseen examples. This is in contrast to past systems, which
inductively learn rules which are used deductively. Abduction is particularly
well suited to diagnosis, in which we are given a set of symptoms (manifesta-
tions) and we want our output to be a set of disorders which explain why the
manifestations are present. Each training example is associated with poten-
tially multiple categories, instead of one, which is the case with typical learning
systems. Building the knowledge base requires a choice between multiple pos-
sibilities, and the number of possibilities grows exponentially with the number

of training examples. One method of choosing the best knowledge base is de-

v



scribed and implemented. The final system is experimentally evaluated, using
data from the domain of diagnosing brain damage due to stroke. It is compared
to other learning systems and a knowledge base produced by an expert. The
results are promising: the rule base learned is simpler than the expert knowl-
edge base and rules learned by one of the other systems, and the accuracy of
the learned rule base in predicting which areas are damaged is better than all

the other systems as well as the expert knowledge base.



Table of Contents

Acknowledgments i1
Abstract v
Table of Contents vi
List of Tables viii
List of Figures ix
1. Introduction 1
2. Background on Abductive Diagnosis 5
2.1 Parsimonious Covering . . . . . . . . . . .. ... 5
2.2 Example of BIPARTITE . . . . . . . . . . . . ... ... ... 8
2.3 Evaluating Accuracy . . . . . . .. ... 10
3. Problem Definition and Algorithm 13
3.1 The Learning for Abduction Problem . . . . . . ... ... . .. 13
3.2 LAB Algorithm . . . . . .. ... o 14
3.3 Exampleof LAB. . . . . . . . .. ... ... 16
3.4 Computational Complexity Evaluation . . . .. ... .. .. .. 18
4. Experimental Evaluation 20
4.1 Method . . . .. .. . 20

V1



4.2 Results . .

4.3 Discussion

5. Related Work

6. Future Work

7. Conclusion

A. Abbreviations

B. Sample Rules

Bibliography
Vita

Vil

36

39

42

44

45

49



List of Tables

2.1 BIPARTITE trace . . . . . o v v v v i vt i i i st s,

Viil



2.1

2.2

3.1

4.1

4.2

4.3

4.4

4.5

4.6

List of Figures

BIPARTITE Algorithm . . . . . ... ... ... ... .. .... 7
Accuracy Measures Example . . . . . . ... ... ... ... .. 11
LAB Algorithm . . . . ... ..o oo 15
Intersection Accuracy and Standard Accuracy . . .. .. .. .. 23
Training Accuracy . . . . . . . oo oo e 25
Testing Sensitivity and Specificity . . . . . . .. ... ... .. 26
Train Time and Concept Complexity . . . . . . ... ... ... 27
Number of Diagnoses Returned . . . . . . . .. ... .. .. .. 28
Example Concepts Learned . . . . . . ... ... ... ..... 34

1X



Chapter 1

Introduction

Intelligent activities often require one to construct explanations of
phenomena. This paper views these explanatory processes as abduction. The
philosopher C.S. Peirce (Peirce, 1958) defined abduction as the process of find-
ing the best explanation for a set of observations; or inferring cause from effect.
A more formal definition as it is used within artificial intelligence (AI) defines
an abductive explanation as a consistent set of assumptions which, together
with background knowledge, logically entails a set of observations (Charniak
and McDermott, 1985). There are many situations in which abduction is used
in everyday life. Physicians make inferences to conclude which diseases a pa-
tient may have based on the symptoms present and their knowledge of disease-
symptom interaction. Programmers make inferences to conclude what the basic
errors are in a program based on the program’s behavior and their knowledge
of the problem at hand. Similar types of inferences are used in other domains,
such as theory formation, machine vision, legal reasoning, plan interpretation,
learning, and natural language understanding. In all of these domains, the
inferences made can be viewed as abduction. We present a model which will

learn rules which will be used when reasoning abductively.

Diagnostic inference has been more well formalized and more thor-
oughly studied than some of these other domains. Thus, we can more easily use

it as a basis for our work, and focus on the diagnostic uses of abduction. Diag-
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nosis is the task of reasoning from a set of manifestations (findings, symptoms,
observations) and potential disorders (causes, diseases) to a diagnosis (set of
disorders) that explains why the manifestations are present. Diagnosis has been
traditionally viewed from a deductive angle. Rules of the form manifestations
— disorder are used to infer from observations which disorders are present,
where “—7 indicates logical implication. Additional information, such as in-
formation about probability, is often attached to the implication. In real life,
however, disorders cause manifestations; manifestations do not imply disorders.

Thus, deductive rules reverse the direction of the causal link.

Instead of using the deductive angle, diagnosis can be performed from
an abductive point of view. Abduction respects the direction of the causal
chain and relies on a separate evaluation of potential hypotheses to choose the
most plausible diagnosis. Many researchers have studied human diagnosticians
and their use of abduction (Elstein et al., 1978; Kassirer, 1978; Rubin, 1975).
For example, doctors know the causes behind a patients’ symptoms. In other
words, they can at least spell out a good approximation of the ways in which
diseases cause symptoms. So when a new patient case is seen, they can work
“backwards” given the symptoms to hypothesize the disease or diseases which
are present. Abductive methods have proven their use in domains such as
diagnosing brain damage due to stroke (Tuhrim et al., 1991) and identifying
red-cell antibodies in blood (Josephson et al., 1987).

The rule bases used in diagnosis are typically large and complex. As
in many other tasks, great savings are often possible by learning these rule bases
instead of hand-coding them using expert knowledge. Also, the hope is that
the learned rule base is more accurate than that laboriously extracted from an

expert. Traditionally, research on symbolic learning for diagnosis has assumed



a deductive model of classification, in contrast to our abductive model. Rules
of the form manifestations — disorder are induced from a training set,
and deduction is used to diagnose future cases. For example, systems such as
ID3 (Quinlan, 1986) learn decision trees (Quinlan, 1986; Breiman et al., 1984),
which can be rewritten as rules of this type (Quinlan, 1987). AQ (Michalksi

et al., 1986) is a second system which learns rules to be used deductively.

While inductive learning for deductive diagnosis is a well-understood
problem, it has several limitations: First, much knowledge familiar to domain
experts is better suited to abductive, not deductive reasoning. For example,
associations between diseases and manifestations in textbooks are presented

in the form “disease X may cause symptoms a,b,c...”.

Second, learning for
deduction has trouble dealing with the case of multiple diagnosis. Most past
research assumes that there is a single disorder per example, and that all dis-
orders are disjoint. This is not the case in many real world diagnostic domains.
Frequently in diagnosis, there is more than one disorder present at a time.
Deduction ignores this, by looking at each disorder disjointly, to determine
whether it is present. This overlooks the fact that a manifestation may have

multiple causes, and that the preferred diagnosis is usually the simplest one

which takes into account all manifestations.

In contrast to the systems which learn deductive rules, no previous
system learns rules which are used abductively to perform classification. We
have built such a system, which we believe has potential in many diagnostic
application areas. This thesis presents and evaluates a method for inducing ab-

ductive rules! from an example set. These rules will be of the form disorder —

'We will often use this term to refer to rules which are to be used in an abductive inference,
and the term abductive rule (or knowledge) base to refer to a set of such rules.



manifestation, and will then be used abductively to diagnose unseen exam-
ples. Given a set of patient cases each consisting of a list of patient symptoms
and one or more diagnosed diseases, the method attempts to learn rules which,
when used abductively, correctly diagnose these cases, and generalize well to
unseen cases. Our method is implemented in a system called LAB (Learning
for ABduction) and has been tested on an existing data set for diagnosing
brain damage due to stroke (Tuhrim et al., 1991). LAB was compared to two
induction algorithms providing traditional deductive classification, one neural
network, and an abductive knowledge base provided by an expert. All com-

parisons produced favorable results.

The remainder of this thesis is organized as follows: Chapter Two
gives some background on abductive diagnosis. Chapter Three presents the
problem of learning for abduction and our algorithm for solving it. Chapter
Four presents experimental results and discussion. Finally, in the last three

chapters, I present related work, future work, and conclusions.



Chapter 2

Background on Abductive Diagnosis

Before we go into the LAB algorithm, some background on abductive
diagnosis is needed. Abduction is informally defined as finding the best expla-
nation for a set of observations, or inferring cause from effect. Several authors
(Pople, 1973; Levesque, 1989; Konolige, 1992; Ng, 1992) have proposed logical
formalizations of abductive reasoning. A generic logical definition of abduction
1s:

Given:

A set T of axioms (the domain theory) and a conjunction O of atoms (the
observations).

Find:

Minimal sets A of atoms (the assumptions) such that AUT = O and AUT is

consistent.

2.1 Parsimonious Covering

Our method for performing abduction on the rules learned by LAB is
the set-covering approach presented in (Peng and Reggia, 1990). Although a
simple, propositional model, it is capable of solving many real world problems.
In addition, its propositional representation is not any more restrictive than
most inductive learning systems, which use discrete-valued feature vectors in

representing examples. Some definitions from their work are needed in what
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follows.

A diagnostic problem P is a four-tuple (D, M,C, M*) where:

e D is a finite, non-empty set of objects, called disorders;

M is a finite, non-empty set of objects, called manifestations;

e C C D x M is a causation relation, where (d, m) € C means d may cause

m; and

M+ C M is the subset of M which has been observed.

V C D is called a cover of M* if for each m € M™, there is a d € V such
that (d,m) € C. Note that when we discuss covers, it will always be in the
context of a diagnostic problem, so that (D, M,C, M%) will either be stated
or obvious from the context. A cover V of M™ is said to be minimum if its
cardinality is the smallest among all covers of M*. A cover V of M is said to
be irredundant (minimal) if none of its proper subsets are also covers of MT;
it is redundant (non-minimal) otherwise. The set causes(m), where m € M,
is the set of disorders which can cause m, and is {d | (d,m) € C}. The Peng
and Reggia model is equivalent to logical abduction without a consistency
check and with a simple propositional domain theory composed of the rules
{d = m|(d,;m) e C} (Ng, 1992). (We will also often write the elements of C
in the format d — m). Therefore, C' can be viewed as the knowledge base or

domain theory for abductive diagnosis.

For the abduction portion of our algorithm, I implemented a Lisp
version of the algorithm BIPARTITE given by (Peng and Reggia, 1990). The
pseudocode for BIPARTITE is given in Figure 2.1. The input is a set of manifes-

tations, M™, and a causation relation, C. The output is a compact representa-



begin BIPARTITE
hypothesis := {0}
For each m € M* do
hypothesis := revise(hypothesis, causes(m))
return hypothesis
end BIPARTITE

revise(G, Hy)
F :=div(G, Hy)
Q = augres(G, Hy)
return F'U res(Q, F')

Figure 2.1: BIPARTITE Algorithm

tion of “the set of all irredundant [minimal] covers of all manifestations known
to be present” (Peng and Reggia, 1990). BIPARTITE works in an incremental
fashion, looking at one manifestation at a time, and incorporating its causes
into the diagnosis so far. The functions div, res and augres perform the fol-
lowing functions. Div, which is compared to a set division operation by Peng
and Reggia, gets all minimal covers which cover both O and O U {m}, where
O is the old manifestation set, and m is the newest manifestation encountered.
Note that covers for only OU{m} may be missed by this operation. The augres
operation is described as an augmented residual of division. The augres result,
@, contains all minimal covers of O U {m} which are non-minimal covers of O.
However, ) might also contain some non-minimal covers of OU{m}. Therefore,
the res operation (described as residual of division) removes these redundant
covers. By combining the results of div and res, all covers of O U {m} can
be constructed from all covers of O and from the disorders in causes(m). See

(Peng and Reggia, 1990) for details on BIPARTITE.



m hypotheses
sniffles (cold V pneumonia V allergy V hay-fever )
fever (cold V pneumonia V (hay-fever A typhoid)
V (allergy A typhoid))
cough ((cold A lung-cancer) V (pneumonia A lung-cancer)

V (cold A emphysema) V (pneumonia A emphysema)

V (cold A typhoid) V (pneumonia A typhoid)

V (allergy A typhoid) V (hay-fever A typhoid))

headache | ((allergy A typhoid) V (pneumonia A emphysema)

V (pneumonia A typhoid) V (pneumonia A lung-cancer)
hay-fever A typhoid A brain-tumor)

hay-fever A typhoid A flu) V (cold A emphysema A flu)
cold A emphysema A brain-tumor)

cold A typhoid A flu) V (cold A typhoid A brain-tumor)
cold A lung-cancer A flu)

cold A lung-cancer A brain-tumor)

cold A emphysema A allergy)

cold A lung-cancer A allergy))

Vi (
Vi (
Vi (
Vi (
Vi (
Vi (
Vi (
v (

Table 2.1: BIPARTITE trace
2.2 Example of BIPARTITE

Let us give an example of the workings of BIPARTITE. Although we
are illustrating BIPARTITE, this is also an example of abduction in general. Say
that we have the following rules in C:
cold—sniffles, pneumonia—sniffles, allergy—sniffles,
hay-fever—sniffles,
cold—fever, pneumonia—fever, typhoid—fever,
emphysema—cough, typhoid—cough, lung-cancer—cough,
pheumonia—headache, allergy—headache, flu—headache,
brain-tumor—headache.

Also, let M* = { sniffles, fever, cough, headache }. Table 2.1 shows
the output of each iteration through the loop, where the manifestations are

shown in the left column. We follow the standard notation of V for or and A



for and. The first iteration returns the hypothesis that either cold, pneumonia,
allergy, or hay-fever is present. There are a total of fourteen distinct diag-

noses after the last iteration.

Thus, the answer returned by BIPARTITE represents all minimal di-
agnoses (covers). These covers could now be analyzed by a diagnostician. One
immediate problem is the large number of explanations generated. As we can
see from the example above, there are typically a large number of minimal
covers of a manifestation set. Thus, following Occam’s razor, we might first
eliminate all but the smallest explanations (the minimum covers). In the exam-
ple above, there are only four minimum covers, compared to fourteen minimal
covers. These are: (allergy A typhoid) V (pneumonia A emphysema) V
(pneumonia A typhoid) V (pneumonia A lung-cancer). Eliminating all
but the minimum covers is one step we decided to take in what follows. This
is mainly a heuristic measure, meant to keep the number of diagnoses as low
as possible. Below, when we discuss covers, answers of BIPARTITE, or diag-
noses, we are referring to this set of minimum covers, unless otherwise specified.
Then, to determine which of the minimum covers is the diagnosis for the pa-
tient, a naive diagnostician could only guess which to use. In what follows, we
will view this as a randomly chosen diagnosis and call it the system diagno-
sis. For example, we could choose (pneumonia A emphysema) as our system
diagnosis from the four possibilities given above. If we wanted to evaluate the
system diagnosis, we could then compare it to the diagnosis of an experienced

diagnostician, which we will call the correct diagnosis.
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2.3 Evaluating Accuracy

We would like to have some numerical measure of the accuracy of
the system diagnosis. One evaluation method is standard accuracy. In stan-
dard classification tasks, where there are only two classes, + or —, indicating
whether the example is a member of the class of interest, it is a simple mat-
ter to compute accuracy: it is just the percentage of cases which are correctly
classified. Therefore, each example is either totally correct or totally incorrect.
Here, we must extend this measure for more than two classes, since each case
is a positive or negative example for many disorders. In the following, C'*
will stand for the number of disorders in the correct diagnosis, and C~ will
stand for the total number of disorders possible minus C*, e.g., the number
of disorders which aren’t in the correct diagnosis. Likewise, Tt (True Pos-
itives) will stand for the number of disorders in the correct diagnosis which
are also in the system diagnosis, and T~ (True Negatives) for the number of
disorders not in the correct diagnosis which are also not in the system diag-
nosis. With this in mind, standard accuracy for one example, when multiple
diagnoses are present is the percentage of the total set of disorders which are
correctly predicted as either present or absent. It is computed by the formula
(Tt +T7)/(Ct 4+ C7). Standard accuracy is illustrated in Figure 2.2, along
with the other accuracy measures described below. The top circle contains the
correct diagnosis: allergy and flu, and the bottom circle contains the system
diagnosis: flu, typhoid, and cold. In this example, we are assuming there
are a 25 different disorders which could be present, so (Ct 4+ C7) = 25, and
T-=23-2=21.

A second evaluation method is intersection accuracy. Intersection ac-

curacy is the percentage of disorders in the correct diagnosis which are correctly



11

Correct Diagnosis

= allergy, flu Standard
R=2 Accuracy=
1+21 = 88
System Diagnosis 25 '
= typhoid, cold, flu
. S=3 Sensitivity =
typhoid 1/2 = 5
=1
cold Specificity =
Intersection Accuracy= 21/23= .913
12+ 1/3 _ 497
N

Figure 2.2: Accuracy Measures Example

predicted, averaged with the percentage of disorders in the system diagnosis
which are correctly predicted. It is computed by the formula (I/R + I/S5)/2,
where R is the number of disorders in the correct diagnosis, S is the number
of disorders in the system diagnosis, and I is the size of the intersection of the

correct diagnosis and the system diagnosis.

Third, we can measure the sensitivity of an answer by computing the
value of the formula 7% /C*. Sensitivity measures accuracy over the disorders
actually present, an important measure in diagnosis. Sensitivity is intuitively
important in the brain damage domain, and indeed in other diagnostic domains.
This is because saying someone is well when they are actually sick can be
harmful to their health, while the opposite mistake, saying they are sick when

they are well, is a less serious error.

A fourth measure, specificity, defined as T~ /C~, measures the accu-
racy over disorders not present, or how successful we are at saying someone is

well when they are well. In Figure 2.2, we see that specificity is higher than
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standard accuracy, since there are 23 (out of 25 total) diseases not present in
the correct diagnosis, and we correctly predicted 21 of them as missing. Most
of these measurements (except intersection accuracy) are discussed in (Ku-
likowski and Weiss, 1991). Finally, when the system diagnosis is derived by
running BIPARTITE with underlying rule base C, we can also define each of
these measures with respect to a rule base C over an example set F, by taking

the average of the measure over the number of examples.

In a typical diagnosis, where the number of possible disorders is much
greater than the number of disorders actually present in a case, it is possible to
get very high standard accuracy, and perfect specificity, just by saying that all
cases have no disorders. Also, it is possible to get perfect sensitivity by saying
that all cases have all disorders. Intersection accuracy is a good measure that

avoids these extremes.



Chapter 3

Problem Definition and Algorithm

3.1 The Learning for Abduction Problem

The basic idea of learning for abduction is to find a small knowledge
base that, when used abductively, correctly diagnoses a set of training cases.
Under the Peng and Reggia model, this may be more formally defined as follows:

Given:

e D, a finite, non-empty set of potential disorders,
e M, a finite, non-empty set of potential manifestations, and

e F. a finite set of training examples, where the ¢th example, E;, consists

of a set, M:" C M, of manifestations and a set, D C D, of disorders.

Find:
The smallest causation relation, C C D x M, such that the intersection accu-

racy of C over E is maximized.

The desire for a minimum causation relation represents the normal
inductive bias of simplicity (Occam’s Razor). Note we do not aim for 100%
accuracy, because in some cases this is impossible, as we will discuss in Se-

cion 4.3.

13
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3.2 LAB Algorithm

We hypothesize that the learning for abduction problem, as it is stated
above, is intractable. Therefore, we attempt to reach the maximum accuracy
by using a hill-climbing algorithm, LAB. The LAB algorithm is outlined in
Figure 3.1. We will call the elements (d,m) € C rules. The algorithm attempts
to maximize, at each step, the accuracy of the current rule base. The first
step (after initializing C') adds to C' appropriate rules for examples with one
disorder. If E; is an example with D = {d} and Mt = {my,...,m,}, then
appropriate rules for E; are (d,m1),...,(d,m,). We know these rules must be
in C, because they are all needed to correctly diagnose M; while including a rule
for all manifestations. The second step extracts all possible rules from the input
examples by simply adding every possible pair {(d,m) | d € Df, m € M}}

from each example, F;, to Rules, without repetitions.

Next, the main loop is entered in which rules are added to C until
the intersection accuracy of the rule base is decreased by adding further rules,
until we have reached 100% intersection accuracy, or until Rules is empty. At
each iteration of the loop, the accuracy of a rule base C’ is measured in the
following manner: For each manifestation set, the BIPARTITE algorithm is run
using C’ as the rule base. (Note that, although we use BIPARTITE as our
abduction mechanism, the abduction task itself is a black box as far as LAB
is concerned.) The minimum diagnoses returned are compared to the correct
diagnosis. Three types of accuracy are computed at this stage: intersection

accuracy, standard accuracy, and sensitivity.

As we discussed earlier, intersection accuracy is a good measure to
attempt to maximize in our domain. Therefore, we sort the rule base, using the

different accuracy measures to do a lexical sort. Comparisons are first made
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Set C =10
For all examples with |Df| = 1, add the appropriate rules to C
Find all potential rules, Rules, from E
Compute the accuracy, Ace, of C over F
Repeat the following, until Ace decreases, reaches 100%, or there are
no more rules:
Initialize rule-to-pick = a random r € Rules
For each R € Rules,
set ' =CU{R}
compute the accuracy of C' over E.
If the accuracy of C’ is greater than Acc then
set Ace to accuracy of C’
set rule-to-pick to R.
If Accincreased or remained the same, then
set C' = C U {rule-to-pick}
set Rules = Rules — {rule-to-pick}
—{related-rules(rule-to-pick)}
else quit and return C'.

Figure 3.1: LAB Algorithm

between the intersection accuracy of the best rule base so far and C’, then,
if these are the same, the comparison is made for standard accuracy, then
sensitivity. To simulate the random selection of one minimum cover, we take
an average of each accuracy measure over all covers returned by BIPARTITE.

See Section 2.3 for a further discussion of the computation of these measures.

The remainder of the algorithm is straightforward. If all rule bases
have equal accuracy, a rule is picked randomly. The best rule is added to C' and
removed from Rules, along with any related rules. A rule, (d,m), is related to
another, (d',m’), if the two rules have the same manifestation (m = m’) and
d and m do not appear together in any examples other than those in which d’

and m’ appear. By removing from Rules the related rules of the best rule, we
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enforce a bias towards a minimum rule base, and help keep the accuracy as high
as possible. If these rules were kept, and we calculated the accuracy of adding
them to C, the accuracy would remain the same as before. This is because they
would generate an additional diagnosis, containing d, for examples in which m
occurs, besides the diagnosis we already had in which d’ appears. Thus, we
have two (or more) equally correct diagnoses for these examples. If no other
rule increases the accuracy (but many keep the accuracy the same), we would
be likely to choose one or more of these related rules to add to C, since we
only quit adding rules when the accuracy decreases. Then it would be harder

to find rules later which would increase the accuracy again.

Finally, the process of adding rules continues until no rules are left,

the accuracy is 100%, or no rule can improve the accuracy of C.

3.3 Example of LaAB
Let us illustrate the workings of LAB with an example. Consider the

following example set, E:

E;1: Disorders: typhoid, flu; Manifestations: sniffles, cough,

headache, fever
Es: Disorders: allergy, cold; Manifestations: aches, fever, sleepy

Ej3: Disorders: cold; Manifestations: aches, fever.

First, we see that Es has only one disorder, so we add the appropriate rules
to C, so that C = (cold—aches, cold—fever). The intersection accuracy
of this rule base is .583. This is computed as follows. For all three examples,

the cover returned by BIPARTITE is (cold). Thus, the intersection accuracy
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of Cis (0 + (1/1 +1/2)/2 4+ (1/1 +1/1)/2)/3 = 0.583. Next, all possible
remaining rules are formed and added to Rules. Then the main loop is enter-
ered, which tests the result of adding each element of Rules to C. For exam-
ple, the rule base C’ = (typhoid—sniffles, cold—aches, cold—fever)
would result in the answer (cold typhoid) for F; and the answer (cold)
for E, and Es;. Thus, the intersection accuracy of C' is ((1/2 + 1/2)/2 +
(1/14+1/2)/2 4+ (1/1+1/1)/2)/3 = 0.75. Although there are other rule bases
with this same accuracy, no others surpass this accuracy, so C’ becomes the
starting C for the second iteration through the loop. In addition, our set of
Rules decreases, because we remove flu—sniffles, which is the only related
rule of typhoid—sniffles. This time through the loop, we see that the rule
flu—cough, when added to C, results in the highest intersection accuracy, of
.861, because the answer for £ is now (typhoid flu cold), so we get intersec-
tion accuracy of ((2/342/2)/2+(1/1+1/2)/2+(1/1+1/1)/2)/3 = 0.861, and
related rule typhoid—cough is removed from Rules. The rule added the next
time through the loop is allergy—sleepy, causing the accuracy to increase
to .944, and related rule cold—sleepy is removed. Finally, we add the rule
typhoid—fever, which results in 100% intersection accuracy, and we are done.
The final rule base, C', is (typhoid—fever, allergy—sleepy, flu—cough,
typhoid—sniffles, cold—fever, cold—aches). Note that no rule is as-
sociated with the manifestation headache. This is because we reached 100%
accuracy before learning a rule for all symptoms present, and is in keeping with

our goal of learning the smallest C' possible.
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3.4 Computational Complexity Evaluation

Let us examine the computational complexity of our problem. Let
|D| be the size of our disorder set and let | M| be the size of our manifestation
set. Then the size of the search space of possible rule bases is O(2PIM) This
is derived from the fact that if all disorder-manifestation pairs were actually
present somewhere in the examples, then every such pair would be a potential
rule to add to C'. If we were to make a blind breadth-first search to accomplish
our task, we would have to look at all rule bases of size one, find their accuracy,
then do the same for all of size two, then three, etc., until all rule bases have
been evaluated. Since this problem grows exponentially with the example set,
it is intractable in general. Note, though, that we don’t actually need to look
at all rules in D x M, but only a plausible subset, where each (d, m) examined

is in FE; for each E; € E. However, this can still grow exponentially with E.

This approximation of exponential growth could be an over-estimate,
because we do not need to perform a blind search. Conversely, although we
have no proof, we hypothesize that our problem is NP-Hard because of the
difficulty of finding a minimum rule base such that the accuracy is maximized.
Therefore, it is useful to examine the computational complexity of LAB. The
first significant step, finding all Rules, takes O(|D||M|) time. Next, the number
of times that BIPARTITE is executed is O(N|D|*|M|*), where N is the number
of examples in F. This upper bound is derived from the summation

|D||M]-1
> N(UDIM|—r),
r=0
where r is the number of rules added to the rule base so far, and (|D||M|—r)

1s the number of rules left from which to choose. Since we run BIPARTITE once

for each example, for each rule base C’, we multiply the number of rules left
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from which to choose by N. Finally, in the worst case, we could add all possible

rulesin D x M.

Now we have the number of times which BIPARTITE is run, but we
have not discussed the complexity of BIPARTITE. Finding all minimum cov-
ers of a given M is NP-hard (Peng and Reggia, 1990). The complexity of
BIPARTITE itself is O(2Mi+) for a particular example FE;, since we are find-
ing all minimal covers. However, in most patient cases in our domain (and
presumably in most diagnostic domains), the number of manifestations is rel-
atively small (less than ten). Therefore, it is actually the repeated execution
of BIPARTITE that dominates our time, not the BIPARTITE algorithm itself.
The only other computations in the loop are those of the accuracy, which are
included in the analysis already, since they are performed as often as bipartite

1s run.



Chapter 4

Experimental Evaluation

4.1 Method

Our aim is to show that learning for abduction is better than learn-
ing for deduction in the domain of multiple-disorder diagnosis. To test our
hypothesis, we used actual patient data from the domain of diagnosing brain
damage due to stroke. We used fifty' of the patient cases discussed in (Tuhrim
et al., 1991). In this database, there are twenty-five different brain areas which
can be damaged (e.g., right midbrain), effecting the presence of thirty-seven
symptom types (e.g., gait type), each with an average of four values, for a total
of 155 total attribute-value pairs possible (e.g., gait type = unsteady). These
fifty cases were used as the example set, F, and have an average of 8.56 mani-
festations and 1.96 disorders each. In addition, we obtained the accompanying

abductive knowledge base generated by an expert, which consists of 648 rules

(hereafter called the expert KB, or original KB).

We ran our experiments with LAB, ID3, PFOIL, and a neural network.
ID3 (Quinlan, 1986) learns a decision tree for classifying examples into multiple
categories, and uses an information gain criterion for building the tree. In order

to make it comparable to LAB and PFOIL, no pruning is performed. PFOIL

'We were only able to obtain fifty out of the 100 cases from the authors of the original
study.
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(Mooney, to appear) is a propositional version of FOIL (Quinlan, 1990). ForIL
is a system for learning first-order Horn clauses; however the basic algorithm
is a heuristic covering algorithm for learning DNF expressions. The primary
simplification of PFOIL compared to FOIL is that it only needs to deal with
fixed examples rather than the expanding tuples of FOIL. The neural network
was trained using standard backpropagation (Rumelhart et al., 1986) with one

hidden layer.

ID3 and PFoIL are typically used for single class tasks, where each
example represents only one category. In other words, there may be multiple
categories to choose from, but each example can only belong to one of the
multiple categories. In our domain, each example may belong to multiple
categories (or disorders). Therefore, an interface was built for both systems
to allow them to simulate the multiple disorder diagnosis of LAB. One tree or
DNF form for one disorder is learned at a time. For each disorder, an example
E; is given to the learner as a positive example if the disorder is present in D},
otherwise it is given as a negative example. This is done for all examples in E.

Thus, a forest of trees or collection of DNF forms is built.

In order to compare the performance of LAB to ID3, PFoIL, and
backpropagation, learning curves were generated for the patient data. Each
system was trained in batch fashion on increasingly larger fractions of a fixed
training set and repeatedly tested on the same disjoint test set (in this case,
consisting of ten examples). At each point, the following statistics were gath-
ered: for both the training and the testing sets: standard accuracy, intersection
accuracy, sensitivity, specificity, and the number of diagnoses returned. Also,
training time, testing time, and concept complexity were measured. The con-

cept complexity of LAB is simply the number of rules in the final rule base, C.
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The complexity of the trees returned by ID3 is the number of leaves. This is
then summed over the tree formed for each disorder. For PFOIL, the concept
complexity i1s the sum of the lengths of each disjunct, summed again over the
DNF for each disorder. Although rule, literal, and leaf counts are not directly
comparable, they provide a reasonable measure of relative complexity. There
is no acceptable way to compare the complexity of concepts learned by a net-
work to these other methods, therefore no measures of concept complexity were

made for backpropagation.

All of the results were averaged over 20 trials, each with a different
randomly selected training and test set. The results were statistically evaluated
using a two-tailed paired t-test. For each training set size, LAB was compared
to each of ID3, PFoIL, and backpropagation to determine if the differences in
the various accuracy measures, train time, and complexity were statistically

significant (p < 0.05).

4.2 Results

The resulting curves are shown in Figures 4.1-4.5. All run times are
for a SPARCstation 2 running Lucid Common Lisp. When given zero training
examples, LAB and PFOIL classify everything as negative, and ID3 returns a
random class. Differences at zero training examples are therefore not partic-
ularly meaningful and will not be considered in the following discussion. If
specific differences are not mentioned, they should be assumed to be statisti-

cally insignificant.

The top of Figure 4.1 shows the results for intersection accuracy on
the testing set. LAB performs significantly better than ID3 through fifteen ex-

amples, than backpropagation through 20 examples, and than PFoIL through
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30 examples. Also, LAB performs significantly better than the expert KB after
only fifteen training examples, while it takes ID3 and backpropagation twenty-
five examples to reach this level, and PFOIL takes 35 examples to reach this

level.

On the other hand, LAB suffers on standard accuracy for the testing
set, as we can see on the bottom half of the figzure. However, the differences
between LAB and ID3 are only statistically significant for 20, 25, 35, and 40
examples. When we compare LAB and PFOIL, we can see that P FOIL performs
significantly better than LAB only at 35 and 40 examples. Also, LAB performs
significantly worse than backpropagation for all training set sizes. All the
systems perform significantly better than the expert KB starting at twenty (or
fewer) training examples. In addition, all systems perform significantly better
than the 92.16% standard accuracy possible in this domain by guessing all

patients are well, starting at 15 (or fewer) examples.

The training performance for standard accuracy is shown in Fig-
ure 4.2. While the downward trend looks alarming, note that we do stay well
above 98% standard accuracy. On the other hand, intersection accuracy and
sensitivity (not shown) dip to 90%, while specificity (not shown) stays above
99%.

The results for sensitivity and specificity are shown in Figure 4.3. For
the sensitivity measure, as shown on the top of the figure, LAB performs sig-
nificantly better than ID3 for all example sizes except 35, where the difference
is not significant. LAB does, however, perform significantly better than PFoIL
and backpropagation throughout. Also, LAB performs significantly better than
the expert KB starting at ten examples, ID3 does so starting at 15 examples,

and PFoIL and backpropagation starting at 20 examples. For specificity, on
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the bottom, ID3 and PFOIL perform significantly better than LAB starting
at ten training examples. Backpropagation performs significantly better than
LAB starting at five training examples. LAB never surpasses the specificity per-
formance of the expert KB, but backpropagation does, significantly, starting
at five examples. ID3 performs significantly better than the expert KB after

30 examples, and PFOIL performs significantly better at forty examples only.

Another difference in the results between the systems can be seen in
the training time and concept complexity. Figure 4.4 displays these differences.
The training time for backpropagation is not shown, but went as high as 1751
seconds for 40 training examples. The training time for LAB (on the top of the
figure) was significantly greater than that for either ID3 or PFoiL. However,
as we can see, the time at first looks to be growing polynomially, but later looks
to be linear. One reason for this is that we are reaching a saturation point on

the number of potential rules which need to be examined.

The bottom of the figure displays the more positive results for concept
complexity. LAB learns a significantly more simple rule base than the trees built
by ID3, but is (significantly) more complicated than the concepts learned by
PFoIL.

Finally, we want to look at the number of diagnoses returned by LAB
during training and testing. This can be seen in Figure 4.5. The number
of diagnoses returned per example is reasonably close to one during training

(shown at the top of the figure), and closer to 1.5 during testing.
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4.3 Discussion

Our intuition was that obtaining a high intersection accuracy would
be easier for LAB than for PFOIL or ID3. The results partially support this, in
that LAB performs significantly better than all of the systems at first, then the
difference becomes insignificant as the number of training examples increases.
However, if we use a one-tailed paired f-test instead of two-tailed, LAB’s per-
formance is significantly better than ID3 through 20 examples, and again at 30
examples, as compared to only through 15 examples with the two-tailed test.
Also, LAB does not perform quite as well on standard accuracy compared to
the other systems. However, this measure is not very meaningful, considering
we get 92% accuracy just by saying that all patients have no brain damage.
Finally, the sensitivity results were very encouraging, and again if we use a
one-tailed paired t-test, LAB is significantly better than ID3 for all training
set sizes. Still, our results were somewhat weaker than we would have hoped.
Several explanations for this can be found. First, while ID3, backpropagation,
and PFOIL? get 100% performance on all measures on the training data, LAB
does not. One possible reason is that we are using a hill-climbing algorithm,

and can run into local maxima.

Another reason for the difficulty during training is that the patient
cases contain some conflicting examples from an abductive point of view. In
other words, it is impossible to build an abductive rule base which will correctly
diagnose all examples. One instance of these conflicts occur when there is an
example, E;, such that |DF| > 2 and all the manifestations of D; appear in

other examples which contain only one disorder. Following is an example from

?Except at one data point.
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our patient data. See the appendix for the meanings of the abbreviations.

E;: Disorders: 1fl, lic; Manifestations: at(hr), fst(rc), ds(mod),

wt (hr), as(ri);

Ej: Disorders: 1f1; Manifestations: fst(rc), ts(r), ds(mod), wt(hr),

as(ri);

E;: Disorders: 1f1l; Manifestations: ded(d), at(hr), fst(rc), wt(hr),

des(rmi), as(ri), bs(r)

Any abductively used rule base we build will either hypothesize extra disorders
for E; or Ej, or it will hypothesize a subset of the correct disorders for FE;.
Which one happens depends on the order in which we test rules for addition
to C. There are two examples with the qualities of E; in our patient data. In
addition to this type of example, there are other, more complicated example
interactions which make it impossible to learn a totally accurate abductive rule

base.

So, another reason for the dip in training accuracy is that the more
examples there are in the training set, the more likely that conflicting examples
will occur in the data. This makes it harder to achieve our global goal, since
the algorithm does not know the difference between conflicting examples and
those that it can learn correctly. We ran another test on just 40 examples
in which we did not see any conflicts. This time, even with the hill-climbing
algorithm, 99% standard accuracy is maintained on the training data after 30
examples. Also, intersection accuracy stays above 91%, and sensitivity above
96%. However, testing performance suffers in comparison to the original study,

and thus the results were analyzed no further.
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In addition to the fairly good results on intersection accuracy, there
are other positive results. While ID3 and PFOIL get 100% intersection accuracy
and sensitivity on the training set and LAB does not, LAB performs better than
both systems on these measures during testing. We have already discussed the
intersection accuracy results, and now turn to the results for sensitivity. Recall
first that sensitivity measures accuracy over the disorders actually present in a

case, while specificity measures accuracy over disorders not present.

LAB produces diagnoses during testing that are overly general, and
thus performs well on sensitivity, while ID3 and PFOIL’s answers are overly
specific, and thus they perform well on specificity. These results are further
indication of why ID3 performs better than LAB on standard accuracy. Each
example contains few disorders compared to the number possible. Therefore,
since ID3 is correctly predicting which disorders are not present more accu-
rately than LAB, it is not surprising that it is better on standard accuracy.
One reason for this is that as more training examples become available, ID3
uses more information about the absence of manifestations to make its deci-
sions as to whether a disorder is present. In some cases, ID3 hypothesizes
that if a certain manifestation is present, a certain disorder is not present, no
matter what other manifestations are present. This causes ID3 to miss the
fact that the manifestation could be present due to a different disorder. LAB
can not use information about the absence of a manifestation to make pre-
dictions like this. LAB weighs all manifestations more equally and thus has a
tendency to hypothesize a disorder present because of one manifestation when
ID3 would hypothesize that the presence of another manifestation indicates it
is not present. Therefore, LAB is typically predicting at least as many disorders

as are actually present.
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Since abduction must explain all manifestations present for which it
knows a rule, it is always forced to hypothesize at least one disorder per case,
as long as at least one manifestation present is in the rule base. ID3 has
no such bias. It evaluates the presence of each disorder independently of the
others. BIPARTITE increases or decreases the number of disorders present as it

examines each manifestation, but this number can never go below one.

We see some additional reasons for LAB to have an overly general bias:
Suppose we had a rule base, C; which correctly diagnosed half of our examples,
but which for the other half returned a diagnosis which was correct, but in
addition had an incorrect disorder present. Suppose also there was a second
rule base, Cy which correctly diagnosed half of our examples, but which for the
other half returned two diagnoses, one correct, and one with a disorder missing
and a different one in its place. A better intersection accuracy is obtained for
Cy than for Cy in our example set. This indicates that most examples will
contain more disorders than are needed, instead of more diagnoses than are
needed. This is another reason why specificity is low for LAB but sensitivity is

higher.

With respect to concept complexity, as the expert KB contains 648
rules (versus 111 for LAB with 40 training examples) and performs more poorly
than the rules learned by LAB, we can see a clear advantage, in this case, in
learning rules as opposed to using expert advice. In addition, the resulting rule
base, C, is much easier to comprehend than either the decision tree learned
by ID3 or the disjuncts returned by PFOIL. An example of the concept right
internal capsule learned by each system is shown in Figure 4.6. In this
figure, the format of the rules learned by LAB is in the form (+ m d), instead

of d — m as we have been using. Also, in the ID3 tree, a feature value of 0



34

LAB concept:

(<-(Poorokn-Direction Lhoriz) (Right-Internal-Capsule Present))
(<-(Facial-Side-Type Left-Central)

(Right-Internal-Capsule Present))
(<-(Weakness-Type Hemiparesis-Left)

(Right-Internal-Capsule Present))
(<-(Decram-Side Left-Severe) (Right-Internal-Capsule Present))
(<-(Disoriented-Degree Mild) (Right-Internal-Capsule Present))
(<-(Facenumb-Side Left) (Right-Internal-Capsule Present))

ID3 Concept:

((RIGHT-INTERNAL-CAPSULE PRESENT)
Feature: DECRAM-SIDE
0 (0.650)
Feature: TWOPOINT-SIDE
0 (0.885)
Class is: -
LEFT (0.115)
Feature: DENIAL
0 (0.333)
Class 1is: +
PRESENT (0.667)
Class is: -
RIGHT (0.000)
Class is: -
RIGHT-MILD (0.175)
Class is: -
RIGHT-SEVERE (0.000)
Class is: -
LEFT-MILD (0.150)
Class is: -
LEFT-SEVERE (0.025)
Class is: +)

PFoir Concept:

(Right-Internal-Capsule Present)

Positive:

Decram-Side=Left-Severe V (Vibloss-Side=Left A Decloc—Degree=O)

Figure 4.6: Example Concepts Learned
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indicates that the feature is not present. This tree also illustrates an instance
of using information about the absence of a manifestation to make decisions.

An example of an entire rule base learned by LAB is given in the appendix.

Finally, we turn to the number of diagnoses returned by the rule bases
learned by LAB during training and testing. Ideally, we would like a single,
correct diagnosis returned by our abductive mechanism for each example. We
have already seen that the goal of getting a correct diagnosis was not met.
However, as we have said, the number of diagnosis returned per example is
reasonably close to one during training, and closer to 1.5 during testing. This
is far better than the expert KB, which produces an average of 4.5 minimum
covers per example. There are two reasons why multiple diagnoses may occur in
our result. First, we may not learn any rules for some manifestations, in which
case their presence in an example does not help us discriminate between the
multiple diagnoses generated by the other manifestations. Second, we some-
times learn too many rules for a manifestation, so that all the manifestations
in a case are caused by two or more of the same disorders. In this case, if there
were more manifestations in the example, it might help discriminate between

these diagnoses.



Chapter 5

Related Work

Since no other system learns rules which are used abductively, there
are no systems with which to make a direct comparison. However, there are
many systems which can learn to do diagnosis, and many methods for reasoning

abductively.

Almost any learning system can learn to do diagnosis, some more
successfully than others. We have already mentioned the methods of learning
rules for deduction, both in the introduction and in our comparisons with ID3
and PFOIL. An alternative is PROTOS (Porter et al., 1990), which uses an
exemplar-based approach to learning. PROTOS has been tested, with favorable
results, in the domain of clinical audiology. Two other methods that seem
particularly well-suited to do diagnosis are neural networks and Baysian Net-
works. Neural networks use nodes and links with weights to represent knowl-
edge. Backpropagation, as we have discussed, is the usual technique used to
modify the weights during training. While capable of learning to make di-
agnoses which may include multiple disorders, neural networks have several
disadvantages. First, as we saw, they take a long time to train. Second, the
learned network is difficult for a domain expert to interpret. This would make
it impractical to use in a real world situation, where the diagnostician would
typically like to see explanations for the diagnosis output. Our causal rules

could handle this much more easily.
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A second method is Baysian Networks (Pearl, 1988), which are also
networks which represent causality in a graph, but with conditional proba-
bilities and some prior probabilities attached to the nodes. The nodes repre-
sent states of affairs (our disorders and manifestations), and the arcs are the
causal connections. Some attempts have been made to learn Baysian Networks
(Cooper and Herskovits, 1992; Geiger et al., 1990), but they have not been
used in a diagnostic domain. Although their probabilistic nature might help
these systems perform well in diagnosis, they have trouble, used on their own,
in coping with the presence of multiple disorders. The reason for this is that
the information they provide is the probability that each disorder is present. A
question that arises is how high the probability should be to decide whether a
disorder is actually present. Because of this, Baysian Networks may have to be
integrated with another system to help discriminate between diagnoses. Also,
actually performing diagnosis once the network is built i1s in general NP-hard

if loops exist in the network.

Many alternative formalisms exist for abduction. (Allemang et al.,
1987) use an abductive model similar to that of Peng & Reggia, but with an
approximate algorithm. The ATMS (Assumption-based Truth Maintenance
System) (de Kleer, 1986) reasons using propositional Horn-clause axioms. The
ATMS and similar systems have been used in domains other than diagnosis.
Recently, Levesque (Levesque, 1989) has shown that with a slightly different
formalism of abduction than used here, the ATMS performs abduction precisely
as he defines it. The ACCEL system by Ng (Ng, 1992) extends the ATMS
to first-order Horn-clause axioms with variables, and also works in domains
other than diagnosis. It also uses several efficiency measures while performing

the abduction. Because of these systems’ utility in multiple domains, such as
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natural language understanding, we foresee that our approach could eventually

be extended to learning in other domains as well.

Finally, there are alternatives to using abduction for diagnosis. First,
model-based diagnosis (de Kleer and Williams, 1987; Reiter, 1987) uses a model
to predict the behavior of a system, and to make a diagnosis based on the dis-
crepancy, if any, between the predictions of the model and the actual behavior
of the system. One weakness in the method is that the model can be wrong
or inexact. A second alternative is Reiter’s (Reiter, 1987) diagnosis from first
principles, which reasons from the system description and observations of the

systems behavior.



Chapter 6

Future Work

There are many opportunities for future work in this area. We can

see some of these in the results obtained with LAB.

First, we believe that our training accuracy is not at the maximum
level possible, even with the presence of inconsistent examples. There are sev-
eral modifications we could make to improve this. First, we could use different
or additional heuristics during our hill-climbing search. One possibility is to use
better measures of the utility of adding a rule throughout the search. Second,
we could perform search with backtracking to have a better chance of finding
the most accurate rule base possible. Our original attempts at an algorithm
to achieve our goal were along these lines, but were met with limited success
because we did not have the focussed goal of finding the maximum possible
accuracy. Third, we could use a bias other than the minimum cardinality when
choosing an answer from BIPARTITE. As pointed out in (Tuhrim et al., 1991),
minimum cardinality is not always the most successful criterion for choosing
an explanation. For example, sometimes choosing a non-minimum cover leads

to a more likely diagnosis than a minimum cover.

A second opportunity for improvement is to reduce the number of
diagnoses returned to only one, during both training and testing. One way this
could be done is by using a probabilistic model for our abduction. One such

model is outlined in (Peng and Reggia, 1990), and ranks explanations based on
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information about the probability of a disorder occurring and the probability
that a disorder causes a manifestation. These are assumed to be available, as
is the causation relation for BIPARTITE. This is a more realistic assumption
than traditional probabilistic approaches, which require information about the
frequency with which disorders and manifestations occur together. This is
much more difficult to obtain, and causes computations to become intractable.
In order to use these probabilities in our approach, investigation is needed as

to how they might be learned.

Another possible solution to the multiple diagnosis problem is to as-
sure that at least one rule is associated with each manifestation occurring in the
training examples. This does not always happen now because of hill-climbing.
This way, each manifestation will be guaranteed to help discriminate between
competing diagnoses during testing. Another possibility is to learn more gen-
eral rules for each disorder. For example, if damage in the right internal
capsule may cause a disorientation of degree mild, it is likely to cause a dis-
orientation of moderate, or even severe degree. This could be useful for helping

LAB deal with manifestations unseen during training.

Third, the answers returned during testing are overly general, as can
be seen in the results on specificity. Again, probabilistic measures might help,
by ruling out unlikely disorders. Also, we could compare and combine the
answers given by BIPARTITE with those of another system, perhaps to narrow
the number of disorders hypothesized. However, as we have noted, we would

rather have an overly general diagnosis than one which was missing disorders.

Fourth, our training time is too slow. We could improve this by using
methods other than always running BIPARTITE to choose which rules to add

to C. Again, heuristics and a more intelligent, faster search could improve
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the training time. Also, we could use domain specific knowledge to help focus
the search, reducing search time as well as potentially improving the accuracy.
For example, in our brain damage domain, we could use the knowledge that
damaged areas are typically located near each other to rule out implausible

diagnoses.

Additional experiments are required to more clearly determine the ad-
vantages and disadvantages of learning for abduction. Experiments in other do-
mains are desirable; however we know of no other existing data sets for multiple-
disorder diagnosis. Experiments on some of the standard single-disorder data
sets should be performed; however, abduction’s real advantage is on multiple-
disorder diagnosis. Also, LAB should be compared to additional learning meth-

ods such as PROTOS, instance-based methods (Aha et al., 1991), etc.

Finally, the method needs to be extended to produce more complex
abductive knowledge bases that include causal chaining (Peng and Reggia,
1990), rules with multiple antecedents, incompatible disorders, and first-order

predicates (Ng, 1992).



Chapter 7

Conclusion

Abduction is an increasingly popular approach to multiple-disorder
diagnosis. However, the problem of automatically learning abductive rule bases
from training examples has not previously been addressed. This paper has
presented a method for inducing a set of disorder — manifestation rules
that can be used abductively to diagnose a set of examples. Experiments on
a real medical problem indicate that this method produces a more accurate
abductive knowledge base than one assembled by domain experts, as well as

one that is more sensitive and comprehensible than concepts learned by ID3.

This thesis has made several important contributions:

1. We have demonstrated a method for learning rules which will be used

abductively by building a system, LAB.

2. We have shown that learning for abduction is more successtul at predict-
ing which disorders are present than two other systems and a knowledge
base built by domain experts. This success was shown for a real world

data set.

3. We have introduced a new paradigm of learning. Learning for abduction

is a previously untried method with much promise.
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In summary, this thesis has demonstrated via an implemented system
that learning for abduction is a possible and successful paradigm of learning.
This method has much potential for exploration and experimentation, and the

future holds much promise for this approach to the learning task.



Appendix A

Abbreviations

Abbreviations used in Section 4.3:

Disorders:
1£f1: left frontal lobe,

lic: left internal capsule,

Manifestations:
at (hr): abneom type = hgaze right,
fst(rc): facial side type = right central,
ds(mod): dysarthria severity = moderate,
wt (hr): weakness type = hemiparesis left,
ts(r): tongweak side = right,
ded(d): decloc-degree = drowsy,
des(rmi): decram side = right mild,
as(ri): abndtrs side = right incdtr,

bs(r): babs side = right.
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Appendix B

Sample Rules

Sample rule base learned by LAB:
(«(poorokn-direction lhoriz) (right-frontal-lobe present))
—(facial-side-type left-central) (right-frontal-lobe present))
(weakness-type hemiparesis-left) (right-frontal-lobe present))
—(babs-side left) (right-frontal-lobe present))

(dss-side left) (right-frontal-lobe present))
—(dysarthria-severity mild) (right-frontal-lobe present))
—(decram-side left-mild) (right-frontal-lobe present))
—(abndtrs-side left-incdtr) (right-frontal-lobe present))

—(facenumb-side right) (left-internal-capsule present))

;

weakness-type hemiparesis-right) (left-internal-capsule present))

—(abndtrs-side right-incdtr) (left-internal-capsule present))
«—(babs-side right) (left-internal-capsule present))
—(gait-type other) (left-internal-capsule present))
—(pp-side right-mild) (left-internal-capsule present))
«—(vibloss-side right) (left-internal-capsule present))
—(facenumb-side right) (left-pons present))

—(weakness-type hemiparesis-right) (left-pons present))

(
(
(—(
(—(
(—(
(—(
(—(
(—(
(—(
(—(
(—(decram-side right-mild) (left-internal-capsule present))
(—(
(—(
(—(
(—(
(—(
(—(
(—(
(—(

—(ataxia-type limb-right-mild) (left-pons present))
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—(decram-side right-mild) (left-pons present))
«—(babs-side right) (left-pons present))

—(gait-type unsteady) (left-pons present))
—(facial-side-type right-central) (left-pons present))
«—(dysarthria-severity mild) (left-pons present))
—(ataxia-type limb-left-mild) (left-pons present))
—(decram-side left-mild) (left-pons present))
—(pp-side right-mild) (left-pons present))
—(posloss-side right) (left-pons present))
«—(disoriented-degree mild) (left-frontal-lobe present))
—(poorokn-direction rhoriz) (left-frontal-lobe present))
—(abneom-type hgaze-right) (left-frontal-lobe present))

—(facial-side-type right-central) (left-frontal-lobe present))

;

weakness-type hemiparesis-right) (left-frontal-lobe present))
«—(babs-side right) (left-frontal-lobe present))
«—(dysarthria-severity moderate) (left-frontal-lobe present))
—(abndtrs-side right-incdtr) (left-frontal-lobe present))
—(decloc-degree drowsy) (left-frontal-lobe present))
—(decram-side right-mild) (left-frontal-lobe present))
—(poorokn-direction lhoriz) (right-internal-capsule present))

—(facial-side-type left-central) (right-internal-capsule present))

;

weakness-type hemiparesis-left) (right-internal-capsule present))
—(decram-side left-severe) (right-internal-capsule present))
—(ataxia-type limb-right-mild) (right-cerebellar-hemisphere present))
—(decram-side right-mild) (right-cerebellar-hemisphere present))

(—(
(—(
(—(
(—(
(—(
(—(
(—(
(—(
(—(
(—(
(—(
(—(
(—(
(—(tongweak-side right) (left-frontal-lobe present))
(—(
(—(
(—(
(—(
(—(
(—(
(—(
(—(
(—(
(—(
(—(
(—(
(—(

—(gait-type unsteady) (right-cerebellar-hemisphere present))

46



—(abneom-type fourn-right) (right-midbrain present))
—(ataxia-type limb-left-mild) (right-midbrain present))
—(decram-side left-mild) (right-midbrain present))
«—(babs-side left) (right-midbrain present))

—(facial-side-type right-central) (left-internal-capsule present))
—(dysarthria-severity moderate) (left-internal-capsule present))
—(nonfluency-severity mild) (left-frontal-lobe present))
—(repetition-severity mild) (left-frontal-lobe present))
—(dysarthria-severity mild) (left-internal-capsule present))
—(vi-deficit-side-type left-hemianopsia) (right-parietal-lobe present))
—(vi-deficit-side-type right-hemianopsia) (left-parietal-lobe present))
-

nonfluency-severity severe) (left-temporal-lobe present))

—(abneom-type hgaze-left) (right-temporal-lobe present))

—(hemineglect-side right) (left-temporal-lobe present))
—(facenumb-side right) (left-frontal-lobe present))
«—(decloc-degree drowsy) (right-temporal-lobe present))
«—(disoriented-degree mild) (right-frontal-lobe present))
—(pp-side left-mild) (right-parietal-lobe present))
«—(pp-side right-mild) (left-frontal-lobe present))
«—(anomia-severity mild) (left-thalamus present))
«—(dss-side left) (right-occipital-lobe present))
—(ataxia-type limb-right-mild) (left-frontal-lobe present))
—(repetition-severity severe) (left-parietal-lobe present))
—(pp-side right-moderate) (left-temporal-lobe present))
—(dysarthria-severity mild) (left-parietal-lobe present))

(—(
(—(
(—(
(—(
(—(
(—(
(—(
(—(
(—(
(—(
(—(
(—(
(—(
(—(compdef-severity severe) (left-frontal-lobe present ))
(—(
(—(
(—(
(—(
(—(
(—(
(—(
(—(
(—(
(—(
(—(
(—(
(—(

—(dysarthria-severity moderate) (right-frontal-lobe present))



«—(decloc-degree drowsy) (right-frontal-lobe present))
«—(decloc-degree stupor) (right-parietal-lobe present))
«—(disoriented-degree mild) (right-internal-capsule present))
disoriented-degree mild) (right-temporal-lobe present))
disoriented-degree mild) (left-internal-capsule present))
—(facenumb-side left) (right-frontal-lobe present))
—(facenumb-side left) (right-internal-capsule present))

(
(
(
(
(
(
(
(

—(facenumb-side left) (right-temporal-lobe present)))
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